0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DEMOTS4995J

DEMOTS4995J

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    BOARD DEMO FOR TS4995EIJT

  • 数据手册
  • 价格&库存
DEMOTS4995J 数据手册
TS4995 1.2 W fully differential audio power amplifier with selectable standby and 6 dB fixed gain Features ■ Differential inputs ■ 90 dB PSRR @ 217 Hz with grounded inputs ■ Operates from VCC = 2.5 V to 5.5 V ■ 1.2 W rail-to-rail output power @ VCC=5 V, THD+N=1%, F=1 kHz, with an 8 Ω load ■ 6 dB integrated fixed gain ■ Ultra-low consumption in standby mode (10 nA) ■ Selectable standby mode (active low or active high) ■ Ultra-fast startup time: 10 ms typ. at VCC=3.3 V ■ Available in 9-bump flip chip (300 mm bump diameter) ■ TS4995 - Flip chip 9 Pin connections (top view) Gnd VO- 7 6 5 VO+ Bypass 8 9 4 Stdby 1 2 3 VIN- VIN+ VCC Stdby Mode Ultra-low pop and click Applications ■ Mobile phones (cellular / cordless) ■ PDAs ■ Laptop / notebook computers ■ Portable audio devices Description The TS4995 is an audio power amplifier capable of delivering 1.2 W of continuous RMS output power into an 8 Ω load at 5 V. Thanks to its differential inputs, it exhibits outstanding noise immunity. The TS4995 features an internal fixed gain at 6dB which reduces the number of external components on the application board. The device is equipped with common mode feedback circuitry allowing outputs to be always biased at VCC/2 regardless of the input common mode voltage. The TS4995 is specifically designed for high quality audio applications such as mobile phones and requires few external components. An external standby mode control reduces the supply current to less than 10 nA. A STBY MODE pin allows the standby pin to be active high or low. An internal thermal shutdown protection is also provided, making the device capable of sustaining short-circuits. March 2008 Rev 3 1/26 www.st.com 26 Contents TS4995 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 Wake-up time tWU 4.7 Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.8 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.9 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2/26 TS4995 Absolute maximum ratings and operating conditions 1 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol Parameter Value Unit (1) VCC Supply voltage Vin Input voltage (2) 6 V GND to VCC V Toper Operating free air temperature range -40 to + 85 °C Tstg Storage temperature -65 to +150 °C Tj Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient (3) 200 °C/W Pdiss Power dissipation Internally limited W 200 V ESD MM: machine model (4) HBM: human body model (5) Latch-up Latch-up immunity - Lead temperature (soldering, 10sec) 1.5 kV 200 mA 260 °C 1. All voltage values are measured with respect to the ground pin. 2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V. 3. The device is protected in case of over temperature by a thermal shutdown activated at 150° C. 4. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 5. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. Table 2. Operating conditions Symbol Parameter Value Unit VCC Supply voltage 2.5 to 5.5 V VSM Standby mode voltage input: Standby Active LOW Standby Active HIGH VSM=GND VSM=VCC V 1.5 ≤ VSTBY ≤ VCC GND ≤ VSTBY ≤ 0.4 (1) V VSTBY Standby voltage input: Device ON (VSM=GND) or Device OFF (VSM=VCC) Device OFF (VSM=GND) or Device ON (VSM=VCC) TSD Thermal shutdown temperature 150 °C RL Load resistor ≥4 Ω Thermal resistance junction to ambient 100 °C/W Rthja 1. The minimum current consumption (ISTBY) is guaranteed when VSTB Y= GND or VCC (the supply rails) for the whole temperature range. 3/26 Typical application schematics 2 TS4995 Typical application schematics Table 3. External component descriptions Component Functional description Cs Supply bypass capacitor that provides power supply filtering. Cb Bypass capacitor that provides half supply filtering. Cin Optional input capacitor that forms a high pass filter together with Rin. (Fcl = 1 / (2 x π x Rin x Cin) Figure 1. Typical application VCC Cs1 2 1uF TS4995 FlipChip Vcc TS4995 Optional Vin- Cin1 3 Vin- 1 Vin+ 8 BYP ASS Vo- 7 Vo+ 5 P1 330nF Cin2 P2 330nF BIAS 1uF STDBY 4/26 STDBY MODE 1 2 6 STDBY MODE 3 STDBY / Operation 3 VCC 1 2 4 Cbypass1 GND STBY 9 Vin+ + 8 Ohms TS4995 Electrical characteristics 3 Electrical characteristics Table 4. VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit ICC Supply current No input signal, no load 4 7 mA ISTBY Standby current No input signal, VSTBY = VSM = GND, RL = 8Ω No input signal, VSTBY = VSM = VCC, RL = 8Ω 10 1000 nA Voo Differential output offset voltage No input signal, RL = 8Ω 0.1 10 mV VIC Input common mode voltage 4.5 V Po Output power THD = 1% Max, F= 1kHz, RL = 8Ω THD + N Total harmonic distortion + noise Po = 850mW rms, 20Hz ≤ F ≤ 20kHz, RL = 8Ω PSRRIG Power supply rejection ratio with inputs grounded(1) F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF Vripple = 200mVPP CMRR Common mode rejection ratio 0 0.8 75(2) F = 217Hz, RL = 8Ω, Cin = 4.7µF, Cb =1µF Vic = 200mVPP 1.2 W 0.5 % 90 dB 60 dB SNR Signal-to-noise ratio A-weighted filter RL = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz GBP Gain bandwidth product RL = 8Ω VN Output voltage noise 20Hz ≤ F ≤ 20kHz, RL = 8Ω Unweighted A-weighted Unweighted, standby A-weighted, standby Zin Input impedance 15 20 25 kΩ - Gain mismatch 5.5 6 6.5 dB tWU Wake-up time(3) Cb =1µF dB 100 2 MHz 11 7 3.5 1.5 µVRMS 15 ms 1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC. 2. Guaranteed by design and evaluation. 3. Transition time from standby mode to fully operational amplifier. 5/26 Electrical characteristics Table 5. Symbol TS4995 VCC = +3.3V (all electrical values are guaranteed with correlation measurements at 2.6V and 5V), GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Test conditions Min. Typ. Max. Unit ICC Supply current No input signal, no load 3 7 mA ISTBY Standby current No input signal, VSTBY = VSM = GND, RL = 8Ω No input signal, VSTBY = VSM = VCC, RL = 8Ω 10 1000 nA Voo Differential output offset voltage No input signal, RL = 8Ω 0.1 10 mV VIC Input common mode voltage 2.3 V Po Output power THD = 1% max, F= 1kHz, RL = 8Ω THD + N Total harmonic distortion + noise Po = 300mW rms, 20Hz ≤ F ≤ 20kHz, RL = 8Ω PSRRIG Power supply rejection ratio with inputs grounded(1) F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF Vripple = 200mVPP CMRR Common mode rejection ratio 0.4 300 75(2) F = 217Hz, RL = 8Ω, Cin = 4.7µF, Cb =1µF Vic = 200mVPP 500 mW 0.5 % 90 dB 60 dB SNR Signal-to-noise ratio A-weighted filter RL = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz GBP Gain bandwidth product RL = 8Ω VN Output voltage noise 20Hz ≤ F ≤ 20kHz, RL = 8Ω Unweighted A weighted Unweighted, standby A weighted, standby Zin Input impedance 15 20 25 kΩ - Gain mismatch 5.5 6 6.5 dB tWU Wake-up time(3) Cb =1µF dB 100 2 MHz 11 7 3.5 1.5 µVRMS 10 1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC. 2. Guaranteed by design and evaluation. 3. Transition time from standby mode to fully operational amplifier. 6/26 ms TS4995 Table 6. Symbol Electrical characteristics VCC = +2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Test conditions Min. Typ. Max. Unit ICC Supply current No input signal, no load 3 7 mA ISTBY Standby current No input signal, VSTBY = VSM = GND, RL = 8Ω No input signal, VSTBY = VSM = VCC, RL = 8Ω 10 1000 nA Voo Differential output offset voltage No input signal, RL = 8Ω 0.1 10 mV VIC Input common mode voltage 1.5 V Po Output power THD = 1% max, F= 1kHz, RL = 8Ω THD + N Total harmonic distortion + noise Po = 225mW rms, 20Hz ≤ F ≤ 20kHz, RL = 8Ω PSRRIG Power supply rejection ratio F = 217Hz, R = 8Ω, Cin = 4.7μF, Cb =1µF with inputs grounded(1) Vripple = 200mVPP 0.6 200 75(2) 300 mW 0.5 % 90 dB 60 dB Common mode rejection ratio F = 217Hz, RL = 8Ω, Cin = 4.7μF, Cb =1µF Vic = 200mVPP SNR Signal-to-noise ratio A-weighted filter RL = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz GBP Gain bandwidth product RL = 8Ω VN Output voltage noise 20Hz ≤F ≤20kHz, RL = 8Ω Unweighted A weighted Unweighted, standby A weighted, standby Zin Input impedance 15 20 25 kΩ - Gain mismatch 5.5 6 6.5 dB tWU Wake-up time(3) CMRR Cb =1µF dB 100 2 MHz 11 7 3.5 1.5 µVRMS 10 ms 1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to VCC. 2. Guaranteed by design and evaluation. 3. Transition time from standby mode to fully operational amplifier. 7/26 Electrical characteristics Figure 2. TS4995 THD+N vs. output power Figure 3. 10 10 RL = 8 Ω G = 6dB F = 20Hz Cb = 1 μ F 1 BW < 125kHz Tamb = 25 ° C Vcc=3.3V Vcc=2.6V 0.1 0.01 1E-3 RL = 8 Ω G = 6dB F = 20Hz Cb = 0 1 BW < 125kHz Tamb = 25 ° C Vcc=5V THD + N (%) THD + N (%) THD+N vs. output power 0.01 0.1 Vcc=3.3V Vcc=2.6V 0.1 0.01 1E-3 1 Vcc=5V 0.01 Output power (W) Figure 4. THD+N vs. output power Figure 5. 10 1 THD+N vs. output power 10 RL = 16 Ω G = 6dB F = 20Hz Cb = 1 μ F 1 BW < 125kHz Tamb = 25 ° C Vcc=3.3V Vcc=2.6V 0.1 0.01 1E-3 RL = 16 Ω G = 6dB F = 20Hz Cb = 0 1 BW < 125kHz Tamb = 25 ° C Vcc=5V THD + N (%) THD + N (%) 0.1 Output power (W) 0.01 0.1 Vcc=3.3V Vcc=2.6V 0.1 0.01 1E-3 1 Vcc=5V 0.01 Output power (W) Figure 6. 0.1 1 Output power (W) THD+N vs. output power Figure 7. THD+N vs. output power 10 RL = 4 Ω G = 6dB F = 1kHz Cb = 0 BW < 125kHz Tamb = 25 ° C RL = 4 Ω G = 6dB F = 1kHz Cb = 1 μ F BW < 125kHz Tamb = 25 ° C Vcc=5V Vcc=3.3V THD + N (%) THD + N (%) 10 1 Vcc=2.6V 0.1 1E-3 0.01 0.1 Output power (W) 1 Vcc=5V Vcc=3.3V 1 Vcc=2.6V 0.1 1E-3 0.01 0.1 Output power (W) 8/26 1 TS4995 Electrical characteristics Figure 8. THD+N vs. output power Figure 9. 10 RL = 8 Ω G = 6dB F = 1kHz Cb = 1 μ F 1 BW < 125kHz Tamb = 25 ° C Vcc=5V Vcc=3.3V THD + N (%) THD + N (%) 10 THD+N vs. output power Vcc=2.6V 0.1 0.01 1E-3 0.01 0.1 RL = 8 Ω G = 6dB F = 1kHz Cb = 0 1 BW < 125kHz Tamb = 25 ° C Vcc=3.3V Vcc=2.6V 0.1 0.01 1E-3 1 Vcc=5V 0.01 Output power (W) Figure 10. THD+N vs. output power 10 RL = 16 Ω G = 6dB F = 1kHz Cb = 1 μ F 1 BW < 125kHz Tamb = 25 ° C Vcc=5V Vcc=3.3V THD + N (%) THD + N (%) 1 Figure 11. THD+N vs. output power 10 Vcc=2.6V 0.1 0.01 1E-3 0.01 0.1 RL = 16 Ω G = 6dB F = 1kHz Cb = 0 1 BW < 125kHz Tamb = 25 ° C Vcc=3.3V Vcc=2.6V 0.1 0.01 1E-3 1 Vcc=5V 0.01 Output power (W) 0.1 1 Output power (W) Figure 12. THD+N vs. output power Figure 13. THD+N vs. output power 10 10 RL = 4 Ω G = 6dB F = 20kHz Cb = 1 μ F BW < 125kHz Tamb = 25 ° C Vcc=3.3V 1 0.1 1E-3 RL = 4 Ω G = 6dB F = 20kHz Cb = 0 BW < 125kHz Tamb = 25 ° C Vcc=5V THD + N (%) THD + N (%) 0.1 Output power (W) Vcc=2.6V 0.01 0.1 Output power (W) 1 Vcc=5V Vcc=3.3V 1 0.1 1E-3 Vcc=2.6V 0.01 0.1 1 Output power (W) 9/26 Electrical characteristics TS4995 Figure 14. THD+N vs. output power Figure 15. THD+N vs. output power 10 RL = 8 Ω G = 6dB F = 20kHz Cb = 1 μ F BW < 125kHz Tamb = 25 ° C 1 RL = 8 Ω G = 6dB F = 20kHz Cb = 0 BW < 125kHz Tamb = 25 ° C Vcc=5V Vcc=3.3V THD + N (%) THD + N (%) 10 Vcc=2.6V 0.1 1 Vcc=5V Vcc=3.3V Vcc=2.6V 0.1 1E-3 0.01 0.1 1 1E-3 0.01 Output power (W) Figure 16. THD+N vs. output power Vcc=5V Vcc=3.3V THD + N (%) THD + N (%) 10 RL = 16 Ω G = 6dB F = 20kHz Cb = 1 μ F 1 BW < 125kHz Tamb = 25 ° C Vcc=2.6V 0.1 0.01 1E-3 0.01 0.1 RL = 16 Ω G = 6dB F = 20kHz Cb = 0 1 BW < 125kHz Tamb = 25 ° C 0.01 1 Figure 19. THD+N vs. frequency 10 10 RL = 4 Ω G = 6dB Cb = 1 μ F BW < 125kHz Tamb = 25 ° C Vcc=5V, Po=1000mW 1 Vcc=2.6V, Po=280mW 0.1 THD + N (%) THD + N (%) 0.1 Output power (W) Figure 18. THD+N vs. frequency Vcc=3.3V, Po=500mW 100 1000 Frequency (Hz) 10/26 Vcc=3.3V 0.1 0.01 1E-3 1 Vcc=5V Vcc=2.6V Output power (W) 0.01 1 Figure 17. THD+N vs. output power 10 1 0.1 Output power (W) 10000 RL = 4 Ω G = 6dB Cb = 0 BW < 125kHz Tamb = 25 ° C Vcc=2.6V, Po=280mW 0.1 0.01 Vcc=5V, Po=1000mW Vcc=3.3V, Po=500mW 100 1000 Frequency (Hz) 10000 TS4995 Electrical characteristics Figure 20. THD+N vs. frequency Figure 21. THD+N vs. frequency 10 Vcc=2.6V, Po=225mW 1 THD + N (%) THD + N (%) 1 10 RL = 8 Ω G = 6dB Cb = 1 μ F BW < 125kHz Tamb = 25C Vcc=5V, Po=850mW 0.1 100 1000 Vcc=2.6V, Po=225mW Vcc=5V, Po=850mW 0.1 Vcc=3.3V, Po=300mW 0.01 RL = 8 Ω G = 6dB Cb = 0 BW < 125kHz Tamb = 25C Vcc=3.3V, Po=300mW 0.01 10000 100 1000 Frequency (Hz) Figure 22. THD+N vs. frequency Figure 23. THD+N vs. frequency 10 10 RL = 16 Ω G = 6dB Cb = 1 μ F BW < 125kHz Tamb = 25C 1 Vcc=5V, Po=500mW THD + N (%) THD + N (%) 1 Vcc=2.6V, Po=125mW 0.1 100 1000 RL = 16 Ω G = 6dB Cb = 0 BW < 125kHz Tamb = 25C Vcc=5V, Po=500mW Vcc=2.6V, Po=125mW 0.1 Vcc=3.3V, Po=225mW 0.01 Vcc=3.3V, Po=225mW 0.01 10000 100 1000 Frequency (Hz) Figure 25. Output power vs. power supply voltage 10 Output power at 10% THD + N (W) THD + N (%) RL = 16 Ω G = 6dB Cb = 1 μ F BW < 125kHz Tamb = 25C Vcc=5V, Po=500mW Vcc=2.6V, Po=125mW 0.1 Vcc=3.3V, Po=225mW 0.01 100 1000 Frequency (Hz) 10000 Frequency (Hz) Figure 24. Output power vs. power supply voltage 1 10000 Frequency (Hz) 10000 2,4 Cb = 1μF 2,2 F = 1kHz 2,0 BW < 125 kHz 1,8 Tamb = 25°C 4Ω 1,6 1,4 1,2 8Ω 1,0 0,8 16Ω 0,6 0,4 32Ω 0,2 0,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 Vcc (V) 11/26 Electrical characteristics TS4995 Figure 26. Output power vs. power supply voltage Figure 27. Power derating curves Output power at 1% THD + N (W) Cb = 1μF 1,8 F = 1kHz 1,6 BW < 125 kHz Tamb = 25°C 1,4 Flip-Chip Package Power Dissipation (W) 2,0 4Ω 8Ω 1,2 1,0 16Ω 0,8 0,6 0,4 0,2 32Ω 0,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 1.2 1.0 Heat sink surface ≈ 100mm 2 0.8 0.6 0.4 No Heat sink 0.2 0.0 0 25 50 75 100 125 Ambiant Temperature ( ° C) Vcc (V) Figure 28. Output power vs. load resistance Figure 29. Power dissipation vs. output power 1.4 1800 Vcc=5V 1600 Output power (W) THD+N = 1% F = 1kHz Cb = 1μ F BW < 125kHz Tamb = 25°C Vcc=5.5V Vcc=4.5V 1400 Vcc=4V 1200 Vcc=3.3V 1000 Vcc=2.6V 800 600 Power Dissipation (W) 2000 Vcc=5V 1.2 F=1kHz THD+N
DEMOTS4995J 价格&库存

很抱歉,暂时无法提供与“DEMOTS4995J”相匹配的价格&库存,您可以联系我们找货

免费人工找货