TS4956
Stereo audio amplifier system with I2C bus interface
Features
TS4956 - flip-chip 18
■
Operating from VCC = 2.7 V to 5.5 V
■
I2C bus control interface
■
38 mW output power at VCC = 3.3 V,
THD = 1%, F = 1 kHz, with 16 Ω load
■
Ultra low consumption in standby mode: 0.5 µA
■
Digital volume control range from +12 dB to
-34 dB
■
32-step digital volume control
■
Stereo loudspeaker option by I2C
■
8 different output mode selections
■
Pop and click reduction circuitry
■
Flip-chip package, 18 bumps with 300 µm
diameter
u
d
o
r
P
e
t
e
l
o
Pin connections (top view)
)
(s
■
Lead-free flip chip package
■
Output power limitation on headphone for
eardrum damage consideration
s
b
O
u
d
o
Mobile phones (cellular/cordless)
■
PDAs
■
Laptop / notebook computers
e
t
e
ol
bs
Portable audio devices
ODescription
The TS4956 is a complete audio system device
with three dedicated outputs, one stereo
headphone, one loudspeaker drive and one mono
line for a hands-free set. The stereo headphone is
capable of delivering more than 25 mW per
channel of continuous average power into 16 Ω
single-ended loads with 0.3% THD+N from a 5 V
power supply. The device functions are controlled
via an I2C bus, which minimizes the number of
external components needed.
March 2009
MLO
GND
LHP-
RHP+
VCC
SDA
BYPASS
LIN
I2CVCC
VCC
MIN
SRP+
Pr
■
PGH
RIN
ct
Applications
■
)
s
(
ct
MIP
SRN-
GND
SCL
The overall gain and the different output modes of
the TS4956 are controlled digitally by the control
registers which are programmed via the I²C
interface. It has also an internal thermal shutdown
protection mechanism.
Rev 4
1/55
www.st.com
55
Contents
TS4956
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
2
Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1
I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1
I²C operation description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2
Gain and mode setting operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3
Acknowledge bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
)
s
(
ct
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1
u
d
o
r
P
e
Output configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
t
e
l
o
4.1.1
Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2
Single-ended output configuration (modes 5 and 6) . . . . . . . . . . . . . . . 38
4.1.3
Phantom ground output configuration (modes 3 and 4) . . . . . . . . . . . . . 38
4.1.4
BTL output configuration (modes 1, 2, 7) . . . . . . . . . . . . . . . . . . . . . . . 39
)
(s
4.2
Power limitation in the phantom ground configuration . . . . . . . . . . . . . . . 39
4.3
Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1
4.3.2
4.3.3
4.4
Phantom ground output configuration (modes 3, 4): . . . . . . . . . . . . . . . 41
BTL output configuration (modes 1, 2, 7) . . . . . . . . . . . . . . . . . . . . . . . 42
t
e
l
o
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5
Single-ended input configuration in modes 1, 3 and 5 . . . . . . . . . . . . . . . 45
4.6
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8
PSRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
bs
2/55
t
c
u
Single-ended output configuration (modes 5 and 6) . . . . . . . . . . . . . . . 40
od
r
P
e
O
s
b
O
4.4.1
4.4.2
Input capacitor Cin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Output capacitor Cout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8.1
What is PSRR? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8.2
How is PSRR measured? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9
Pop and click performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.10
Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.11
Demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
TS4956
5
Contents
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1
18-bump flip-chip package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2
Daisy chain sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
)
s
(
ct
u
d
o
r
P
e
t
e
l
o
)
(s
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
3/55
Absolute maximum ratings and operating conditions
1
TS4956
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings
Symbol
Parameter
Value
(1)
VCC
Supply voltage
Vi
Input voltage (2)
Unit
6
V
GND to VCC
V
Toper
Operating free air temperature range
-40 to + 85
°C
Tstg
Storage temperature
-65 to +150
°C
Tj
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient (3)
200
°C/W
Pdiss
Power dissipation
ESD
Latch-up
)
s
(
ct
Internally limited(4)
(5)
2
Susceptibility - human body model
kV
Susceptibility - machine model
150
Latch-up immunity
200
Lead temperature (soldering, 10sec)
o
r
P
260
1. All voltage values are measured with respect to the ground pin.
e
t
e
ol
du
V
mA
°C
2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V
3. Device is protected in case of over temperature by a thermal shutdown activated at 150°C.
4. Exceeding the power derating curves during a long period may involve abnormal operating conditions.
s
b
O
5. Human body model, 100 pF discharged through a 1.5 kΩ resistor, into pin to VCC device
Table 2.
Operating conditions
)-
Symbol
VCC(1)
RL
e
t
e
ol
CL
bs
O
Parameter
s
(
t
c
Supply voltage
Load resistor
Speaker/BTL output (modes 1,2,7)
Headphone, MLO output (modes 3,4,5,6,)
du
o
r
P
Rthja
Load capacitor
RL = 8 Ω to 100 Ω (speaker/BTL output - modes 1,2,7)
RL = 16 Ω to 100 Ω (headphone, MLO output - modes
3,4,5,6)
RL > 100 Ω
Flip-chip thermal resistance junction to ambient
Unit
2.7 to 5.5 V
V
≥8
Ω
≥16
500
400
pF
100
90(2)
°C/W
1. For proper functionality of I2C bus, VCC pins must not be grounded. ESD protection diodes ground data
and clock wires and cause dysfunction of I2C bus in this condition.
2. With heat sink surface 120 mm2.
Table 3.
I2C electrical characteristics
Symbol
2
I CVCC
Parameter
(1)
Value
Unit
I2C supply voltage
2.7 to 5.5 V
V
VILl
Maximum low level input voltage on pins SDA, SCL
0.3 I2CVCC
V
VIH
Minimum high level input voltage
0.7 I2CVCC
V
IIN
Maximum input current (pins SDA, SCL), 0.4 V < Vin < 4.5 V
10
µA
SCL maximum clock frequency
400
kHz
Max low level output voltage, SDA pin, Isink = 3 mA
0.4
V
FSCL
Vol
1. Must be less than or equal to the power supply voltage VCC of the device.
4/55
Value
TS4956
2
Typical application schematic
Typical application schematic
Table 4.
Description of external components
Components
Functional description
Cs1, Cs2
Supply bypass capacitors which provide power supply filtering.
Cb
Bypass capacitor which provides half-supply filtering.
Cin1 to Cin4
Input capacitors which form together with input impedance Zin first-order high pass
filter to block DC voltage on inputs
Cout
Output capacitor which forms with output load RL first-order high pass filter to block
half-supply voltage on single-ended output.
R1
Resistor to keep Cout charged for better pop performance on single-ended output.
Figure 1.
)
s
(
ct
u
d
o
Typical application for the TS4956 (modes 1, 2, 3, 4, 5 and 6)
r
P
e
Vcc
+
let
A1
MIP
uc
Cin2
A2
od
Diff. input -
Pr
SE input left
ete
b
O
l
o
s
+
330nF
MIN
SE input right Cin4
+
330nF
A5
LIN
RIN
B6
PHG
A7
16/32 Ohms
MODE3: Gx(MIP+MIN)
MODE4: GxRIN
RHP Amplifier
Mode
Select
B4
LHP
PHG Amplifier
Stereo
Input Right
Cin3
+
330nF
MODE3: Gx(MIP+MIN)
MODE4: GxLIN
LHP Amplifier
Stereo
Input Left
t(s
+
330nF
100nF
Vcc
Cin1
Vcc
O
)
TS4956
Diff. input +
Cs2
1µF
C3
C5
o
s
b
Cs1
RHP
Stereo
Input Left
16/32 Ohms
D6
Speaker Amplifier
B2
MODE1: Gx(MIP+MIN)
MODE2: Gx(LIN+RIN)
SRP+
SRN-
Stereo
Input Right
8 Ohms
D2
MLO Amplifier
MLO
E7
MODE5: Gx(MIP+MIN)
MODE6: Gx(LIN + RIN)
Cout+
220µF
Bias
GND C7
GND C1
E5
E3
D4
Cb
SDA
I2CVCC
16/32 Ohms
Digital volume
control
I2C
SCL E1
BYPASS
R1
1k
I2CVCC
+
SCL
1µF
SDA
I2C BUS
5/55
Typical application schematic
Figure 2.
TS4956
Typical application for the TS4956 (mode 7)
Vcc
+
Cs1
1µF
C3 Vcc
C5 Vcc
TS4956
Cs2
100nF
LHP Amplifier
A1
MIP
Stereo
Input Left
A2
MIN
Stereo
Input Right
LHP
B6
PHG
A7
)
s
(
ct
MODE7: BTL - GxRIN
PHG Amplifier
8 Ohms
RHP Amplifier
SE input left
Mode
Select
Cin3
B4
+
330nF
SE input right Cin4
A5
LIN
Stereo
Input Left
Speaker Amplifier
SRP+
+
330nF
ol
MLO
Digital volume
control
GND C7
GND C1
SDA
I2C BUS
SCL E1
SCL
1µF
E3
6/55
I2CVCC
+
s
b
O
Cb
I2C
I2CVCC
D4
e
t
e
ol
o
r
P
s
b
O
SDA E5
)
(s
ct
Pr
D2
MLO Amplifier
Bias
BYPASS
ete
SRN-
u
d
o
D6
B2
Stereo
Input Right
RIN
du
RHP
E7
MODE7: GxLIN
8 Ohms
TS4956
Typical application schematic
I2C interface
2.1
The TS4956 uses a serial bus, which conforms to the I2C protocol (the TS4956 must be
powered when it is connected to the I2C bus), to control the chip’s functions via two wires:
clock and data.
The clock and data lines are bidirectional (open-collector) with an external chip pull-up
resistor (typically 10 kΩ). The maximum clock frequency in fast-mode specified by the I2C
standard is 400 kHz, and this frequency is supported by the TS4956. In this application, the
TS4956 is always the slave device and the controlling MCU is the master device.
The I2CVCC pin determines the power supply of the TS4956’s I2C interface. The voltage
connected to this pin must be equal to or less than the TS4956 power supply voltage VCC.
The minimum value of the I2CVCC voltage is 2.7 V.
)
s
(
ct
When the I2CVCC pin is connected to an I2C voltage, the TS4956 is ready to communicate
via the I2C bus.
u
d
o
When the I2CVCC pin is connected to the ground, the TS4956 is in total standby mode, with
an ultra-low standby current on the order of a few nanoamperes. In this condition the
TS4956 cannot receive I2C commands from the I2C bus.
r
P
e
In both cases, pins SDA and SCL must respect logic HI or logic LOW thresholds (not
floating) presented in Table 3 on page 4, in order for the circuit to function properly.
t
e
l
o
Table 5 summarizes the pin descriptions for the I²C bus interface.
Table 5.
Pin
)
(s
SDA
du
I2CVCC
Functional description
Serial data pin
ct
SCL
2.1.1
s
b
O
I²C bus interface: pin descriptions
Clock input pin
I2C interface power supply
o
r
P
I²C operation description
s
b
O
e
t
e
ol
The host MCU can write into the TS4946 control register to control the TS4956 and read
from the control register to get the current configuration of the TS4956. The TS4956 is
addressed by a single byte consisting of a 7-bit slave address and an R/W bit. The TS4956
control register address is $5Dh.
Table 6.
First byte after the START message for addressing the device
A6
A5
A4
A3
A2
A1
A0
Rw
1
0
1
1
1
0
1
X
In order to write data into the TS4956 control register, after the "start" message the MCU
must send the following data:
●
send byte with the I²C 7-bit slave address and with the R/W bit set low.
●
send the data (control register setting).
All bytes are sent with the MSB bit first. The transfer of written data ends with a "stop"
message. When transmitting several bits of data, the data can be written without having to
repeat the "start" message or address byte with the slave address.
7/55
Typical application schematic
TS4956
In order to read data from the TS4956, after the "start" message, the MCU must send and
receive the following data:
●
send byte with the I²C 7-bit slave address and with the R/W bit set high.
●
receive the data (control register value).
All bytes are read with the MSB bit first. The transfer of read data is ended with a "stop"
message. When transmitting several bits of data, the data can be read with having to repeat
the "start" message and the byte with slave address. In this case the value of the control
register is read repeatedly.
Figure 3.
I²C read/write operation
SLAVE ADDRESS
S
SDA
1
0
1
1
1
0 1
Start condition
CONTROL REGISTERS
A
0
D7 D6 D5 D4 D3 D2 D1 D0 A
Acknowledge
from Slave
Table 7.
RHP
s
b
O
LHP
Speaker P/N
Mono L/O
0
SD
SD
SD
SD
1
SD
SD
Gx (MIP + MIN)
SD
t
c
u
SD
SD
GX (RIN + LIN)
SD
GX (MIP + MIN)
GX (MIP + MIN)
SD
SD
G x RIN
G x LIN
SD
SD
5
SD
SD
SD
GX (MIP + MIN)
6
SD
SD
SD
GX (RIN + LIN)
7
BTL: G x RIN
BTL: G x RIN
G x LIN
SD
)
(s
od
3
Pr
4
8/55
Acknowledge
from Slave
Output mode selection: G from -34.5 dB to + 12 dB (by steps of 1.5 dB)(1)
2
s
b
O
r
P
e
Stop condition
t
e
l
o
Output mode #
e
t
e
ol
)
s
(
ct
u
d
o
Output
Mode settings
Volume Control
settings
R/W
P
1. SD = shutdown mode
G = audio gain
MIP = mono input positive
MIN = mono input negative
RIN = stereo input right
LIN = stereo input left
TS4956
2.1.2
Typical application schematic
Gain and mode setting operations
The gain of the TS4956 ranges from -34.5 dB to +12 dB. At power-up, the output channels
are set to standby mode.
Table 8.
Gain settings truth table
G: Gain (dB) #
D7 (MSB)
D6
D5
D4
D3
-34.5
0
0
0
0
0
-33
0
0
0
0
1
-31.5
0
0
0
1
0
-30
0
0
0
1
1
-28.5
0
0
1
0
-27
0
0
1
0
-25.5
0
0
1
1
-24
0
0
1
-22.5
0
1
0
-21
0
1
0
-19.5
0
1
-18
0
1
-16.5
0
1
-15
0
-13.5
0
-12
0
s
(
t
c
-10.5
0
0
1
1
0
0
1
1
1
0
0
1
0
1
1
1
1
0
1
1
1
1
ete
0
s
b
O
ol
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
1
0
1
0
0
1
0
1
0
1
-1.5
1
0
1
1
0
0
1
0
1
1
1
+1.5
1
1
0
0
0
+3
1
1
0
0
1
+4.5
1
1
0
1
0
+6
1
1
0
1
1
+7.5
1
1
1
0
0
+9
1
1
1
0
1
+10.5
1
1
1
1
0
+12
1
1
1
1
1
du
ro
-6
P
e
-4.5
s
b
O
1
0
-7.5
t
e
l
o
Pr
0
1
-9
1
1
1
0
1
)-
u
d
o
)
s
(
ct
0
-3
9/55
Typical application schematic
Table 9.
2.1.3
TS4956
Output mode settings truth table
D2
D1
D0
Comments
0
0
0
OUTPUT MODE 0
0
0
1
OUTPUT MODE 1
0
1
0
OUTPUT MODE 2
0
1
1
OUTPUT MODE3
1
0
0
OUTPUT MODE 4
1
0
1
OUTPUT MODE 5
1
1
0
OUTPUT MODE 6
1
1
1
OUTPUT MODE 7
)
s
(
ct
Acknowledge bit
u
d
o
The number of data bytes transferred between the start and the stop conditions from the
CPU master to the TS4956 slave is unlimited. Each byte of eight bits is followed by one
acknowledge bit.
r
P
e
t
e
l
o
The addressed TS4956 generates an acknowledge after receiving each byte that has been
clocked out.
)
(s
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
10/55
s
b
O
TS4956
Electrical characteristics
3
Electrical characteristics
Table 10.
VCC = +2.7 V, GND = 0 V, Tamb = 25° C (unless otherwise specified)
Symbol
Parameter
Conditions
Typ.
Max.
Mode 1, 2, no input signal, no load
3.4
4.4
Mode 3, no input signal, no load
4.6
6
Mode 4, no input signal, no load
4.4
5.7
Mode 5, 6, no input signal, no load
1.75
2.3
Mode 7, no input signal, no load
5.7
7.4
Standby current
No input signal
0.5
Output offset voltage
No input signal
Modes 1, 2
speaker output, RL = 8 Ω
Mode 3
headphone outputs, RL = 16 Ω
Mode 4
headphone outputs, RL = 16 Ω
Mode 7
BTL, speaker output, RL = 8 Ω
Supply current
ICC
ISTBY
VOO
Min.
t
e
l
o
bs
Pout
5
20
5
20
Modes 1, 2, 7
THD+N = 1% max, F = 1 kHz, RL = 8 Ω
270
285
Modes 5, 6
THD+N = 1% max, F = 1 kHz, RL = 16 Ω
THD+N = 1% max, F = 1 kHz, RL = 32 Ω
35
20
42
25
)
s
(
ct
du
o
r
P
Total harmonic distortion
+ noise
G = +1.5 dB, 20 Hz < F < 20 kHz
Modes 1, 2, 7, RL = 8 Ω, Pout = 200 mW
Modes 3, 4, RL = 16 Ω, Pout = 15 mW
Modes 5, 6, RL = 16 Ω, Pout = 30 mW
0.5
0.5
0.5
Power supply rejection
ratio(1)
F = 217Hz, G = +1.5 dB, Vripple = 200 mVpp,
Inputs grounded, Cb = 1 µF
Mode 1, speaker output, RL = 8 Ω
Mode 2, speaker output, RL = 8 Ω
Mode 3, headphone outputs, RL = 16 Ω
Mode 4, headphone outputs, RL = 16 Ω
Mode 5, MLO output, RL = 16 Ω
Mode 6, MLO output, RL = 16 Ω
Mode 7, BTL, speaker outputs, RL = 8 Ω
60
55
61
75
62
57
73
O
PSRR
50
BTL, speaker output
power
e
t
e
l
o
s
b
5
35
25
MLO output power
THD+N
50
30
20
-O
2
5
Modes 3, 4
Headphone output power
THD+N = 1% max, F = 1 kHz, RL = 16 Ω
(phantom ground mode)
THD+N = 1% max, F = 1 kHz, RL = 32 Ω
mA
)
s
(
ct
u
d
o
r
P
e
Unit
µA
mV
mW
%
dB
11/55
Electrical characteristics
Table 10.
TS4956
VCC = +2.7 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
A-weighted, G = +1.5 dB, THD+N < 0.5%,
20 Hz < F < 20 kHz
Mode 1 - speaker output, RL = 8 Ω
Mode 2 - speaker output, RL = 8 Ω
Mode 3 - headphone output, RL = 16 Ω
Mode 4 - headphone output, RL = 16 Ω
Mode 5 - MLO output, RL = 16 Ω
Mode 6 - MLO output, R = 16 Ω
Mode 7 - BTL, speaker output, RL = 8 Ω,
G = +10.5 dB
Signal-to-noise ratio
G
e
t
e
ol
Digital gain range
bs
Digital gain stepsize
O
)
Stepsize error
Input impedance, all gain
setting
Zin
let
tSTBY
o
s
b
Standby time
Differential input
Differential input impedance (MIP to MIN)
MIP input impedance referenced to ground
MIN input impedance referenced to ground
Stereo input
RIN input impedance
LIN input impedance
s
(
t
c
u
d
o
r
P
e
Wake-up time
tWU
Typ.
Mode 4
F = 1 kHz, RL = 16 Ω, Pout = 15 mW
F = 20 Hz to 20 kHz, RL = 16 Ω,
Pout = 15 mW
Mode 7
F = 1 kHz, RL = 8 Ω, Pout = 200 mW
F = 20 Hz to 20 kHz, RL = 8 Ω,
Pout = 200 mW
Crosstalk Channel separation
SNR
Min.
Max.
50
50
dB
80
60
91
90
84
90
85
85
92
)
s
(
ct
du
o
r
P
-34.5
12/55
dB
+12
1.5
0.1
0.6
dB
kΩ
60
30
45
72
36
54
24
24
30
30
36
36
70
90
1
dB
dB
48
24
36
1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC at f = 217 Hz.
O
Unit
ms
µs
TS4956
Table 11.
Electrical characteristics
VCC = +3.3 V, GND = 0 V, Tamb = 25° C (unless otherwise specified)
Symbol
Parameter
Conditions
Supply current
ICC
Min.
Typ.
Max.
Mode 1, 2, no input signal, no load
3.6
4.7
Mode 3, no input signal, no load
4.8
6.2
Mode 4, no input signal, no load
4.6
6
Modes 5, 6, no input signal, no load
1.8
2.4
6
7.8
0.5
2
Mode 7, no input signal, no load
ISTBY
VOO
Pout
Output offset voltage
No input signal
Modes 1, 2
speaker output, RL = 8 Ω
Mode 3
headphone outputs, RL = 16 Ω
Mode 4
headphone outputs, RL = 16 Ω
Mode 7
BTL, speaker output, RL = 8 Ω
e
t
e
ol
50
5
20
5
20
o
r
P
Modes 3, 4
THD+N = 1% max, F = 1 kHz, RL = 16 Ω
THD+N = 1% max, F = 1 kHz, RL = 32 Ω
32
30
38(1)
36(1)
BTL, speaker output
power
Modes 1, 2, 7
THD+N = 1% max, F = 1 kHz, RL = 8 Ω
430
450
MLO output power
Modes 5, 6
THD+N = 1% max, F = 1 kHz, RL = 16 Ω
THD+N = 1% max, F = 1 kHz, RL = 32 Ω
58
32
65
38
)
(s
s
b
O
t
c
u
r
P
e
let
Power supply rejection
ratio(2)
F = 217Hz, G = +1.5 dB,
Vripple = 200 mVpp, inputs grounded,
Cb = 1 µF
Mode 1, speaker output, RL = 8 Ω
Mode 2, speaker output, RL = 8 Ω
Mode 3, headphone outputs, RL = 16 Ω
Mode 4, headphone outputs, RL = 16 Ω
Mode 5, MLO output, RL = 16 Ω
Mode 6, MLO output, RL = 16 Ω
Mode 7, BTL, speaker outputs, RL = 8 Ω
mV
mW
0.5
0.5
0.5
63
57
63
77
64
58
74
µA
50
du
5
mA
)
s
(
ct
5
Headphone output power
(phantom ground mode)
od
so
PSRR
No input signal
G = +1.5 dB, 20 Hz < F < 20 kHz
Total harmonic distortion + Modes 1, 2, 7, RL = 8 Ω, Pout = 300 mW
noise
Modes 3, 4, RL = 16 Ω, Pout = 15 mW
Modes 5, 6, RL = 16 Ω, Pout = 50 mW
THD+N
b
O
Standby current
Unit
%
dB
13/55
Electrical characteristics
Table 11.
TS4956
VCC = +3.3 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
A-weighted, G = +1.5 dB, THD+N < 0.5%,
20 Hz < F < 20 kHz
Mode 1 - speaker output, RL = 8 Ω
Mode 2 - speaker output, RL = 8 Ω
Mode 3 - headphone output, RL = 16 Ω
Mode 4 - headphone output, RL = 16 Ω
Mode 5 - MLO output, RL = 16 Ω
Mode 6 - MLO output, R = 16 Ω
Mode 7 - BTL, speaker output, RL = 8 Ω,
G = +10.5 dB
Signal-to-noise ratio
G
e
t
e
ol
Digital gain range
O
)
Stepsize error
Input impedance, all gain
setting
r
P
e
Wake-up time
tWU
let
tSTBY
o
s
b
u
d
o
Standby time
dB
93
92
85
91
87
87
95
)
s
(
ct
du
o
r
P
-34.5
1.5
0.1
0.6
dB
kΩ
60
30
45
72
36
54
24
24
30
30
36
36
70
90
1
dB
dB
48
24
36
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC at F = 217 Hz.
14/55
dB
+12
1. Internal power limitation on headphone outputs (see application information).
O
Unit
80
60
Differential input
Differential input impedance (MIP to MIN)
MIP input impedance referenced to ground
MIN input impedance referenced to ground
Stereo input
RIN input impedance
LIN input impedance
s
(
t
c
Max.
50
50
bs
Digital gain stepsize
Zin
Typ.
Mode 4
F = 1 kHz, RL = 16 Ω, Pout = 15 mW
F = 20 Hz to 20 kHz, RL = 16 Ω,
Pout = 15 mW
Mode 7
F = 1 kHz, RL = 8 Ω, Pout = 300 mW
F = 20 Hz to 20 kHz, RL = 8 Ω,
Pout = 300 mW
Crosstalk Channel separation
SNR
Min.
ms
µs
TS4956
Table 12.
Electrical characteristics
VCC = +5 V, GND = 0 V, Tamb = 25° C (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
4
5.2
Mode 3, no input signal, no load
5.3
6.9
Mode 4, no input signal, no load
5.2
6.8
Modes 5, 6, no input signal, no load
1.9
2.5
Mode 7, no input signal, no load
6.7
8.7
Standby current
No input signal
0.5
2
Output offset voltage
No input signal
Modes 1, 2
speaker output, RL = 8 Ω
Mode 3
headphone outputs, RL = 16 Ω
Mode 4
headphone outputs, RL = 16 Ω
Mode 7
BTL, speaker output, RL = 8 Ω
Mode 1, 2, no input signal, no load
Supply current
ICC
ISTBY
VOO
Pout
5
20
39(1)
43(1)
BTL, speaker output
power
Modes 1, 2, 7
THD+N = 1% max, F = 1 kHz, RL = 8 Ω
1000
1055
MLO output power
Modes 5, 6
THD+N = 1% max, F = 1 kHz, RL = 16 Ω
THD+N = 1% max, F = 1 kHz, RL = 32 Ω
140
80
150
88
r
P
e
let
O
20
32
35
)
(s
s
b
O
t
c
u
od
o
s
b
5
Modes 3, 4
THD+N = 1% max, F = 1 kHz, RL = 16 Ω
THD+N = 1% max, F = 1 kHz, RL = 32 Ω
G = +1.5 dB, 20 Hz < F < 20 kHz
Total harmonic distortion + Modes 1, 2, 7, RL = 8 Ω, Pout = 700 mW
noise
Modes 3, 4, RL = 16 Ω, Pout = 15 mW
Modes 5, 6, RL = 16 Ω, Pout = 100 mW
THD+N
PSRR
e
t
e
ol
50
Headphone output power
(phantom ground mode)
Power supply rejection
ratio(2)
F = 217Hz, G = +1.5 dB,
Vripple = 200 mVpp, inputs grounded,
Cb = 1 µF
Mode 1, speaker output, RL = 8 Ω
Mode 2, speaker output, RL = 8 Ω
Mode 3, headphone outputs, RL = 16 Ω
Mode 4, headphone outputs, RL = 16 Ω
Mode 5, MLO output, RL = 16 Ω
Mode 6, MLO output, RL = 16 Ω
Mode 7, BTL, speaker outputs, RL = 8 Ω
mV
mW
0.5
0.5
0.5
66
60
65
78
66
61
75
µA
50
du
o
r
P
mA
)
s
(
ct
5
5
Unit
%
dB
15/55
Electrical characteristics
Table 12.
TS4956
VCC = +5 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) (continued)
Symbol
Parameter
Conditions
A-weighted, G = +1.5 dB, THD+N < 0.5%,
20 Hz < F < 20 kHz
Mode 1 - speaker output, RL = 8 Ω
Mode 2 - speaker output, RL = 8 Ω
Mode 3 - headphone output, RL = 16 Ω
Mode 4 - headphone output, RL = 16 Ω
Mode 5 - MLO output, RL = 16 Ω
Mode 6 - MLO output, R = 16 Ω
Mode 7 - BTL, Speaker output, RL = 8 Ω,
G = +10.5 dB
Signal-to-noise ratio
G
e
t
e
ol
Digital gain range
O
)
Stepsize error
Input impedance, all gain
setting
r
P
e
Wake-up time
tWU
let
tSTBY
o
s
b
u
d
o
Standby time
dB
96
96
85
91
90
90
98
)
s
(
ct
du
o
r
P
-34.5
1.5
0.1
0.6
dB
kΩ
60
30
45
72
36
54
24
24
30
30
36
36
70
90
1
dB
dB
48
24
36
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC at F = 217 Hz.
16/55
dB
+12
1. Internal power limitation on headphone outputs (see application information).
O
Unit
80
60
Differential input
Differential input impedance (MIP to MIN)
MIP input impedance referenced to ground
MIN input impedance referenced to ground
Stereo input
RIN input impedance
LIN input impedance
s
(
t
c
Max.
50
50
bs
Digital gain stepsize
Zin
Typ.
Mode 4
F = 1 kHz, RL = 16 Ω, Pout = 15 mW
F = 20 Hz to 20 kHz, RL = 16 Ω,
Pout = 15 mW
Mode 7
F = 1 kHz, RL = 8 Ω, Pout = 700 mW
F = 20 Hz to 20 kHz, RL = 8 Ω,
Pout = 700 mW
Crosstalk Channel separation
SNR
Min.
ms
µs
TS4956
Table 13.
Electrical characteristics
Output noise VCC = 2.7 V to 5.5 V (all inputs grounded)
G = +12 dB
G = +10.5 dB
G = +1.5 dB
Unweighted
Unweighted
Unweighted
A-weighted
A-weighted
filter
filter
filter
filter
filter
(20Hz - 20kHz)
(20Hz - 20kHz)
(20Hz - 20kHz)
A-weighted
filter
Vout (µV)
Vout (µV)
Vout (µV)
Vout (µV)
Vout (µV)
Vout (µV)
Mode 1 - SPK out
54
80
67
100
45
66
Mode 2 - SPK out
67
99
75
111
45
69
Mode 3 - LHP, RHP
55
80
68
100
45
67
Mode 4 - LHP, RHP
29
43
35
52
23
Mode 5 - MLO
53
80
66
97
45
Mode 6 - MLO
65
96
73
106
Mode 7 - BTL,
SPK out
29
42
35
)
(s
e
t
e
ol
52
34
du
o
r
P
45
23
)
s
(
ct
66
67
34
s
b
O
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
17/55
Electrical characteristics
Figure 4.
TS4956
THD+N vs. output power
Figure 5.
10
10
Mode 1, 2 - SPK out
RL = 8 Ω , G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
1
Vcc=5V
F=20kHz
Mode 1, 2 - SPK out
RL = 8 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
F=20kHz
Vcc=5V
F=20kHz
Vcc=3.3V
F=20kHz
1
Vcc=2.7V
F=20kHz
THD + N (%)
THD + N (%)
THD+N vs. output power
0.1
0.1
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=1kHz
Vcc=2.7V
F=1kHz
0.01
0.01
Vcc=2.7V
F=1kHz
Vcc=5V
F=1kHz
0.1
0.01
1
0.01
Output power (W)
Figure 6.
Vcc=5V
F=20kHz
Vcc=3.3V
F=20kHz
THD + N (%)
THD + N (%)
O
)
du
0.1
e
t
e
l
o
s
b
1
Vcc=3.3V
F=20kHz
0.01
1E-3
0.01
Vcc=5V
F=1kHz
0.1
1
THD+N vs. output power
Mode 3 - LHP, RHP
RL = 16 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
1
0.01
Vcc=3.3V
F=1kHz
Vcc=2.7V
F=1kHz
0.01
10
Vcc=2.7V
F=20kHz
Output power (W)
18/55
Vcc=2.7V
F=20kHz
Vcc=5V
F=20kHz
Vcc=3.3V
F=1kHz
Vcc=3.3V
F=20kHz
0.1
Figure 9.
0.1
Vcc=5V
F=1kHz
Vcc=5V
F=20kHz
Output power (W)
o
r
P
Mode 3 - LHP, RHP
RL = 16 Ω , G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
e
t
e
l
1
THD+N vs. output power
10
THD + N (%)
Vcc=5V
F=1kHz
THD + N (%)
Figure 8.
s
(
t
c
Vcc=3.3V
F=1kHz
Output power (W)
o
r
P
Mode 1, 2 - SPK out
RL = 16 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
o
s
b
0.1
0.01
O
1
Vcc=2.7V
F=20kHz
Vcc=2.7V
F=1kHz
1
THD+N vs. output power
10
0.01
)
s
(
t
0.1
c
u
d
Figure 7.
10
1
Vcc=5V
F=1kHz
Output power (W)
THD+N vs. output power
Mode 1, 2 - SPK out
RL = 16 Ω , G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
F=1kHz
Vcc=3.3V
F=20kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=5V
F=1kHz
Vcc=2.7V
F=1kHz
0.1
Vcc=5V
F=20kHz
0.01
1E-3
Vcc=3.3V
F=1kHz
Vcc=2.7V
F=1kHz
0.01
Output power (W)
0.1
TS4956
Electrical characteristics
Figure 10. THD+N vs. output power
Figure 11. THD+N vs. output power
10
10
Mode 3 - LHP, RHP
RL = 32 Ω , G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
1
Vcc=2.7V
F=20kHz
THD + N (%)
THD + N (%)
1
Mode 3 - LHP, RHP
RL = 32 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
0.1
Vcc=5V
F=1kHz
Vcc=3.3V
F=20kHz
Vcc=5V
F=20kHz
0.01
1E-3
Vcc=2.7V
F=1kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=5V
F=1kHz
Vcc=3.3V
F=20kHz
Vcc=3.3V
F=1kHz
0.01
Vcc=5V
F=20kHz
0.01
1E-3
0.1
10
Vcc=5V
F=20kHz
Vcc=3.3V
F=20kHz
)-
s
(
t
c
du
0.01
Output power (W)
o
s
b
THD + N (%)
O
1E-3
Vcc=2.7V
F=1kHz
Vcc=5V
F=20kHz
Vcc=3.3V
F=1kHz
0.01
Output power (W)
0.01
0.1
10
1
0.1
0.01
Vcc=5V
F=1kHz
Figure 15. THD+N vs. output power
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=20kHz
Vcc=2.7V
F=1kHz
0.01
1E-3
THD + N (%)
e
t
e
l
Vcc=5V
F=20kHz
Output power (W)
o
r
P
Mode 4 - LHP, RHP
RL = 32 Ω , G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
F=20kHz
0.1
Vcc=3.3V
F=1kHz
0.1
Figure 14. THD+N vs. output power
10
Vcc=2.7V
F=20kHz
s
b
O
Vcc=2.7V
F=1kHz
Vcc=5V
F=1kHz
0.01
1E-3
e
t
e
ol
1
0.1
Vcc=3.3V
F=1kHz
o
r
P
Mode 4 - LHP, RHP
RL = 16 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
THD + N (%)
THD + N (%)
Vcc=2.7V
F=20kHz
1
c
u
d
Figure 13. THD+N vs. output power
10
1
)
s
(
t
0.1
Output power (W)
Figure 12. THD+N vs. output power
Vcc=3.3V
F=1kHz
0.01
Output power (W)
Mode 4 - LHP, RHP
RL = 16 Ω , G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=2.7V
F=1kHz
Vcc=5V
F=1kHz
0.1
Mode 4 - LHP, RHP
RL = 32 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=5V
F=20kHz
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=20kHz
0.1
0.01
1E-3
Vcc=2.7V
F=1kHz
Vcc=3.3V
F=1kHz
0.01
Vcc=5V
F=1kHz
0.1
Output power (W)
19/55
Electrical characteristics
TS4956
Figure 16. THD+N vs. output power
Figure 17. THD+N vs. output power
10
10
Mode 5, 6 - MLO
RL = 16 Ω , G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
1
Vcc=3.3V
F=20kHz
Vcc=2.7V
F=1kHz
0.1
Vcc=3.3V
F=20kHz
Vcc=2.7V
F=1kHz
Vcc=3.3V
F=1kHz
0.01
1E-3
0.01
0.1
1
Vcc=3.3V
F=1kHz
0.01
1E-3
0.01
Output power (W)
1
c
u
d
Figure 19. THD+N vs. output power
10
10
Mode 5, 6 - MLO
RL = 32 Ω , G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=2.7V
F=20kHz
)-
0.1
Vcc=3.3V
F=20kHz
e
t
e
ol
1
s
b
O
THD + N (%)
Vcc=5V
F=1kHz
o
r
P
Mode 5, 6 - MLO
RL = 32 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=5V
F=20kHz
1
THD + N (%)
)
s
(
t
0.1
Output power (W)
Figure 18. THD+N vs. output power
Vcc=2.7V
F=1kHz
Vcc=5V
F=1kHz
Vcc=2.7V
F=20kHz
THD + N (%)
0.1
Vcc=5V
F=20kHz
1
Vcc=5V
F=1kHz
Vcc=2.7V
F=20kHz
THD + N (%)
Mode 5, 6 - MLO
RL = 16 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=5V
F=20kHz
s
(
t
c
Vcc=2.7V
F=1kHz
Vcc=5V
F=20kHz
Vcc=5V
F=1kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=3.3V
F=20kHz
Vcc=3.3V
F=1kHz
0.01
1E-3
du
0.01
Vcc=3.3V
F=1kHz
0.01
1E-3
0.1
0.01
Output power (W)
o
r
P
Figure 20. THD+N vs. output power
e
t
e
l
so
THD + N (%)
b
O
1
Vcc=2.7V
F=20kHz
Vcc=2.7V
F=1kHz
Vcc=3.3V
F=1kHz
Vcc=3.3V
F=20kHz
0.01
Vcc=5V
F=20kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=5V
F=1kHz
Vcc=2.7V
F=1kHz
Vcc=5V
F=1kHz
0.1
Output power (W)
20/55
Mode 7 - BTL, SPK out
RL = 16 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
F=20kHz
0.1
0.01
1E-3
10
Vcc=5V
F=20kHz
Mode 7 - BTL, SPK out
RL = 8 Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
1
Figure 21. THD+N vs. output power
THD + N (%)
10
0.1
Output power (W)
1
0.01
1E-3
Vcc=3.3V
F=1kHz
0.01
0.1
Output power (W)
1
TS4956
Electrical characteristics
Figure 22. THD+N vs. frequency
Figure 23. THD+N vs. frequency
10
10
Mode 1, 2 - SPK out
RL = 8 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
1
Vcc=5V
Po=700mW
Vcc=3.3V
Po=300mW
Vcc=2.7V
Po=200mW
0.1
0.01
100
20
1000
THD + N (%)
THD + N (%)
1
Mode 1, 2 - SPK out
RL = 8 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=2.7V
Po=200mW
20
100
Frequency (Hz)
Vcc=3.3V
Po=200mW
)
(s
t
c
u
100
20
Mode 1, 2 - SPK out
RL = 16 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
t
e
l
o
1
Vcc=5V
Po=400mW
1000
d
o
r
s
b
O
THD + N (%)
THD + N (%)
r
P
e
10
Mode 1, 2 - SPK out
RL = 16 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
0.1
0.01
20
100
P
e
let
10
Mode 3 - LHP, RHP
RL = 16 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
1
Vcc=3.3V
Po=15mW
Vcc=2.7V
Po=15mW
0.1
Mode 3 - LHP, RHP
RL = 16 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=2.7V
Po=15mW
20
100
1000
Frequency (Hz)
10000
Vcc=3.3V
Po=15mW
0.1
Vcc=5V
Po=15mW
0.01
10000
Figure 27. THD+N vs. frequency
THD + N (%)
THD + N (%)
O
1
1000
Frequency (Hz)
Figure 26. THD+N vs. frequency
o
s
b
Vcc=5V
Po=400mW
0.1
0.01
10000
Vcc=3.3V
Po=200mW
Vcc=2.7V
Po=120mW
Frequency (Hz)
10
10000
u
d
o
Figure 25. THD+N vs. frequency
10
Vcc=2.7V
Po=120mW
)
s
(
ct
1000
Frequency (Hz)
Figure 24. THD+N vs. frequency
1
Vcc=5V
Po=700mW
0.1
0.01
10000
Vcc=3.3V
Po=300mW
Vcc=5V
Po=15mW
0.01
20
100
1000
10000
Frequency (Hz)
21/55
Electrical characteristics
TS4956
Figure 28. THD+N vs. frequency
Figure 29. THD+N vs. frequency
10
10
Mode 3 - LHP, RHP
RL = 32 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
1
Vcc=3.3V
Po=10mW
Vcc=2.7V
Po=10mW
0.1
THD + N (%)
THD + N (%)
1
Mode 3 - LHP, RHP
RL = 32 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=2.7V
Po=10mW
0.1
Vcc=5V
Po=10mW
Vcc=5V
Po=10mW
0.01
20
100
1000
0.01
10000
20
100
Frequency (Hz)
Vcc=3.3V
Po=15mW
Vcc=5V
Po=15mW
)
(s
t
c
u
100
20
Mode 4 - LHP, RHP
RL = 16 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
t
e
l
o
1
1000
d
o
r
s
b
O
THD + N (%)
THD + N (%)
0.1
0.01
r
P
e
10
Mode 4 - LHP, RHP
RL = 16 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=2.7V
Po=15mW
20
100
Frequency (Hz)
P
e
Vcc=2.7V
Po=10mW
0.1
0.01
20
100
1
Vcc=3.3V
Po=10mW
1000
Frequency (Hz)
22/55
10000
10
Mode 4 - LHP, RHP
RL = 32 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=5V
Po=10mW
10000
THD + N (%)
THD + N (%)
O
1
1000
Figure 33. THD+N vs. frequency
let
o
s
b
Vcc=5V
Po=15mW
Frequency (Hz)
Figure 32. THD+N vs. frequency
10
Vcc=3.3V
Po=15mW
0.1
0.01
10000
10000
u
d
o
Figure 31. THD+N vs. frequency
10
Vcc=2.7V
Po=15mW
)
s
(
ct
1000
Frequency (Hz)
Figure 30. THD+N vs. frequency
1
Vcc=3.3V
Po=10mW
Mode 4 - LHP, RHP
RL = 32 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=2.7V
Po=10mW
0.1
0.01
20
100
Vcc=3.3V
Po=10mW
1000
Frequency (Hz)
Vcc=5V
Po=10mW
10000
TS4956
Electrical characteristics
Figure 34. THD+N vs. frequency
Figure 35. THD+N vs. frequency
10
10
Mode 5, 6 - MLO
RL = 16 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
1
Vcc=5V
Po=100mW
0.01
Vcc=3.3V
Po=50mW
Vcc=2.7V
Po=30mW
0.1
20
THD + N (%)
THD + N (%)
1
Mode 5, 6 - MLO
RL = 16 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
100
1000
Vcc=2.7V
Po=30mW
20
100
Frequency (Hz)
20
)
s
(
ct
du
100
1000
e
t
e
l
10
THD + N (%)
O
o
s
b
o
r
P
20
100
THD + N (%)
Vcc=3.3V
Po=30mW
20
100
1000
10000
Frequency (Hz)
Figure 39. THD+N vs. frequency
10
1
Vcc=5V
Po=700mW
Vcc=2.7V
Po=200mW
Vcc=2.7V
Po=20mW
Vcc=5V
Po=60mW
0.1
0.01
Mode 7 - BTL, SPK out
RL = 8 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
0.1
0.01
-O
10000
Figure 38. THD+N vs. frequency
t
e
l
o
bs
Vcc=3.3V
Po=300mW
1000
Frequency (Hz)
10000
THD + N (%)
THD + N (%)
Vcc=3.3V
Po=30mW
Mode 5, 6 - MLO
RL = 32 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
1
Vcc=5V
Po=60mW
Frequency (Hz)
1
r
P
e
10
Mode 5, 6 - MLO
RL = 32 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 ° C
0.1
0.01
10000
u
d
o
Figure 37. THD+N vs. frequency
10
Vcc=2.7V
Po=20mW
)
s
(
ct
1000
Frequency (Hz)
Figure 36. THD+N vs. frequency
1
Vcc=3.3V
Po=50mW
0.1
0.01
10000
Vcc=5V
Po=100mW
Mode 7 - BTL, SPK out
RL = 16 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 ° C
Vcc=2.7V
Po=120mW
0.1
0.01
20
100
Vcc=3.3V
Po=200mW
1000
Vcc=5V
Po=400mW
10000
Frequency (Hz)
23/55
TS4956
Electrical characteristics
Figure 41. Output power vs. power supply
voltage
1600
1400
1300 Mode 1, 2, 7
1200 BTL, SPK out
1100 F = 1kHz
RL=8 Ω
1000 BW < 125 kHz
Tamb = 25 ° C
900
800
RL=16 Ω
700
600
500
400
300
200
100
0
2.5
3.0
3.5
4.0
4.5
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
Figure 40. Output power vs. power supply
voltage
RL=32 Ω
5.0
Mode 1, 2, 7
BTL, SPK out
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
1400
1200
1000
RL=8 Ω
RL=16 Ω
800
600
400
RL=32 Ω
0
2.5
5.5
3.0
3.5
4.0
Vcc (V)
RL=16 Ω
0
2.5
3.0
t(s
c
u
d
ro
3.5
P
e
4.0
)-
Mode 3, 4
LHP, RHP
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
4.5
5.0
160
140
30
Mode 3, 4
LHP, RHP
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
20
RL=64 Ω
10
3.0
3.5
4.0
4.5
5.0
5.5
Vcc (V)
Figure 45. Output power vs. power supply
voltage
RL=16 Ω
120
RL=32 Ω
80
60
40
20
RL=64 Ω
3.0
RL=16 Ω
40
280
Mode 5, 6
MLO
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
0
2.5
RL=32 Ω
Vcc (V)
t
e
l
o
100
50
0
2.5
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
180
t
e
l
o
60
s
b
O
5.5
Figure 44. Output power vs. power supply
voltage
s
b
O
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
40
200
r
P
e
70
RL=64 Ω
5.5
u
d
o
RL=32 Ω
20
5.0
Figure 43. Output power vs. power supply
voltage
50
10
4.5
Vcc (V)
Figure 42. Output power vs. power supply
voltage
30
)
s
(
ct
200
3.5
4.0
Vcc (V)
4.5
5.0
5.5
240
200
Mode 5, 6
MLO
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
160
RL=16 Ω
RL=32 Ω
120
80
40
RL=64 Ω
0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Vcc (V)
24/55
TS4956
Electrical characteristics
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
Figure 47. Output power vs. load resistance
1600
Mode 1, 2, 7
BTL, SPK out
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
Vcc=5.5V
Vcc=5V
Vcc=3.3V
Vcc=2.7V
8
12
16
20
24
28
Vcc=5.5V
1200
1000
Vcc=5V
800
600
Vcc=3.3V
Vcc=2.7V
400
200
0
32
8
12
16
Load resistance (Ω )
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
Vcc=5V
30
10
0
16
)
s
(
ct
Vcc=3.3V
Vcc=2.7V
20
24
28
32
u
d
o
36
40
44
48
Load resistance (Ω )
r
P
e
52
56
60
-O
let
b
O
so
160
Vcc=5.5V
Vcc=5V
100
80
60
Vcc=3.3V
Vcc=2.7V
40
20
0
16
24
32
Vcc=5.5V
60
50
Vcc=5V
Mode 3, 4
LHP, RHP
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
40
30
Vcc=3.3V
20
Vcc=2.7V
10
20
24
28
32
36
40
44
48
52
56
60
64
Figure 51. Output power vs. load resistance
300
Mode 5, 6
MLO
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
140
120
32
Load resistance (Ω )
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
180
70
0
16
64
Figure 50. Output power vs. load resistance
200
e
t
e
l
80
o
r
P
o
s
b
40
20
28
c
u
d
90
Mode 3, 4
LHP, RHP
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
Vcc=5.5V
)
s
(
t
24
Figure 49. Output power vs. load resistance
70
50
20
Load resistance (Ω )
Figure 48. Output power vs. load resistance
60
Mode 1, 2, 7
BTL, SPK out
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
1400
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
Figure 46. Output power vs. load resistance
40
48
Load resistance (Ω )
56
64
Mode 5, 6
MLO
F = 1kHz
BW < 125 kHz
Tamb = 25 ° C
250
Vcc=5.5V
200
Vcc=5V
150
Vcc=3.3V
100
Vcc=2.7V
50
0
16
24
32
40
48
56
64
Load resistance (Ω )
25/55
TS4956
Electrical characteristics
Figure 52. PSRR vs. frequency
Figure 53. PSRR vs. frequency
0
0
Mode 1 - SPK out
Vcc = 2.7V
RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
-20
G=+12dB, +10.5dB
-40
PSRR (dB)
PSRR (dB)
-20
G=+1.5dB
G=+6dB
-60
G=-18dB
-80
Mode 1 - SPK out
Vcc = 5V
RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
100
G=+6dB
G=+12dB
-60
-80
G=-18dB
G=-34.5dB G=-9dB
-100
20
G=+10.5dB
-40
G=+1.5dB
1000
-100
20
10000
G=-9dB
100
G=-34.5dB
)
s
(
ct
1000
10000
Frequency (Hz)
Frequency (Hz)
Figure 54. PSRR vs. frequency
PSRR (dB)
-30
G=+10.5dB
G=+6dB
-40
G=+1.5dB
-50
-70
-80
G=-34.5dB
-90
20
s
(
t
c
G=-18dB
u
d
o
100
1000
Frequency (Hz)
G=-9dB
r
P
e
let
0
-10
so
b
O
PSRR (dB)
Mode 2 - SPK out
Vcc = 2.7V
RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
-20
-30
G=+1.5dB
G=+6dB
G=-9dB
-80
G=-18dB
100
G=-34.5dB
1000
10000
Frequency (Hz)
Figure 57. PSRR vs. frequency
0
G=+12dB
G=+10.5dB
-20
G=+6dB
G=+1.5dB
-50
-60
-30
Mode 2 - SPK out
Vcc = 5V
RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
G=+12dB, +10.5dB
G=+6dB
-40
G=+1.5dB
-50
-60
-70
-90
20
G=+10.5dB
-60
-10
-40
-80
-40
-100
20
10000
Figure 56. PSRR vs. frequency
G=+12dB
bs
O
)
-60
Mode 1 - SPK out
Vcc = 3.3V
RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
t
e
l
o
-20
G=+12dB
PSRR (dB)
-20
PSRR (dB)
-10
r
P
e
0
0
Mode 2 - SPK out
Vcc = 3.3V
RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
u
d
o
Figure 55. PSRR vs. frequency
-70
G=-34.5dB
100
G=-18dB
1000
Frequency (Hz)
G=-9dB
10000
-80
-90
20
G=-34.5dB
100
G=-18dB
1000
G=-9dB
10000
Frequency (Hz)
26/55
TS4956
Electrical characteristics
Figure 58. PSRR vs. frequency
Figure 59. PSRR vs. frequency
0
-20
PSRR (dB)
-30
-10
-20
G=+6dB
-50
-30
G=+10.5dB
-40
G=+1.5dB
PSRR (dB)
-10
0
Mode 3 - LHP, RHP
Vcc = 2.7V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
G=+12dB
Mode 3 - LHP, RHP
Vcc = 5V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
G=+10.5dB
-40
G=+12dB
-50
G=+6dB
G=+1.5dB
-60
-60
-70
-70
-80
G=-18dB
-90
20
G=-34.5dB
G=-9dB
100
1000
G=-9dB
-80
-90
20
10000
G=-34.5dB
G=-18dB
100
10000
Frequency (Hz)
Figure 60. PSRR vs. frequency
Figure 61. PSRR vs. frequency
0
-20
PSRR (dB)
-30
-10
-40
G=+10.5dB
G=+1.5dB G=+12dB
-50
G=+6dB
-60
)
(s
-70
-80
-90
G=-18dB
-100
20
t
c
u
G=-9dB
100
1000
s
b
O
-50
G=+6dB
G=-34.5dB
-90
20
100
let
0
-10
-20
-30
G=+10.5dB
-40
G=+12dB
-50
G=+6dB
G=+1.5dB
-60
-70
Mode 4 - LHP, RHP
Vcc = 5V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
-40
G=+1.5dB
-50
G=+6dB
-60
G=+10.5dB
G=+12dB
-70
-80
-80
-90
-100
20
10000
Figure 63. PSRR vs. frequency
PSRR (dB)
PSRR (dB)
b
O
-30
1000
Frequency (Hz)
P
e
Mode 4 - LHP, RHP
Vcc = 2.7V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
so
-20
G=-18dB
G=-9dB
-80
10000
Figure 62. PSRR vs. frequency
0
G=+12dB
-70
Frequency (Hz)
-10
G=+1.5dB
G=+10.5dB
-60
G=-34.5dB
d
o
r
-30
-40
Mode 3 - LHP, RHP
Vcc = 3.3V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
t
e
l
o
-20
u
d
o
r
P
e
0
Mode 4 - LHP, RHP
Vcc = 3.3V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
PSRR (dB)
-10
)
s
(
ct
1000
Frequency (Hz)
G=-9dB
G=-18dB
100
1000
Frequency (Hz)
G=-34.5dB
G=-34.5dB
-90 G=-18dB
G=-9dB
10000
-100
20
100
1000
10000
Frequency (Hz)
27/55
TS4956
Electrical characteristics
Figure 64. PSRR vs. frequency
Figure 65. PSRR vs. frequency
0
-20
PSRR (dB)
-30
0
Mode 5 - MLO
Vcc = 2.7V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
Mode 5 - MLO
Vcc = 5V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
-10
-20
G=+12dB
G=+10.5dB
G=+6dB
-40
G=+1.5dB
-50
-30
PSRR (dB)
-10
-60
-70
-40
G=+10.5dB
G=+12dB
G=-9dB
G=+6dB
-50
-60
-70
-80
G=-9dB
-80
G=-18dB
-90
G=-34.5dB
-100
20
100
1000
G=-18dB
G=+1.5dB
-90
G=-34.5dB
-100
20
10000
100
10000
Frequency (Hz)
Figure 66. PSRR vs. frequency
Figure 67. PSRR vs. frequency
0
PSRR (dB)
-30
-40
G=+12dB
-20
G=+6dB G=+10.5dB
-30
G=+1.5dB
-50
-60
)-
-70
-80
G=-9dB
u
d
o
100
1000
Frequency (Hz)
r
P
e
let
0
-10
so
-20
b
O
PSRR (dB)
Mode 6 - MLO
Vcc = 2.7V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
-30
-40
-60
G=-18dB
G=+1.5dB
-90
G=-9dB
-100
20
100
G=-34.5dB
1000
10000
Frequency (Hz)
0
-10
G=+12dB
-20
G=+10.5dB
G=+6dB
G=+1.5dB
-60
-70
-30
Mode 6 - MLO
Vcc = 5V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
G=+12dB
G=+10.5dB
G=+6dB
-40
G=+1.5dB
-50
-60
-70
-80
G=-34.5dB
G=-18dB
-90
-100
20
G=+10.5dB
G=+6dB
G=+12dB
Figure 69. PSRR vs. frequency
-50
-80
-50
-80
10000
Figure 68. PSRR vs. frequency
-40
-70
s
(
t
c
G=-18dB
t
e
l
o
s
b
O
G=-34.5dB
-90
-100
20
Mode 5 - MLO
Vcc = 3.3V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
-10
PSRR (dB)
-20
u
d
o
r
P
e
0
Mode 6 - MLO
Vcc = 3.3V
RL ≥ 16 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
PSRR (dB)
-10
)
s
(
ct
1000
Frequency (Hz)
100
1000
Frequency (Hz)
G=-9dB
10000
G=-34.5dB
G=-9dB
-90
-100
20
G=-18dB
100
1000
10000
Frequency (Hz)
28/55
TS4956
Electrical characteristics
Figure 70. PSRR vs. frequency
Figure 71. PSRR vs. frequency
0
0
Mode 7 - BTL, SPK out
Vcc = 2.7V
-20 RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
-30
Vripple = 200mVpp
-40
-10
-20
-30
G=+12dB
G=+6dB G=+10.5dB
-50
G=+1.5dB
-60
PSRR (dB)
PSRR (dB)
-10
-70
Mode 7 - BTL, SPK out
Vcc = 5V
RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
G=+6dB
-50
G=+1.5dB
-60
-70
-80
-80
-90
G=-9dB
-100
20
G=-18dB
100
-90
G=-34.5dB
1000
G=-34.5dB
-100
20
10000
-20
G=+12dB
-40
G=+10.5dB
G=+6dB
-50
-70
-80
-90
G=-9dB
s
(
t
c
G=-18dB
u
d
o
100
1000
Frequency (Hz)
r
P
e
let
0
Mode 1 - SPK out
Vcc = 2.7V, 3.3V, 5V
RL ≥ 8 Ω , Cb = 1 μ F
Cin = 470 μ F
Vic = 200mVpp
o
s
b
G=+12dB
G=+6dB G=+10.5dB
-60
G=+1.5dB
-80
G=-9dB
G=-34.5dB
100
G=-18dB
1000
10000
Frequency (Hz)
Figure 75. CMRR vs. frequency
0
G=+12dB
G=+6dB
-20
G=+10.5dB
-40
CMRR (dB)
CMRR (dB)
-40
-100
10000
Figure 74. CMRR vs. frequency
O
let
G=-34.5dB
-100
20
-20
Mode 3 - LHP, RHP
Vcc = 2.7V, 3.3V, 5V
RL ≥ 8 Ω , Cb = 1 μ F
Cin = 470 μ F
Vic = 200mVpp
o
s
b
O
)
G=+1.5dB
-60
u
d
o
r
P
e
0
CMRR (dB)
PSRR (dB)
-30
10000
Figure 73. CMRR vs. frequency
0
-20
)
s
(
ct
1000
Frequency (Hz)
Figure 72. PSRR vs. frequency
Mode 7 - BTL, SPK out
Vcc = 3.3V
RL ≥ 8 Ω , Cb = 1 μ F
Inp. grounded
Vripple = 200mVpp
G=-9dB
G=-18dB
100
Frequency (Hz)
-10
G=+10.5dB
G=+12dB
-40
-60
G=+1.5dB
-80
Mode 5 - MLO
Vcc = 2.7V, 3.3V, 5V
RL ≥ 16 Ω , Cb = 1 μ F
Cin = 470 μ F
Vic = 200mVpp
G=+12dB
G=+10.5dB
G=+6dB
-40
-60
-80
G=+1.5dB
G=-9dB
G=-18dB
G=-9dB
-100
G=-34.5dB
100
G=-18dB
1000
Frequency (Hz)
G=-34.5dB
10000
-100
100
1000
10000
Frequency (Hz)
29/55
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20 kHz)
Mode 1, SPK out
G = +1.5dB, RL = 8 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
Figure 77. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 76. SNR vs. power supply voltage
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20 kHz)
Mode 1, SPK out
G = +1.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
Vcc (V)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 2, SPK out
G = +1.5dB, RL = 8 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
)
(s
t
c
u
d
o
r
Vcc (V)
P
e
Weighted filter type A
Unweighted filter (20Hz to 20 kHz)
Mode 1, SPK out
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
Vcc (V)
r
P
e
t
e
l
o
Weighted filter type A
Unweighted filter (20Hz to 20 kHz)
Mode 1, SPK out
G = +10.5dB, RL = 8 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
5
Figure 81. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
O
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Vcc (V)
let
o
s
b
u
d
o
s
b
O
5
Figure 80. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
5
Figure 79. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 78. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
)
s
(
ct
3.3
Vcc (V)
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 2, SPK out
G = +10.5dB, RL = 8 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
5
Vcc (V)
30/55
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 2, SPK out
G = +1.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
Figure 83. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 82. SNR vs. power supply voltage
3.3
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 3 - LHP, RHP
G = +1.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
Vcc (V)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 3 - LHP, RHP
G = +1.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
t
c
u
d
o
r
Vcc (V)
)
(s
P
e
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 3 - LHP, RHP
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
Vcc (V)
r
P
e
t
e
l
o
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 2, SPK out
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
5
Figure 87. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
O
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Vcc (V)
let
o
s
b
u
d
o
s
b
O
5
Figure 86. SNR vs. power supply voltage
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
5
Figure 85. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 84. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
)
s
(
ct
3.3
Vcc (V)
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 3 - LHP, RHP
G = +10.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
5
Vcc (V)
31/55
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 4 - LHP, RHP
G = +1.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
Figure 89. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 88. SNR vs. power supply voltage
3.3
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +1.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
Vcc (V)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +1.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
t
c
u
d
o
r
Vcc (V)
)
(s
P
e
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 4 - LHP, RHP
G = +10.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
Vcc (V)
r
P
e
t
e
l
o
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 4 - LHP, RHP
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
5
Figure 93. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
O
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Vcc (V)
let
o
s
b
u
d
o
s
b
O
5
Figure 92. SNR vs. power supply voltage
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
5
Figure 91. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 90. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
)
s
(
ct
3.3
Vcc (V)
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
5
Vcc (V)
32/55
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +1.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
Figure 95. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 94. SNR vs. power supply voltage
3.3
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 6 - MLO
G = +1.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
Vcc (V)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 6 - MLO
G = +1.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
t
c
u
d
o
r
Vcc (V)
)
(s
P
e
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 6 - MLO
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
Vcc (V)
r
P
e
t
e
l
o
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +10.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
5
Figure 99. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
O
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Vcc (V)
let
o
s
b
u
d
o
s
b
O
5
Figure 98. SNR vs. power supply voltage
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
5
Figure 97. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 96. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
)
s
(
ct
3.3
Vcc (V)
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 6 - MLO
G = +10.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
5
Vcc (V)
33/55
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 7 - BTL, SPKout
G = +10.5dB, RL = 8 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
3.3
Figure 101. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 100. SNR vs. power supply voltage
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 7 - BTL, SPKout
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 ° C
2.7
7
6
10
Mode4
8
)
(s
3
Mode 1,2
2
Mode 5,6
0
1
2
u
d
o
ct
3
4
s
b
O
Gain (dB)
Icc (mA)
4
1
r
P
e
t
e
l
o
Mode7
Mode3
5
0
u
d
o
Figure 103. Frequency response modes 1, 2, 7
12
No loads
Tamb = 25 ° C
6
4
G=+6dB, RL=16 Ω
G=+6dB, RL=8 Ω
G=+1.5dB, RL=16 Ω
G=+1.5dB, RL=8 Ω
-2
5
Pr
G=+12dB, RL=8 Ω
2
0
100
ol
bs
10
Mode 3, 4
LHP, RHP
Cin = 330nF
Tamb 25 ° C
-2
8
6
G=+12dB, RL=32 Ω
G=+12dB, RL=16 Ω
4
Gain (dB)
G=+6dB, RL=16 Ω ,32 Ω
2
0
Figure 105. Frequency response modes 5, 6
10
G=+12dB, RL=16 Ω ,32 Ω
6
4
2
0
G=+6dB, RL=32 Ω
-2
G=+6dB, RL=16 Ω
-4
-6
G=+1.5dB, RL=16 Ω ,32 Ω
100
10000
12
8
Gain (dB)
O
1000
Frequency (Hz)
Figure 104. Frequency response modes 3, 4
12
Mode 1, 2, 7
BTL, SPK out
Cin = 330nF
Tamb 25 ° C
G=+12dB, RL=16 Ω
Vcc (V)
ete
5
Vcc (V)
Figure 102. Current consumption vs. power
supply voltage
8
)
s
(
ct
3.3
Vcc (V)
1000
Frequency (Hz)
-8
10000
-10
G=+1.5dB, RL=32 Ω
G=+1.5dB, RL=16 Ω
100
1000
Mode 5, 6 - MLO
Cin = 330nF
Cout = 220 μ F
Tamb 25 ° C
10000
Frequency (Hz)
34/55
TS4956
Electrical characteristics
Figure 106. Frequency response modes 5, 6
Figure 107. Standby current consumption vs.
power supply voltage
0.5
12
10
No loads
Tamb = 25 ° C
G=+12dB, RL=32 Ω
8
0.4
G=+12dB, RL=16 Ω
6
Istdby (μ A)
Gain (dB)
4
2
0
G=+6dB, RL=32 Ω
-2
G=+6dB, RL=16 Ω
-4
Mode 5, 6 - MLO
Cin = 330nF
Cout = 470 μ F
Tamb 25 ° C
G=+1.5dB, RL=32 Ω
-6
G=+1.5dB, RL=16 Ω
-8
-10
100
1000
0.3
0.2
0.1
0.0
10000
0
1
2
3
Vcc (V)
Frequency (Hz)
)
s
(
ct
4
5
6
u
d
o
r
P
e
Figure 108. Power dissipation vs. output power Figure 109. Power dissipation vs. output power
(per channel)
(per channel)
t
e
l
o
200
180
140
THD+N=1%
120
RL=8 Ω
)
(s
100
80
t
c
u
60
40
RL=16 Ω
20
0
0
50
100
Mode 1, 2, 7
BTL, SPK out
Vcc = 2.7V
F = 1kHz
THD+N < 10%
d
o
r
150
200
250
300
350
s
b
O
Power Dissipation (mW)
Power Dissipation (mW)
160
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
400
THD+N=1%
RL=8 Ω
Mode 1, 2, 7
BTL, SPK out
Vcc = 5V
F = 1kHz
THD+N < 10%
RL=16 Ω
0
200
400
600
800
1000
1200
1400
Output Power (mW)
P
e
Output Power (mW)
t
e
l
o
Figure 110. Power dissipation vs. output power Figure 111. Power dissipation vs. output power
(per channel)
(per channel)
bs
300
800
250
700
200
THD+N=1%
RL=8 Ω
150
100
RL=16 Ω
50
0
Mode 1, 2, 7
BTL, SPK out
Vcc = 3.3V
F = 1kHz
THD+N < 10%
0
100
200
300
400
500
600
Power Dissipation (mW)
Power Dissipation (mW)
O
900
600
THD+N=1%
500
RL=8 Ω
400
300
200
Mode 1, 2, 7
BTL, SPK out
Vcc = 5.5V
F = 1kHz
THD+N < 10%
RL=16 Ω
100
0
0
200
400
600
800 1000 1200 1400 1600 1800
Output Power (mW)
Output Power (mW)
35/55
TS4956
Electrical characteristics
Figure 112. Power dissipation vs. output power Figure 113. Power dissipation vs. output power
(per channel)
(per channel)
90
220
200
THD+N=1%
80
Power Dissipation (mW)
Power Dissipation (mW)
RL=16 Ω
60
50
40
RL=32 Ω
30
Mode 3, 4 - LHP, RHP
Vcc = 2.7V
F = 1kHz
THD+N < 10%
20
10
0
THD+N=1%
180
70
0
10
20
30
40
RL=16 Ω
160
140
120
100
RL=32 Ω
80
60
Mode 3, 4 - LHP, RHP
Vcc = 5V
F = 1kHz
THD+N < 10%
40
20
0
50
0
10
20
30
40
)
s
(
ct
50
60
70
u
d
o
Output Power (mW)
Output Power (mW)
r
P
e
Figure 114. Power dissipation vs. output power Figure 115. Power dissipation vs. output power
(per channel)
(per channel)
130
100
bs
RL=16 Ω
90
80
70
60
)
s
(
ct
50
RL=32 Ω
40
-O
Mode 3, 4 - LHP, RHP
Vcc = 3.3V
F = 1kHz
THD+N < 10%
30
u
d
o
20
10
0
10
Pr
20
THD+N=1%
220
Power Dissipation (mW)
Power Dissipation (mW)
240
THD+N=1%
110
0
t
e
l
o
260
120
30
40
50
200
180
RL=16 Ω
160
140
120
RL=32 Ω
100
80
Mode 3, 4 - LHP, RHP
Vcc = 5.5V
F = 1kHz
THD+N < 10%
60
40
20
0
60
0
10
20
Output Power (mW)
e
t
e
ol
30
40
50
60
70
Output Power (mW)
Figure 116. Power dissipation vs. output power Figure 117. Power dissipation vs. output power
bs
24
40
35
20
18
16
Power Dissipation (mW)
Power Dissipation (mW)
O
22
THD+N=1%
14
RL=16 Ω
12
10
8
Mode 5, 6 - MLO
Vcc = 2.7V
F = 1kHz
THD+N < 10%
6
RL=32 Ω
4
2
0
0
10
20
30
40
Output Power (mW)
50
60
30
25
THD+N=1%
20
RL=16 Ω
15
10
0
70
Mode 5, 6 - MLO
Vcc = 3.3V
F = 1kHz
THD+N < 10%
RL=32 Ω
5
0
10
20
30
40
50
60
70
80
90
100
Output Power (mW)
36/55
TS4956
Electrical characteristics
90
100
80
90
70
80
Power Dissipation (mW)
Power Dissipation (mW)
Figure 118. Power dissipation vs. output power Figure 119. Power dissipation vs. output power
60
THD+N=1%
50
RL=16 Ω
40
30
Mode 5, 6 - MLO
Vcc = 5V
F = 1kHz
THD+N < 10%
20
RL=32 Ω
10
0
0
70
THD+N=1%
60
RL=16 Ω
50
40
30
20
10
0
20 40 60 80 100 120 140 160 180 200 220 240
0
50
100
Output Power (mW)
1.4
Heat sink surface = 125mm
2
1.0
-30
bs
0.8
O
)
0.6
0.4
0
25
s
(
t
c
u
d
o
50
75
100
300
125
Ambiant Temperature (° C)
-40
-50
-60
-70
Vcc=2.7V
Po=200mW
Vcc=3.3V
Po=300mW
Vcc=5V
Po=700mW
-80
-90
-100
150
o
r
P
Mode 4
RL = 8 Ω
BTL out -> SPK out
SPK out -> BTL out
Tamb = 25 ° C
e
t
e
ol
-20
Crosstalk Level (dB)
Flip-Chip Package Power Dissipation (W)
0
No Heat sink
250
c
u
d
-10
0.2
)
s
(
t
200
Figure 121. Crosstalk vs. frequency
1.6
1.2
150
Output Power (mW)
Figure 120. Power derating curves
0.0
Mode 5, 6 - MLO
Vcc = 5.5V
F = 1kHz
THD+N < 10%
RL=32 Ω
100
1000
10000
Frequency (Hz)
r
P
e
Figure 122. Crosstalk vs. frequency
t
e
l
o
0
-10
bs
O
Crosstalk Level (dB)
-20
-30
Vcc = 5V, 3.3V, 2.7V
Mode 4
LHP -> RHP
RHP -> LHP
Tamb = 25 ° C
RL=32 Ω
Po=10mW
RL=16 Ω
Po=15mW
-40
-50
-60
-70
-80
100
1000
10000
Frequency (Hz)
37/55
TS4956
4
Application information
Application information
The TS4956 integrates four monolithic power amplifiers and has one differential input and
two single-ended inputs. The output amplifiers can be configured in 7 different modes as
one SE (single-ended) capacitively-coupled output, two phantom ground headphone
outputs and two BTL outputs. Figure 1 on page 5 and Figure 2 on page 6 show these
configuration schemes and Table 7 on page 8 describes these configurations in different
modes.
This chapter gives information on how to configure the TS4956 in an application.
4.1
Output configurations
4.1.1
Shutdown
)
s
(
ct
u
d
o
When the device is in shutdown mode, all of the device’s outputs are in a high impedance
state.
r
P
e
t
e
l
o
4.1.2
Single-ended output configuration (modes 5 and 6)
When the device is woken-up via the I²C interface, output amplifier on output MLO is biased
to the VCC/2 voltage. In this configuration an output capacitor, Cout, on the single-ended
output is needed to block the VCC/2 voltage and couples the audio signal to the load.
)
(s
s
b
O
VCC/2 voltage is present on this output in all modes (modes 1 to 7) to keep the output
capacitor Cout charged and to improve pop performance on this output during the switching
between any given mode to mode 5 or 6.
t
c
u
When the device is in mode 5 or 6 where the single-ended output MLO is active, all other
outputs are in a high impedance state.
d
o
r
4.1.3
Phantom ground output configuration (modes 3 and 4)
P
e
In a phantom ground output configuration (modes 3 and 4) the internal buffer is connected
to the PHG pin and biased to the VCC/2 voltage. Output amplifiers (pins LHP and RHP) are
also biased to the VCC/2 voltage. One end of the load is connected to output amplifier and
one to the PHG buffer. Therefore, no output capacitors are needed. The advantage of the
PHG output configuration is that there are fewer external components compared to an SE
configuration. However, note that in this configuration, the device has a higher power
dissipation (see Section 4.3: Power dissipation and efficiency on page 40).
s
b
O
t
e
l
o
All other inactive outputs are in the high impedance state except for the MLO output, which
is biased to VCC/2 voltage.
To achieve better crosstalk results in this case, each speaker should be connected with a
separate PHG wire (two speakers connected with four wires) as shown in Figure 1 on
page 5 (instead of using only one common PHG wire for both speakers, that is, two
speakers connected with three wires).
38/55
TS4956
4.1.4
Application information
BTL output configuration (modes 1, 2, 7)
In a BTL (bridge tied load) output configuration (modes 1, 2 and 4), active outputs are
biased to the VCC/2 voltage. All other inactive outputs are in the high impedance state
except for the MLO output, which is biased to VCC/2 voltage.
BTL means that each end of the load is connected to two single-ended output amplifiers.
Therefore we have:
single-ended output 1 = Vout1 = Vout (V)
single-ended output 2 = Vout2 = -Vout (V)
and
Vout1 - Vout2 = 2Vout (V)
)
s
(
ct
For the same power supply voltage, the output voltage amplitude is twice as high as the
output voltage in the single-ended or phantom ground configurations and the output power
is four times higher than the output power in the single-ended or phantom ground
configurations.
u
d
o
r
P
e
4.2
Power limitation in the phantom ground configuration
t
e
l
o
A power limitation is imposed on the headphones in mode 3 and 4. Limitation of output
power is achieved by limiting the output voltage and output current on each amplifier.
s
b
O
The maximum value of the output voltage, Vout max, is set to a value of 1.65 V in order to
reach a maximum output power of the sinusoidal signal of around 40 mW per channel with a
32 Ω load resistance and THD+N