TS4995
1.2 W fully differential audio power amplifier
with selectable standby and 6 dB fixed gain
Features
■
Differential inputs
■
90 dB PSRR @ 217 Hz with grounded inputs
■
Operates from VCC = 2.5 V to 5.5 V
■
1.2 W rail-to-rail output power @ VCC=5 V,
THD+N=1%, F=1 kHz, with an 8 Ω load
■
6 dB integrated fixed gain
■
Ultra-low consumption in standby mode
(10 nA)
■
Selectable standby mode (active low or active
high)
■
Ultra-fast startup time: 10 ms typ. at VCC=3.3 V
■
Available in 9-bump flip chip (300 mm bump
diameter)
■
TS4995 - Flip chip 9
Pin connections (top view)
Gnd
VO-
7
6
5
VO+
Bypass
8
9
4
Stdby
1
2
3
VIN-
VIN+
VCC
Stdby Mode
Ultra-low pop and click
Applications
■
Mobile phones (cellular / cordless)
■
PDAs
■
Laptop / notebook computers
■
Portable audio devices
Description
The TS4995 is an audio power amplifier capable
of delivering 1.2 W of continuous RMS output
power into an 8 Ω load at 5 V. Thanks to its
differential inputs, it exhibits outstanding noise
immunity.
The TS4995 features an internal fixed gain at 6dB
which reduces the number of external
components on the application board.
The device is equipped with common mode
feedback circuitry allowing outputs to be always
biased at VCC/2 regardless of the input common
mode voltage.
The TS4995 is specifically designed for high
quality audio applications such as mobile phones
and requires few external components.
An external standby mode control reduces the
supply current to less than 10 nA. A STBY MODE
pin allows the standby pin to be active high or
low. An internal thermal shutdown protection is
also provided, making the device capable of
sustaining short-circuits.
March 2008
Rev 3
1/26
www.st.com
26
Contents
TS4995
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4
Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6
Wake-up time tWU
4.7
Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8
Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.9
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/26
TS4995
Absolute maximum ratings and operating conditions
1
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
Parameter
Value
Unit
(1)
VCC
Supply voltage
Vin
Input voltage (2)
6
V
GND to VCC
V
Toper
Operating free air temperature range
-40 to + 85
°C
Tstg
Storage temperature
-65 to +150
°C
Tj
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient (3)
200
°C/W
Pdiss
Power dissipation
Internally limited
W
200
V
ESD
MM: machine model (4)
HBM: human body model
(5)
Latch-up Latch-up immunity
-
Lead temperature (soldering, 10sec)
1.5
kV
200
mA
260
°C
1. All voltage values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V.
3. The device is protected in case of over temperature by a thermal shutdown activated at 150° C.
4. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device
with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
5. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin
combinations with other pins floating.
Table 2.
Operating conditions
Symbol
Parameter
Value
Unit
VCC
Supply voltage
2.5 to 5.5
V
VSM
Standby mode voltage input:
Standby Active LOW
Standby Active HIGH
VSM=GND
VSM=VCC
V
1.5 ≤ VSTBY ≤ VCC
GND ≤ VSTBY ≤ 0.4 (1)
V
VSTBY
Standby voltage input:
Device ON (VSM=GND) or Device OFF (VSM=VCC)
Device OFF (VSM=GND) or Device ON (VSM=VCC)
TSD
Thermal shutdown temperature
150
°C
RL
Load resistor
≥4
Ω
Thermal resistance junction to ambient
100
°C/W
Rthja
1. The minimum current consumption (ISTBY) is guaranteed when VSTB Y= GND or VCC (the supply rails) for the whole
temperature range.
3/26
Typical application schematics
2
TS4995
Typical application schematics
Table 3.
External component descriptions
Component
Functional description
Cs
Supply bypass capacitor that provides power supply filtering.
Cb
Bypass capacitor that provides half supply filtering.
Cin
Optional input capacitor that forms a high pass filter together with Rin.
(Fcl = 1 / (2 x π x Rin x Cin)
Figure 1.
Typical application
VCC
Cs1
2
1uF
TS4995 FlipChip
Vcc
TS4995
Optional
Vin-
Cin1
3
Vin-
1
Vin+
8
BYP ASS
Vo-
7
Vo+
5
P1
330nF
Cin2
P2
330nF
BIAS
1uF
STDBY
4/26
STDBY MODE
1
2
6
STDBY MODE
3
STDBY / Operation
3
VCC
1
2
4
Cbypass1
GND
STBY
9
Vin+
+
8 Ohms
TS4995
Electrical characteristics
3
Electrical characteristics
Table 4.
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test conditions
Min. Typ. Max. Unit
ICC
Supply current
No input signal, no load
4
7
mA
ISTBY
Standby current
No input signal, VSTBY = VSM = GND, RL = 8Ω
No input signal, VSTBY = VSM = VCC, RL = 8Ω
10
1000
nA
Voo
Differential output offset
voltage
No input signal, RL = 8Ω
0.1
10
mV
VIC
Input common mode voltage
4.5
V
Po
Output power
THD = 1% Max, F= 1kHz, RL = 8Ω
THD + N
Total harmonic distortion +
noise
Po = 850mW rms, 20Hz ≤ F ≤ 20kHz, RL = 8Ω
PSRRIG
Power supply rejection ratio
with inputs grounded(1)
F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF
Vripple = 200mVPP
CMRR Common mode rejection ratio
0
0.8
75(2)
F = 217Hz, RL = 8Ω, Cin = 4.7µF, Cb =1µF
Vic = 200mVPP
1.2
W
0.5
%
90
dB
60
dB
SNR
Signal-to-noise ratio
A-weighted filter
RL = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz
GBP
Gain bandwidth product
RL = 8Ω
VN
Output voltage noise
20Hz ≤ F ≤ 20kHz, RL = 8Ω
Unweighted
A-weighted
Unweighted, standby
A-weighted, standby
Zin
Input impedance
15
20
25
kΩ
-
Gain mismatch
5.5
6
6.5
dB
tWU
Wake-up time(3)
Cb =1µF
dB
100
2
MHz
11
7
3.5
1.5
µVRMS
15
ms
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC.
2. Guaranteed by design and evaluation.
3. Transition time from standby mode to fully operational amplifier.
5/26
Electrical characteristics
Table 5.
Symbol
TS4995
VCC = +3.3V (all electrical values are guaranteed with correlation measurements at
2.6V and 5V), GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter
Test conditions
Min. Typ. Max. Unit
ICC
Supply current
No input signal, no load
3
7
mA
ISTBY
Standby current
No input signal, VSTBY = VSM = GND, RL = 8Ω
No input signal, VSTBY = VSM = VCC, RL = 8Ω
10
1000
nA
Voo
Differential output offset
voltage
No input signal, RL = 8Ω
0.1
10
mV
VIC
Input common mode voltage
2.3
V
Po
Output power
THD = 1% max, F= 1kHz, RL = 8Ω
THD + N
Total harmonic distortion +
noise
Po = 300mW rms, 20Hz ≤ F ≤ 20kHz, RL = 8Ω
PSRRIG
Power supply rejection ratio
with inputs grounded(1)
F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF
Vripple = 200mVPP
CMRR Common mode rejection ratio
0.4
300
75(2)
F = 217Hz, RL = 8Ω, Cin = 4.7µF, Cb =1µF
Vic = 200mVPP
500
mW
0.5
%
90
dB
60
dB
SNR
Signal-to-noise ratio
A-weighted filter
RL = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz
GBP
Gain bandwidth product
RL = 8Ω
VN
Output voltage noise
20Hz ≤ F ≤ 20kHz, RL = 8Ω
Unweighted
A weighted
Unweighted, standby
A weighted, standby
Zin
Input impedance
15
20
25
kΩ
-
Gain mismatch
5.5
6
6.5
dB
tWU
Wake-up time(3)
Cb =1µF
dB
100
2
MHz
11
7
3.5
1.5
µVRMS
10
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC.
2. Guaranteed by design and evaluation.
3. Transition time from standby mode to fully operational amplifier.
6/26
ms
TS4995
Table 6.
Symbol
Electrical characteristics
VCC = +2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter
Test conditions
Min.
Typ. Max.
Unit
ICC
Supply current
No input signal, no load
3
7
mA
ISTBY
Standby current
No input signal, VSTBY = VSM = GND, RL = 8Ω
No input signal, VSTBY = VSM = VCC, RL = 8Ω
10
1000
nA
Voo
Differential output offset
voltage
No input signal, RL = 8Ω
0.1
10
mV
VIC
Input common mode voltage
1.5
V
Po
Output power
THD = 1% max, F= 1kHz, RL = 8Ω
THD + N
Total harmonic distortion +
noise
Po = 225mW rms, 20Hz ≤ F ≤ 20kHz, RL = 8Ω
PSRRIG
Power supply rejection ratio F = 217Hz, R = 8Ω, Cin = 4.7μF, Cb =1µF
with inputs grounded(1)
Vripple = 200mVPP
0.6
200
75(2)
300
mW
0.5
%
90
dB
60
dB
Common mode rejection
ratio
F = 217Hz, RL = 8Ω, Cin = 4.7μF, Cb =1µF
Vic = 200mVPP
SNR
Signal-to-noise ratio
A-weighted filter
RL = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz
GBP
Gain bandwidth product
RL = 8Ω
VN
Output voltage noise
20Hz ≤F ≤20kHz, RL = 8Ω
Unweighted
A weighted
Unweighted, standby
A weighted, standby
Zin
Input impedance
15
20
25
kΩ
-
Gain mismatch
5.5
6
6.5
dB
tWU
Wake-up time(3)
CMRR
Cb =1µF
dB
100
2
MHz
11
7
3.5
1.5
µVRMS
10
ms
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC.
2. Guaranteed by design and evaluation.
3. Transition time from standby mode to fully operational amplifier.
7/26
Electrical characteristics
Figure 2.
TS4995
THD+N vs. output power
Figure 3.
10
10
RL = 8 Ω
G = 6dB
F = 20Hz
Cb = 1 μ F
1 BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
Vcc=2.6V
0.1
0.01
1E-3
RL = 8 Ω
G = 6dB
F = 20Hz
Cb = 0
1 BW < 125kHz
Tamb = 25 ° C
Vcc=5V
THD + N (%)
THD + N (%)
THD+N vs. output power
0.01
0.1
Vcc=3.3V
Vcc=2.6V
0.1
0.01
1E-3
1
Vcc=5V
0.01
Output power (W)
Figure 4.
THD+N vs. output power
Figure 5.
10
1
THD+N vs. output power
10
RL = 16 Ω
G = 6dB
F = 20Hz
Cb = 1 μ F
1 BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
Vcc=2.6V
0.1
0.01
1E-3
RL = 16 Ω
G = 6dB
F = 20Hz
Cb = 0
1 BW < 125kHz
Tamb = 25 ° C
Vcc=5V
THD + N (%)
THD + N (%)
0.1
Output power (W)
0.01
0.1
Vcc=3.3V
Vcc=2.6V
0.1
0.01
1E-3
1
Vcc=5V
0.01
Output power (W)
Figure 6.
0.1
1
Output power (W)
THD+N vs. output power
Figure 7.
THD+N vs. output power
10
RL = 4 Ω
G = 6dB
F = 1kHz
Cb = 0
BW < 125kHz
Tamb = 25 ° C
RL = 4 Ω
G = 6dB
F = 1kHz
Cb = 1 μ F
BW < 125kHz
Tamb = 25 ° C
Vcc=5V
Vcc=3.3V
THD + N (%)
THD + N (%)
10
1
Vcc=2.6V
0.1
1E-3
0.01
0.1
Output power (W)
1
Vcc=5V
Vcc=3.3V
1
Vcc=2.6V
0.1
1E-3
0.01
0.1
Output power (W)
8/26
1
TS4995
Electrical characteristics
Figure 8.
THD+N vs. output power
Figure 9.
10
RL = 8 Ω
G = 6dB
F = 1kHz
Cb = 1 μ F
1 BW < 125kHz
Tamb = 25 ° C
Vcc=5V
Vcc=3.3V
THD + N (%)
THD + N (%)
10
THD+N vs. output power
Vcc=2.6V
0.1
0.01
1E-3
0.01
0.1
RL = 8 Ω
G = 6dB
F = 1kHz
Cb = 0
1 BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
Vcc=2.6V
0.1
0.01
1E-3
1
Vcc=5V
0.01
Output power (W)
Figure 10. THD+N vs. output power
10
RL = 16 Ω
G = 6dB
F = 1kHz
Cb = 1 μ F
1 BW < 125kHz
Tamb = 25 ° C
Vcc=5V
Vcc=3.3V
THD + N (%)
THD + N (%)
1
Figure 11. THD+N vs. output power
10
Vcc=2.6V
0.1
0.01
1E-3
0.01
0.1
RL = 16 Ω
G = 6dB
F = 1kHz
Cb = 0
1 BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
Vcc=2.6V
0.1
0.01
1E-3
1
Vcc=5V
0.01
Output power (W)
0.1
1
Output power (W)
Figure 12. THD+N vs. output power
Figure 13. THD+N vs. output power
10
10
RL = 4 Ω
G = 6dB
F = 20kHz
Cb = 1 μ F
BW < 125kHz
Tamb = 25 ° C
Vcc=3.3V
1
0.1
1E-3
RL = 4 Ω
G = 6dB
F = 20kHz
Cb = 0
BW < 125kHz
Tamb = 25 ° C
Vcc=5V
THD + N (%)
THD + N (%)
0.1
Output power (W)
Vcc=2.6V
0.01
0.1
Output power (W)
1
Vcc=5V
Vcc=3.3V
1
0.1
1E-3
Vcc=2.6V
0.01
0.1
1
Output power (W)
9/26
Electrical characteristics
TS4995
Figure 14. THD+N vs. output power
Figure 15. THD+N vs. output power
10
RL = 8 Ω
G = 6dB
F = 20kHz
Cb = 1 μ F
BW < 125kHz
Tamb = 25 ° C
1
RL = 8 Ω
G = 6dB
F = 20kHz
Cb = 0
BW < 125kHz
Tamb = 25 ° C
Vcc=5V
Vcc=3.3V
THD + N (%)
THD + N (%)
10
Vcc=2.6V
0.1
1
Vcc=5V
Vcc=3.3V
Vcc=2.6V
0.1
1E-3
0.01
0.1
1
1E-3
0.01
Output power (W)
Figure 16. THD+N vs. output power
Vcc=5V
Vcc=3.3V
THD + N (%)
THD + N (%)
10
RL = 16 Ω
G = 6dB
F = 20kHz
Cb = 1 μ F
1 BW < 125kHz
Tamb = 25 ° C
Vcc=2.6V
0.1
0.01
1E-3
0.01
0.1
RL = 16 Ω
G = 6dB
F = 20kHz
Cb = 0
1 BW < 125kHz
Tamb = 25 ° C
0.01
1
Figure 19. THD+N vs. frequency
10
10
RL = 4 Ω
G = 6dB
Cb = 1 μ F
BW < 125kHz
Tamb = 25 ° C
Vcc=5V, Po=1000mW
1
Vcc=2.6V, Po=280mW
0.1
THD + N (%)
THD + N (%)
0.1
Output power (W)
Figure 18. THD+N vs. frequency
Vcc=3.3V, Po=500mW
100
1000
Frequency (Hz)
10/26
Vcc=3.3V
0.1
0.01
1E-3
1
Vcc=5V
Vcc=2.6V
Output power (W)
0.01
1
Figure 17. THD+N vs. output power
10
1
0.1
Output power (W)
10000
RL = 4 Ω
G = 6dB
Cb = 0
BW < 125kHz
Tamb = 25 ° C
Vcc=2.6V, Po=280mW
0.1
0.01
Vcc=5V, Po=1000mW
Vcc=3.3V, Po=500mW
100
1000
Frequency (Hz)
10000
TS4995
Electrical characteristics
Figure 20. THD+N vs. frequency
Figure 21. THD+N vs. frequency
10
Vcc=2.6V, Po=225mW
1
THD + N (%)
THD + N (%)
1
10
RL = 8 Ω
G = 6dB
Cb = 1 μ F
BW < 125kHz
Tamb = 25C
Vcc=5V, Po=850mW
0.1
100
1000
Vcc=2.6V, Po=225mW
Vcc=5V, Po=850mW
0.1
Vcc=3.3V, Po=300mW
0.01
RL = 8 Ω
G = 6dB
Cb = 0
BW < 125kHz
Tamb = 25C
Vcc=3.3V, Po=300mW
0.01
10000
100
1000
Frequency (Hz)
Figure 22. THD+N vs. frequency
Figure 23. THD+N vs. frequency
10
10
RL = 16 Ω
G = 6dB
Cb = 1 μ F
BW < 125kHz
Tamb = 25C
1
Vcc=5V, Po=500mW
THD + N (%)
THD + N (%)
1
Vcc=2.6V, Po=125mW
0.1
100
1000
RL = 16 Ω
G = 6dB
Cb = 0
BW < 125kHz
Tamb = 25C
Vcc=5V, Po=500mW
Vcc=2.6V, Po=125mW
0.1
Vcc=3.3V, Po=225mW
0.01
Vcc=3.3V, Po=225mW
0.01
10000
100
1000
Frequency (Hz)
Figure 25. Output power vs. power supply
voltage
10
Output power at 10% THD + N (W)
THD + N (%)
RL = 16 Ω
G = 6dB
Cb = 1 μ F
BW < 125kHz
Tamb = 25C
Vcc=5V, Po=500mW
Vcc=2.6V, Po=125mW
0.1
Vcc=3.3V, Po=225mW
0.01
100
1000
Frequency (Hz)
10000
Frequency (Hz)
Figure 24. Output power vs. power supply
voltage
1
10000
Frequency (Hz)
10000
2,4 Cb = 1μF
2,2 F = 1kHz
2,0 BW < 125 kHz
1,8 Tamb = 25°C
4Ω
1,6
1,4
1,2
8Ω
1,0
0,8
16Ω
0,6
0,4
32Ω
0,2
0,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5
Vcc (V)
11/26
Electrical characteristics
TS4995
Figure 26. Output power vs. power supply
voltage
Figure 27. Power derating curves
Output power at 1% THD + N (W)
Cb = 1μF
1,8 F = 1kHz
1,6 BW < 125 kHz
Tamb = 25°C
1,4
Flip-Chip Package Power Dissipation (W)
2,0
4Ω
8Ω
1,2
1,0
16Ω
0,8
0,6
0,4
0,2
32Ω
0,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5
1.2
1.0
Heat sink surface ≈ 100mm
2
0.8
0.6
0.4
No Heat sink
0.2
0.0
0
25
50
75
100
125
Ambiant Temperature ( ° C)
Vcc (V)
Figure 28. Output power vs. load resistance
Figure 29. Power dissipation vs. output power
1.4
1800
Vcc=5V
1600
Output power (W)
THD+N = 1%
F = 1kHz
Cb = 1μ F
BW < 125kHz
Tamb = 25°C
Vcc=5.5V
Vcc=4.5V
1400
Vcc=4V
1200
Vcc=3.3V
1000
Vcc=2.6V
800
600
Power Dissipation (W)
2000
Vcc=5V
1.2 F=1kHz
THD+N