TS4990
1.2 W audio power amplifier with active-low standby mode
Datasheet - production data
Features
Vin+
VOUT1
Vin-
VCC
GND
GND
Operating range from VCC = 2.2 V to 5.5 V
STBY
1.2 W output power at VCC = 5 V, THD = 1%,
F = 1 kHz, with 8 load
VOUT2
Ultra-low consumption in standby mode
(10 nA)
BYPASS
62 dB PSRR at 217 Hz in grounded mode
Near-zero pop and click
TS4990EIJT - Flip-chip 9 bumps
Ultra-low distortion (0.1%)
Unity gain stable
Available in 9-bump flip-chip, miniSO-8 and
DFN8 packages
Applications
Mobile phones (cellular / cordless)
TS4990IST - MiniSO-8
Laptop / notebook computers
PDAs
STANDBY
1
8
VOUT2
BYPASS
2
7
GND
3
6
VCC
4
5
VOUT1
VIN+
VIN–
Portable audio devices
Description
The TS4990 is designed for demanding audio
applications such as mobile phones to reduce the
number of external components.
This audio power amplifier is capable of delivering
1.2 W of continuous RMS output power into an
8 load at 5 V.
TS4990IQT - DFN8
STBY
1
8
VOUT2
BYPASS
2
7
GND
An externally controlled standby mode reduces
the supply current to less than 10 nA. It also
includes an internal thermal shutdown protection.
VIN+
3
6
VCC
The unity-gain stable amplifier can be configured
by external gain setting resistors.
VIN-
4
5
VOUT1
TS4990IDT - SO-8
January 2019
This is information on a product in full production.
DocID9309 Rev 14
1/33
www.st.com
Contents
TS4990
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5
4.1
BTL configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2
Gain in a typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3
Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4
Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6
Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7
Standby time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8
Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.9
Application example: differential input, BTL power amplifier . . . . . . . . . . 23
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1
Flip-chip package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2
MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3
DFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/33
DocID9309 Rev 14
TS4990
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings (AMR)
Symbol
VCC
Vin
Parameter
Value
Unit
6
V
GND to VCC
V
Supply voltage (1)
Input voltage
(2)
Toper
Operating free-air temperature range
-40 to + 85
°C
Tstg
Storage temperature
-65 to +150
°C
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient
Flip-chip (3)
MiniSO-8
DFN8
250
215
120
°C/W
Pdiss
Power dissipation
Tj
ESD
Internally limited
(4)
2
200
kV
V
Latch-up immunity
200
mA
Lead temperature (soldering, 10 sec)
Lead temperature (soldering, 10 sec) for lead-free version
250
260
°C
HBM: Human body model
MM: Machine model (5)
1. All voltage values are measured with respect to the ground pin.
2. The magnitude of the input signal must never exceed VCC + 0.3 V / GND - 0.3 V.
3. The device is protected in case of over temperature by a thermal shutdown active at 150° C.
4. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kresistor
between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
5. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the
device with no external series resistor (internal resistor < 5 ). This is done for all couples of connected pin combinations
while the other pins are floating.
Table 2. Operating conditions
Symbol
Parameter
VCC
Supply voltage
Vicm
Common mode input voltage range
VSTBY
Standby voltage input:
Device ON
Device OFF
Value
Unit
2.2 to 5.5
V
1.2V to VCC
V
1.35 VSTBY VCC
GND VSTBY 0.4
V
RL
Load resistor
4
TSD
Thermal shutdown temperature
150
°C
Rthja
Thermal resistance junction to ambient
Flip-chip (1)
MiniSO-8
DFN8 (2)
100
190
40
°C/W
1. This thermal resistance is reached with a 100 mm2 copper heatsink surface.
2.
When mounted on a 4-layer PCB.
DocID9309 Rev 14
3/33
33
Typical application schematics
2
TS4990
Typical application schematics
Figure 1. Typical application schematics
Rfeed
Vcc
+
Cfeed
VCC
Cs
Cin
Audio In
Rin
Vin-
Vout 1
Vin+
Speaker
8 Ohms
+
Vout 2
AV = -1
Bypass
Standby
Control
Bias
GND
Cb
+
Standby
+
TS4990
Table 3. Component descriptions
Component
Functional description
Rin
Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This
resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)).
Cin
Input coupling capacitor that blocks the DC voltage at the amplifier input terminal.
Rfeed
Cs
Supply bypass capacitor that provides power supply filtering.
Cb
Bypass pin capacitor that provides half supply filtering.
Cfeed
AV
Exposed pad
4/33
Feed back resistor that sets the closed loop gain in conjunction with Rin.
Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off
frequency 1/ (2 x Pi x Rfeed x Cfeed)).
Closed loop gain in BTL configuration = 2 x (Rfeed / Rin).
DFN8 exposed pad is electrically connected to pin 7. See DFN8 package
information on page 29 for more information.
DocID9309 Rev 14
TS4990
3
Electrical characteristics
Electrical characteristics
Table 4. Electrical characteristics when VCC = +5 V, GND = 0 V, Tamb = 25°C (unless
otherwise specified)
Symbol
Typ.
Max.
Unit
Supply current
No input signal, no load
3.7
6
mA
Standby current (1)
No input signal, VSTBY = GND, RL = 8
10
1000
nA
Voo
Output offset voltage
No input signal, RL = 8
1
10
mV
Pout
Output power
THD = 1% max, F = 1 kHz, RL = 8
ICC
ISTBY
Parameter
THD + N
Total harmonic distortion + noise
Pout = 1Wrms, AV = 2, 20 Hz F 20 kHz, RL = 8
PSRR
Power supply rejection ratio (2)
RL = 8 AV = 2Vripple = 200mVpp, input grounded
F = 217 Hz
F = 1 kHz
Min.
0.9
55
55
1.2
W
0.2
%
dB
62
64
tWU
Wake-up time (Cb = 1 µF)
90
tSTBY
Standby time (Cb = 1 µF)
10
VSTBYH
Standby voltage level high
1.3
V
VSTBYL
Standby voltage level low
0.4
V
130
ms
µs
M
Phase margin at unity gain
RL = 8 , CL = 500 pF
65
Degrees
GM
Gain margin
RL = 8 , CL = 500 pF
15
dB
GBP
Gain bandwidth product
RL = 8
1.5
MHz
3
43
k
ROUT-GND
Resistor output to GND (VSTBY VSTBYL)
Vout1
Vout2
1. Standby mode is active when VSTBY is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
DocID9309 Rev 14
5/33
33
Electrical characteristics
TS4990
Table 5. Electrical characteristics when VCC = +3.3 V, GND = 0 V, Tamb = 25°C (unless
otherwise specified)
Symbol
Typ.
Max.
Unit
Supply current
No input signal, no load
3.3
6
mA
Standby current (1)
No input signal, VSTBY = GND, RL = 8
10
1000
nA
Voo
Output offset voltage
No input signal, RL = 8
1
10
mV
Pout
Output power
THD = 1% max, F = 1 kHz, RL = 8
ICC
ISTBY
THD + N
PSRR
Parameter
Min.
375
Total harmonic distortion + noise
Pout = 400 mWrms, AV = 2, 20 Hz F 20 kHz,
RL = 8
Power supply rejection ratio (2)
RL = 8 AV = 2Vripple = 200mVpp, input grounded
F = 217 Hz
F = 1 kHz
55
55
500
mW
0.1
%
dB
61
63
tWU
Wake-up time (Cb = 1 µF)
110
tSTBY
Standby time (Cb = 1 µF)
10
VSTBYH
Standby voltage level high
1.2
V
VSTBYL
Standby voltage level low
0.4
V
140
ms
µs
M
Phase margin at unity gain
RL = 8 , CL = 500 pF
65
Degrees
GM
Gain margin
RL = 8 , CL = 500 pF
15
dB
GBP
Gain bandwidth product
RL = 8
1.5
MHz
4
44
k
ROUT-GND
Resistor output to GND (VSTBY VSTBYL)
Vout1
Vout2
1. Standby mode is active when VSTBY is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
6/33
DocID9309 Rev 14
TS4990
Electrical characteristics
Table 6. Electrical characteristics when VCC = 2.6V, GND = 0V, Tamb = 25°C (unless
otherwise specified)
Symbol
Typ.
Max.
Unit
Supply current
No input signal, no load
3.1
6
mA
Standby current (1)
No input signal, VSTBY = GND, RL = 8
10
1000
nA
Voo
Output offset voltage
No input signal, RL = 8
1
10
mV
Pout
Output power
THD = 1% max, F = 1 kHz, RL = 8
ICC
ISTBY
THD + N
PSRR
Parameter
Min.
220
Total harmonic distortion + noise
Pout = 200 mWrms, AV = 2, 20 Hz F 20 kHz,
RL = 8
Power supply rejection ratio (2)
RL = 8 AV = 2Vripple = 200 mVpp, input grounded
F = 217 Hz
F = 1 kHz
55
55
300
mW
0.1
%
dB
60
62
tWU
Wake-up time (Cb = 1 µF)
125
tSTBY
Standby time (Cb = 1 µF)
10
VSTBYH
Standby voltage level high
1.2
V
VSTBYL
Standby voltage level low
0.4
V
150
ms
µs
M
Phase margin at unity gain
RL = 8 , CL = 500 pF
65
Degrees
GM
Gain margin
RL = 8 , CL = 500 pF
15
dB
GBP
Gain bandwidth product
RL = 8
1.5
MHz
6
46
k
Resistor output to GND (VSTBY VSTBYL)
ROUT-GND Vout1
Vout2
1. Standby mode is active when VSTBY is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
DocID9309 Rev 14
7/33
33
Electrical characteristics
TS4990
Figure 2. Open loop frequency response
VCC = 5 V
0
60
40
0
-120
20
Gain (dB)
Phase
-20
-60
0.1
-40
Phase
-80
0
Phase (°)
-40
Phase (°)
Gain (dB)
Gain
-80
-40
0
60
Gain
40
20
Figure 3. Open loop frequency response
VCC = 3.3 V
-120
-20
Vcc = 5V
RL = 8Ω
Tamb = 25°C
1
-160
10
100
1000
-40
-200
10000
-60
0.1
-160
Vcc = 3.3V
RL = 8Ω
Tamb = 25°C
1
10
Frequency (kHz)
100
1000
-200
10000
Frequency (kHz)
Figure 4. Open loop frequency response
VCC = 2.6 V
Figure 5. Open loop frequency response
CL = 560 pF
0
60
0
100
Gain
80
40
-120
-20
-80
40
Phase
20
-120
0
-160
Vcc = 2.6V
RL = 8Ω
Tamb = 25°C
1
-20
10
100
1000
-200
10000
-40
0.1
1
10
80
Gain
Gain
-40
-40
Phase
20
-120
0
-80
40
Phase
20
-120
0
-160
Vcc = 3.3V
CL = 560pF
Tamb = 25°C
1
-20
10
100
1000
-200
10000
-40
0.1
Frequency (kHz)
-160
Vcc = 2.6V
CL = 560pF
Tamb = 25°C
1
10
100
Frequency (kHz)
DocID9309 Rev 14
1000
-200
10000
Phase (°)
-80
40
Gain (dB)
60
Phase (°)
Gain (dB)
-200
10000
0
100
60
8/33
1000
Figure 7. Open loop frequency response
VCC = 2.6 V, CL 560 PF
0
100
-40
0.1
100
Frequency (kHz)
Figure 6. Open loop frequency response
VCC = 3.3 V, CL 560 PF
80
-160
Vcc = 5V
CL = 560pF
Tamb = 25°C
Frequency (kHz)
-20
Phase (°)
Gain (dB)
-80
Phase (°)
Gain (dB)
Phase
0
-60
0.1
-40
60
20
-40
Gain
-40
TS4990
Electrical characteristics
Figure 8. PSRR vs. power supply Av = 2
Figure 9. PSRR vs. power supply Av = 10
0
PSRR (dB)
-20
-30
-40
-10
Vcc :
2.2V
2.6V
3.3V
5V
PSRR (dB)
-10
0
Vripple = 200mVpp
Av = 2
Input = Grounded
Cb = Cin = 1μF
RL >= 4Ω
Tamb = 25°C
-50
-20
Vripple = 200mVpp
Av = 10
Input = Grounded
Cb = Cin = 1μF
RL >= 4Ω
Tamb = 25°C
Vcc :
2.2V
2.6V
3.3V
5V
-30
-40
-60
-50
-70
100
1000
10000
Frequency (Hz)
100000
Figure 10. PSRR vs. power supply
100
-30
0
Vripple = 200mVpp
Rfeed = 22kΩ
Input = Floating
Cb = 1μF
RL >= 4Ω
Tamb = 25°C
Vcc = 2.2, 2.6, 3.3, 5V
-10
PSRR (dB)
PSRR (dB)
-20
100000
Figure 11. PSRR vs. power supply Av = 5
0
-10
1000
10000
Frequency (Hz)
-40
-50
-20
Vripple = 200mVpp
Av = 5
Input = Grounded
Cb = Cin = 1μF
RL >= 4Ω
Tamb = 25°C
Vcc :
2.2V
2.6V
3.3V
5V
-30
-40
-60
-50
-70
-80
100
1000
10000
Frequency (Hz)
-60
100000
Figure 12. PSRR vs. power supply Cb = 0.1 µF,
Cin = 1 µF
-30
100000
0
Vripple = 200mVpp
Av = 2
Input = Grounded
Cb = 0.1μF, Cin = 1μF
RL >= 4Ω
Tamb = 25°C
-10
-20
PSRR (dB)
PSRR (dB)
-20
1000
10000
Frequency (Hz)
Figure 13. PSRR vs. power supply
Rfeed = 22 k
0
-10
100
Vcc = 5, 3.3, 2.5 & 2.2V
-40
-30
Vripple = 200mVpp
Rfeed = 22kΩ
Input = Floating
Cb = 0.1μF
RL >= 4Ω
Tamb = 25°C
Vcc = 2.2, 2.6, 3.3, 5V
-40
-50
-60
-50
-60
-70
100
1000
10000
Frequency (Hz)
100000
-80
DocID9309 Rev 14
100
1000
10000
Frequency (Hz)
100000
9/33
33
Electrical characteristics
TS4990
Figure 14. PSRR vs. DC output voltage Av = 2
Figure 15. PSRR vs. DC output voltage Av = 10
0
0
Vcc = 5V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 2
Tamb = 25°C
PSRR (dB)
-20
-30
Vcc = 5V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 10
Tamb = 25°C
-10
PSRR (dB)
-10
-40
-20
-30
-50
-40
-60
-70
-5
-4
-3
-2
-1
0
1
2
3
Differential DC Output Voltage (V)
4
-50
-5
5
Figure 16. PSRR vs. DC output voltage Av = 5
-20
-30
-40
-40
-50
-50
-60
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
-60
-5
Differential DC Output Voltage (V)
Figure 18. PSRR vs. DC output voltage
Cb = 1 µF
-3
-2
-1
0
1
2
3
Differential DC Output Voltage (V)
4
5
0
Vcc = 3.3V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 2
Tamb = 25°C
-10
PSRR (dB)
PSRR (dB)
-30
-4
Figure 19. PSRR vs. DC output voltage
Vcc = 3.3 V
0
-20
5
Vcc = 5V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 5
Tamb = 25°C
-10
-30
-10
4
0
Vcc = 3.3V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 5
Tamb = 25°C
PSRR (dB)
PSRR (dB)
-20
-3
-2
-1
0
1
2
3
Differential DC Output Voltage (V)
Figure 17. PSRR vs. DC output voltage
0
-10
-4
-40
-20
Vcc = 3.3V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 10
Tamb = 25°C
-30
-50
-40
-60
10/33
-70
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
-50
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Differential DC Output Voltage (V)
Differential DC Output Voltage (V)
DocID9309 Rev 14
TS4990
Electrical characteristics
Figure 20. PSRR vs. DC output voltage
Vcc = 2.6 V
Figure 21. PSRR vs. DC output voltage
Tamb = 25 °C
0
0
Vcc = 2.6V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 2
Tamb = 25°C
PSRR (dB)
-20
-30
Vcc = 2.6V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 10
Tamb = 25°C
-10
PSRR (dB)
-10
-40
-20
-30
-50
-40
-60
-70
-2.5 -2.0 -1.5 -1.0 -0.5
0.0
0.5
1.0
1.5
2.0
-50
-2.5 -2.0 -1.5 -1.0 -0.5
2.5
Differential DC Output Voltage (V)
Figure 22. Output power vs. power supply
voltage
0.5
1.0
1.5
2.0
2.5
Figure 23. PSRR vs. DC output voltage
0
2.4
2.2 RL = 4Ω
F = 1kHz
2.0
BW < 125kHz
1.8 Tamb = 25°C
1.6
Vcc = 2.6V
Vripple = 200mVpp
RL = 8Ω
Cb = 1μF
AV = 5
Tamb = 25°C
-10
THD+N=10%
PSRR (dB)
Output power (W)
0.0
Differential DC Output Voltage (V)
1.4
1.2
1.0
0.8
-20
-30
-40
THD+N=1%
0.6
-50
0.4
0.2
0.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
-60
-2.5 -2.0 -1.5 -1.0 -0.5
5.5
0.0
0.5
1.0
1.5
2.0
2.5
Differential DC Output Voltage (V)
Figure 24. PSRR at F = 217 Hz vs. bypass
capacitor
Figure 25. Output power vs. power supply
voltage RL = 8
2.0
PSRR at 217Hz (dB)
-40
-50
-60
-70
-80
0.1
Av=2
Vcc:
2.6V
3.3V
5V
Av=5
Vcc:
2.6V
3.3V
5V
RL = 8Ω
F = 1kHz
1.6 BW < 125kHz
Tamb = 25°C
1.4
1.8
Output power (W)
Av=10
Vcc:
2.6V
3.3V
5V
-30
THD+N=10%
1.2
1.0
0.8
0.6
THD+N=1%
0.4
Tamb=25°C
1
0.2
0.0
Bypass Capacitor Cb ( F)
DocID9309 Rev 14
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
11/33
33
Electrical characteristics
TS4990
Figure 26. Output power vs. power supply
voltage RL = 16
Figure 27. Output power vs. load resistor
Vcc = 5 V
2.2
RL = 16Ω
F = 1kHz
1.0
BW < 125kHz
Tamb = 25°C
0.8
Vcc = 5V
F = 1kHz
BW < 125kHz
Tamb = 25°C
2.0
1.8
Output power (W)
Output power (W)
1.2
THD+N=10%
0.6
0.4
THD+N=1%
1.6
1.4
THD+N=10%
1.2
1.0
0.8
0.6
THD+N=1%
0.4
0.2
0.2
0.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
0.0
5.5
Figure 28. Output power vs. load resistor
Vcc = 2.6 V
8
12
16
20
24
Load Resistance ( )
28
32
Figure 29. Output power vs. power supply
voltage
0.6
0.6
0.4
THD+N=10%
0.3
0.2
0.5
Output power (W)
Vcc = 2.6V
F = 1kHz
BW < 125kHz
Tamb = 25°C
0.5
Output power (W)
4
RL = 32Ω
F = 1kHz
BW < 125kHz
Tamb = 25°C
0.4
THD+N=10%
0.3
0.2
THD+N=1%
THD+N=1%
0.1
0.0
4
8
12
16
20
24
Load Resistance ( )
0.1
28
0.0
32
Figure 30. Output power vs. load resistor
Vcc = 3.3 V
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
Figure 31. Power dissipation vs. Pout,
Vcc = 5 V
1.4
Vcc = 3.3V
F = 1kHz
BW < 125kHz
Tamb = 25°C
0.8
THD+N=10%
0.6
0.4
Power Dissipation (W)
1.0
Output power (W)
2.5
Vcc=5V
1.2 F=1kHz
THD+N