0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DEMOTS4956J

DEMOTS4956J

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    TS4956 - 1-Channel (Mono) with Mono and Stereo Headphones Output Class AB Audio Amplifier Evaluation...

  • 数据手册
  • 价格&库存
DEMOTS4956J 数据手册
TS4956 Stereo audio amplifier system with I2C bus interface Features TS4956 - flip-chip 18 ■ Operating from VCC = 2.7 V to 5.5 V ■ I2C bus control interface ■ 38 mW output power at VCC = 3.3 V, THD = 1%, F = 1 kHz, with 16 Ω load ■ Ultra low consumption in standby mode: 0.5 µA ■ Digital volume control range from +12 dB to -34 dB ■ 32-step digital volume control ■ Stereo loudspeaker option by I2C ■ 8 different output mode selections ■ Pop and click reduction circuitry ■ Flip-chip package, 18 bumps with 300 µm diameter u d o r P e t e l o Pin connections (top view) ) (s ■ Lead-free flip chip package ■ Output power limitation on headphone for eardrum damage consideration s b O u d o Mobile phones (cellular/cordless) ■ PDAs ■ Laptop / notebook computers e t e ol bs Portable audio devices ODescription The TS4956 is a complete audio system device with three dedicated outputs, one stereo headphone, one loudspeaker drive and one mono line for a hands-free set. The stereo headphone is capable of delivering more than 25 mW per channel of continuous average power into 16 Ω single-ended loads with 0.3% THD+N from a 5 V power supply. The device functions are controlled via an I2C bus, which minimizes the number of external components needed. March 2009 MLO GND LHP- RHP+ VCC SDA BYPASS LIN I2CVCC VCC MIN SRP+ Pr ■ PGH RIN ct Applications ■ ) s ( ct MIP SRN- GND SCL The overall gain and the different output modes of the TS4956 are controlled digitally by the control registers which are programmed via the I²C interface. It has also an internal thermal shutdown protection mechanism. Rev 4 1/55 www.st.com 55 Contents TS4956 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 2 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 I²C operation description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Gain and mode setting operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Acknowledge bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ) s ( ct 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1 u d o r P e Output configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 t e l o 4.1.1 Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.2 Single-ended output configuration (modes 5 and 6) . . . . . . . . . . . . . . . 38 4.1.3 Phantom ground output configuration (modes 3 and 4) . . . . . . . . . . . . . 38 4.1.4 BTL output configuration (modes 1, 2, 7) . . . . . . . . . . . . . . . . . . . . . . . 39 ) (s 4.2 Power limitation in the phantom ground configuration . . . . . . . . . . . . . . . 39 4.3 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 4.3.2 4.3.3 4.4 Phantom ground output configuration (modes 3, 4): . . . . . . . . . . . . . . . 41 BTL output configuration (modes 1, 2, 7) . . . . . . . . . . . . . . . . . . . . . . . 42 t e l o Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 Single-ended input configuration in modes 1, 3 and 5 . . . . . . . . . . . . . . . 45 4.6 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.7 Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 PSRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 bs 2/55 t c u Single-ended output configuration (modes 5 and 6) . . . . . . . . . . . . . . . 40 od r P e O s b O 4.4.1 4.4.2 Input capacitor Cin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Output capacitor Cout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.8.1 What is PSRR? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.8.2 How is PSRR measured? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.9 Pop and click performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.10 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.11 Demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 TS4956 5 Contents Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.1 18-bump flip-chip package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Daisy chain sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 3/55 Absolute maximum ratings and operating conditions 1 TS4956 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value (1) VCC Supply voltage Vi Input voltage (2) Unit 6 V GND to VCC V Toper Operating free air temperature range -40 to + 85 °C Tstg Storage temperature -65 to +150 °C Tj Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient (3) 200 °C/W Pdiss Power dissipation ESD Latch-up ) s ( ct Internally limited(4) (5) 2 Susceptibility - human body model kV Susceptibility - machine model 150 Latch-up immunity 200 Lead temperature (soldering, 10sec) o r P 260 1. All voltage values are measured with respect to the ground pin. e t e ol du V mA °C 2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V 3. Device is protected in case of over temperature by a thermal shutdown activated at 150°C. 4. Exceeding the power derating curves during a long period may involve abnormal operating conditions. s b O 5. Human body model, 100 pF discharged through a 1.5 kΩ resistor, into pin to VCC device Table 2. Operating conditions )- Symbol VCC(1) RL e t e ol CL bs O Parameter s ( t c Supply voltage Load resistor Speaker/BTL output (modes 1,2,7) Headphone, MLO output (modes 3,4,5,6,) du o r P Rthja Load capacitor RL = 8 Ω to 100 Ω (speaker/BTL output - modes 1,2,7) RL = 16 Ω to 100 Ω (headphone, MLO output - modes 3,4,5,6) RL > 100 Ω Flip-chip thermal resistance junction to ambient Unit 2.7 to 5.5 V V ≥8 Ω ≥16 500 400 pF 100 90(2) °C/W 1. For proper functionality of I2C bus, VCC pins must not be grounded. ESD protection diodes ground data and clock wires and cause dysfunction of I2C bus in this condition. 2. With heat sink surface 120 mm2. Table 3. I2C electrical characteristics Symbol 2 I CVCC Parameter (1) Value Unit I2C supply voltage 2.7 to 5.5 V V VILl Maximum low level input voltage on pins SDA, SCL 0.3 I2CVCC V VIH Minimum high level input voltage 0.7 I2CVCC V IIN Maximum input current (pins SDA, SCL), 0.4 V < Vin < 4.5 V 10 µA SCL maximum clock frequency 400 kHz Max low level output voltage, SDA pin, Isink = 3 mA 0.4 V FSCL Vol 1. Must be less than or equal to the power supply voltage VCC of the device. 4/55 Value TS4956 2 Typical application schematic Typical application schematic Table 4. Description of external components Components Functional description Cs1, Cs2 Supply bypass capacitors which provide power supply filtering. Cb Bypass capacitor which provides half-supply filtering. Cin1 to Cin4 Input capacitors which form together with input impedance Zin first-order high pass filter to block DC voltage on inputs Cout Output capacitor which forms with output load RL first-order high pass filter to block half-supply voltage on single-ended output. R1 Resistor to keep Cout charged for better pop performance on single-ended output. Figure 1. ) s ( ct u d o Typical application for the TS4956 (modes 1, 2, 3, 4, 5 and 6) r P e Vcc + let A1 MIP uc Cin2 A2 od Diff. input - Pr SE input left ete b O l o s + 330nF MIN SE input right Cin4 + 330nF A5 LIN RIN B6 PHG A7 16/32 Ohms MODE3: Gx(MIP+MIN) MODE4: GxRIN RHP Amplifier Mode Select B4 LHP PHG Amplifier Stereo Input Right Cin3 + 330nF MODE3: Gx(MIP+MIN) MODE4: GxLIN LHP Amplifier Stereo Input Left t(s + 330nF 100nF Vcc Cin1 Vcc O ) TS4956 Diff. input + Cs2 1µF C3 C5 o s b Cs1 RHP Stereo Input Left 16/32 Ohms D6 Speaker Amplifier B2 MODE1: Gx(MIP+MIN) MODE2: Gx(LIN+RIN) SRP+ SRN- Stereo Input Right 8 Ohms D2 MLO Amplifier MLO E7 MODE5: Gx(MIP+MIN) MODE6: Gx(LIN + RIN) Cout+ 220µF Bias GND C7 GND C1 E5 E3 D4 Cb SDA I2CVCC 16/32 Ohms Digital volume control I2C SCL E1 BYPASS R1 1k I2CVCC + SCL 1µF SDA I2C BUS 5/55 Typical application schematic Figure 2. TS4956 Typical application for the TS4956 (mode 7) Vcc + Cs1 1µF C3 Vcc C5 Vcc TS4956 Cs2 100nF LHP Amplifier A1 MIP Stereo Input Left A2 MIN Stereo Input Right LHP B6 PHG A7 ) s ( ct MODE7: BTL - GxRIN PHG Amplifier 8 Ohms RHP Amplifier SE input left Mode Select Cin3 B4 + 330nF SE input right Cin4 A5 LIN Stereo Input Left Speaker Amplifier SRP+ + 330nF ol MLO Digital volume control GND C7 GND C1 SDA I2C BUS SCL E1 SCL 1µF E3 6/55 I2CVCC + s b O Cb I2C I2CVCC D4 e t e ol o r P s b O SDA E5 ) (s ct Pr D2 MLO Amplifier Bias BYPASS ete SRN- u d o D6 B2 Stereo Input Right RIN du RHP E7 MODE7: GxLIN 8 Ohms TS4956 Typical application schematic I2C interface 2.1 The TS4956 uses a serial bus, which conforms to the I2C protocol (the TS4956 must be powered when it is connected to the I2C bus), to control the chip’s functions via two wires: clock and data. The clock and data lines are bidirectional (open-collector) with an external chip pull-up resistor (typically 10 kΩ). The maximum clock frequency in fast-mode specified by the I2C standard is 400 kHz, and this frequency is supported by the TS4956. In this application, the TS4956 is always the slave device and the controlling MCU is the master device. The I2CVCC pin determines the power supply of the TS4956’s I2C interface. The voltage connected to this pin must be equal to or less than the TS4956 power supply voltage VCC. The minimum value of the I2CVCC voltage is 2.7 V. ) s ( ct When the I2CVCC pin is connected to an I2C voltage, the TS4956 is ready to communicate via the I2C bus. u d o When the I2CVCC pin is connected to the ground, the TS4956 is in total standby mode, with an ultra-low standby current on the order of a few nanoamperes. In this condition the TS4956 cannot receive I2C commands from the I2C bus. r P e In both cases, pins SDA and SCL must respect logic HI or logic LOW thresholds (not floating) presented in Table 3 on page 4, in order for the circuit to function properly. t e l o Table 5 summarizes the pin descriptions for the I²C bus interface. Table 5. Pin ) (s SDA du I2CVCC Functional description Serial data pin ct SCL 2.1.1 s b O I²C bus interface: pin descriptions Clock input pin I2C interface power supply o r P I²C operation description s b O e t e ol The host MCU can write into the TS4946 control register to control the TS4956 and read from the control register to get the current configuration of the TS4956. The TS4956 is addressed by a single byte consisting of a 7-bit slave address and an R/W bit. The TS4956 control register address is $5Dh. Table 6. First byte after the START message for addressing the device A6 A5 A4 A3 A2 A1 A0 Rw 1 0 1 1 1 0 1 X In order to write data into the TS4956 control register, after the "start" message the MCU must send the following data: ● send byte with the I²C 7-bit slave address and with the R/W bit set low. ● send the data (control register setting). All bytes are sent with the MSB bit first. The transfer of written data ends with a "stop" message. When transmitting several bits of data, the data can be written without having to repeat the "start" message or address byte with the slave address. 7/55 Typical application schematic TS4956 In order to read data from the TS4956, after the "start" message, the MCU must send and receive the following data: ● send byte with the I²C 7-bit slave address and with the R/W bit set high. ● receive the data (control register value). All bytes are read with the MSB bit first. The transfer of read data is ended with a "stop" message. When transmitting several bits of data, the data can be read with having to repeat the "start" message and the byte with slave address. In this case the value of the control register is read repeatedly. Figure 3. I²C read/write operation SLAVE ADDRESS S SDA 1 0 1 1 1 0 1 Start condition CONTROL REGISTERS A 0 D7 D6 D5 D4 D3 D2 D1 D0 A Acknowledge from Slave Table 7. RHP s b O LHP Speaker P/N Mono L/O 0 SD SD SD SD 1 SD SD Gx (MIP + MIN) SD t c u SD SD GX (RIN + LIN) SD GX (MIP + MIN) GX (MIP + MIN) SD SD G x RIN G x LIN SD SD 5 SD SD SD GX (MIP + MIN) 6 SD SD SD GX (RIN + LIN) 7 BTL: G x RIN BTL: G x RIN G x LIN SD ) (s od 3 Pr 4 8/55 Acknowledge from Slave Output mode selection: G from -34.5 dB to + 12 dB (by steps of 1.5 dB)(1) 2 s b O r P e Stop condition t e l o Output mode # e t e ol ) s ( ct u d o Output Mode settings Volume Control settings R/W P 1. SD = shutdown mode G = audio gain MIP = mono input positive MIN = mono input negative RIN = stereo input right LIN = stereo input left TS4956 2.1.2 Typical application schematic Gain and mode setting operations The gain of the TS4956 ranges from -34.5 dB to +12 dB. At power-up, the output channels are set to standby mode. Table 8. Gain settings truth table G: Gain (dB) # D7 (MSB) D6 D5 D4 D3 -34.5 0 0 0 0 0 -33 0 0 0 0 1 -31.5 0 0 0 1 0 -30 0 0 0 1 1 -28.5 0 0 1 0 -27 0 0 1 0 -25.5 0 0 1 1 -24 0 0 1 -22.5 0 1 0 -21 0 1 0 -19.5 0 1 -18 0 1 -16.5 0 1 -15 0 -13.5 0 -12 0 s ( t c -10.5 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 ete 0 s b O ol 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 -1.5 1 0 1 1 0 0 1 0 1 1 1 +1.5 1 1 0 0 0 +3 1 1 0 0 1 +4.5 1 1 0 1 0 +6 1 1 0 1 1 +7.5 1 1 1 0 0 +9 1 1 1 0 1 +10.5 1 1 1 1 0 +12 1 1 1 1 1 du ro -6 P e -4.5 s b O 1 0 -7.5 t e l o Pr 0 1 -9 1 1 1 0 1 )- u d o ) s ( ct 0 -3 9/55 Typical application schematic Table 9. 2.1.3 TS4956 Output mode settings truth table D2 D1 D0 Comments 0 0 0 OUTPUT MODE 0 0 0 1 OUTPUT MODE 1 0 1 0 OUTPUT MODE 2 0 1 1 OUTPUT MODE3 1 0 0 OUTPUT MODE 4 1 0 1 OUTPUT MODE 5 1 1 0 OUTPUT MODE 6 1 1 1 OUTPUT MODE 7 ) s ( ct Acknowledge bit u d o The number of data bytes transferred between the start and the stop conditions from the CPU master to the TS4956 slave is unlimited. Each byte of eight bits is followed by one acknowledge bit. r P e t e l o The addressed TS4956 generates an acknowledge after receiving each byte that has been clocked out. ) (s t c u d o r P e t e l o s b O 10/55 s b O TS4956 Electrical characteristics 3 Electrical characteristics Table 10. VCC = +2.7 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) Symbol Parameter Conditions Typ. Max. Mode 1, 2, no input signal, no load 3.4 4.4 Mode 3, no input signal, no load 4.6 6 Mode 4, no input signal, no load 4.4 5.7 Mode 5, 6, no input signal, no load 1.75 2.3 Mode 7, no input signal, no load 5.7 7.4 Standby current No input signal 0.5 Output offset voltage No input signal Modes 1, 2 speaker output, RL = 8 Ω Mode 3 headphone outputs, RL = 16 Ω Mode 4 headphone outputs, RL = 16 Ω Mode 7 BTL, speaker output, RL = 8 Ω Supply current ICC ISTBY VOO Min. t e l o bs Pout 5 20 5 20 Modes 1, 2, 7 THD+N = 1% max, F = 1 kHz, RL = 8 Ω 270 285 Modes 5, 6 THD+N = 1% max, F = 1 kHz, RL = 16 Ω THD+N = 1% max, F = 1 kHz, RL = 32 Ω 35 20 42 25 ) s ( ct du o r P Total harmonic distortion + noise G = +1.5 dB, 20 Hz < F < 20 kHz Modes 1, 2, 7, RL = 8 Ω, Pout = 200 mW Modes 3, 4, RL = 16 Ω, Pout = 15 mW Modes 5, 6, RL = 16 Ω, Pout = 30 mW 0.5 0.5 0.5 Power supply rejection ratio(1) F = 217Hz, G = +1.5 dB, Vripple = 200 mVpp, Inputs grounded, Cb = 1 µF Mode 1, speaker output, RL = 8 Ω Mode 2, speaker output, RL = 8 Ω Mode 3, headphone outputs, RL = 16 Ω Mode 4, headphone outputs, RL = 16 Ω Mode 5, MLO output, RL = 16 Ω Mode 6, MLO output, RL = 16 Ω Mode 7, BTL, speaker outputs, RL = 8 Ω 60 55 61 75 62 57 73 O PSRR 50 BTL, speaker output power e t e l o s b 5 35 25 MLO output power THD+N 50 30 20 -O 2 5 Modes 3, 4 Headphone output power THD+N = 1% max, F = 1 kHz, RL = 16 Ω (phantom ground mode) THD+N = 1% max, F = 1 kHz, RL = 32 Ω mA ) s ( ct u d o r P e Unit µA mV mW % dB 11/55 Electrical characteristics Table 10. TS4956 VCC = +2.7 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) (continued) Symbol Parameter Conditions A-weighted, G = +1.5 dB, THD+N < 0.5%, 20 Hz < F < 20 kHz Mode 1 - speaker output, RL = 8 Ω Mode 2 - speaker output, RL = 8 Ω Mode 3 - headphone output, RL = 16 Ω Mode 4 - headphone output, RL = 16 Ω Mode 5 - MLO output, RL = 16 Ω Mode 6 - MLO output, R = 16 Ω Mode 7 - BTL, speaker output, RL = 8 Ω, G = +10.5 dB Signal-to-noise ratio G e t e ol Digital gain range bs Digital gain stepsize O ) Stepsize error Input impedance, all gain setting Zin let tSTBY o s b Standby time Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground MIN input impedance referenced to ground Stereo input RIN input impedance LIN input impedance s ( t c u d o r P e Wake-up time tWU Typ. Mode 4 F = 1 kHz, RL = 16 Ω, Pout = 15 mW F = 20 Hz to 20 kHz, RL = 16 Ω, Pout = 15 mW Mode 7 F = 1 kHz, RL = 8 Ω, Pout = 200 mW F = 20 Hz to 20 kHz, RL = 8 Ω, Pout = 200 mW Crosstalk Channel separation SNR Min. Max. 50 50 dB 80 60 91 90 84 90 85 85 92 ) s ( ct du o r P -34.5 12/55 dB +12 1.5 0.1 0.6 dB kΩ 60 30 45 72 36 54 24 24 30 30 36 36 70 90 1 dB dB 48 24 36 1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC at f = 217 Hz. O Unit ms µs TS4956 Table 11. Electrical characteristics VCC = +3.3 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) Symbol Parameter Conditions Supply current ICC Min. Typ. Max. Mode 1, 2, no input signal, no load 3.6 4.7 Mode 3, no input signal, no load 4.8 6.2 Mode 4, no input signal, no load 4.6 6 Modes 5, 6, no input signal, no load 1.8 2.4 6 7.8 0.5 2 Mode 7, no input signal, no load ISTBY VOO Pout Output offset voltage No input signal Modes 1, 2 speaker output, RL = 8 Ω Mode 3 headphone outputs, RL = 16 Ω Mode 4 headphone outputs, RL = 16 Ω Mode 7 BTL, speaker output, RL = 8 Ω e t e ol 50 5 20 5 20 o r P Modes 3, 4 THD+N = 1% max, F = 1 kHz, RL = 16 Ω THD+N = 1% max, F = 1 kHz, RL = 32 Ω 32 30 38(1) 36(1) BTL, speaker output power Modes 1, 2, 7 THD+N = 1% max, F = 1 kHz, RL = 8 Ω 430 450 MLO output power Modes 5, 6 THD+N = 1% max, F = 1 kHz, RL = 16 Ω THD+N = 1% max, F = 1 kHz, RL = 32 Ω 58 32 65 38 ) (s s b O t c u r P e let Power supply rejection ratio(2) F = 217Hz, G = +1.5 dB, Vripple = 200 mVpp, inputs grounded, Cb = 1 µF Mode 1, speaker output, RL = 8 Ω Mode 2, speaker output, RL = 8 Ω Mode 3, headphone outputs, RL = 16 Ω Mode 4, headphone outputs, RL = 16 Ω Mode 5, MLO output, RL = 16 Ω Mode 6, MLO output, RL = 16 Ω Mode 7, BTL, speaker outputs, RL = 8 Ω mV mW 0.5 0.5 0.5 63 57 63 77 64 58 74 µA 50 du 5 mA ) s ( ct 5 Headphone output power (phantom ground mode) od so PSRR No input signal G = +1.5 dB, 20 Hz < F < 20 kHz Total harmonic distortion + Modes 1, 2, 7, RL = 8 Ω, Pout = 300 mW noise Modes 3, 4, RL = 16 Ω, Pout = 15 mW Modes 5, 6, RL = 16 Ω, Pout = 50 mW THD+N b O Standby current Unit % dB 13/55 Electrical characteristics Table 11. TS4956 VCC = +3.3 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) (continued) Symbol Parameter Conditions A-weighted, G = +1.5 dB, THD+N < 0.5%, 20 Hz < F < 20 kHz Mode 1 - speaker output, RL = 8 Ω Mode 2 - speaker output, RL = 8 Ω Mode 3 - headphone output, RL = 16 Ω Mode 4 - headphone output, RL = 16 Ω Mode 5 - MLO output, RL = 16 Ω Mode 6 - MLO output, R = 16 Ω Mode 7 - BTL, speaker output, RL = 8 Ω, G = +10.5 dB Signal-to-noise ratio G e t e ol Digital gain range O ) Stepsize error Input impedance, all gain setting r P e Wake-up time tWU let tSTBY o s b u d o Standby time dB 93 92 85 91 87 87 95 ) s ( ct du o r P -34.5 1.5 0.1 0.6 dB kΩ 60 30 45 72 36 54 24 24 30 30 36 36 70 90 1 dB dB 48 24 36 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC at F = 217 Hz. 14/55 dB +12 1. Internal power limitation on headphone outputs (see application information). O Unit 80 60 Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground MIN input impedance referenced to ground Stereo input RIN input impedance LIN input impedance s ( t c Max. 50 50 bs Digital gain stepsize Zin Typ. Mode 4 F = 1 kHz, RL = 16 Ω, Pout = 15 mW F = 20 Hz to 20 kHz, RL = 16 Ω, Pout = 15 mW Mode 7 F = 1 kHz, RL = 8 Ω, Pout = 300 mW F = 20 Hz to 20 kHz, RL = 8 Ω, Pout = 300 mW Crosstalk Channel separation SNR Min. ms µs TS4956 Table 12. Electrical characteristics VCC = +5 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. 4 5.2 Mode 3, no input signal, no load 5.3 6.9 Mode 4, no input signal, no load 5.2 6.8 Modes 5, 6, no input signal, no load 1.9 2.5 Mode 7, no input signal, no load 6.7 8.7 Standby current No input signal 0.5 2 Output offset voltage No input signal Modes 1, 2 speaker output, RL = 8 Ω Mode 3 headphone outputs, RL = 16 Ω Mode 4 headphone outputs, RL = 16 Ω Mode 7 BTL, speaker output, RL = 8 Ω Mode 1, 2, no input signal, no load Supply current ICC ISTBY VOO Pout 5 20 39(1) 43(1) BTL, speaker output power Modes 1, 2, 7 THD+N = 1% max, F = 1 kHz, RL = 8 Ω 1000 1055 MLO output power Modes 5, 6 THD+N = 1% max, F = 1 kHz, RL = 16 Ω THD+N = 1% max, F = 1 kHz, RL = 32 Ω 140 80 150 88 r P e let O 20 32 35 ) (s s b O t c u od o s b 5 Modes 3, 4 THD+N = 1% max, F = 1 kHz, RL = 16 Ω THD+N = 1% max, F = 1 kHz, RL = 32 Ω G = +1.5 dB, 20 Hz < F < 20 kHz Total harmonic distortion + Modes 1, 2, 7, RL = 8 Ω, Pout = 700 mW noise Modes 3, 4, RL = 16 Ω, Pout = 15 mW Modes 5, 6, RL = 16 Ω, Pout = 100 mW THD+N PSRR e t e ol 50 Headphone output power (phantom ground mode) Power supply rejection ratio(2) F = 217Hz, G = +1.5 dB, Vripple = 200 mVpp, inputs grounded, Cb = 1 µF Mode 1, speaker output, RL = 8 Ω Mode 2, speaker output, RL = 8 Ω Mode 3, headphone outputs, RL = 16 Ω Mode 4, headphone outputs, RL = 16 Ω Mode 5, MLO output, RL = 16 Ω Mode 6, MLO output, RL = 16 Ω Mode 7, BTL, speaker outputs, RL = 8 Ω mV mW 0.5 0.5 0.5 66 60 65 78 66 61 75 µA 50 du o r P mA ) s ( ct 5 5 Unit % dB 15/55 Electrical characteristics Table 12. TS4956 VCC = +5 V, GND = 0 V, Tamb = 25° C (unless otherwise specified) (continued) Symbol Parameter Conditions A-weighted, G = +1.5 dB, THD+N < 0.5%, 20 Hz < F < 20 kHz Mode 1 - speaker output, RL = 8 Ω Mode 2 - speaker output, RL = 8 Ω Mode 3 - headphone output, RL = 16 Ω Mode 4 - headphone output, RL = 16 Ω Mode 5 - MLO output, RL = 16 Ω Mode 6 - MLO output, R = 16 Ω Mode 7 - BTL, Speaker output, RL = 8 Ω, G = +10.5 dB Signal-to-noise ratio G e t e ol Digital gain range O ) Stepsize error Input impedance, all gain setting r P e Wake-up time tWU let tSTBY o s b u d o Standby time dB 96 96 85 91 90 90 98 ) s ( ct du o r P -34.5 1.5 0.1 0.6 dB kΩ 60 30 45 72 36 54 24 24 30 30 36 36 70 90 1 dB dB 48 24 36 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC at F = 217 Hz. 16/55 dB +12 1. Internal power limitation on headphone outputs (see application information). O Unit 80 60 Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground MIN input impedance referenced to ground Stereo input RIN input impedance LIN input impedance s ( t c Max. 50 50 bs Digital gain stepsize Zin Typ. Mode 4 F = 1 kHz, RL = 16 Ω, Pout = 15 mW F = 20 Hz to 20 kHz, RL = 16 Ω, Pout = 15 mW Mode 7 F = 1 kHz, RL = 8 Ω, Pout = 700 mW F = 20 Hz to 20 kHz, RL = 8 Ω, Pout = 700 mW Crosstalk Channel separation SNR Min. ms µs TS4956 Table 13. Electrical characteristics Output noise VCC = 2.7 V to 5.5 V (all inputs grounded) G = +12 dB G = +10.5 dB G = +1.5 dB Unweighted Unweighted Unweighted A-weighted A-weighted filter filter filter filter filter (20Hz - 20kHz) (20Hz - 20kHz) (20Hz - 20kHz) A-weighted filter Vout (µV) Vout (µV) Vout (µV) Vout (µV) Vout (µV) Vout (µV) Mode 1 - SPK out 54 80 67 100 45 66 Mode 2 - SPK out 67 99 75 111 45 69 Mode 3 - LHP, RHP 55 80 68 100 45 67 Mode 4 - LHP, RHP 29 43 35 52 23 Mode 5 - MLO 53 80 66 97 45 Mode 6 - MLO 65 96 73 106 Mode 7 - BTL, SPK out 29 42 35 ) (s e t e ol 52 34 du o r P 45 23 ) s ( ct 66 67 34 s b O t c u d o r P e t e l o s b O 17/55 Electrical characteristics Figure 4. TS4956 THD+N vs. output power Figure 5. 10 10 Mode 1, 2 - SPK out RL = 8 Ω , G = +1.5dB BW < 125kHz Tamb = 25 ° C 1 Vcc=5V F=20kHz Mode 1, 2 - SPK out RL = 8 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=3.3V F=20kHz Vcc=5V F=20kHz Vcc=3.3V F=20kHz 1 Vcc=2.7V F=20kHz THD + N (%) THD + N (%) THD+N vs. output power 0.1 0.1 Vcc=2.7V F=20kHz Vcc=3.3V F=1kHz Vcc=2.7V F=1kHz 0.01 0.01 Vcc=2.7V F=1kHz Vcc=5V F=1kHz 0.1 0.01 1 0.01 Output power (W) Figure 6. Vcc=5V F=20kHz Vcc=3.3V F=20kHz THD + N (%) THD + N (%) O ) du 0.1 e t e l o s b 1 Vcc=3.3V F=20kHz 0.01 1E-3 0.01 Vcc=5V F=1kHz 0.1 1 THD+N vs. output power Mode 3 - LHP, RHP RL = 16 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C 1 0.01 Vcc=3.3V F=1kHz Vcc=2.7V F=1kHz 0.01 10 Vcc=2.7V F=20kHz Output power (W) 18/55 Vcc=2.7V F=20kHz Vcc=5V F=20kHz Vcc=3.3V F=1kHz Vcc=3.3V F=20kHz 0.1 Figure 9. 0.1 Vcc=5V F=1kHz Vcc=5V F=20kHz Output power (W) o r P Mode 3 - LHP, RHP RL = 16 Ω , G = +1.5dB BW < 125kHz Tamb = 25 ° C e t e l 1 THD+N vs. output power 10 THD + N (%) Vcc=5V F=1kHz THD + N (%) Figure 8. s ( t c Vcc=3.3V F=1kHz Output power (W) o r P Mode 1, 2 - SPK out RL = 16 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C o s b 0.1 0.01 O 1 Vcc=2.7V F=20kHz Vcc=2.7V F=1kHz 1 THD+N vs. output power 10 0.01 ) s ( t 0.1 c u d Figure 7. 10 1 Vcc=5V F=1kHz Output power (W) THD+N vs. output power Mode 1, 2 - SPK out RL = 16 Ω , G = +1.5dB BW < 125kHz Tamb = 25 ° C Vcc=3.3V F=1kHz Vcc=3.3V F=20kHz Vcc=2.7V F=20kHz 0.1 Vcc=5V F=1kHz Vcc=2.7V F=1kHz 0.1 Vcc=5V F=20kHz 0.01 1E-3 Vcc=3.3V F=1kHz Vcc=2.7V F=1kHz 0.01 Output power (W) 0.1 TS4956 Electrical characteristics Figure 10. THD+N vs. output power Figure 11. THD+N vs. output power 10 10 Mode 3 - LHP, RHP RL = 32 Ω , G = +1.5dB BW < 125kHz Tamb = 25 ° C 1 Vcc=2.7V F=20kHz THD + N (%) THD + N (%) 1 Mode 3 - LHP, RHP RL = 32 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C 0.1 Vcc=5V F=1kHz Vcc=3.3V F=20kHz Vcc=5V F=20kHz 0.01 1E-3 Vcc=2.7V F=1kHz Vcc=2.7V F=20kHz 0.1 Vcc=5V F=1kHz Vcc=3.3V F=20kHz Vcc=3.3V F=1kHz 0.01 Vcc=5V F=20kHz 0.01 1E-3 0.1 10 Vcc=5V F=20kHz Vcc=3.3V F=20kHz )- s ( t c du 0.01 Output power (W) o s b THD + N (%) O 1E-3 Vcc=2.7V F=1kHz Vcc=5V F=20kHz Vcc=3.3V F=1kHz 0.01 Output power (W) 0.01 0.1 10 1 0.1 0.01 Vcc=5V F=1kHz Figure 15. THD+N vs. output power Vcc=2.7V F=20kHz Vcc=3.3V F=20kHz Vcc=2.7V F=1kHz 0.01 1E-3 THD + N (%) e t e l Vcc=5V F=20kHz Output power (W) o r P Mode 4 - LHP, RHP RL = 32 Ω , G = +1.5dB BW < 125kHz Tamb = 25 ° C Vcc=3.3V F=20kHz 0.1 Vcc=3.3V F=1kHz 0.1 Figure 14. THD+N vs. output power 10 Vcc=2.7V F=20kHz s b O Vcc=2.7V F=1kHz Vcc=5V F=1kHz 0.01 1E-3 e t e ol 1 0.1 Vcc=3.3V F=1kHz o r P Mode 4 - LHP, RHP RL = 16 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C THD + N (%) THD + N (%) Vcc=2.7V F=20kHz 1 c u d Figure 13. THD+N vs. output power 10 1 ) s ( t 0.1 Output power (W) Figure 12. THD+N vs. output power Vcc=3.3V F=1kHz 0.01 Output power (W) Mode 4 - LHP, RHP RL = 16 Ω , G = +1.5dB BW < 125kHz Tamb = 25 ° C Vcc=2.7V F=1kHz Vcc=5V F=1kHz 0.1 Mode 4 - LHP, RHP RL = 32 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=5V F=20kHz Vcc=2.7V F=20kHz Vcc=3.3V F=20kHz 0.1 0.01 1E-3 Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz 0.01 Vcc=5V F=1kHz 0.1 Output power (W) 19/55 Electrical characteristics TS4956 Figure 16. THD+N vs. output power Figure 17. THD+N vs. output power 10 10 Mode 5, 6 - MLO RL = 16 Ω , G = +1.5dB BW < 125kHz Tamb = 25 ° C 1 Vcc=3.3V F=20kHz Vcc=2.7V F=1kHz 0.1 Vcc=3.3V F=20kHz Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz 0.01 1E-3 0.01 0.1 1 Vcc=3.3V F=1kHz 0.01 1E-3 0.01 Output power (W) 1 c u d Figure 19. THD+N vs. output power 10 10 Mode 5, 6 - MLO RL = 32 Ω , G = +1.5dB BW < 125kHz Tamb = 25 ° C Vcc=2.7V F=20kHz )- 0.1 Vcc=3.3V F=20kHz e t e ol 1 s b O THD + N (%) Vcc=5V F=1kHz o r P Mode 5, 6 - MLO RL = 32 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=5V F=20kHz 1 THD + N (%) ) s ( t 0.1 Output power (W) Figure 18. THD+N vs. output power Vcc=2.7V F=1kHz Vcc=5V F=1kHz Vcc=2.7V F=20kHz THD + N (%) 0.1 Vcc=5V F=20kHz 1 Vcc=5V F=1kHz Vcc=2.7V F=20kHz THD + N (%) Mode 5, 6 - MLO RL = 16 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=5V F=20kHz s ( t c Vcc=2.7V F=1kHz Vcc=5V F=20kHz Vcc=5V F=1kHz Vcc=2.7V F=20kHz 0.1 Vcc=3.3V F=20kHz Vcc=3.3V F=1kHz 0.01 1E-3 du 0.01 Vcc=3.3V F=1kHz 0.01 1E-3 0.1 0.01 Output power (W) o r P Figure 20. THD+N vs. output power e t e l so THD + N (%) b O 1 Vcc=2.7V F=20kHz Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz Vcc=3.3V F=20kHz 0.01 Vcc=5V F=20kHz Vcc=2.7V F=20kHz 0.1 Vcc=5V F=1kHz Vcc=2.7V F=1kHz Vcc=5V F=1kHz 0.1 Output power (W) 20/55 Mode 7 - BTL, SPK out RL = 16 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=3.3V F=20kHz 0.1 0.01 1E-3 10 Vcc=5V F=20kHz Mode 7 - BTL, SPK out RL = 8 Ω , G = +10.5dB BW < 125kHz Tamb = 25 ° C 1 Figure 21. THD+N vs. output power THD + N (%) 10 0.1 Output power (W) 1 0.01 1E-3 Vcc=3.3V F=1kHz 0.01 0.1 Output power (W) 1 TS4956 Electrical characteristics Figure 22. THD+N vs. frequency Figure 23. THD+N vs. frequency 10 10 Mode 1, 2 - SPK out RL = 8 Ω G = +1.5dB BW < 125kHz Tamb = 25 ° C 1 Vcc=5V Po=700mW Vcc=3.3V Po=300mW Vcc=2.7V Po=200mW 0.1 0.01 100 20 1000 THD + N (%) THD + N (%) 1 Mode 1, 2 - SPK out RL = 8 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=2.7V Po=200mW 20 100 Frequency (Hz) Vcc=3.3V Po=200mW ) (s t c u 100 20 Mode 1, 2 - SPK out RL = 16 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C t e l o 1 Vcc=5V Po=400mW 1000 d o r s b O THD + N (%) THD + N (%) r P e 10 Mode 1, 2 - SPK out RL = 16 Ω G = +1.5dB BW < 125kHz Tamb = 25 ° C 0.1 0.01 20 100 P e let 10 Mode 3 - LHP, RHP RL = 16 Ω G = +1.5dB BW < 125kHz Tamb = 25 ° C 1 Vcc=3.3V Po=15mW Vcc=2.7V Po=15mW 0.1 Mode 3 - LHP, RHP RL = 16 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=2.7V Po=15mW 20 100 1000 Frequency (Hz) 10000 Vcc=3.3V Po=15mW 0.1 Vcc=5V Po=15mW 0.01 10000 Figure 27. THD+N vs. frequency THD + N (%) THD + N (%) O 1 1000 Frequency (Hz) Figure 26. THD+N vs. frequency o s b Vcc=5V Po=400mW 0.1 0.01 10000 Vcc=3.3V Po=200mW Vcc=2.7V Po=120mW Frequency (Hz) 10 10000 u d o Figure 25. THD+N vs. frequency 10 Vcc=2.7V Po=120mW ) s ( ct 1000 Frequency (Hz) Figure 24. THD+N vs. frequency 1 Vcc=5V Po=700mW 0.1 0.01 10000 Vcc=3.3V Po=300mW Vcc=5V Po=15mW 0.01 20 100 1000 10000 Frequency (Hz) 21/55 Electrical characteristics TS4956 Figure 28. THD+N vs. frequency Figure 29. THD+N vs. frequency 10 10 Mode 3 - LHP, RHP RL = 32 Ω G = +1.5dB BW < 125kHz Tamb = 25 ° C 1 Vcc=3.3V Po=10mW Vcc=2.7V Po=10mW 0.1 THD + N (%) THD + N (%) 1 Mode 3 - LHP, RHP RL = 32 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=2.7V Po=10mW 0.1 Vcc=5V Po=10mW Vcc=5V Po=10mW 0.01 20 100 1000 0.01 10000 20 100 Frequency (Hz) Vcc=3.3V Po=15mW Vcc=5V Po=15mW ) (s t c u 100 20 Mode 4 - LHP, RHP RL = 16 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C t e l o 1 1000 d o r s b O THD + N (%) THD + N (%) 0.1 0.01 r P e 10 Mode 4 - LHP, RHP RL = 16 Ω G = +1.5dB BW < 125kHz Tamb = 25 ° C Vcc=2.7V Po=15mW 20 100 Frequency (Hz) P e Vcc=2.7V Po=10mW 0.1 0.01 20 100 1 Vcc=3.3V Po=10mW 1000 Frequency (Hz) 22/55 10000 10 Mode 4 - LHP, RHP RL = 32 Ω G = +1.5dB BW < 125kHz Tamb = 25 ° C Vcc=5V Po=10mW 10000 THD + N (%) THD + N (%) O 1 1000 Figure 33. THD+N vs. frequency let o s b Vcc=5V Po=15mW Frequency (Hz) Figure 32. THD+N vs. frequency 10 Vcc=3.3V Po=15mW 0.1 0.01 10000 10000 u d o Figure 31. THD+N vs. frequency 10 Vcc=2.7V Po=15mW ) s ( ct 1000 Frequency (Hz) Figure 30. THD+N vs. frequency 1 Vcc=3.3V Po=10mW Mode 4 - LHP, RHP RL = 32 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=2.7V Po=10mW 0.1 0.01 20 100 Vcc=3.3V Po=10mW 1000 Frequency (Hz) Vcc=5V Po=10mW 10000 TS4956 Electrical characteristics Figure 34. THD+N vs. frequency Figure 35. THD+N vs. frequency 10 10 Mode 5, 6 - MLO RL = 16 Ω G = +1.5dB BW < 125kHz Tamb = 25 ° C 1 Vcc=5V Po=100mW 0.01 Vcc=3.3V Po=50mW Vcc=2.7V Po=30mW 0.1 20 THD + N (%) THD + N (%) 1 Mode 5, 6 - MLO RL = 16 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C 100 1000 Vcc=2.7V Po=30mW 20 100 Frequency (Hz) 20 ) s ( ct du 100 1000 e t e l 10 THD + N (%) O o s b o r P 20 100 THD + N (%) Vcc=3.3V Po=30mW 20 100 1000 10000 Frequency (Hz) Figure 39. THD+N vs. frequency 10 1 Vcc=5V Po=700mW Vcc=2.7V Po=200mW Vcc=2.7V Po=20mW Vcc=5V Po=60mW 0.1 0.01 Mode 7 - BTL, SPK out RL = 8 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C 0.1 0.01 -O 10000 Figure 38. THD+N vs. frequency t e l o bs Vcc=3.3V Po=300mW 1000 Frequency (Hz) 10000 THD + N (%) THD + N (%) Vcc=3.3V Po=30mW Mode 5, 6 - MLO RL = 32 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C 1 Vcc=5V Po=60mW Frequency (Hz) 1 r P e 10 Mode 5, 6 - MLO RL = 32 Ω G = +1.5dB BW < 125kHz Tamb = 25 ° C 0.1 0.01 10000 u d o Figure 37. THD+N vs. frequency 10 Vcc=2.7V Po=20mW ) s ( ct 1000 Frequency (Hz) Figure 36. THD+N vs. frequency 1 Vcc=3.3V Po=50mW 0.1 0.01 10000 Vcc=5V Po=100mW Mode 7 - BTL, SPK out RL = 16 Ω G = +10.5dB BW < 125kHz Tamb = 25 ° C Vcc=2.7V Po=120mW 0.1 0.01 20 100 Vcc=3.3V Po=200mW 1000 Vcc=5V Po=400mW 10000 Frequency (Hz) 23/55 TS4956 Electrical characteristics Figure 41. Output power vs. power supply voltage 1600 1400 1300 Mode 1, 2, 7 1200 BTL, SPK out 1100 F = 1kHz RL=8 Ω 1000 BW < 125 kHz Tamb = 25 ° C 900 800 RL=16 Ω 700 600 500 400 300 200 100 0 2.5 3.0 3.5 4.0 4.5 Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) Figure 40. Output power vs. power supply voltage RL=32 Ω 5.0 Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25 ° C 1400 1200 1000 RL=8 Ω RL=16 Ω 800 600 400 RL=32 Ω 0 2.5 5.5 3.0 3.5 4.0 Vcc (V) RL=16 Ω 0 2.5 3.0 t(s c u d ro 3.5 P e 4.0 )- Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25 ° C 4.5 5.0 160 140 30 Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25 ° C 20 RL=64 Ω 10 3.0 3.5 4.0 4.5 5.0 5.5 Vcc (V) Figure 45. Output power vs. power supply voltage RL=16 Ω 120 RL=32 Ω 80 60 40 20 RL=64 Ω 3.0 RL=16 Ω 40 280 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25 ° C 0 2.5 RL=32 Ω Vcc (V) t e l o 100 50 0 2.5 Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) 180 t e l o 60 s b O 5.5 Figure 44. Output power vs. power supply voltage s b O Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) 40 200 r P e 70 RL=64 Ω 5.5 u d o RL=32 Ω 20 5.0 Figure 43. Output power vs. power supply voltage 50 10 4.5 Vcc (V) Figure 42. Output power vs. power supply voltage 30 ) s ( ct 200 3.5 4.0 Vcc (V) 4.5 5.0 5.5 240 200 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25 ° C 160 RL=16 Ω RL=32 Ω 120 80 40 RL=64 Ω 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Vcc (V) 24/55 TS4956 Electrical characteristics 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 Figure 47. Output power vs. load resistance 1600 Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25 ° C Vcc=5.5V Vcc=5V Vcc=3.3V Vcc=2.7V 8 12 16 20 24 28 Vcc=5.5V 1200 1000 Vcc=5V 800 600 Vcc=3.3V Vcc=2.7V 400 200 0 32 8 12 16 Load resistance (Ω ) Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) Vcc=5V 30 10 0 16 ) s ( ct Vcc=3.3V Vcc=2.7V 20 24 28 32 u d o 36 40 44 48 Load resistance (Ω ) r P e 52 56 60 -O let b O so 160 Vcc=5.5V Vcc=5V 100 80 60 Vcc=3.3V Vcc=2.7V 40 20 0 16 24 32 Vcc=5.5V 60 50 Vcc=5V Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25 ° C 40 30 Vcc=3.3V 20 Vcc=2.7V 10 20 24 28 32 36 40 44 48 52 56 60 64 Figure 51. Output power vs. load resistance 300 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25 ° C 140 120 32 Load resistance (Ω ) Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) 180 70 0 16 64 Figure 50. Output power vs. load resistance 200 e t e l 80 o r P o s b 40 20 28 c u d 90 Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25 ° C Vcc=5.5V ) s ( t 24 Figure 49. Output power vs. load resistance 70 50 20 Load resistance (Ω ) Figure 48. Output power vs. load resistance 60 Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25 ° C 1400 Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) Figure 46. Output power vs. load resistance 40 48 Load resistance (Ω ) 56 64 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25 ° C 250 Vcc=5.5V 200 Vcc=5V 150 Vcc=3.3V 100 Vcc=2.7V 50 0 16 24 32 40 48 56 64 Load resistance (Ω ) 25/55 TS4956 Electrical characteristics Figure 52. PSRR vs. frequency Figure 53. PSRR vs. frequency 0 0 Mode 1 - SPK out Vcc = 2.7V RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp -20 G=+12dB, +10.5dB -40 PSRR (dB) PSRR (dB) -20 G=+1.5dB G=+6dB -60 G=-18dB -80 Mode 1 - SPK out Vcc = 5V RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp 100 G=+6dB G=+12dB -60 -80 G=-18dB G=-34.5dB G=-9dB -100 20 G=+10.5dB -40 G=+1.5dB 1000 -100 20 10000 G=-9dB 100 G=-34.5dB ) s ( ct 1000 10000 Frequency (Hz) Frequency (Hz) Figure 54. PSRR vs. frequency PSRR (dB) -30 G=+10.5dB G=+6dB -40 G=+1.5dB -50 -70 -80 G=-34.5dB -90 20 s ( t c G=-18dB u d o 100 1000 Frequency (Hz) G=-9dB r P e let 0 -10 so b O PSRR (dB) Mode 2 - SPK out Vcc = 2.7V RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp -20 -30 G=+1.5dB G=+6dB G=-9dB -80 G=-18dB 100 G=-34.5dB 1000 10000 Frequency (Hz) Figure 57. PSRR vs. frequency 0 G=+12dB G=+10.5dB -20 G=+6dB G=+1.5dB -50 -60 -30 Mode 2 - SPK out Vcc = 5V RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp G=+12dB, +10.5dB G=+6dB -40 G=+1.5dB -50 -60 -70 -90 20 G=+10.5dB -60 -10 -40 -80 -40 -100 20 10000 Figure 56. PSRR vs. frequency G=+12dB bs O ) -60 Mode 1 - SPK out Vcc = 3.3V RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp t e l o -20 G=+12dB PSRR (dB) -20 PSRR (dB) -10 r P e 0 0 Mode 2 - SPK out Vcc = 3.3V RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp u d o Figure 55. PSRR vs. frequency -70 G=-34.5dB 100 G=-18dB 1000 Frequency (Hz) G=-9dB 10000 -80 -90 20 G=-34.5dB 100 G=-18dB 1000 G=-9dB 10000 Frequency (Hz) 26/55 TS4956 Electrical characteristics Figure 58. PSRR vs. frequency Figure 59. PSRR vs. frequency 0 -20 PSRR (dB) -30 -10 -20 G=+6dB -50 -30 G=+10.5dB -40 G=+1.5dB PSRR (dB) -10 0 Mode 3 - LHP, RHP Vcc = 2.7V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp G=+12dB Mode 3 - LHP, RHP Vcc = 5V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp G=+10.5dB -40 G=+12dB -50 G=+6dB G=+1.5dB -60 -60 -70 -70 -80 G=-18dB -90 20 G=-34.5dB G=-9dB 100 1000 G=-9dB -80 -90 20 10000 G=-34.5dB G=-18dB 100 10000 Frequency (Hz) Figure 60. PSRR vs. frequency Figure 61. PSRR vs. frequency 0 -20 PSRR (dB) -30 -10 -40 G=+10.5dB G=+1.5dB G=+12dB -50 G=+6dB -60 ) (s -70 -80 -90 G=-18dB -100 20 t c u G=-9dB 100 1000 s b O -50 G=+6dB G=-34.5dB -90 20 100 let 0 -10 -20 -30 G=+10.5dB -40 G=+12dB -50 G=+6dB G=+1.5dB -60 -70 Mode 4 - LHP, RHP Vcc = 5V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp -40 G=+1.5dB -50 G=+6dB -60 G=+10.5dB G=+12dB -70 -80 -80 -90 -100 20 10000 Figure 63. PSRR vs. frequency PSRR (dB) PSRR (dB) b O -30 1000 Frequency (Hz) P e Mode 4 - LHP, RHP Vcc = 2.7V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp so -20 G=-18dB G=-9dB -80 10000 Figure 62. PSRR vs. frequency 0 G=+12dB -70 Frequency (Hz) -10 G=+1.5dB G=+10.5dB -60 G=-34.5dB d o r -30 -40 Mode 3 - LHP, RHP Vcc = 3.3V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp t e l o -20 u d o r P e 0 Mode 4 - LHP, RHP Vcc = 3.3V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp PSRR (dB) -10 ) s ( ct 1000 Frequency (Hz) G=-9dB G=-18dB 100 1000 Frequency (Hz) G=-34.5dB G=-34.5dB -90 G=-18dB G=-9dB 10000 -100 20 100 1000 10000 Frequency (Hz) 27/55 TS4956 Electrical characteristics Figure 64. PSRR vs. frequency Figure 65. PSRR vs. frequency 0 -20 PSRR (dB) -30 0 Mode 5 - MLO Vcc = 2.7V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp Mode 5 - MLO Vcc = 5V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp -10 -20 G=+12dB G=+10.5dB G=+6dB -40 G=+1.5dB -50 -30 PSRR (dB) -10 -60 -70 -40 G=+10.5dB G=+12dB G=-9dB G=+6dB -50 -60 -70 -80 G=-9dB -80 G=-18dB -90 G=-34.5dB -100 20 100 1000 G=-18dB G=+1.5dB -90 G=-34.5dB -100 20 10000 100 10000 Frequency (Hz) Figure 66. PSRR vs. frequency Figure 67. PSRR vs. frequency 0 PSRR (dB) -30 -40 G=+12dB -20 G=+6dB G=+10.5dB -30 G=+1.5dB -50 -60 )- -70 -80 G=-9dB u d o 100 1000 Frequency (Hz) r P e let 0 -10 so -20 b O PSRR (dB) Mode 6 - MLO Vcc = 2.7V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp -30 -40 -60 G=-18dB G=+1.5dB -90 G=-9dB -100 20 100 G=-34.5dB 1000 10000 Frequency (Hz) 0 -10 G=+12dB -20 G=+10.5dB G=+6dB G=+1.5dB -60 -70 -30 Mode 6 - MLO Vcc = 5V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp G=+12dB G=+10.5dB G=+6dB -40 G=+1.5dB -50 -60 -70 -80 G=-34.5dB G=-18dB -90 -100 20 G=+10.5dB G=+6dB G=+12dB Figure 69. PSRR vs. frequency -50 -80 -50 -80 10000 Figure 68. PSRR vs. frequency -40 -70 s ( t c G=-18dB t e l o s b O G=-34.5dB -90 -100 20 Mode 5 - MLO Vcc = 3.3V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp -10 PSRR (dB) -20 u d o r P e 0 Mode 6 - MLO Vcc = 3.3V RL ≥ 16 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp PSRR (dB) -10 ) s ( ct 1000 Frequency (Hz) 100 1000 Frequency (Hz) G=-9dB 10000 G=-34.5dB G=-9dB -90 -100 20 G=-18dB 100 1000 10000 Frequency (Hz) 28/55 TS4956 Electrical characteristics Figure 70. PSRR vs. frequency Figure 71. PSRR vs. frequency 0 0 Mode 7 - BTL, SPK out Vcc = 2.7V -20 RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded -30 Vripple = 200mVpp -40 -10 -20 -30 G=+12dB G=+6dB G=+10.5dB -50 G=+1.5dB -60 PSRR (dB) PSRR (dB) -10 -70 Mode 7 - BTL, SPK out Vcc = 5V RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp G=+6dB -50 G=+1.5dB -60 -70 -80 -80 -90 G=-9dB -100 20 G=-18dB 100 -90 G=-34.5dB 1000 G=-34.5dB -100 20 10000 -20 G=+12dB -40 G=+10.5dB G=+6dB -50 -70 -80 -90 G=-9dB s ( t c G=-18dB u d o 100 1000 Frequency (Hz) r P e let 0 Mode 1 - SPK out Vcc = 2.7V, 3.3V, 5V RL ≥ 8 Ω , Cb = 1 μ F Cin = 470 μ F Vic = 200mVpp o s b G=+12dB G=+6dB G=+10.5dB -60 G=+1.5dB -80 G=-9dB G=-34.5dB 100 G=-18dB 1000 10000 Frequency (Hz) Figure 75. CMRR vs. frequency 0 G=+12dB G=+6dB -20 G=+10.5dB -40 CMRR (dB) CMRR (dB) -40 -100 10000 Figure 74. CMRR vs. frequency O let G=-34.5dB -100 20 -20 Mode 3 - LHP, RHP Vcc = 2.7V, 3.3V, 5V RL ≥ 8 Ω , Cb = 1 μ F Cin = 470 μ F Vic = 200mVpp o s b O ) G=+1.5dB -60 u d o r P e 0 CMRR (dB) PSRR (dB) -30 10000 Figure 73. CMRR vs. frequency 0 -20 ) s ( ct 1000 Frequency (Hz) Figure 72. PSRR vs. frequency Mode 7 - BTL, SPK out Vcc = 3.3V RL ≥ 8 Ω , Cb = 1 μ F Inp. grounded Vripple = 200mVpp G=-9dB G=-18dB 100 Frequency (Hz) -10 G=+10.5dB G=+12dB -40 -60 G=+1.5dB -80 Mode 5 - MLO Vcc = 2.7V, 3.3V, 5V RL ≥ 16 Ω , Cb = 1 μ F Cin = 470 μ F Vic = 200mVpp G=+12dB G=+10.5dB G=+6dB -40 -60 -80 G=+1.5dB G=-9dB G=-18dB G=-9dB -100 G=-34.5dB 100 G=-18dB 1000 Frequency (Hz) G=-34.5dB 10000 -100 100 1000 10000 Frequency (Hz) 29/55 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +1.5dB, RL = 8 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 Figure 77. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 76. SNR vs. power supply voltage 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +1.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 Vcc (V) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +1.5dB, RL = 8 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 ) (s t c u d o r Vcc (V) P e Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 Vcc (V) r P e t e l o Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +10.5dB, RL = 8 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 5 Figure 81. SNR vs. power supply voltage SNR (dB) SNR (dB) O 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Vcc (V) let o s b u d o s b O 5 Figure 80. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 5 Figure 79. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 78. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 ) s ( ct 3.3 Vcc (V) 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +10.5dB, RL = 8 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 5 Vcc (V) 30/55 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +1.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 Figure 83. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 82. SNR vs. power supply voltage 3.3 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +1.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 Vcc (V) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +1.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 t c u d o r Vcc (V) ) (s P e Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 Vcc (V) r P e t e l o Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 5 Figure 87. SNR vs. power supply voltage SNR (dB) SNR (dB) O 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Vcc (V) let o s b u d o s b O 5 Figure 86. SNR vs. power supply voltage 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 5 Figure 85. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 84. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 ) s ( ct 3.3 Vcc (V) 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +10.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 5 Vcc (V) 31/55 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +1.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 Figure 89. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 88. SNR vs. power supply voltage 3.3 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 Vcc (V) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 t c u d o r Vcc (V) ) (s P e Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +10.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 Vcc (V) r P e t e l o Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 5 Figure 93. SNR vs. power supply voltage SNR (dB) SNR (dB) O 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Vcc (V) let o s b u d o s b O 5 Figure 92. SNR vs. power supply voltage 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 5 Figure 91. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 90. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 ) s ( ct 3.3 Vcc (V) 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 5 Vcc (V) 32/55 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 Figure 95. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 94. SNR vs. power supply voltage 3.3 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +1.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 Vcc (V) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +1.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 t c u d o r Vcc (V) ) (s P e Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 Vcc (V) r P e t e l o Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +10.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 5 Figure 99. SNR vs. power supply voltage SNR (dB) SNR (dB) O 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Vcc (V) let o s b u d o s b O 5 Figure 98. SNR vs. power supply voltage 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 5 Figure 97. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 96. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 ) s ( ct 3.3 Vcc (V) 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +10.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 5 Vcc (V) 33/55 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 7 - BTL, SPKout G = +10.5dB, RL = 8 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 3.3 Figure 101. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 100. SNR vs. power supply voltage 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 7 - BTL, SPKout G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 ° C 2.7 7 6 10 Mode4 8 ) (s 3 Mode 1,2 2 Mode 5,6 0 1 2 u d o ct 3 4 s b O Gain (dB) Icc (mA) 4 1 r P e t e l o Mode7 Mode3 5 0 u d o Figure 103. Frequency response modes 1, 2, 7 12 No loads Tamb = 25 ° C 6 4 G=+6dB, RL=16 Ω G=+6dB, RL=8 Ω G=+1.5dB, RL=16 Ω G=+1.5dB, RL=8 Ω -2 5 Pr G=+12dB, RL=8 Ω 2 0 100 ol bs 10 Mode 3, 4 LHP, RHP Cin = 330nF Tamb 25 ° C -2 8 6 G=+12dB, RL=32 Ω G=+12dB, RL=16 Ω 4 Gain (dB) G=+6dB, RL=16 Ω ,32 Ω 2 0 Figure 105. Frequency response modes 5, 6 10 G=+12dB, RL=16 Ω ,32 Ω 6 4 2 0 G=+6dB, RL=32 Ω -2 G=+6dB, RL=16 Ω -4 -6 G=+1.5dB, RL=16 Ω ,32 Ω 100 10000 12 8 Gain (dB) O 1000 Frequency (Hz) Figure 104. Frequency response modes 3, 4 12 Mode 1, 2, 7 BTL, SPK out Cin = 330nF Tamb 25 ° C G=+12dB, RL=16 Ω Vcc (V) ete 5 Vcc (V) Figure 102. Current consumption vs. power supply voltage 8 ) s ( ct 3.3 Vcc (V) 1000 Frequency (Hz) -8 10000 -10 G=+1.5dB, RL=32 Ω G=+1.5dB, RL=16 Ω 100 1000 Mode 5, 6 - MLO Cin = 330nF Cout = 220 μ F Tamb 25 ° C 10000 Frequency (Hz) 34/55 TS4956 Electrical characteristics Figure 106. Frequency response modes 5, 6 Figure 107. Standby current consumption vs. power supply voltage 0.5 12 10 No loads Tamb = 25 ° C G=+12dB, RL=32 Ω 8 0.4 G=+12dB, RL=16 Ω 6 Istdby (μ A) Gain (dB) 4 2 0 G=+6dB, RL=32 Ω -2 G=+6dB, RL=16 Ω -4 Mode 5, 6 - MLO Cin = 330nF Cout = 470 μ F Tamb 25 ° C G=+1.5dB, RL=32 Ω -6 G=+1.5dB, RL=16 Ω -8 -10 100 1000 0.3 0.2 0.1 0.0 10000 0 1 2 3 Vcc (V) Frequency (Hz) ) s ( ct 4 5 6 u d o r P e Figure 108. Power dissipation vs. output power Figure 109. Power dissipation vs. output power (per channel) (per channel) t e l o 200 180 140 THD+N=1% 120 RL=8 Ω ) (s 100 80 t c u 60 40 RL=16 Ω 20 0 0 50 100 Mode 1, 2, 7 BTL, SPK out Vcc = 2.7V F = 1kHz THD+N < 10% d o r 150 200 250 300 350 s b O Power Dissipation (mW) Power Dissipation (mW) 160 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 400 THD+N=1% RL=8 Ω Mode 1, 2, 7 BTL, SPK out Vcc = 5V F = 1kHz THD+N < 10% RL=16 Ω 0 200 400 600 800 1000 1200 1400 Output Power (mW) P e Output Power (mW) t e l o Figure 110. Power dissipation vs. output power Figure 111. Power dissipation vs. output power (per channel) (per channel) bs 300 800 250 700 200 THD+N=1% RL=8 Ω 150 100 RL=16 Ω 50 0 Mode 1, 2, 7 BTL, SPK out Vcc = 3.3V F = 1kHz THD+N < 10% 0 100 200 300 400 500 600 Power Dissipation (mW) Power Dissipation (mW) O 900 600 THD+N=1% 500 RL=8 Ω 400 300 200 Mode 1, 2, 7 BTL, SPK out Vcc = 5.5V F = 1kHz THD+N < 10% RL=16 Ω 100 0 0 200 400 600 800 1000 1200 1400 1600 1800 Output Power (mW) Output Power (mW) 35/55 TS4956 Electrical characteristics Figure 112. Power dissipation vs. output power Figure 113. Power dissipation vs. output power (per channel) (per channel) 90 220 200 THD+N=1% 80 Power Dissipation (mW) Power Dissipation (mW) RL=16 Ω 60 50 40 RL=32 Ω 30 Mode 3, 4 - LHP, RHP Vcc = 2.7V F = 1kHz THD+N < 10% 20 10 0 THD+N=1% 180 70 0 10 20 30 40 RL=16 Ω 160 140 120 100 RL=32 Ω 80 60 Mode 3, 4 - LHP, RHP Vcc = 5V F = 1kHz THD+N < 10% 40 20 0 50 0 10 20 30 40 ) s ( ct 50 60 70 u d o Output Power (mW) Output Power (mW) r P e Figure 114. Power dissipation vs. output power Figure 115. Power dissipation vs. output power (per channel) (per channel) 130 100 bs RL=16 Ω 90 80 70 60 ) s ( ct 50 RL=32 Ω 40 -O Mode 3, 4 - LHP, RHP Vcc = 3.3V F = 1kHz THD+N < 10% 30 u d o 20 10 0 10 Pr 20 THD+N=1% 220 Power Dissipation (mW) Power Dissipation (mW) 240 THD+N=1% 110 0 t e l o 260 120 30 40 50 200 180 RL=16 Ω 160 140 120 RL=32 Ω 100 80 Mode 3, 4 - LHP, RHP Vcc = 5.5V F = 1kHz THD+N < 10% 60 40 20 0 60 0 10 20 Output Power (mW) e t e ol 30 40 50 60 70 Output Power (mW) Figure 116. Power dissipation vs. output power Figure 117. Power dissipation vs. output power bs 24 40 35 20 18 16 Power Dissipation (mW) Power Dissipation (mW) O 22 THD+N=1% 14 RL=16 Ω 12 10 8 Mode 5, 6 - MLO Vcc = 2.7V F = 1kHz THD+N < 10% 6 RL=32 Ω 4 2 0 0 10 20 30 40 Output Power (mW) 50 60 30 25 THD+N=1% 20 RL=16 Ω 15 10 0 70 Mode 5, 6 - MLO Vcc = 3.3V F = 1kHz THD+N < 10% RL=32 Ω 5 0 10 20 30 40 50 60 70 80 90 100 Output Power (mW) 36/55 TS4956 Electrical characteristics 90 100 80 90 70 80 Power Dissipation (mW) Power Dissipation (mW) Figure 118. Power dissipation vs. output power Figure 119. Power dissipation vs. output power 60 THD+N=1% 50 RL=16 Ω 40 30 Mode 5, 6 - MLO Vcc = 5V F = 1kHz THD+N < 10% 20 RL=32 Ω 10 0 0 70 THD+N=1% 60 RL=16 Ω 50 40 30 20 10 0 20 40 60 80 100 120 140 160 180 200 220 240 0 50 100 Output Power (mW) 1.4 Heat sink surface = 125mm 2 1.0 -30 bs 0.8 O ) 0.6 0.4 0 25 s ( t c u d o 50 75 100 300 125 Ambiant Temperature (° C) -40 -50 -60 -70 Vcc=2.7V Po=200mW Vcc=3.3V Po=300mW Vcc=5V Po=700mW -80 -90 -100 150 o r P Mode 4 RL = 8 Ω BTL out -> SPK out SPK out -> BTL out Tamb = 25 ° C e t e ol -20 Crosstalk Level (dB) Flip-Chip Package Power Dissipation (W) 0 No Heat sink 250 c u d -10 0.2 ) s ( t 200 Figure 121. Crosstalk vs. frequency 1.6 1.2 150 Output Power (mW) Figure 120. Power derating curves 0.0 Mode 5, 6 - MLO Vcc = 5.5V F = 1kHz THD+N < 10% RL=32 Ω 100 1000 10000 Frequency (Hz) r P e Figure 122. Crosstalk vs. frequency t e l o 0 -10 bs O Crosstalk Level (dB) -20 -30 Vcc = 5V, 3.3V, 2.7V Mode 4 LHP -> RHP RHP -> LHP Tamb = 25 ° C RL=32 Ω Po=10mW RL=16 Ω Po=15mW -40 -50 -60 -70 -80 100 1000 10000 Frequency (Hz) 37/55 TS4956 4 Application information Application information The TS4956 integrates four monolithic power amplifiers and has one differential input and two single-ended inputs. The output amplifiers can be configured in 7 different modes as one SE (single-ended) capacitively-coupled output, two phantom ground headphone outputs and two BTL outputs. Figure 1 on page 5 and Figure 2 on page 6 show these configuration schemes and Table 7 on page 8 describes these configurations in different modes. This chapter gives information on how to configure the TS4956 in an application. 4.1 Output configurations 4.1.1 Shutdown ) s ( ct u d o When the device is in shutdown mode, all of the device’s outputs are in a high impedance state. r P e t e l o 4.1.2 Single-ended output configuration (modes 5 and 6) When the device is woken-up via the I²C interface, output amplifier on output MLO is biased to the VCC/2 voltage. In this configuration an output capacitor, Cout, on the single-ended output is needed to block the VCC/2 voltage and couples the audio signal to the load. ) (s s b O VCC/2 voltage is present on this output in all modes (modes 1 to 7) to keep the output capacitor Cout charged and to improve pop performance on this output during the switching between any given mode to mode 5 or 6. t c u When the device is in mode 5 or 6 where the single-ended output MLO is active, all other outputs are in a high impedance state. d o r 4.1.3 Phantom ground output configuration (modes 3 and 4) P e In a phantom ground output configuration (modes 3 and 4) the internal buffer is connected to the PHG pin and biased to the VCC/2 voltage. Output amplifiers (pins LHP and RHP) are also biased to the VCC/2 voltage. One end of the load is connected to output amplifier and one to the PHG buffer. Therefore, no output capacitors are needed. The advantage of the PHG output configuration is that there are fewer external components compared to an SE configuration. However, note that in this configuration, the device has a higher power dissipation (see Section 4.3: Power dissipation and efficiency on page 40). s b O t e l o All other inactive outputs are in the high impedance state except for the MLO output, which is biased to VCC/2 voltage. To achieve better crosstalk results in this case, each speaker should be connected with a separate PHG wire (two speakers connected with four wires) as shown in Figure 1 on page 5 (instead of using only one common PHG wire for both speakers, that is, two speakers connected with three wires). 38/55 TS4956 4.1.4 Application information BTL output configuration (modes 1, 2, 7) In a BTL (bridge tied load) output configuration (modes 1, 2 and 4), active outputs are biased to the VCC/2 voltage. All other inactive outputs are in the high impedance state except for the MLO output, which is biased to VCC/2 voltage. BTL means that each end of the load is connected to two single-ended output amplifiers. Therefore we have: single-ended output 1 = Vout1 = Vout (V) single-ended output 2 = Vout2 = -Vout (V) and Vout1 - Vout2 = 2Vout (V) ) s ( ct For the same power supply voltage, the output voltage amplitude is twice as high as the output voltage in the single-ended or phantom ground configurations and the output power is four times higher than the output power in the single-ended or phantom ground configurations. u d o r P e 4.2 Power limitation in the phantom ground configuration t e l o A power limitation is imposed on the headphones in mode 3 and 4. Limitation of output power is achieved by limiting the output voltage and output current on each amplifier. s b O The maximum value of the output voltage, Vout max, is set to a value of 1.65 V in order to reach a maximum output power of the sinusoidal signal of around 40 mW per channel with a 32 Ω load resistance and THD+N
DEMOTS4956J 价格&库存

很抱歉,暂时无法提供与“DEMOTS4956J”相匹配的价格&库存,您可以联系我们找货

免费人工找货