0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DEMOTS4990Q

DEMOTS4990Q

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    BOARD DEMO FOR TS4990

  • 数据手册
  • 价格&库存
DEMOTS4990Q 数据手册
TS4990 1.2 W audio power amplifier with active-low standby mode Datasheet - production data Features Vin+ VOUT1 Vin- VCC GND GND  Operating range from VCC = 2.2 V to 5.5 V STBY  1.2 W output power at VCC = 5 V, THD = 1%, F = 1 kHz, with 8 load VOUT2  Ultra-low consumption in standby mode (10 nA) BYPASS  62 dB PSRR at 217 Hz in grounded mode  Near-zero pop and click TS4990EIJT - Flip-chip 9 bumps  Ultra-low distortion (0.1%)  Unity gain stable  Available in 9-bump flip-chip, miniSO-8 and DFN8 packages Applications  Mobile phones (cellular / cordless) TS4990IST - MiniSO-8  Laptop / notebook computers  PDAs STANDBY 1 8 VOUT2 BYPASS 2 7 GND 3 6 VCC 4 5 VOUT1 VIN+ VIN–  Portable audio devices Description The TS4990 is designed for demanding audio applications such as mobile phones to reduce the number of external components. This audio power amplifier is capable of delivering 1.2 W of continuous RMS output power into an 8  load at 5 V. TS4990IQT - DFN8 STBY 1 8 VOUT2 BYPASS 2 7 GND An externally controlled standby mode reduces the supply current to less than 10 nA. It also includes an internal thermal shutdown protection. VIN+ 3 6 VCC The unity-gain stable amplifier can be configured by external gain setting resistors. VIN- 4 5 VOUT1 TS4990IDT - SO-8 January 2019 This is information on a product in full production. DocID9309 Rev 14 1/33 www.st.com Contents TS4990 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 4.1 BTL configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Gain in a typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.7 Standby time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.8 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.9 Application example: differential input, BTL power amplifier . . . . . . . . . . 23 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1 Flip-chip package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3 DFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.4 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2/33 DocID9309 Rev 14 TS4990 1 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol VCC Vin Parameter Value Unit 6 V GND to VCC V Supply voltage (1) Input voltage (2) Toper Operating free-air temperature range -40 to + 85 °C Tstg Storage temperature -65 to +150 °C Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient Flip-chip (3) MiniSO-8 DFN8 250 215 120 °C/W Pdiss Power dissipation Tj ESD Internally limited (4) 2 200 kV V Latch-up immunity 200 mA Lead temperature (soldering, 10 sec) Lead temperature (soldering, 10 sec) for lead-free version 250 260 °C HBM: Human body model MM: Machine model (5) 1. All voltage values are measured with respect to the ground pin. 2. The magnitude of the input signal must never exceed VCC + 0.3 V / GND - 0.3 V. 3. The device is protected in case of over temperature by a thermal shutdown active at 150° C. 4. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kresistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 5. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 ). This is done for all couples of connected pin combinations while the other pins are floating. Table 2. Operating conditions Symbol Parameter VCC Supply voltage Vicm Common mode input voltage range VSTBY Standby voltage input: Device ON Device OFF Value Unit 2.2 to 5.5 V 1.2V to VCC V 1.35  VSTBY  VCC GND VSTBY  0.4 V RL Load resistor 4  TSD Thermal shutdown temperature 150 °C Rthja Thermal resistance junction to ambient Flip-chip (1) MiniSO-8 DFN8 (2) 100 190 40 °C/W 1. This thermal resistance is reached with a 100 mm2 copper heatsink surface. 2. When mounted on a 4-layer PCB. DocID9309 Rev 14 3/33 33 Typical application schematics 2 TS4990 Typical application schematics Figure 1. Typical application schematics Rfeed Vcc + Cfeed VCC Cs Cin Audio In Rin Vin- Vout 1 Vin+ Speaker 8 Ohms + Vout 2 AV = -1 Bypass Standby Control Bias GND Cb + Standby + TS4990 Table 3. Component descriptions Component Functional description Rin Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)). Cin Input coupling capacitor that blocks the DC voltage at the amplifier input terminal. Rfeed Cs Supply bypass capacitor that provides power supply filtering. Cb Bypass pin capacitor that provides half supply filtering. Cfeed AV Exposed pad 4/33 Feed back resistor that sets the closed loop gain in conjunction with Rin. Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1/ (2 x Pi x Rfeed x Cfeed)). Closed loop gain in BTL configuration = 2 x (Rfeed / Rin). DFN8 exposed pad is electrically connected to pin 7. See DFN8 package information on page 29 for more information. DocID9309 Rev 14 TS4990 3 Electrical characteristics Electrical characteristics Table 4. Electrical characteristics when VCC = +5 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply current No input signal, no load 3.7 6 mA Standby current (1) No input signal, VSTBY = GND, RL = 8  10 1000 nA Voo Output offset voltage No input signal, RL = 8  1 10 mV Pout Output power THD = 1% max, F = 1 kHz, RL = 8  ICC ISTBY Parameter THD + N Total harmonic distortion + noise Pout = 1Wrms, AV = 2, 20 Hz  F  20 kHz, RL = 8  PSRR Power supply rejection ratio (2) RL = 8 AV = 2Vripple = 200mVpp, input grounded F = 217 Hz F = 1 kHz Min. 0.9 55 55 1.2 W 0.2 % dB 62 64 tWU Wake-up time (Cb = 1 µF) 90 tSTBY Standby time (Cb = 1 µF) 10 VSTBYH Standby voltage level high 1.3 V VSTBYL Standby voltage level low 0.4 V 130 ms µs M Phase margin at unity gain RL = 8 , CL = 500 pF 65 Degrees GM Gain margin RL = 8 , CL = 500 pF 15 dB GBP Gain bandwidth product RL = 8  1.5 MHz 3 43 k ROUT-GND Resistor output to GND (VSTBY  VSTBYL) Vout1 Vout2 1. Standby mode is active when VSTBY is tied to GND. 2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC. DocID9309 Rev 14 5/33 33 Electrical characteristics TS4990 Table 5. Electrical characteristics when VCC = +3.3 V, GND = 0 V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply current No input signal, no load 3.3 6 mA Standby current (1) No input signal, VSTBY = GND, RL = 8  10 1000 nA Voo Output offset voltage No input signal, RL = 8  1 10 mV Pout Output power THD = 1% max, F = 1 kHz, RL = 8  ICC ISTBY THD + N PSRR Parameter Min. 375 Total harmonic distortion + noise Pout = 400 mWrms, AV = 2, 20 Hz  F  20 kHz, RL = 8  Power supply rejection ratio (2) RL = 8 AV = 2Vripple = 200mVpp, input grounded F = 217 Hz F = 1 kHz 55 55 500 mW 0.1 % dB 61 63 tWU Wake-up time (Cb = 1 µF) 110 tSTBY Standby time (Cb = 1 µF) 10 VSTBYH Standby voltage level high 1.2 V VSTBYL Standby voltage level low 0.4 V 140 ms µs M Phase margin at unity gain RL = 8 , CL = 500 pF 65 Degrees GM Gain margin RL = 8 , CL = 500 pF 15 dB GBP Gain bandwidth product RL = 8  1.5 MHz 4 44 k ROUT-GND Resistor output to GND (VSTBY  VSTBYL) Vout1 Vout2 1. Standby mode is active when VSTBY is tied to GND. 2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC. 6/33 DocID9309 Rev 14 TS4990 Electrical characteristics Table 6. Electrical characteristics when VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply current No input signal, no load 3.1 6 mA Standby current (1) No input signal, VSTBY = GND, RL = 8  10 1000 nA Voo Output offset voltage No input signal, RL = 8  1 10 mV Pout Output power THD = 1% max, F = 1 kHz, RL = 8  ICC ISTBY THD + N PSRR Parameter Min. 220 Total harmonic distortion + noise Pout = 200 mWrms, AV = 2, 20 Hz  F  20 kHz, RL = 8  Power supply rejection ratio (2) RL = 8 AV = 2Vripple = 200 mVpp, input grounded F = 217 Hz F = 1 kHz 55 55 300 mW 0.1 % dB 60 62 tWU Wake-up time (Cb = 1 µF) 125 tSTBY Standby time (Cb = 1 µF) 10 VSTBYH Standby voltage level high 1.2 V VSTBYL Standby voltage level low 0.4 V 150 ms µs M Phase margin at unity gain RL = 8 , CL = 500 pF 65 Degrees GM Gain margin RL = 8 , CL = 500 pF 15 dB GBP Gain bandwidth product RL = 8  1.5 MHz 6 46 k Resistor output to GND (VSTBY  VSTBYL) ROUT-GND Vout1 Vout2 1. Standby mode is active when VSTBY is tied to GND. 2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon VCC. DocID9309 Rev 14 7/33 33 Electrical characteristics TS4990 Figure 2. Open loop frequency response VCC = 5 V 0 60 40 0 -120 20 Gain (dB) Phase -20 -60 0.1 -40 Phase -80 0 Phase (°) -40 Phase (°) Gain (dB) Gain -80 -40 0 60 Gain 40 20 Figure 3. Open loop frequency response VCC = 3.3 V -120 -20 Vcc = 5V RL = 8Ω Tamb = 25°C 1 -160 10 100 1000 -40 -200 10000 -60 0.1 -160 Vcc = 3.3V RL = 8Ω Tamb = 25°C 1 10 Frequency (kHz) 100 1000 -200 10000 Frequency (kHz) Figure 4. Open loop frequency response VCC = 2.6 V Figure 5. Open loop frequency response CL = 560 pF 0 60 0 100 Gain 80 40 -120 -20 -80 40 Phase 20 -120 0 -160 Vcc = 2.6V RL = 8Ω Tamb = 25°C 1 -20 10 100 1000 -200 10000 -40 0.1 1 10 80 Gain Gain -40 -40 Phase 20 -120 0 -80 40 Phase 20 -120 0 -160 Vcc = 3.3V CL = 560pF Tamb = 25°C 1 -20 10 100 1000 -200 10000 -40 0.1 Frequency (kHz) -160 Vcc = 2.6V CL = 560pF Tamb = 25°C 1 10 100 Frequency (kHz) DocID9309 Rev 14 1000 -200 10000 Phase (°) -80 40 Gain (dB) 60 Phase (°) Gain (dB) -200 10000 0 100 60 8/33 1000 Figure 7. Open loop frequency response VCC = 2.6 V, CL 560 PF 0 100 -40 0.1 100 Frequency (kHz) Figure 6. Open loop frequency response VCC = 3.3 V, CL 560 PF 80 -160 Vcc = 5V CL = 560pF Tamb = 25°C Frequency (kHz) -20 Phase (°) Gain (dB) -80 Phase (°) Gain (dB) Phase 0 -60 0.1 -40 60 20 -40 Gain -40 TS4990 Electrical characteristics Figure 8. PSRR vs. power supply Av = 2 Figure 9. PSRR vs. power supply Av = 10 0 PSRR (dB) -20 -30 -40 -10 Vcc : 2.2V 2.6V 3.3V 5V PSRR (dB) -10 0 Vripple = 200mVpp Av = 2 Input = Grounded Cb = Cin = 1μF RL >= 4Ω Tamb = 25°C -50 -20 Vripple = 200mVpp Av = 10 Input = Grounded Cb = Cin = 1μF RL >= 4Ω Tamb = 25°C Vcc : 2.2V 2.6V 3.3V 5V -30 -40 -60 -50 -70 100 1000 10000 Frequency (Hz) 100000 Figure 10. PSRR vs. power supply 100 -30 0 Vripple = 200mVpp Rfeed = 22kΩ Input = Floating Cb = 1μF RL >= 4Ω Tamb = 25°C Vcc = 2.2, 2.6, 3.3, 5V -10 PSRR (dB) PSRR (dB) -20 100000 Figure 11. PSRR vs. power supply Av = 5 0 -10 1000 10000 Frequency (Hz) -40 -50 -20 Vripple = 200mVpp Av = 5 Input = Grounded Cb = Cin = 1μF RL >= 4Ω Tamb = 25°C Vcc : 2.2V 2.6V 3.3V 5V -30 -40 -60 -50 -70 -80 100 1000 10000 Frequency (Hz) -60 100000 Figure 12. PSRR vs. power supply Cb = 0.1 µF, Cin = 1 µF -30 100000 0 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 0.1μF, Cin = 1μF RL >= 4Ω Tamb = 25°C -10 -20 PSRR (dB) PSRR (dB) -20 1000 10000 Frequency (Hz) Figure 13. PSRR vs. power supply Rfeed = 22 k 0 -10 100 Vcc = 5, 3.3, 2.5 & 2.2V -40 -30 Vripple = 200mVpp Rfeed = 22kΩ Input = Floating Cb = 0.1μF RL >= 4Ω Tamb = 25°C Vcc = 2.2, 2.6, 3.3, 5V -40 -50 -60 -50 -60 -70 100 1000 10000 Frequency (Hz) 100000 -80 DocID9309 Rev 14 100 1000 10000 Frequency (Hz) 100000 9/33 33 Electrical characteristics TS4990 Figure 14. PSRR vs. DC output voltage Av = 2 Figure 15. PSRR vs. DC output voltage Av = 10 0 0 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 2 Tamb = 25°C PSRR (dB) -20 -30 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 10 Tamb = 25°C -10 PSRR (dB) -10 -40 -20 -30 -50 -40 -60 -70 -5 -4 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 -50 -5 5 Figure 16. PSRR vs. DC output voltage Av = 5 -20 -30 -40 -40 -50 -50 -60 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -60 -5 Differential DC Output Voltage (V) Figure 18. PSRR vs. DC output voltage Cb = 1 µF -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) 4 5 0 Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 2 Tamb = 25°C -10 PSRR (dB) PSRR (dB) -30 -4 Figure 19. PSRR vs. DC output voltage Vcc = 3.3 V 0 -20 5 Vcc = 5V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 5 Tamb = 25°C -10 -30 -10 4 0 Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 5 Tamb = 25°C PSRR (dB) PSRR (dB) -20 -3 -2 -1 0 1 2 3 Differential DC Output Voltage (V) Figure 17. PSRR vs. DC output voltage 0 -10 -4 -40 -20 Vcc = 3.3V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 10 Tamb = 25°C -30 -50 -40 -60 10/33 -70 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -50 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Differential DC Output Voltage (V) Differential DC Output Voltage (V) DocID9309 Rev 14 TS4990 Electrical characteristics Figure 20. PSRR vs. DC output voltage Vcc = 2.6 V Figure 21. PSRR vs. DC output voltage Tamb = 25 °C 0 0 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 2 Tamb = 25°C PSRR (dB) -20 -30 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 10 Tamb = 25°C -10 PSRR (dB) -10 -40 -20 -30 -50 -40 -60 -70 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -50 -2.5 -2.0 -1.5 -1.0 -0.5 2.5 Differential DC Output Voltage (V) Figure 22. Output power vs. power supply voltage 0.5 1.0 1.5 2.0 2.5 Figure 23. PSRR vs. DC output voltage 0 2.4 2.2 RL = 4Ω F = 1kHz 2.0 BW < 125kHz 1.8 Tamb = 25°C 1.6 Vcc = 2.6V Vripple = 200mVpp RL = 8Ω Cb = 1μF AV = 5 Tamb = 25°C -10 THD+N=10% PSRR (dB) Output power (W) 0.0 Differential DC Output Voltage (V) 1.4 1.2 1.0 0.8 -20 -30 -40 THD+N=1% 0.6 -50 0.4 0.2 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 -60 -2.5 -2.0 -1.5 -1.0 -0.5 5.5 0.0 0.5 1.0 1.5 2.0 2.5 Differential DC Output Voltage (V) Figure 24. PSRR at F = 217 Hz vs. bypass capacitor Figure 25. Output power vs. power supply voltage RL = 8  2.0 PSRR at 217Hz (dB) -40 -50 -60 -70 -80 0.1 Av=2 Vcc: 2.6V 3.3V 5V Av=5 Vcc: 2.6V 3.3V 5V RL = 8Ω F = 1kHz 1.6 BW < 125kHz Tamb = 25°C 1.4 1.8 Output power (W) Av=10 Vcc: 2.6V 3.3V 5V -30 THD+N=10% 1.2 1.0 0.8 0.6 THD+N=1% 0.4 Tamb=25°C 1 0.2 0.0 Bypass Capacitor Cb ( F) DocID9309 Rev 14 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 11/33 33 Electrical characteristics TS4990 Figure 26. Output power vs. power supply voltage RL = 16  Figure 27. Output power vs. load resistor Vcc = 5 V 2.2 RL = 16Ω F = 1kHz 1.0 BW < 125kHz Tamb = 25°C 0.8 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 2.0 1.8 Output power (W) Output power (W) 1.2 THD+N=10% 0.6 0.4 THD+N=1% 1.6 1.4 THD+N=10% 1.2 1.0 0.8 0.6 THD+N=1% 0.4 0.2 0.2 0.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 0.0 5.5 Figure 28. Output power vs. load resistor Vcc = 2.6 V 8 12 16 20 24 Load Resistance ( ) 28 32 Figure 29. Output power vs. power supply voltage 0.6 0.6 0.4 THD+N=10% 0.3 0.2 0.5 Output power (W) Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25°C 0.5 Output power (W) 4 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C 0.4 THD+N=10% 0.3 0.2 THD+N=1% THD+N=1% 0.1 0.0 4 8 12 16 20 24 Load Resistance ( ) 0.1 28 0.0 32 Figure 30. Output power vs. load resistor Vcc = 3.3 V 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Figure 31. Power dissipation vs. Pout, Vcc = 5 V 1.4 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 0.8 THD+N=10% 0.6 0.4 Power Dissipation (W) 1.0 Output power (W) 2.5 Vcc=5V 1.2 F=1kHz THD+N
DEMOTS4990Q 价格&库存

很抱歉,暂时无法提供与“DEMOTS4990Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货