L9779WD-SPI
Multifunction IC for engine management system
Datasheet - production data
Protected low-side (high current)
– OUT5, 6, 7
Protected low-side (low current)
– OUT20
IGBT pre-drivers (IGN1 to 4) with parallel input
Parallel input IN1 to IN7 to drive OUT1 to OUT7
Configurable power stages CPS
– Stepper motor driver/ high-side - low-side
(OUTA to D)
*$3*36
HiQUAD-64
Thermal warning and shutdown
Serial interface
– SPI 16-bit frame
– ISO9141 interface (K-Line)
Features
5 V logic regulator
High speed CAN transceiver
3.3 V logic regulator
VDA 2.0 compliance with 3 level Watchdog
5 V tracking sensor supply
Package: HiQUAD-64
Smart reset function
Power latch with Secure Engine Off (SEO)
functionality, to safely complete driver switch
off procedure
Flying wheel interface function (VRS) with
adaptive time and amplitude control
Protected low-side relay driver
– OUT13 to 18, MRD
Protected low-side (injector drivers)
– OUT1 to 4
Description
The L9779WD-SPI is an integrated circuit
designed for automotive environment and
implemented in BCD6S technology.
It is conceived to provide all basic functions for
standard engine management control units.
It is assembled in the HiQUAD-64 power
package.
Table 1. Device summary
Order code
Package
Packing
L9779WD-SPI
HiQUAD-64
Tray
L9779WD-SPI-TR
HiQUAD-64
Tape and Reel
May 2015
This is information on a product in full production.
DocID027721 Rev 2
1/141
www.st.com
Contents
L9779WD-SPI
Contents
1
Detailed features description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
5.1
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2
Latch-up test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3
Temperature ranges and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.1
Low battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.2
Normal battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.3
High battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.4
Load dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1
Ignition switch, main relay, battery pin . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2
Power-up/down management unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3
6.2.1
Power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.2
Power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Smart reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.1
6.4
Thermal shut down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.5
Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.6
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.7
Main relay driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.8
6.7.1
Main relay driver functionality description . . . . . . . . . . . . . . . . . . . . . . . 44
6.7.2
MRD scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Low-side switch function (LSa, LSb, LSd) . . . . . . . . . . . . . . . . . . . . . . . . 50
6.8.1
2/141
Smart reset circuit functionality description . . . . . . . . . . . . . . . . . . . . . . 29
LSa function OUT 1 to 5 (Injectors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DocID027721 Rev 2
L9779WD-SPI
Contents
6.8.2
LSb function OUT6, 7 (O2 heater) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.8.3
LSc function OUT20 (low current drivers) . . . . . . . . . . . . . . . . . . . . . . . 55
6.8.4
LSd function OUT13 to 18 (relay drivers) . . . . . . . . . . . . . . . . . . . . . . . 57
6.9
LSa, LSb, LSc, LSd diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.10
Ignition pre-drivers (IGN1 to 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.11
6.12
6.10.1
Ignition pre-drivers functionality description . . . . . . . . . . . . . . . . . . . . . . 65
6.10.2
Ignition pre-driver diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Configurable power stages (CPS) (OUTA to OUTD) . . . . . . . . . . . . . . . . 67
6.11.1
Configurable power stages functionality description . . . . . . . . . . . . . . . 67
6.11.2
Diagnosis of configurable power stages (CPS) . . . . . . . . . . . . . . . . . . . 71
6.11.3
Diagnosis of CPS [OUTA to OUTD] when configured as H-bridges . . . 71
6.11.4
Diagnosis of CPS OUTA, B, C, D when configured as single low side
power stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ISO serial line (K-LINE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.12.1
6.13
CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.13.1
6.14
6.15
6.16
ISO serial line (K-LINE) functionality description . . . . . . . . . . . . . . . . . . 80
CAN transceiver functionality description . . . . . . . . . . . . . . . . . . . . . . . 83
Flying wheel interface function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.14.1
Flying wheel interface functionality description . . . . . . . . . . . . . . . . . . . 88
6.14.2
Auto-adaptive sensor filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.14.3
Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.14.4
Diagnosis test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Monitoring module (watchdog) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.15.1
WDA - Watchdog (algorithmic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.15.2
Monitoring module - WDA Functionality . . . . . . . . . . . . . . . . . . . . . . . . 99
Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.16.1
SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.16.2
SPI protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.16.3
SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
CONFIG_REG1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
CONFIG_REG2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
CONFIG_REG3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
CONFIG_REG4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
CONFIG_REG5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
CONFIG_REG6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
CONFIG_REG7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
WD_ANSW/WDA RESP/CONFIG_REG8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DocID027721 Rev 2
3/141
4
Contents
L9779WD-SPI
CONFIG_REG9/SPI RESPTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
CONFIG_REG10 (CPS Configuration register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
IDENT_REG/DIA_REG[1:5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
DIA_REG6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
DIA_REG7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DIA_REG8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
DIA_REG9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
DIA_REG10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
DIA_REG11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
DIA_REG12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DIA_REG13/WDA_RESPTIME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DIA_REG14/REQULO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DIA_REG15/REQUHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
DIAG_REG16/RST_AB1_CNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
CONTR_REG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
CONTR_REG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
CONTR_REG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
CONTR_REG4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.1
8
4/141
HiQUAD-64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DocID027721 Rev 2
L9779WD-SPI
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Temperature ranges and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
KEY_ON pin electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Internal reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
RST pin external components required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
RST pin electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Temperature information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Voltage regulators external components required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
VB Power supply electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Linear 5 V regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Linear 3.3 V regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5V tracking sensor supply electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Main relay driver electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
LSa electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
LSa diagnosis electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
LSa diagnosis electrical characteristics (OUT 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
LSb electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
LSb diagnosis electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
LSc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
LSc diagnosis electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
LSd electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
LSd diagnosis electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Fault encoding condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Ignition pre-drivers electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Configuration of the stepper motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Half bridge 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Half bridge 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Half bridge 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Half bridge 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Stepper configuration electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Electrical and diagnosis characteristics of OUTA, B, C, D when configured as single
power stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Electrical characteristics of OUTA, B, C, D when configured as single power stages
connected in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
CPS table single mode parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Three configurations of CONFIG_REG10 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ISO serial line (K-LINE) functionality electrical characteristic . . . . . . . . . . . . . . . . . . . . . . . 81
CAN transceiver electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CAN transceiver timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Pick voltage detector precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Hysteresis threshold precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SPI command possible configuration of different option of VRS function. . . . . . . . . . . . . . 92
VRs typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Diagnosis test electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
DocID027721 Rev 2
5/141
6
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
6/141
L9779WD-SPI
WDA_INT electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Error counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
State for = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Reset-behaviour of , AB1 and . . . . . . . . . . . . . . . . . . . . . . . . . 104
Expected responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Reset behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
CLOCK_UNLOCK_SW_RST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
START_REACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
HiQUAD-64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DocID027721 Rev 2
L9779WD-SPI
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pins connection diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Configuration supplied by VB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Power-up/down management unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Non-permanent supply power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Permanent supply power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Power-down sequence without power latch mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Power-down sequence without power latch mode and PSOFF = 1 . . . . . . . . . . . . . . . . . . 25
Power-down sequence with power latch mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Power-down sequence with power latch mode and KEY_ON toggle . . . . . . . . . . . . . . . . . 27
KEY_ON voltage vs. status diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Smart reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
RST pin as a function of VDD5 (if CONFIG_REG6 bit3 = Low) . . . . . . . . . . . . . . . . . . . . . 32
Structure regulators diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Graphic representation of the calculation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Circuit and PCB layout suggested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
VB overvoltage diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
VDD5 overvoltage diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
VDD5 vs battery: ramp-up diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
VDD5 vs battery (ramp-down diagram) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Main relay driver controlled by L9779WD-SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Scenario 1a: Standard on/off MRD driver with NO power latch mode bit PSOFF = 0 . . . . 45
Scenario 1b: Standard on/off MRD driver with NO power latch mode bit PSOFF = 1 . . . . 46
Scenario 2: Standard on/off MRD driver with power latch mode bit PSOFF = 0 . . . . . . . . 46
Scenario 3a: Deglitch concept on KEY_ON at start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Scenario 3b: Deglitch concept on KEY_ON during ON phase . . . . . . . . . . . . . . . . . . . . . . 47
Scenario 4: Non standard on, KEY_ON removed before VB present . . . . . . . . . . . . . . . . 47
Scenario 5: MRD overcurrent without VB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Scenario 6: permanent MRD overcurrent with VBPOR restart . . . . . . . . . . . . . . . . . . . . . . 48
Scenario 7 (temporary MRD overcurrent with VB POR restart) . . . . . . . . . . . . . . . . . . . . . 48
Scenario 8 (temporary MRD overcurrent with VB µC commands restart) . . . . . . . . . . . . . 49
LSa function OUT 1 to 5 (Injectors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
LSb function OUT6, 7 (O2 heater) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
LSc function OUT20 (low current drivers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
LSd function OUT13 to 18 (relay drivers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Behavior of OUT13, 14, 21, 25 with VB = VB_UV for a time shorter than Thold and
with a valid ON condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Behavior of OUT13, 14, 21, 25 with VB = UB_UV for a time longer than Thold and with
a valid ON condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Behavior of OUT13, 14, 21, 25 with VB that drops lower than POR threshold during
cranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
LSx diagnosis circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Fault encoding condition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
LSx ON/OFF slew rate control diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Ignition-pre drivers (IGN1 to 4) circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Ignition-pre drivers (IGN1 to 4) diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Stepper motor operation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DocID027721 Rev 2
7/141
8
List of figures
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
8/141
L9779WD-SPI
Stepper motor driver: H-bridge1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Stepper motor driver: H-bridge2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Stepper motor driver “off” diagnosis time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Stepper motor driver diagnosis I-V relationship diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Open load detection during “on” phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Open load detection during “on” phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Short to GND detection during “on” phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
ISO serial line (K-LINE) circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
ISO serial line switching waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ISO serial line: short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
CAN transceiver diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CAN transceiver switching waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CAN transceiver test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Flying wheel interface circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Auto adaptative hysteresis diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
VRS interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Auto-adaptive time filter (rising edge) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Adaptive filter function when the SPI bit are 00 or 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Adaptive Filter Function when the SPI bit are 10 or 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Variable reluctance sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
VRs typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Hall effect sensor configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Hall effect sensor configuration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Diagnosis test diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
WDA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Monitoring cycle diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4-bit Markov chain diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Timing characteristics diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
HiQUAD-64 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
DocID027721 Rev 2
L9779WD-SPI
1
Detailed features description
Detailed features description
Package
–
5 V logic regulator
–
5 V precision voltage regulator (± 2%) with external NMOS
–
Max current regulated: 400 mA
–
Charge pump capacitor at pin CP is used to drive the gate of the external NMOS
transistor
3.3 V logic regulator
–
3.3 V precision voltage regulator (± 2%) with over-current protection
–
Max current regulated: 100 mA
5 V tracking sensor supply
–
2 x 5 V tracking sensor supply with protection and diagnosis on SPI
–
Short-circuit to Vbat/GND fully protected
–
Max current regulated: 2 x 100 mA
Smart reset
–
Main Reset monitoring VB_UV Logic voltage management and safety control
Watch dog
–
Main reset management 5 V voltage monitoring safety output disable
–
SPI controllable query and answer watch dog compliant with VDA2.0 level 3
(enabled by default)
Power latch
–
HiQUAD-64
L9779WD-SPI is switched on by KEY_ON signal and switched off by logic OR of
KEY_ON signal and SPI bit
Secure engine off mode (default) switches off the drivers in the following order:
–
OUT1 through to OUT4 in 225 ms (typical)
–
OUT13 and OUT14 in 600 ms (typical)
Flying wheel interface function (VRS)
–
The VRS is the interface between the microprocessor and the magnetic pick-up or
variable reluctance sensor that collects the information coming from the flying
wheel
–
Adaptive filtering on amplitude and timing adapts better the device response to
VRS input switching
Protected low-side driver
–
LSa (OUT1 to 5)
4 Ch. serial IN via SPI and parallel IN, Rdson = 0.72 Ohm @150 °C, Vcl = 58 V ±5,
Imax = 2.2 A;
1 Ch. serial IN via SPI and parallel IN, Rdson = 0.72 Ohm @150°C, Vcl = 58 V ±5,
Imax = 3 A;
–
LSb (OUT6, 7)
2 Ch. serial IN via SPI and parallel IN, Rdson = 0.47 Ohm @150°C, Vcl = 45 V ±5,
Imax = 5 A
DocID027721 Rev 2
9/141
140
Detailed features description
L9779WD-SPI
Full diagnosis on SPI (2 bit for each channel) and voltage slew rate control.
When an over current fault occurs, the driver switches off with faster slew rate in order
to reduce the power dissipation.
–
LSc (OUT20)
1 Ch serial IN via SPI, Imax = 50 mA
LSD (OUT13 to 18, MRD)
6 Ch. serial IN via SPI, Rdson = 1.5 Ohm @150 °C, Vcl = 48 V, Imax = 600 mA (2 of them
with low battery voltage function);
1 main relay driver Rdson = 2.4 Ohm @150 °C, Vcl = 48 V, Imax = 600 mA
With full diagnosis on SPI (2 bit for each channel) and voltage slew-rate control.
When an over current fault occurs, the driver switches off with faster slew rate in order
to reduce the power dissipation.
Ignition pre-drivers (IGN1 to 4) with parallel input
–
4 x ignition pre-drivers with full diagnostic.
SPI
1 x Stepper motor driver designed for a double winding coil motor, used for engine idle
speed control.
The stepper driver is made by 4 independent half bridgeS each one with:
–
1 high-side driver, Rdson =1.5 Ohm, Imax = 600 mA
–
1 low-side driver, Rdson = 1.5 Ohm, Imax = 600mA
The low-side drivers could be connected in parallel.
Low-side and high-side drivers implement voltage SR control to minimize emission.
Two high-side drivers have the low battery voltage function.
Thermal shutdown
–
1 x Thermal shutdown (Tj > 175 °C = Tsd) if Tj > Tsd: VTRK1, 2 are turned off.
–
1 x Thermal shutdown (Tj > 175 °C = Tsd) if Tj > Tsd: OUT1 to 10, OUT13 to 20,
OUTA to D, IGN1 to 4 are turned off.
–
1 x Thermal Shutdown (Tj > 175 °C = Tsd) if Tj > Tsd: V3V3 is turned off.
–
1 x Thermal shutdown (Tj > 175 °C = Tsd) if Tj > Tsd: MRD is turned off (if battery
present).
There are 5 temperature sensors for OT2 (OUT1..10, OUT13…20, OUT21…28,
IGN1…4 are turned off) in different Layout position, they are logically “AND” in case of
thermal shutdown.
ISO9141 interface
–
ISO9141 serial interface (K-Line)
CAN transceiver
The CAN bus transceiver allows the connection of the microcontroller, with CAN
controller unit, to a high speed CAN bus with transmission rates up to 1Mbit/s for
exchange of data with other ECUs.
10/141
DocID027721 Rev 2
L9779WD-SPI
2
Block diagram
Block diagram
Figure 1. Block diagram
/63,
9%
%DQGJDS
9UHJXODWRUOLQHDU
9EJ
9%
9
9
9LQWHUQDOVXSSO\
P$
9''
9EJ
9''
9%
9''
.H\RQGHWHFWLRQDQG
ILOWHULQJ
.(
1k(1)
38
WDA
WDA Interrupt Signal
Output: open drain DGT
input
7
VRSN
Negative VRS input
Analog Input
1.65 V Internal polarization
6
VRSP
Positive VRS input
Analog Input
1.65 V Internal polarization
8
OUT_VRS
Digital VRS output
DGT Output
Open drain
44
CAN_TX
Can transceiver
input (from TX µP)
DGT Input
-
43
CAN_RX
Can transceiver
output (to RX µP)
DGT Output
-
42
CAN_H
Bi-dir protected
CAN_H wire
Analog Input/Output
-
41
CAN_L
Bi-dir protected
CAN_L wire
Analog Input/Output
-
ISO9141 logical input
DGT Input
IPu =20 µA
Bi-dir protected Kline wire
Analog Input/Output
Open drain
ISO9141 logical
output
DGT Output
Open drain
VRS
CAN
ISO9141
47
K_TX
45
K_LINE
46
K_RX
Low side drivers
60
OUT1
Output low-side 1 for
R , L Load(Injector)
Power output
Open drain
61
OUT2
Output low-side 2 for
R , L Load(Injector)
Power output
Open drain
25
OUT3
Output low-side 3 for
R , L Load(Injector)
Power output
Open drain
DocID027721 Rev 2
13/141
140
Pins description
L9779WD-SPI
Table 2. Pins description (continued)
Pin#
Name
28
OUT4
26
Function
Type
Polarization/note
Output low-side 4 for R, L
Load(Injector)
Power output
Open drain
PGND3
Power GND
PGND1
-
27
PGND4
Power GND
PGND2
-
57
OUT5
Output low-side 5 for R , L
Load(High current)
Power output
Open drain
56
OUT6
Outputlow-side 6 for
R , L Load(Heater)
Power output
Open drain
29
OUT7
Output low-side 7 for
R , L Load(Heater)
Power output
Open drain
30
OUT13
Output low-side 13 for
Relay
Power output
Open drain
31
OUT14
Output low-side 14 for relay
Power output
Open drain
54
OUT15
output low-side 15 for relay
Power output
Open drain
24
OUT16
Output low-side 16 for relay
Power output
Open drain
32
OUT17
Output low-side 17 for relay
Power output
Open drain
55
OUT18
Output low-side 18 for relay
Power output
Open drain
58
PGND3
Power GND
PGND3
-
59
PGND4
Power GND
PGND4
-
IGBT pre-driver
22
IGN1
Output ignition driver 1
Power output
-
62
IGN2
Output ignition driver 2
Power output
-
63
IGN3
Output ignition driver 3
Power output
-
64
IGN4
Output ignition driver 4
Power output
-
Main relay driver
Power output
Open drain
Output low-side 20
Power output
Open drain
Main relay driver
23
MRD
Low current drivers (50 mA)
40
OUT20
Parallel input
39
IN1
Parallel input for OUT1
DGT Input
-
48
IN2
Parallel input for OUT2
DGT Input
-
37
IN3
Parallel input for OUT3
DGT Input
-
36
IN4
Parallel input for OUT4
DGT Input
-
35
IN5
Parallel input for OUT5
DGT Input
-
34
IN6
Parallel input for OUT6
DGT Input
-
14/141
DocID027721 Rev 2
L9779WD-SPI
Pins description
Table 2. Pins description (continued)
Pin#
Name
33
IN7
49
Function
Type
Polarization/note
Parallel input for OUT7
DGT Input
-
PWM
(IN8)
PWM input for stepper motor
driving
DGT Input
-
19
IGNI1
Parallel input for IGN1
DGT Input
-
18
IGNI2
Parallel input for IGN2
DGT Input
-
15
IGNI3
Parallel input for IGN3
DGT Input
-
14
IGNI4
Parallel input for IGN4
DGT Input
-
SPI interface
51
SCK
SPI clock input
DGT Input
-
53
CS
SPI chip select
DGT Input
-
50
DIN
SPI data input
DGT Input
-
52
DO
SPI data output
DGT Output
-
Stepper motor driver
13
OUTA
Stepper
Power output
-
16
OUTB
Stepper
Power output
-
17
OUTC
Stepper
Power output
-
20
OUTD
Stepper
Power output
-
21
GND
Stepper GND
GND
-
1. External components required.
Note:
OUT11 and OUT12 are not valid.
DocID027721 Rev 2
15/141
140
DocID027721 Rev 2
'
*1'
&
Q)
*1'
(B)B'*%
(B)B'*%
&
Q)
9
9
*1'
S)
S)
*1'
.
5
.
287B956
95,1
-
-
95,1
S)
*1'
&
73 95,1
73
95,1
S)
5
*1'
.
&
5
.
73
73
&$1B7;
&$1B5;
.B5;
.B7;
&$1B/
&$1B+
73
5(6(7
5(6(7 -3 5(6(7
9''
5
&/.
&6
63,B'2
&
Q)
5
.
7R WKH X&
)URP WKH X&
7R WKH X&
7R WKH X&
)URP WKH X&
*1' &
&
S)
&
.B/,1(
)URP WKH X&
)URP WKH X&
7R WKH X&
)URP WKH X&
)URP WKH X&
*1'
677+5$
'
-3
,*1
9563
9561
287B956
&$1B/
&$1B+
&$1B7;
&$1B5;
.B5;
.B/,1(
.B7;
&/.
&6
'2
3:0
',1
:'$
567
975.
975.
9
.( 28 V), the charge pump will be switched
off automatically no matter the cp_off bit status.
Figure 19. VDD5 overvoltage diagram
6$$
6TH?6$$?/6?HIGH
6TH?6$$?/6?LOW
4HE6$$?/6
FLAGISCLEARED
AFTERU#
READING
6$$?/6
)NTERNAL
RESETFOR
DRIVERS
REGISTER
$RIVERS
/UTPUT
T?6$$?/6
/.
T?6$$?/6
/&&
-2$
/54
/54
/.
/.
.OAUTOMATICSWITCH
ON
AFTER6$$OVERVOLTAGE
U#SENDSCOMMAND
34!24ANDWRITES
#/.42/,2%'
/.
66
234
'!0'03
40/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Figure 20. VDD5 vs battery: ramp-up diagram
6B
;6=
6B
.ORMAL"ATTERY
6DD
;S=
2AMP
UPTO.ORMAL"ATTERY
'!0'03
Figure 21. VDD5 vs battery (ramp-down diagram)
6B
;6=
.ORMAL"ATTERY
6B
6DD
,OW"ATTERYTO,OW4EMPERATURE#RANKING"ATTERY
2AMP
$OWN
;S=
'!0'03
DocID027721 Rev 2
41/141
140
Functional description
L9779WD-SPI
Table 15. Linear 3.3 V regulator electrical characteristics
Pin
V3V3
V3V3
Symbol
Parameter
Test condition
Typ
Max
Unit
V3V3
Output voltage 3.3 V
IV3V3 = 5-100 mA
VB = 6-18 V
3.23
3.3
3.36
V
V3V3
Output voltage 3.3 V
Square wave on V3V3, IV3V3=
±20 mA; f0 = 5 kHz; tr = tf = 0.5µs;
within the output current range
3.2
3.3
3.36
V
Srpower-up5
Output voltage slew
rate at power-up
IV3V3 = 12.5 mA
Cout = 4.7 µF
4
12
20
V/ms
IV3V3_MAX
Output current limitation V3V3 = 3 V
V3V3
VB = 6-18 V
200
-
500
mA
Vline_3
Line regulation voltage
IV3V3 = 5-100 mA
6V < VB < 18 V
-
-
25
mV
Vload_3
Load regulation voltage
IV3V3 = 5-100 mA
6V < VB < 18 V
-
-
25
mV
V3V3Drift
Total output 3V3
voltage drift
Cout = 4.7 µF (parameter
validated by reliability test)
-
-
100
mV
SVRV3V3
Supply voltage 3.3 V
rejection
Cout = 4.7 µF;
4 Vpp, VB mean 9 V, f = 20 kHz
40
-
-
dB
Vdrop_out
-
VDD5 = 3.3 V; IV3V3 =100 mA
-
-
200
mV
Max overshoot at
switch on
-
-
-
3.45
V
Max overshoot exiting
from cranking*1
Not tested, it is guaranteed by
design
-
-
3.45
V
Tested by scan
-
-
1
ms
V3V3_OS
-
Delay between VDD5>
TD_Start_V3V
VDD_UV_high and
3
V3V3 switch on
42/141
Min
DocID027721 Rev 2
L9779WD-SPI
Functional description
Table 16. 5V tracking sensor supply electrical characteristics
Pin
Symbol
Parameter
Test condition
Min
Typ
Max
Unit
VDD5
-20
-
VDD5
+20
mV
160
-
400
mA
Output voltage tracking error
VB = 6-18 V
1 mA < IVTRK < 100 mA
Output current limitation
VTRK1,2
VTRK = -1V
VLINE_trk
Line regulation voltage VTRK
VB = 6-18 V
1 mA < IVTRK < 100 mA
Ctrk = 1 µF
-
-
20
mV
Vload_ trk
Load regulation voltage VTRK
VB = 6-18 V
1 mA < IVTRK < 100 mA
Ctrk = 1 µF
-
-
20
mV
Isink_VTRK
Short circuit reverse current
Output shorted
to Vbat +2 V
-
-
4
mA
101
-
5.3
-
-
V
40
-
-
dB
VB = 4.8 V;
IVTRK1,2 = 100 mA
-
-
3600
mΩ
Cload 470 nF tested with
1 µF
-
-
5.5
V
Cload < 470 nF tested with
100 nF
-
-
6
V
48
64
80
µs
VTRK
IVTRK_MAX
VTRK_1
VTRK_2 ITH_UVTRK Over current threshold VTRK
VB = 6-18 V
VTH_OVTRK V threshold over voltage VTRK Ramp on tracking output
Cout = 4.7 µF; VDD5 = 5 V
4 Vpp, VB mean 9 V,
f = 20 kHz
Supply voltage tracking
SVR_VTRK
rejection
Rdson
Vos
Vov_filter
-
Over shoot during power up
Overvoltage filter time
Test by scan
DocID027721 Rev 2
IVTRK_MAX mA
43/141
140
Functional description
6.7
L9779WD-SPI
Main relay driver
Figure 22. Main relay driver controlled by L9779WD-SPI
6BAT
,OAD
RELAY
07,?%.
+%9
6"
$RIVER
PROTECTION
-2$
'!0'03
6.7.1
Main relay driver functionality description
Main relay driver MRD is controlled by L9779WD-SPI depending on the voltage levels at
pins KEY_ON, VB and the power latch mode set by the µC as described in the previous
sections.
The output stage MRD for main-relay-control is realized with a low-side-switch with
integrated clamping at VCL voltage realized with a zener diode.
When VB is present (VB>VB_LV) the MRD driver is protected, in ON condition, against the
over temperature fault. When the temperature is above junction the MRD is switched off.
After HYSTERESIS the MRD returns to normal operation automatically.
In case of MRD short to battery without VB present i.e. during start-up sequence, when the
current exceeds the IOVC value, this pin will be switched off after a certain filter time
TFILTEROVC; to turn on MRD again it is necessary a high to low transition on KEY_ON pin.
Refer to scenario 5 (Figure 29).
In case of MRD short to battery with VB present i.e. during normal mode, when the current
exceeds the IOVC value, this pin will be switched off after a certain filter time TFILTEROVC;
the uC can try to turn on the MRD using the command MRD_REACT until the VB voltage is
above VB_UV. Below this threshold the MRD retries to switch on, then if the fault is still
present the MRD switches off and to turn it on again it is necessary a high to low transition
on KEY_ON pin. Refer to scenario 6-7-8 (Figure 30, 31 and 32).
In every condition the bit MRD_OVC reports that the MRD is currently off due to a previous
over current event.
Diagnosis of MRD short to ground may be done as described in the power up/down
management unit, switching off the MRD keeping alive all other regulators.
44/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Table 17. Main relay driver electrical characteristics
Pin
Symbol
Min
Typ
Max
Unit
Iload = 0.4 A; Vbat = 0 &
13.5 V
-
-
2.4
Output leakage current
Vpin = 13.5 V; Vbat = 0 &
13.5 V
-
-
10
µA
Voltage S/R on/off
R = 21 , C = 10 nF;
Vbat = 0 & 13.5 V
1
-
10
V/µs
Output clamping voltage
Vbat = 0 & 13.5 V
42
-
55
V
Imax
Output current
Design info
-
0.6
A
IOVC
Over current threshold
Vbat = 0 & 13.5 V
0.7
-
1.4
A
Over current filtering time
Test by SCAN
5.25
7
8.75
us
VB threshold for MRD
active
Vbat = 0 & 13.5 V
-
-
4.15
V
PWclampSP
Clamp single pulse ATE
test
Iload = 0.5 A; single pulse
-
-
15
mJ
PWclampRP
Clamp repetitive pulses
reliability test
Iload = 0.25 A
Freq =1 Hz; 1 Mpulse
-
-
4
mJ
IOUTlk MRD
VS/R
Vcl
TFILTEROVC
VB_UV
6.7.2
Test condition
Drain –source resistance
RDS-on
MRD
Parameter
MRD scenarios
Figure 23. Scenario 1a: Standard on/off MRD driver with NO power latch mode bit
PSOFF = 0
+%9?/.
T+%9
T+%9
-2$
6"
0/2( 6"6"?56?(
0/2
6$$
234
T
'!0'03
DocID027721 Rev 2
45/141
140
Functional description
L9779WD-SPI
Figure 24. Scenario 1b: Standard on/off MRD driver with NO power latch mode bit
PSOFF = 1
+%9?/.
T+%9
T+%9
-2$
6"?56?,
6"
0/2(
6"6"?56?(
0/2
6$$?56?,
6$$
234
T
'!0'03
Figure 25. Scenario 2: Standard on/off MRD driver with power latch mode bit PSOFF = 0
T+%9
T+%9
3WITCHEDOFFBY
U#BIT07,?%.
-2$
6"
0/2
6$$
234
T
'!0'03
Figure 26. Scenario 3a: Deglitch concept on KEY_ON at start-up
+%9?/.
T+%9
-2$
6"
0/2
T
6$$
'!0'03
46/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Figure 27. Scenario 3b: Deglitch concept on KEY_ON during ON phase
+%9?/.
T+%9
T+%9
-2$
6"
0/2
6$$
T
'!0'03
Figure 28. Scenario 4: Non standard on, KEY_ON removed before VB present
+%9?/.
T+%9
T+%9
-2$
6"
0/2
6$$
T
'!0'03
Figure 29. Scenario 5: MRD overcurrent without VB
+%9?/.
T+%9
4&),4%26#
T+%9
-2$
4HISSIGNALKEEPS
THE-2$OFFUNTIL
+%9?/.LOW
)NTERNAL
/VER#URR?-2$
LATCH
3HORTTO6"ON -2$
&!5,4
02%3%.4
6"
0/2
6$$
T
'!0'03
DocID027721 Rev 2
47/141
140
Functional description
L9779WD-SPI
Figure 30. Scenario 6: permanent MRD overcurrent with VBPOR restart
+%9?/.
T+%9
.ORESETFOR-2$?/6#
AFTERREADING
-2$
T+%9
)NTERNAL
/VER#URR?-2$
LATCH
4&,)4%26#
-2$?/6#
&!5,4
02%3%.4
3HORTTO6"ON -2$
6"
0/2
6$$
T
'!0'03
Figure 31. Scenario 7 (temporary MRD overcurrent with VB POR restart)
+%9?/.
T+%9
-2$
4&),4%26#
-2$?/6#
3HORTTO6"ON -2$
&!5,4
02%3%.4
6"
0/2
6$$
T
'!0'03
48/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Figure 32. Scenario 8 (temporary MRD overcurrent with VB µC commands restart)
#READSTHE
-2$?/6#FLAG
+%9?/.
#SWITCHONTHE
-2$BY
-2$?2%!#4BIT
T+%9
-2$
T+%9
-2$?/6#
3HORTTO6"ON -2$
&!5,4
02%3%.4
6"
0/2
6$$
T
'!0'03
DocID027721 Rev 2
49/141
140
Functional description
L9779WD-SPI
6.8
Low-side switch function (LSa, LSb, LSd)
6.8.1
LSa function OUT 1 to 5 (Injectors)
Figure 33. LSa function OUT 1 to 5 (Injectors)
6BAT
30)?$IAG?REG
0ROTECTION
$IAGNOSIS
2ESET? ,
30)?#MD?,3A
,OAD
).*
/UT?,3A
$RIVER
/%INT
).TO
*$3*36
LSa functionality description
LSa are 5 protected low-side drivers with diagnosis and over current protection circuit.
They are driven by logical-AND of SPI control bit and dedicated parallel input IN1...IN5.
The maximum current for OUT1 to 4 is 2.2 A while for OUT5 is 3 A.
When Reset_L9779 signal or OUT_DIS bit is asserted OUT_LSa is switched off.
When an over current fault occurs, the driver switches off with faster slew rate in order to
reduce the power dissipation.
The turn on/off time is fixed and the slew-rate is controlled.
Max Cload = 20 nF.
Table 18. LSa electrical characteristics
Pin
Symbol
Min
Typ
Max
Unit
Drain source resistance
Iload = 1.25 A
-
-
0.72
IOUTlk
Output leakage current
Vpin = 13.5 V
-
-
10
µA
Voltage S/R on/off
Load: 8 , 10 nF
From 80% to 30% of VOUT
2
-
6
V/µs
FAST VR/S off when an
OVC fault happens
Load: 8 , 10 nF
From 80% to 30% of VOUT
5
-
20
V/µs
TTurn-on_ LSa
Turn-on delay time
From command to 80%
VOUT, Load: 8 , 10 nF
-
-
6
µs
TTurn-off_ LSa
Turn-off delay time
From command to 30%
VOUT, Load: 8 , 10 nF
-
-
6
µs
Output clamping voltage
Iload = 1.25 A
53
58
63
V
-
-
25
mJ
VS/R GateKill
Vcl
PWclampSP
50/141
Test condition
RDS-on LSa
VS/R
OUT
1 to 5
Parameter
Clamp single pulse ATE test Iload = 1.25 A single pulse
DocID027721 Rev 2
L9779WD-SPI
Functional description
Table 18. LSa electrical characteristics (continued)
Pin
Symbol
PWclampRP
OUT
1 to 4
Reverse
voltage
PWclampSP
OUT5
PWclampRP
Parameter
Test condition
Min
Typ
Max
Tc ≤ 30°C; I_OUT_n < 1.8 A
13 Mio cycles
-
-
7.5
Tc ≤ 65°C; I_OUT_n < 1.4 A
130 Mio cycles
-
-
4
Tc ≤ 80°C; I_OUT_n < 1.4 A
214 Mio cycles
-
-
4
Clamp repetitive pulses
Tc ≤ 100°C; I_OUT_n < 1.4 A
Freq = 50 Hz (to be verified) 175 Mio cycle
-
-
4
Tc ≤ 115°C; I_OUT_n < 1.4 A
45 Mio cycle
-
-
4
Tc ≤ 130°C; I_out_n < 1.0 A
65 Mio cycle
-
-
3
Tc ≤ 145°C; I_out_n < 1.0 A
6 Mio cycle
-
-
3
-0.5
-
-1.2
Iload = 1.25 A single pulse
-
-
25
Tc < 30°C; I_OUT5 < 0.7 A
21 Mio cycles
-
-
17
Tc < 65°C; I_OUT5 < 0.7 A
70 Mio cycles
-
-
14
Tc < 80°C; I_OUT5 < 0.7 A
115.5 Mio cycles
-
-
14
Tc < 90°C; I_OUT5 < 0.7 A
63 Mio cycles
-
-
14
Tc < 100°C; I_OUT5 < 0.7 A
31.5 Mio cycles
-
-
14
Tc < 105°C; I_OUT5 < 0.7 A
10.5 Mio cycles
-
-
14
Tc < 110°C; I_OUT5 < 0.7 A
7 Mio cycles
-
-
14
Tc < 115°C; I_OUT5 < 0.7 A
5.95 Mio cycles
-
-
14
Tc < 120°C; I_OUT5 < 0.7 A
5.25 Mio cycles
-
-
12
Tc < 125°C; I_OUT5 < 0.7 A
4.9 Mio cycles
-
-
12
Tc < 130°C; I_OUT5 < 0.7 A
4.55 Mio cycles
-
-
12
Body diode reverse current
voltage drop (valid for OUT5 I = -2.2 A
also)
Clamp single pulse
Clamp repetitive pulses
Freq = 30 Hz
DocID027721 Rev 2
Unit
mJ
V
mJ
51/141
140
Functional description
L9779WD-SPI
Table 18. LSa electrical characteristics (continued)
Pin
OUT5
Symbol
PWclampRP
Parameter
Clamp repetitive pulses
Freq = 30 Hz
Test condition
Min
Typ
Max
Tc < 135°C; I_OUT5 < 0.7 A
4.55 Mio cycles
-
-
12
Tc < 140°C; I_OUT5 < 0.7 A
3.5 Mio cycles
-
-
12
Tc < 145°C; I_OUT5 < 0.7 A
3.5 Mio cycles
-
-
12
Unit
mJ
Table 19. LSa diagnosis electrical characteristics
Pin
Symbol
Ropen load
Min resistor value open
Not tested
load detection
Min
Typ
Max
Unit
500
-
-
k
Output current
Not tested
-
2.2
-
A
IOVC
Over current threshold
-
3
-
6
A
Over current filtering
time
Tested by scan
2
3
4
µs
Filtering open load and
Tested by scan
short to gnd diag. off
35
50
65
µs
Td_mask
Diagnosis Mask time
after switch-off
Tested by scan
300
-
500
µs
VHVT
Open load threshold
voltage
-
VOutopen
+120mV
-
3
V
Open load output
voltage
Open load
condition
2.3
-
2.7
V
VLVT
Output short-circuit to
GND voltage range
threshold
-
1.9
-
VOutopen
-200mV
V
IOUT_PD
Output diagnostic pull
down current Off state
Vpin = 5 V
50
-
110
µA
IOUT_PU
Output diagnostic pull
up current Off state
Vpin = 1.5 V
110
160
210
µA
Open load threshold
current
-
30
-
90
µA
TFILTERdiaggoff
VOutopen
OUT
1 to 5
Test condition
Imax
TFILTEROVC
OUT
1 to 5
Parameter
Itopen
For OUT 5 only the following parameters are different respect to OUT1 to 4.
Table 20. LSa diagnosis electrical characteristics (OUT 5)
Pin
OUT 5
52/141
Symbol
Parameter
Test condition
Imax
Output current
Not tested
IOVC
Over current threshold
-
DocID027721 Rev 2
Min
Typ
Max
Unit
-
3
-
A
3.7
-
6.9
A
L9779WD-SPI
6.8.2
Functional description
LSb function OUT6, 7 (O2 heater)
Figure 34. LSb function OUT6, 7 (O2 heater)
6BAT
30)?$IAG?REG
0ROTECTION
$IAGNOSIS
,OAD
2ESET?,
30)?#MD?,3B
%.?,OW2ES
/UT?,3B
$RIVER
).
*$3*36
LSb functionality description
LSb are 2 protected low-side drivers with diagnosis and over current protection circuit.
They are driven by logical-AND of SPI control bit and dedicated parallel input IN6, IN7.
The turn on/off time is fixed and the slew-rate is controlled.
When an over current fault occurs, the driver switches off with faster slew rate in order to
reduce the power dissipation.
The turn on/off time is fixed and the slew-rate is controlled.
Max Cload = 20 nF.
Table 21. LSb electrical characteristics
Pin
Symbol
Parameter
Test condition
T = -40°C, Iload = 3 A
RDS-on LSb
Drain source resistance T = 25°C, Iload = 3 A
T = 130°C, Iload = 3 A
OUT 6, 7
IOUTlk
Output leakage current
-
VS/R
Voltage S/R on/off
R = 4.5 , C = 10 nF
From 80% to 30% of VOUT
VS/R GateKill
FAST VR/S off when an Load: 8 , 10 nF
OVC fault happens
From 80% to 30% of VOUT
Min
Typ
Max
Unit
0.05
-
0.16
0.13
-
0.23
0.21
-
0.47
-
-
10
µA
0.5
-
2.5
V/µs
5
-
20
V/µs
TTurn-on_ LSb
Turn-on delay time
From command to 80% VOUT
Load: 4.5 , 10 nF
-
-
7.5
µs
TTurn-off_ LSb
Turn-off delay time
From command to 20% VOUT
Load: 4.5 , 10 nF
-
-
7.5
µs
41
45
49
V
-
-
25
mJ
Vcl
PWclampSP
Output clamping voltage Iload = 1.5 A
Clamp single pulse ATE
Iload = 1.5 A; single pulse
test
DocID027721 Rev 2
53/141
140
Functional description
L9779WD-SPI
Table 21. LSb electrical characteristics (continued)
Pin
Symbol
Parameter
Clamp repetitive pulses
Freq = 5 Hz Reliability
Test
PWclampRP
OUT 6, 7
Reverse voltage
Body diode reverse
current voltage drop
Test condition
Min
Typ
Max
Tc < 30 °C; I_OUT_n < 1.8 A
13 Mio cycles
-
-
7.5
Tc < 65°C; I_OUT_n < 1.4 A
130 Mio cycles
-
-
4
Tc < 80°C; I_OUT_n < 1.4 A
214 Mio cycles
-
-
4
Tc < 100°C; I_OUT_n < 1.4 A
175 Mio cycle
-
-
4
Tc < 115°C; I_OUT_n < 1.4 A
45 Mio cycle
-
-
4
Tc < 130°C; I_OUT_n < 1.0 A
65 Mio cycle
-
-
3
Tc IOVC for t > TFILTEROVC the driver is switched off and the fault is set, latched and
reset every Read Diag operation.
When the fault occurs the driver is switched off with a controlled slew-rate.
The driver switches on AGAIN in the following conditions:
–
If command goes LOW and then HIGH again
–
If command remains active the driver is switched automatically on at every Read
Diag operation.
Short to GND:
Not available.
Open Load:
Not available.
Channel “off”
Short to Vb:
Not available.
Short to GND & open load:
In open load condition an internal circuit drives the OUTx voltage to VOUTOPEN with a
maximum pull-up/down current of IOUT_PU and IOUT_PD.
Diagnosis is done comparing driver output voltage with internal voltage thresholds VHVT
and VLVT: if the voltage is below VLVT a short to GND is detected, if the voltage is above
VLVT and below VHVT an open load is detected and if the voltage is above VHVT no fault is
present.
Diagnosis status is masked for Td_mask time after the off event occurs to allow the output
voltage to reach the proper value.
Short to GND and open load are filtered with TFILTERdiagoff time.
Diag status is latched and reset at every Read Diag operation.
62/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
For LSc(OUT20) the IOUT_PD/IOUT_PU can be switched off by OFF_LCDR bit and
therefore the Open Load and Short To GND detections are not available.
Figure 40. LSx diagnosis circuit
6BAT
,OAD
6DD
)/54?05
&ILTER
$IAGNOSIS
PROTECTION
/UT?,3X
)/54?0$
&ILTER
2 ESET?,
$RIVER
30)?# MD?,3X
%.? ,OW2 ES /%?INT
*$3*36
Table 27. Fault encoding condition
Bit n+1
Bit n
Description
1
1
Power stage OK no Fail
0
1
Open Load OL
1
0
Short circuit to VB/over current SGB
0
0
Short circuit to GND SCG
Figure 41. Fault encoding condition diagram
6?/54X
LOW
SIDE
.ORMAL
.ORMAL
FUNCTION
6
6(64MIN
6/54/0%. MAX
6/54/0%.
6/54/0%.MIN
/PEN ,OAD
/PEN,OAD
6,64MAX
6
3HORT TO
3HORTTO
'.$
'!0'03
DocID027721 Rev 2
63/141
140
Functional description
L9779WD-SPI
Figure 42. LSx ON/OFF slew rate control diagram
4ON
;6=; 6=
4OFF
,OW3IDE6OUT
32ON
32OFF
6OUT,OW3IDE
,OGICCONTROLL
,OGICCONTROLL
;MS=
;!=; 6=
)GATE
)ON
)SRON
6GATE
6GATE
;MS=
)SROFF
)GATE
)OFF
'!0'03
6.10
Ignition pre-drivers (IGN1 to 4)
Figure 43. Ignition-pre drivers (IGN1 to 4) circuit
6"
6$$
)'.X
)'.)X
,/')#
/6%2
4%-0
$%4%#4)/.
/0%.,/!$
#,+
$/
$)
#3
30)
&),4%2
3(/244/6"
3(/244/'.$
$%4%#4)/.
*$3*36
64/141
DocID027721 Rev 2
L9779WD-SPI
6.10.1
Functional description
Ignition pre-drivers functionality description
The 4 ignition pre-drivers are push-pull output with diagnosis and over current protection
circuit. They can drive IGBT Darlington transistors.
The load is switched on with a current and switched off with I_LS_cont current.
They are driven by logical-AND of SPI control bit and dedicated parallel input IGN1...IGN4.
When Reset_L9779 signal or OUT_DIS bit is asserted, output IGNx becomes high
impedance.
By SPI command it is possible to have the low-side stage always off, in this case there is an
external pull down resistor that discharges The IGNx output in Off phase. This Bit is present
in CONFIG_REG2 bit0 and its name is LS_IGN_OFF.
Table 28. Ignition pre-drivers electrical characteristics
Pin
Symbol
VDD5
Parameter
Test condition
Min
Typ
Max
Unit
5.1
V
Supply voltage range
Info only
4.9
-
Output voltage high level
I_cont = 15 mA
4.35
-
Leakage current
-
-10
-
10
µA
I_lim
High-side current limitation
-
19
-
33
mA
I_LS_cont
LS path continuous current
capability
Add also the RDSON
Test
-
-
30
mA
-
3
-
14
Vign
Ileak_out
I_LS_RD
LS RDSON
S on
V
IOVC
High side over current detection
-
7
-
14
mA
VLVT
Output short-circuit to Gnd
threshold voltage
-
1.6
1.8
2
V
-
VDD5
+0.1V
-
VDD5
+2V
-
100
-
850
µA
-
-
10
µs
50
-
100
µs
IGN1 to 4
Vign_scb SCB detection voltage
Iol
OL detection current
-
Tdon
Output on delay time
CIgn = 10 nF
OVC/Open load diagnosis filter
time, Test by scan
-
Output on rise time
CIgn = 10 nF
-
-
10
µs
Output off delay time
CIgn = 10 nF
-
-
10
µs
Output off fall time
CIgn = 10 nF
-
-
10
µs
Rload
Resistive load
For info only
1
-
10
kΩ
Cout
Output capacitance loads
For info only
4
-
15
nF
Tign_filt
Tr
Tdoff
Tf
DocID027721 Rev 2
65/141
140
Functional description
L9779WD-SPI
Figure 44. Ignition-pre drivers (IGN1 to 4) diagram
6ALID30)DATAF RAME
TIME
TR
TDON
TDOFF
TF
6) '.X
6) '.
6) '.
TIME
6) '.
6.10.2
'!0'03
Ignition pre-driver diagnosis
Each channel locally detects and writes its own fault or no-fault condition (codified on 2 bit
according to Table 27: Fault encoding condition).
The detected faults are:
IGNx short circuit to battery (SCB)
IGNx open load (OL)
IGNx short to GND (SCG)
Short to GND
This diagnosis is made in two different ways based on the status of IGN_DIA_SGEN.
If IGN_DIA_SGEN = 1
When the IGNx is on, if for a time longer than Tign_filt, the current is bigger than IOVC, the
short to GND fault is detected and the IGNx output becomes high impedance, the fault is
latched and is reset at every Read Diag operation.
If IGN_DIA_SGEN = 0
When the IGNx is on, if for a time longer than Tign_filt, the voltage of IGNx is lower than
VLVT, the short to GND fault is detected and the IGNx output becomes high impedance, the
fault is latched and is reset every Read Diag operation.
The high impedance is removed and IGNx is driven by the command:
–
after a Read Diag operation
–
if command is switched OFF and ON again.
Open load
When IGNx is on, if for a time longer than Tign_filt, the current is below Iol the open-load
fault is detected, latched and it is reset at every Read Diag operation. IGNx remains always
driven.
66/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Short circuit to battery
When the load is on, if the voltage of IGNx is bigger than the Vign_scb threshold for a time
longer than Tign_filt the SCB fault is detected and the output IGNx becomes high
impedance.
When the load is off, if the voltage of IGNx is bigger than the Vign_scb threshold for a time
longer than Tign_filt the SCB fault is detected and the output IGNx becomes high
impedance.
The SCB fault has a higher priority with respect to the OL fault.
According to the IGN_DIA_MODE bit, two behaviours are possible:
1.
Latch mode
The fault is latched and is reset at every Read Diag operation.
The high impedance is removed and IGNx is driven by the command:
2.
–
after a Read Diag operation
–
if the command is switched OFF and ON again.
No latch mode
The fault is not latched and if the voltage of IGNx is lower than the Vign_scb threshold
for a time longer than Tign_filt the fault state disappears and the high impedance is
removed.
6.11
Configurable power stages (CPS) (OUTA to OUTD)
6.11.1
Configurable power stages functionality description
L9779WD-SPI half bridges with 1 low side N-channel power stage and 1 high side Pchannel power stages [OUTA to OUTD] that can be arranged as follows using the
CPS_CONF bit (default H-bridge):
The low side of each half can be connected in parallel to obtain a low side driver with
lower Rdson resistance.
For three reasons outputs are switched in parallel:
a)
to increase current capability (please see electrical characteristic)
b)
to reduce power dissipation (please see electrical characteristic)
c)
to increase clamp energy capability (please see electrical characteristic) The max.
clamping energy is probably less than the sum of the corresponding max.
clamping energies.
Parallel connection of Low-side power stages is possible as the control bit to turn-on
and off the power stages is allocated in the same register. Unlike the H-bridge
configuration, no coherency check is done.
When configured for stepper motor driving the motor movement is controlled through bit EN,
DIR and PWM input SPI bit (see Table 29).
In single power stage configuration HS and LS power stages (OUT21...OUT28) can be used
as single power stages, and any of them can be connected in parallel to each other (same
type).
DocID027721 Rev 2
67/141
140
Functional description
L9779WD-SPI
Stepper is controlled by the logic AND between PWM input pin and PWM SPI bit. Thus to
control it by PWM input, SPI PWM bit must be set first, and to do it by SPI PWM bit, PWM
input pin must be set first.
If the bit EN=1, the writing of bit PWM from 0 to 1 leads to the next step of the turn on
sequence. The writing of bit PWM to 0 left unchanged the MOS of the bridge that is ON. The
step is done only if the PWM bit goes from 0 to 1.
The order of the turn-on sequence is defined by the bit DIR.
Table 29. Configuration of the stepper motor
PWM
EN
DIR
H-bridge 1 Power on
H-bridge 2 Power on
X
0
X
None
None
1
1
1
OUTA_HS, OUTB_LS
OUTD_HS, OUTC_LS
1
1
1
OUTA_HS, OUTB_LS
OUTC_HS, OUTD_LS
1
1
1
OUTB_HS, OUTA_LS
OUTC_HS, OUTD_LS
1
1
1
OUTB_HS, OUTA_LS
OUTD_HS, OUTC_LS
1
1
0
OUTA_HS, OUTB_LS
OUTD_HS, OUTC_LS
1
1
0
OUTB_HS, OUTA_LS
OUTD_HS, OUTC_LS
1
1
0
OUTB_HS, OUTA_LS
OUTC_HS, OUTD_LS
1
1
0
OUTA_HS, OUTB_LS
OUTC_HS, OUTD_LS
The initial stepper position, after power-on, is the one with OUTA_HS, OUTB_LS ON in
Hbridge1 and with OUTD_HS, OUTC_LS ON in Hbridge2.
If configured as H-bridges the internal logic prohibits that the low-side and the high-side
switch of the same half-bridge will be switched on simultaneously.
In the below diagram the stepper motor operation is available.
68/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Figure 45. Stepper motor operation diagram
7RITING$)2BIT
7RITING$)2BIT
7RITING%.BIT
7RITING%.BIT
7RITING07-BITFROMTO
7RITING07-BITFROMTO
4SETTLE
/54/.
/54!
/54/.
/54/.
/54"
/54/.
/54/.
/54#
/54/.
/54/.
/54$
/54/.
*$3*36
The writing of DIR bit and PWM bit cannot be done in the same time, at least two
consecutive SPI frames are necessary.(if done the stepper will move one step in the old
direction).
The writing of EN bit and PWM bit cannot be done in the same time, at least two
consecutive SPI frames are necessary. (If done it is supposed that only the EN bit has been
received).
Table 30. Half bridge 1
H-bridge1
OUTA
Comment
Nominal
current
Ron max
Switch off
current
(min.)
Clamping
(typ.)
High-side P-Ch
0.6 A
1.7
1A
N/A
Low-side N-Ch
0.6 A
1.5
1A
45 V
DocID027721 Rev 2
69/141
140
Functional description
L9779WD-SPI
Table 31. Half bridge 2
H-bridge2
OUTB
Comment
Nominal
current
Ron max
Switch off
current
(min.)
Clamping
(typ.)
High-side P-Ch
0.6 A
1.7
1A
N/A
Low-side N-Ch
0.6 A
1.5
1A
45 V
Table 32. Half bridge 3
H-bridge3
OUTC
Comment
Nominal
current
Ron max
Switch off
current
(min.)
Clamping
(typ.)
High-side P-Ch
0.6 A
1.7
1A
N/A
Low-side N-Ch
0.6 A
1.5
1A
45 V
Table 33. Half bridge 4
H-bridge4
OUTD
Comment
Nominal
current
Ron max
Switch off
current
(min.)
Clamping
(typ.)
High-side P-Ch
0.6 A
1.7
1A
N/A
Low-side N-Ch
0.6 A
1.5
1A
45 V
Figure 46. Stepper motor driver: H-bridge1
6"!4
#-$?/54
#-$?/54
/54"
/54!
#-$?/54
#-$?/54
'.$
*$3*36
Figure 47. Stepper motor driver: H-bridge2
6"!4
#-$?/54
#-$?/54
/54#
/54$
#-$?/54
#-$?/54
'.$
*$3*36
70/141
DocID027721 Rev 2
L9779WD-SPI
6.11.2
Functional description
Diagnosis of configurable power stages (CPS)
All CPS have fault diagnostic functions:
Short-circuit to battery voltage: (SCB) can be detected if switches are turned on
Short-circuit to ground:
(SCG) can be detected if switches are turned off
Open load:
(OL) can be detected if switches are turned off
Over temperature:
(OT) will be detected with the general thermal
warning(OT2)
Diagnosis is different for configuration as full-bridges or as single power stages. The faults
are coded in different way and are stored in diagnostic registers.
In each configuration the registers can be read via SPI. With the beginning of each read
cycle the registers are cleared automatically.
In each configuration there is one central diagnostic bit F2 for fault occurrence at any output.
6.11.3
Diagnosis of CPS [OUTA to OUTD] when configured as H-bridges
Stepper motor driver OFF diagnosis (output in high impedance state).
In OFF condition Short to GND/Short to VB or Open Load condition is continuously detected
through a deglitch filter Tdgc_off, after Tmask_step masking time to filter ON/ OFF
transition. To avoid false diagnostic due to motor residual movement, the off command (EN
bit=0) must be sent Tsettle time after the last valid on command PWM bit written to 1 (one
couple of HS and LS switched on). A fault longer than deglitch time is latched.
Off state diagnostic fault can be overwritten by on state fault.
Off state fault does not prevent the stepper from switching on. The latched fault is cleared by
reading the diagnosis data registers via SPI - and so resetting the diagnosis registers.
An Off state due to a wrong command sent by SPI interface does not activate the Off
diagnosis.
Stepper motor driver ON diagnosis (Output driven by SPI CONTR_REG bit)
In ON condition when over current fault is detected and validated after digital filtering time
Tdgc_ON, the bridge is turned OFF and the fault is latched. The bridge is turned ON again
by SPI command. The latched fault is cleared by reading the diagnosis data registers via
SPI and so resetting the diagnosis registers.
Over current fault has higher priority over OFF condition faults.
Each Bridge has dedicated fault diagnosis register H1_DIAG, H2_DIAG.
In ON condition if the current in the load current is lower than I_OPEN_LOAD for a time
longer than Tdgc_ol_on, an Open load condition is detected
It could be necessary two steps of the stepper motor operation to detect the real kind of
fault, in this case as first diagnosis the fault is "Fault detection running" and with the next
PWM command it is possible to understand if the fault is an OPEN LOAD or an
OVERCURRENT/SHORT to GND.
DocID027721 Rev 2
71/141
140
Functional description
L9779WD-SPI
The Faults "DETECTION_RUNNING" & " OPEN LOAD" are latched during the during rise &
fall edge of low-side driver command, if the fault disappeared during these phases the fault
condition is no latched:
–
The FAULT DETECTION RUNNING is no latched, the fault comes back to 0 if the
current becomes higher than open load threshold, before the switch off of low-side
driver.
–
The FAULT OPEN LAOD is no latched, the fault comes back to 0 if the current
becomes higher than open load threshold, before the switch off of low-side driver.
A diagnostic read will clear the “fault detection running” flag. Anyway the diagnostic will
restart.
Figure 48. Stepper motor driver “off” diagnosis time diagram
/54!/54#
6"
6"
(64(
6/54./2,64(
TIME
4MASKSTEP
/54"/54$
6"
6/54./2-
,64(
,64(
TIME
/.
/&&
/0%.,/!$
!FTERFILTERTIME4DGC?OFF
72/141
DocID027721 Rev 2
3(/244/6"
!FTERFILTERTIME
3(/244/'.$
!FTERFILTERTIME
*$3*36
L9779WD-SPI
Functional description
Figure 49. Stepper motor driver diagnosis I-V relationship diagram
,'66B287BRQ
287$287&
$
9%
+97+
$
$
9''
287$287&
,'66B287BRQ
287%287'
$
$
9%
/97+
$
287%287'
67*
1250$/
67%
*$3*36
Note:
this wave shows the I/V relationship of pin current and pin voltage when OUTA(OUTC) short
to OUTB(OUTD) and force the pin voltage from 0 V to VB in typical condition. For example,
when pin voltage of OUTA = OUTB = 1.5 V, the pull up/down current is about -50 µA for
OUTA and about 14 µA for OUTB. When pin voltage of OUTA = OUTB = 5 V, the pull
up/down current is about 40 µA for OUTA and about 220 µA for OUTB.
DocID027721 Rev 2
73/141
140
Functional description
L9779WD-SPI
Figure 50. Open load detection during “on” phase
/54!"
/54#$
)?,/!$
)?/0%.?,/!$
4DGC?OL?ON
4DGC?OL?ON
&!5,4$%4%#4)/.25..).'
./&!5,4
./&!5,4
,OW3IDE$RIVER#OMMAND
/54!"
/54#$
)?,/!$
)?/0%.?,/!$
4DGC?OL?ON
4DGC?OL?ON
&!5,4$%4%#4)/.25..).'
/0%.?,/!$
./&!5,4
'!0'03
Figure 51. Open load detection during “on” phase
#HANGESLOW
SIDEDRIVERCOMMAND
#HANGESLOW
SIDEDRIVERCOMMAND
/54!"
/54#$
\)LOAD\
/PENLOAD/.
&AULT(APPENS
!NDITISVALIDATED
!FTER4DC?OL?ON
&!5,4
$%4%#4)/.
25..).'
,!4#(%$
,ATCHED/PEN
,OAD/N&AULT
)?/0%.?,/!$
4DGC?OL?ON
$)!'./3)3
./&!5,4
&!5,4$%4%#4)/.25..).'
/0%.,/!$
/.,!4#(%$
'!0'03
74/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Figure 52. Short to GND detection during “on” phase
#HANGESLOWSIDEDRIVERCOMMAND
/54!"
/54#$
)LOADFROM/54"TO/54!
"!
/540543(IGH
:
"!
4DGC?OL?ON
4DGC ?/.
\)LOAD\
&AULTAPPEARS
,ATCHED&AULT
CLEAREDBY
DIAGNOSIS
READING
)?3#
)?/0%.?,/!$
4DGC?OL?ON
&!5,4
$%4%#4)/.
25..).'
$)!'./3)3
./&!5,4
./
&!5,4
3(/244/'.$
3(/244/'.$
'!0'03
Table 34. Stepper configuration electrical characteristics
Pin
Symbol
Test condition
Min
Typ
Max
Unit
OUT(21,22),
OUT(23,24),
OUT(25,27),
OUT(26,28) output
voltage
OUT(21,22) short to
OUT(23,24);
OUT(25,27) short to
OUT(26,28);
2.3
-
2.7
V
HVTH
Diagnostic high
threshold
Driver in OFF condition
VOutnorm
+120mV
-
3
V
LVTH
Diagnostic low
threshold
Driver in OFF condition
1.9
-
VOutnorm
-200mV
V
IOVC
Over current
threshold
-
1
-
2.1
A
Output open load
threshold current
-
10
-
90
mA
Output diagnostic
IOUT_PD_A+B
pull down current
or C+D
OFF STATE
Vpin = 5 V
200
-
350
µA
Output diagnostic
IOUT_PU_A+B
pull up current OFF
or C+D
STATE
Vpin = 1.5 V
50
-
150
µA
Open load resistor
threshold
Application note
150
-
-
kΩ
Tdgc_ON
Deglitch filter time in
ON condition
Test by scan
-25%
10
+25%
µs
Tdgc_OFF
-
Test by scan
-25%
125
+25%
µs
Tdgc_ol_on
-
Test by scan
-25%
20
+25%
µs
VOutnorm
OUT
A to D
I_OPEN_LOAD
Ropenl
Parameter
DocID027721 Rev 2
75/141
140
Functional description
L9779WD-SPI
Table 34. Stepper configuration electrical characteristics (continued)
Pin
Symbol
OUT21…28
Test condition
Min
Typ
Max
Unit
-25%
1
+25%
ms
Tmask_step
-
Test by scan
Tsettle
-
For information only;
No tested
100
-
-
ms
Operating frequency
For information only;
No tested
50
-
-
µs
T_PWM
6.11.4
Parameter
Diagnosis of CPS OUTA, B, C, D when configured as single low side
power stages
For the low side the diagnosis is the same as LSd (see Section 6.9).
Each channel locally detects and writes its own fault or no-fault condition (codified on 2 bit
according to Table 27: Fault encoding condition).
Short circuit to battery or overcurrent for all the outputs during ON condition.
Open load or short to GND during OFF condition.
The faults are latched and reset at every Read Diag operation.
In OFF condition the first fault detected is latched and can be overwritten only by the ON
condition fault.
76/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Electrical and diagnosis characteristics of OUTA, B, C, D when configured as
single power stages
Same parameter and diagnosis function as LSd.
Table 35. Electrical and diagnosis characteristics of OUTA, B, C, D when configured as single
power stages
Pin
Symbol
Parameter
Min
Typ
Max
Unit
RDS-on LSd
Drain source resistance
Iload = 0.6 A
-
-
1.5
IOUTlk
Output leakage current
Vpin = 13.5 V
-
-
10
µA
Voltage S/R On/off
R = 21 Ω, C = 10nF
From 80% to 30% of
VOUT
2
-
6
V/us
Fast VR/S off when an
OVC fault happens
Load: 8 Ω, 10nF - from
80% to 30% of VOUT
5
-
30
V/µs
TTurn-On_ LSd Turn-on delay time
From command to 80%
VOUT Load: 21 Ω, 10nF
-
-
6
µs
TTurn-Off_ LSd Turn-off delay time
From command to 30%
VOUT Load: 21 Ω, 10nF
-
-
6
µs
46
48
50
V
Iload = 0.6A; single pulse
-
-
15
mJ
Tc 30 °C;
I_OUT_n < 0.45 A
1 Mio cycles
-
-
6.5
Tc < 80°C;
I_OUT_n 0.3A
25 Mio cycle
-
-
6.5
VS/R
VS/R GateKill
Vcl
OUTA,
OUTB,
OUTC,
OUTD
PWclampSP
PWclampRP
Test condition
Output clamping voltage Iload = 0.6A
Clamp single pulse ATE
test
Clamp repetitive pulses
Freq = 1 Hz
(to be verified) Reliability Tc < 100°C;
Test
I_OUT_n < 0.3A
20 Mio cycle
Tc < 130 °C;
I_OUT_n < 0.3 A
5 Mio cycle
Reverse
voltage
Body diode reverse
current voltage drop
I = -0.6 A
DocID027721 Rev 2
mJ
-
-
6.5
-
-
5.5
-0.5
-1
-1.1
V
77/141
140
Functional description
L9779WD-SPI
Electrical characteristics of OUTA, B, C, D when configured as single power
stages connected in parallel
When the low side drivers are connected in parallel (in pair) to obtain a low side driver with a
lower resistance, OUTA with OUTB and OUTC with OUTD, for example the following
parameters are valid:
Table 36. Electrical characteristics of OUTA, B, C, D when configured as single power stages
connected in parallel
Pin
Symbol
Imax
Test condition
Typ
Max
Unit
Not tested
-
1.2
-
A
RDS-on LSd
Drain source resistance
Iload = 1.2 A
-
-
0.75
IOUTlk
Output leakage current
-
-
10
µA
VS/R
Voltage S/R on/off
2
-
6
-
TTurn-on
Turn-on delay time
-
-
6
µs
TTurn-off
Turn-off delay time
-
-
6
µs
Over current threshold
2
-
4.2
A
(1)
Clamp single pulse
Iload = 1 A; single
pulse(1)
-
-
25
mJ
PWclampRP
Clamp repetitive pulses
Reliability note:
Iload = 0.6 A
Freq =10 Hz;
36 Mpulse (1000h)
-
-
12
mJ
IOUT_PD
Output diagnostic pull
down current off state
Vpin = 5 V
50
-
110
µA
IOUT_PU
Output diagnostic pull
up current off state
-210
-
-108
µA
Vclamp
Delta clamping voltage
between low side to be
parallelized
-250
-
+250
mV
PWclampSP
(1)
1. Not to be tested, already covered by single low side measure and guaranteed by design.
78/141
Min
Output current
IOVC
OUTA,
OUTB,
OUTC,
OUTD
Parameter
DocID027721 Rev 2
L9779WD-SPI
Functional description
(CPS) CONFIG_REG10
Table 37. CPS table single mode parallelism
Enable by
Diagnostic
The table configuration will be active if confi_reg7-bit4 is
configured at Zero (Default at 1)
If not specified Output Drivers are set as single
(not in parallel with any other)
Over Current mask time increased to 8 µs
1 0 0 0 OUT22 and OUT24 and OUT27 and OUT28 Low side Parallel
OUT24
OUT22
2 LSSingle
0
+ 2 LSPar
0 0 1 0 OT27 and OUT28 single + OUT22 and OUT24 parallel
OUT24
OUT22
2 LSPar
+ 2 LSPar
0
0 1 0 0 OT27 and OUT28 single + OUT22 and OUT24 parallel
OUT24, OUT22,
OUT27 OUT27
3 LSPar
1
1 1 0 0 OUT24 and OUT27 and OUT28 parallel
OUT24
Register
bit
4Low
7 3 2 1 0
0
OUT24
There are three configurations of CONFIG_REG10 register which allow enabling HS
drivers. These configurations shall be used by taking care of not switching on HS and LS
drivers simultaneously on the same OUTx path. Note that for Parallel HS configurations, HS
diagnostic current is doubled.
These configurations allow enabling HS drivers and LS drivers
in CPS mode
0 0 0 0 0 0 0 0 Single drivers can be enabled by sending related command
Diagnostic
7 6 5 4 3 2 1 0
Enable by
Table 38. Three configurations of CONFIG_REG10 register
CMD_OUTx
OUTx
0 0 0 1 0 0 1 0
OUT25 and OUT26 parallel + OUT22 and OUT24 parallel + all
others Single
OUT24,OUT25
OUT22
0 0 1 1 0 1 1 0
OUT21 and OUT23 parallel + OUT27 and OUT28 parallel + all
others Single
OUT23, OUT27
OUT27
Note:
When those four single Lside and four single Hside are configured as parallel configuration,
for example 2 single Lside stage to 1 Lside stage or 4 single Lside stage to 1 Lside stage,
the Rdson could be 1/2 or 1/4 as one single stage, the over current threshold could be
roughly double or 4 times as single stage, but the over current detected filter time will be
increased to 2 times as single stage from 4 µs typical to 8 µs typical by L9779WD-SPI itself,
because each single stage will switch on its own overcurrent threshold no matter the
configuration for off stage diagnostic, all thresholds will be kept as single stage whatever the
configuration of those 4 Lside/Hside.
DocID027721 Rev 2
79/141
140
Functional description
6.12
L9779WD-SPI
ISO serial line (K-LINE)
Figure 53. ISO serial line (K-LINE) circuit
6"
)3/3%2)!, ,).%
6$$?)/
%XTERNAL
RESISTOR
+?28
TO#
+?,).%
6$$
+?48
FROM#
'!0'03
6.12.1
ISO serial line (K-LINE) functionality description
The ISO serial line is an interface containing one bidirectional line for communication
between the µP and an external diagnosis tester or antitheft device. In case of ground loss
the outputs K_LINE get in high impedance state and can withstand a negative voltage up to
-18 V. Short circuit to Vb protection is provided: if the K_LINE pin is shorted to battery the
output is switched off after a delay of tfilter_K_LINE and it is necessary an input change to
turn on it again.
The negative transition at K_LINE pin can be driven with slew-rate limitation for optimizing
the EMI behavior. This slew-rate limitation must be enabled via the ISO_SRC bit.
The K_TX signal is ignored (K_LINE pin to high level) until the RST pin is asserted.
KLINE can work up to 250kHz input frequency in typical application condition.
80/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Table 39. ISO serial line (K-LINE) functionality electrical characteristic
Pin
K_TX
Symbol
Parameter
Test condition
Max
Unit
K_TX input low voltage -
-0.3
-
1.1
V
VKTXH
K_TX input high
voltage
-
2.3
-
VDD
+0.3
V
TX_KLINE pull-up
resistor
-
50
-
250
kΩ
ITXsink
Transmitter input sink
current
K_LINE = 0, K_TX = High
-
-
5
µA
VKOUTL
Transmitter output low
voltage
Isink_K_LINE = 35 mA,
K_TX = Low
-1
-
1.5
V
Transmitter short
circuit current
K_LINE = VB, K_TX = Low
60
-
165
mA
Test by SCAN
7
10
13
µs
Reverse battery or
GND loss current
Key_on = VB = 0 V
K_LINE = -18 V
-
-
10
mA
Under voltage current
Key_on = High,
K_TX = Low, VB = 13.5 V,
K_LINE = -1V
-
-
1
mA
Receiver input
hysteresis
-
0.08*VB
-
0.3*VB
V
VKINH
Receiver input high
voltage
-
0.7* VB
-
VB
V
VKINL
Receiver input low
voltage
-
-1
-
0.35*VB
V
From off to on:
VB = 13.5 V, Rext = 510 Ω
C = 10 nF to GND
5.3
-
8.8
V/µs
RTX_KPU
Tfilter_K_LINE Overcurrent filter time
IKREV
VKH
VK_SR
K_line voltage slew rate
From on to off
Depends on external RC
load
-
Transmitter fall time
CK_LINE = 10 nF,
RK_LINE = 510
-
-
10
µs
VKRXL
K_RX output low
voltage
VDD_IO = 5 V or 3.3 V
Isink = 2 mA
-
-
0.5
V
VKRXH
K_RX output high
voltage
VDD_IO = 5 V or 3.3 V
Isource = 2 mA
VDD_IO
-0.5
-
-
V
T_rK
K_RX rise time
from 10% to 90%
With 20 pF capacitive load
-
-
2
µs
T_fK
K_RX fall time
from 90% to 10%
20 pF capacitive load
-
-
2
µs
Transmitter turn-on
delay time
CK_LINE = 10 nF,
RK_LINE = 510
-
-
5
µs
T_fT
K_RX
K_TX,
K_LINE
Typ
VKTXL
IKOS
K_LINE
Min
Tp_HLT
DocID027721 Rev 2
81/141
140
Functional description
L9779WD-SPI
Table 39. ISO serial line (K-LINE) functionality electrical characteristic (continued)
Pin
K_LINE,
K_RX
Symbol
Parameter
Test condition
Min
Typ
Max
Unit
TpHLK
K_RX turn-on delay
time
Cload = 20 pF
-
-
4
µs
TpLHK
K_RX turn-off delay
time
Cload = 20 pF
-
-
4
µs
Figure 54. ISO serial line switching waveform
6$$(
+?48
6
TP(,4
6"
+?,).%
6
TF4
TP(,+
6$$(
TP,(+
+?28
6
TF+
TR+
'!0'03
Figure 55. ISO serial line: short circuit protection
6$$(
+?48
6
)3#
)?+,).%
!
6"
+?,).%
6
3(/24#)2#5)44/6"
82/141
DocID027721 Rev 2
'!0'03
L9779WD-SPI
6.13
Functional description
CAN transceiver
Figure 56. CAN transceiver diagram
#!.3%2)!,,).%
6$$
6 $$
0/7%2
#/.42/,
#!.?48
6$$
#!.?28
#!.(
#!.,
28?%#( /
'!0'03
6.13.1
CAN transceiver functionality description
The CAN bus transceiver allows the connection with a microcontroller through a high speed
CAN bus with transmission rates up to 1Mbit/s. The transceiver has one logic input pin
(CAN_TX), one logic output pin (CAN_RX) and two input/output pins for the electrical
connections to the two bus wires (CANH and CANL). The microcontroller sends data to the
CAN_TX pin and it receives data from the CAN_RX pin.
In case of power loss (VB pin disconnected) or ground loss (GND pins disconnected), the
transceiver doesn't disturb the communication of the remaining transceivers connected to
the bus. If CANL is shorted to ground, the transceiver is able to operate with reduced
EMI/RFI performances.
TX or RX=0 means Dominant state of CANH and CANL; TX or RX=1 means Recessive
state compliant to ISO11898-2.
Speed communication up to 1Mbit/s
Function range from +40 V to -18 V DC at CAN pins
GND disconnection fail safe at module level
GND shift operation at system level
ESD: Immunity against automotive transients per ISO7637 specification
Matched output slopes and propagation delay.
The CAN_TX signal is ignored (CAN to recessive state) until the RST pin is asserted.
DocID027721 Rev 2
83/141
140
Functional description
L9779WD-SPI
CAN error handling
The L9779WD-SPI provides the following 4 error handling features that are realized in
different stand alone CAN transceivers / micro controllers to switch the application back to
normal operation mode.
If one of the below fault happens the status bit CAN_ERROR is set.
The error handling features can be disabled through the CAN_ERR_DIS bit.
1.
Dominant CAN_TX time out
If CAN_TX is in dominant state (low) for t > tdom (TxD) the transmitter will be disabled,
status bit will be latched and can be read and cleared by SPI. The transmitter remains
disabled until the status register is cleared.
2.
CAN permanent recessive
If CAN_TX changes to dominant (low) state but CAN bus (CAN_RX pin) does not
follow for 4 times, the transmitter will be disabled, status bit will be latched and can be
read and cleared by SPI. The transmitter remains disabled until the status register is
cleared.
3.
CAN permanent dominant
If the CAN bus state is dominant (low) for t > tCAN a permanent dominant status will be
detected. The status bit will be latched and can be read and cleared by SPI. The
transmitter will not be disabled.
4.
CAN_RX permanent recessive
If CAN_RX pin is clamped to recessive (high) state, the controller is not able to
recognize a bus dominant state and could start messages at any time, which results in
disturbing the overall bus communication.
Therefore, if RX_ECHO does not follow CAN_TX for 4 times the transmitter will be
disabled. The status bit will be latched and can be read and optionally cleared by SPI.
The transmitter remains disabled until the status register is cleared.
CAN transceiver electrical characteristics
Table 40. CAN transceiver electrical characteristics
Pin
Symbol
Test conditions
Min
Typ
Max
Unit
VTX_CANLOW
Input voltage
dominant level
Active mode
-0.3
-
1.1
V
VTX_CANHIGH
Input voltage
recessive level
Active mode
2.3
-
VDD
+0.3
V
VTX_CANHYS
VTX_CANHIGHVTX_CANLOW
Active mode
0.25
0.5
-
V
RTX_CANPU
CAN_TX pull up
resistor
Active Mode
50
-
250
k
-
0.5
V
-
-
V
CAN_TX
VRX_CANLOW
Output voltage
dominant level
VRX_CANHIGH
Output voltage
recessive level
CAN_RX
84/141
Description
Active mode,
VDD_IO = 5 V or 3.3 V, 2 mA VDD_IO
-0.5
DocID027721 Rev 2
L9779WD-SPI
Functional description
Table 40. CAN transceiver electrical characteristics (continued)
Pin
Symbol
Description
Test conditions
VCANHdom
CANH voltage level
in dominant state
VCANLdom
CANL voltage level
in dominant state
Differential output
voltage in dominant
VDIFF,domOUT
state: VCANHdomVCANLdom
VCM
Driver symmetry:
VCANHdom+VCANLdo
Active mode;
VTXCAN = VTXCANLOW;
RL = 60 Ω
RL = 60 Ω; CSPLIT = 4.7 nF;
m
CAN_H
CAN_L
VCANHrec
CANH voltage level
in recessive state
VCANLrec
CANL voltage level
in recessive state
VDIFF,recOUT
Differential output
voltage in recessive
state: VCANHrecVCANLrec
VCANHL,CM
Common mode bus
voltage
IOCANH,dom
IOCANL,dom
Min
Typ
Max
Unit
2.75
-
4.5
V
0.5
-
2.25
V
1.5
-
3
V
0.9*
1.1*
V
VCANSUP CANSUP VCANSUP
V
2
2.5
3
V
2
2.5
3
V
-50
-
50
mV
-12
-
+12
V
Active mode;
CANH output current
VTX_CAN = VTX_CANLOW;
in dominant state
VCANH = 0 V
-100
-75
-45
mA
Active mode;
CANL output current
VTX_CAN = VTX_CANLOW;
in dominant state
VCANL = 5 V
45
75
100
mA
Input leakage
current
Unpowered device;
VBUS = 5 V
0
-
250
µA
Rin
Internal resistance
Active mode
VTX_CAN = VTX_CANHIGH;
No load
25
-
45
kΩ
Rin,diff
Differential internal
resistance
Active mode & STBY mode;
VTX_CAN = VTX_CANHIGH;
No load
50
-
85
kΩ
Cin
Internal capacitance
Guaranteed by design
-
20
-
pF
Cin,diff
Differential internal
capacitance
Guaranteed by design
-
10
-
pF
VTHdom
Differential receiver
threshold voltage
recessive to
dominant state
Active mode
-
-
0.9
V
ILeakage
VTX_CAN = VTX_CANHIGH;
No load
Application info:
Measured with respect to the
ground of each CAN node
DocID027721 Rev 2
85/141
140
Functional description
L9779WD-SPI
Table 40. CAN transceiver electrical characteristics (continued)
Pin
CAN_H
CAN_L
Symbol
Description
Test conditions
Min
Typ
Max
Unit
0.5
-
-
V
VTHrec
Differential receiver
threshold voltage
dominant to
recessive state
Active mode
SRH
CANH slew rate
between 10% and
90%
-
5
-
35
V/µs
SRL
CANL slew rate
between 10% and
90%
-
5
-
35
V/µs
DIFF_SR
Slew rate difference
between CANH and
CANL
-
-
-
60
%
SRVDIFF
Slew rate of
Vdiff = VCANH-VCANL
-
12
-
100
V/µs
VTHdom - VTHrec
hysteresis
-
25
-
50
mV
VTHhys
Table 41. CAN transceiver timing characteristics
Symbol
tTXpd,hl
tTXpd,lh
tdom(TX_CAN)
tCAN
86/141
Description
Propagation delay TX_CAN
to RX_CAN (High to Low)
Guaranteed by design.
Propagation delay TX_CAN
to RX_CAN (Low to High)
Guaranteed by design.
Test conditions
Min
Typ
Max
Unit
Active mode; 50% VTX_CAN to
50% VRX_CAN; CL=100 pF;
CRX_CAN = 15 pF; RL = 60 Ω;
0
-
255
ns
CRX_CAN = 100 pF
@Troom and Tcold
-
-
265
ns
CRX_CAN = 100 pF
@Thot
-
-
275
ns
Active mode; 50% VTX_CAN to
50% VRX_CAN; CL = 100 pF;
CRX_CAN = 15 pF; RL = 60 Ω;
0
-
255
ns
CRX_CAN = 100 pF
@Troom and Tcold
-
-
265
ns
CRX_CAN = 100 pF
@Thot
-
-
275
ns
TX_CAN dominant time-out
Tested by scan
525
700
875
µs
CAN permanent dominant
time-out
Tested by scan
-
700
-
µs
DocID027721 Rev 2
L9779WD-SPI
Functional description
Figure 57. CAN transceiver switching waveforms
6
T48PDHL
6 #!.?48
6
T48PDLH
6
6 #!.?28
6
'!0'03
Figure 58. CAN transceiver test circuit
#!.?48
6#!.(
#!.(
#!.
7
42!.3#%)6%2
P&
7
#!.?28
#!.,
N&
6#!.,
P&
'!0'03
DocID027721 Rev 2
87/141
140
Functional description
6.14
L9779WD-SPI
Flying wheel interface function
Figure 59. Flying wheel interface circuit
6230
%N?,
&CK?623
6DD
)REF
2ELUCTANCE6ARIABLE
(ALLEFFECT
3ENSOR
0ASSIVE
&ILTER
623.
3-!24
623
/54?623
3ERIALINTERFACE
$IAGNOSIS
PROGRAMMING
623VOLTAGE
!UTOADAPTATIVE )NT?VRS
(YSTERESIS
!UTOADAPTATIVE
4IMEFILTERINGBLOCK
/UT?VRS
'!0'03
6.14.1
Flying wheel interface functionality description
The flying wheel interface is an interface between the microprocessor and the flying wheel
sensor: it handles signals coming from magnetic pick-up sensor or Hall Effect sensor and
feeds the digital signal to Microcontroller that extracts flying wheel rotational position,
angular speed and acceleration.
This circuit implements an auto adaptative hysteresis and filter time algorithm that can be
configured via SPI using VRS_mode bit.
If the auto adaptive hysteresis is OFF the hysteresis value can be selected using VRS_Hyst
bit.
If fault is present (OL / SC GND / SC VB) the functionality is not guaranteed.
6.14.2
Auto-adaptive sensor filter
Two main VRS configuration sets are available for VRS, by mans of CONFIG_REG1
register: fully adaptive VRS mode (default) and limited adaptive VRS mode.
Auto-adaptative hysteresis (fully adaptive mode)
When enabled the auto adaptative hysteresis works as described below.
Input signals difference is obtained through a full differential amplifier; its output, DV signal,
is fed to peak detection circuit and then to A/D converter implemented with 4 voltage
comparators (5 levels) (Pvi).
Output of A/D is sent to Logic block (Table 43: Hysteresis threshold precision) that
implements correlation function between Peak voltage and hysteresis value; hysteresis
value is used by square filtering circuit which conditions DV signal.
88/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Figure 60. Auto adaptative hysteresis diagram
(YSTERESIS3QUARER#IRCUITAND
4EMPORAL&ILT ERING
623VOLTAGE
)NT ?VRS
?
$6
(YSTERESIS
6ALUE
(
(
06I
(YSTERESIS
3ELECTION
4ABLE
0EAK$ETECTION
#IRCUIT
!$CONVERTER
06
(YSTERESYSOUTPUT
CURRENT
(
(
(
(
(
06
06
06
06
1UANTIZEDPEAKDETECTOR
OUTPUTVOLTAGE;M6=
'!0'03
Figure 61. VRS interface block diagram
.RKP
9563
6:,7&+
6(1625
99
.RKP
&/$03
9&0
',$*
.RKP
$GDSWLYH)LOWHU
ILOWHUWLPHRQULVLQJHGJHDQG
PDVNLQJWLPHRQIDOOLQJHGJH ILOWHU
WLPHRQERWKULVLQJDQGIDOOLQJHGJH
$GDSWLYH)LOWHU
&203
.RKP
9561
9
6SLELWV
)$8/7
PX[
6SLELWV
99
3HDN
'HWHFWRU
7KUHVKROG
6HOHFWRU
'HFRGHU
&XUUHQW
*HQHUDWRU
'!0'03
DocID027721 Rev 2
89/141
140
Functional description
L9779WD-SPI
Table 42. Pick voltage detector precision
Pick voltage [PV]
Min
Typ
Max
Unit
PV1
600
930
1300
mV
PV2
1200
1600
1950
mV
PV3
1990
2300
2600
mV
PV4
2660
3000
3380
mV
Table 43. Hysteresis threshold precision
Value
Hysteresis current [H]
Note:
Unit
Correspondent value
on 20 kΩ ext. resistor
Unit
Min
Typ
Max
Typ
HI1
3
5
7
µA
100
mV
HI2
7
10
13.5
µA
200
mV
HI3
12.8
17
23
µA
347
mV
HI4
23
32
41
µA
644
mV
HI5
35
51
65
µA
1020
mV
For a single IC, there is no overlap of parameters PVX (PV1 7 and
sequencer-run
RST_CNT
new
000 .. 111
no
= RST_CNT old
‘0’, no monitoring module reset
000 .. 110
yes
= RST_CNT old + 1
‘1’, thus monitoring module reset
111
yes
= RST_CNT old =111
‘0’, no monitoring module reset
WD_RST
In a factory testmode the pin [WDA] is always active '0'; the internal signal is
not changed by the factory testmodes.
Note:
There is no impact on internal power stages from active pin [WDA] in factory testmode.
DocID027721 Rev 2
103/141
140
Functional description
L9779WD-SPI
Table 50. Reset-behaviour of , AB1 and
Signal
Reset source
Reset state
WDA_INT
RST_UV
‘1‘, i.e. pin WDA is active
AB1
RST_UV
‘0‘, i.e. inactive
WD_RST
RST_UV
‘0‘, i.e. inactive
Response comparison
The 2-bit counter counts the received bytes of the 32-bit response and
controls the generation of the expected response. Its default value is "11" (corresponds to
"waiting for RESP_BYTE3").
The flag is set '1' when a response byte is incorrect. The flag remains '0' if
the 32-bit response is correct. The ERROR COUNTER is updated with the flag. The default
state of the flag is '0'.
The 2-bit counter and the flag are reset to their
corresponding default values at a sequencer-run. The reset condition of the counter
and the flag are the corresponding default states.
Procedure of the sequential response comparison:
= "11": switch the expected response for RESP_BYTE3 to the
comparator
Write access: RESP_BYTE3
Set to "10", update flag
= "10": switch the expected response for RESP_BYTE2 to the
comparator
Write access: RESP_BYTE2
set to "01", update flag
= "01": switch the expected response for RESP_BYTE1 to the
comparator
Write access: RESP_BYTE1
set to "00", update flag
= "00": switch the expected response for RESP_BYTE0 to the
comparator
Write access: RESP_BYTE0
Start sequencer (SEQU_START signal), set to
"11", update flag (update ERROR COUNTER)
Sequencer clears flag to '0
SEQU_START =
104/141
(RESP_CNT1) AND RESP_CNT0) AND “response byte write”
DocID027721 Rev 2
L9779WD-SPI
Functional description
Expected Responses:
RESP_SOLL7 = REQU2 XOR RESP_CNT0
RESP_SOLL6 = REQU0 XOR RESP_CNT0
RESP_SOLL5 = REQU3 XOR RESP_CNT0
RESP_SOLL4 = REQU1 XOR RESP_CNT0
RESP_SOLL3 = ((REQU2 XOR REQU0) XOR REQU3) XOR RESP_CNT1
RESP_SOLL2 = ((REQU0 XOR REQU3) XOR REQU1) XOR RESP_CNT1
RESP_SOLL1 = ((REQU2 XOR REQU0) XOR REQU1) XOR RESP_CNT1
RESP_SOLL0 = (RESP_CNT1 XOR REQU3) XOR REQU0
Table 51. Expected responses
question REQU (3-0)
RESP_BYTE3
RESP_BYTE2
RESP_BYTE1
RESP_BYTE0
0
FF
0F
F0
00
1
B0
40
BF
4F
2
E9
19
E6
16
3
A6
56
A9
59
4
75
85
7A
8A
5
3A
CA
35
C5
6
63
93
6C
9C
7
2C
DC
23
D3
8
D2
22
DD
2D
9
9D
6D
92
62
A
C4
34
CB
3B
B
8B
7B
84
74
C
58
A8
57
A7
D
17
E7
18
E8
E
4E
BE
41
B1
F
01
F1
0E
FE
DocID027721 Rev 2
105/141
140
Functional description
L9779WD-SPI
Reset behaviour
All monitoring module registers are reset by RST_UV The following monitoring module
components are also reset by RST_PRL:
Table 52. Reset behaviour
Component:
Reset Condition:
ERROR COUNTER
110b
Register for “EC>7”
‚0‘
Register RESPTIME
Maximum value: 0011 1111b
timer state
Note:
“000...00”
The signal RST_PRL (partial reset) is active when RST or SW_RST (Softreset) is active.
Access during a sequencer-run
A sequencer-run (which means the same as a monitoring cycle) is initiated by the writing of
a response (i.e. all answer bytes ) or a write to or by
reaching "end of time window". It must not be interrupted by a new access, i.e. the
monitoring module completes the action already started:
A sequencer-run was initiated by a "response write": The sequencer completes its task
with the data of the previous access and the new data are ignored.
A sequencer-run was initiated by a "response-time write": The sequencer uses the
response-time of the previous access, the error counter is correspondingly
incremented by one and the bit (REQUHI register) is set and the new data are
ignored. will be reset by reading and by the next start of a sequencer run (not
reset by the sequencer run that is started by a "response-time write"!)
A sequencer-run was initiated by "end of time window": The sequencer finishes the
started run, the error counter is incremented by one and the new data are ignored.
The writing of a response-time during a sequencer-run must not set the bit
(REQUHI register). The new response-time value is also not accepted. The writing of a
response during a sequencer-run must not set the bit, the new response is also
not accepted.
Clock and time references
The monitoring module must work independently of the micro-controller clock so that it can
monitor the timing of the micro-controller. Therefore, a separate oscillator is necessary.
This oscillator is integrated in the L9779WD-SPI and provides a clock CLK1 for the
monitoring module. Clocked with CLK1, a divider generates the base time of 101*1/f_clk =
101 * 1/64kHz = 1.58 ms for the response-time and 8 * 101*1/64kHz =8* 1.58 ms = 12.6 ms
for the fixed time window. Accuracy of CLK1 is ±5% (or better).
The response-time is adjustable by the controller in the range 0ms to about 100ms (register
RESPTIME). The response-time can be calculated with the equation responsetime=(1+101*RESPTIME)*1/f_clk (where f_CLK depends on CONFIG6 bit1 value: if High default- f_clk = 64 kHz, if Low f_clk = 39 kHz).
The RESPTIME register is set to '0011 1111'b after a reset. The ERROR COUNTER is
incremented by one if the controller changes the response-time. If the response-time is set
106/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
to 0ms, then the ERROR COUNTER is incremented by one even if a correct response is
received within the time window. The maximum error reaction time is given by: maximum
response-time, response at the end of a time-window and ERROR COUNTER 0 ' 5 *
(100ms + 12.6ms) = 563ms.
Note that clock-tolerances have to be taken into account additionally.
Watchdog influence on power up/down management unit
The watchdog AB1 counter is increased every time the watchdog error counter is EC > 7,
which means it has an overflow. If the AB1 counter reaches the value of 7 and a further error
occurs, the system will be switched off same as it would happen in case of the already
existing PWL_EN_TIMEOUTN signal.
Watchdog influence on smart power reset
WDA has influence on the RST pin only if the WDA error counter is EC > 7 and the resulting
reset signal "WD_RST" is enabled by SPI configuration bit "INIT_WDR" in WR_RESPTIME
command.
Watchdog influence on Lsa functions (Section 6.8.1)
For LSa functions OUT1, OUT2, OUT3, OUT4 (not OUT5).
In case of an internal WDA event (e.g. the WDA error counter is EC > 4 which results in the
signal WDA_INT being set) or in case of the WDA pin being pulled low externally, the output
stages OUT1, OUT2, OUT3, OUT4 go to inactive state.
Watchdog influence on LSd functions OUT13, OUT14 (starter relay drivers)
Section 6.8.4
In case of an internal WDA event (e.g. the WDA error counter is EC > 4 which results in the
signal WDA_INT being set) or in case of the WDA pin being pulled low externally, the
OUT13 and OUT14 stages go to inactive state after the time delay THOLD if the WDA event
is still active.
Watchdog influence on Ignition drivers IGN1, IGN2, IGN3, IGN4
In case of an internal WDA event (e.g. the WDA error counter is EC > 4 which results in the
signal WDA_INT being set) or in case of the WDA pin is pulled low externally, the output
stages go to inactive state.
Watchdog influence on CAN transceiver
The WDA has influence on the CAN if the SPI configuration bit CAN_TDI is set.
Once the CAN_TDI bit is set, in case of an internal WDA event (e.g. the WDA error counter
is EC > 4 which results in the signal WDA_INT being set) or in case of the WDA pin is pulled
low externally, the CAN goes to receive-only mode (RxOnly).
DocID027721 Rev 2
107/141
140
Functional description
6.16
L9779WD-SPI
Serial interface
The L9779WD-SPI offers the possibility to communicate with a £gC using the Serial
Peripheral Interface (SPI).
The serial communication is used:
6.16.1
to set the parameter
to read diagnosis
to activate, to deactivate and to use the Query/Answer protocol
to activate, to deactivate and to use the low side drivers
to activate test mode (ST reserved)
SPI interface
The SPI interface consists of an input shift register, output shift register and four control
signals. DIN is the data input to the input shift register. DO is the data output from the output
shift register. SCK is the clock source input while CS is the active low chip select input.
6.16.2
SPI protocol
All SPI communications are executed in exact 16 bit increments. The L9779WD-SPI
contains a data validation method through the SCK input to keep transmissions with not
exactly 16 bits from being written to the device. The SCK input counts the number of
received clocks and should the clock counter exceed or count fewer than 16 clocks, the
received message is discarded without changes to internal registers.
The general format of the 16 bit transmission for global SPI interface is shown here below:
D15
DIN
DO
X
D14
D13
D12
D11
D10
ADD(4) ADD(3) ADD(2) ADD(1) ADD(0)
D9
D8
X
SPI
ADD(4) ADD(3) ADD(2) ADD(1) ADD(0) W/R
error
D7
D6
D5
D4
D3
D2
D1
D0
DATA IN or
SUBADDRESS (if ADD[4:0]= 0x10)
Parity
DATA OUT
Parity
Data to the device (i.e. DIN) consists of a five address bit, eight data bit and data parity. DIN
data is the data to be written to the register indicated by address bit. Data returned from the
device (i.e. DO) consists of SPI error bit, five address bit, eight data bit and data parity. DO
data will be the contents of the register indicated by the address bits.
The communications is controlled through CS, enabling and disabling communication.
When CS is at logic high, all SPI communication I/O is tri-stated and no data is accepted.
When CS is low, data is latched on the rising edge of SCLK and data is shifted on the falling
edge. The DIN pin receives serial data from the master with MSB first. Likewise for DO, data
is read MSB first, LSB last. The failed transmission is indicated in the SPI_ERR bit.
Table 55 reports register addresses. Registers differ between write-only and read-only
registers.
Write-only registers return all zeroes in MISO DO-DATA OUT field of next frame, with the
exception of CLOCK_UNLOCK_RSRST and START_REACT, which return LOCK and
OUT_DIS status bit.
108/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Read-only registers (ID and Diagnostic) have unique address 0x10 and are selected by 5bit
sub-address in MOSI DI-DATA IN field. MISO DO returns 1 at D9 bit and 5bit sub address in
ADD[4:0] field.
Timing characteristics
Figure 73. Timing characteristics diagram
WQRGDWD
WODJ
&6
WVFONOV
WOHDG
WFVQ
WVFON
WVFONKV
6&/.
WD
'2
06%287
WVXV
WKV
WGLV
'21¶7
&$5(
/6%287
'$7$
06%,1
',
WVK
WKR
WYV
WU
WI
'$7$
/6%,1
*$3*36
Table 53. Timing characteristics
Symbol
Parameter
Conditions
Min
Max
Units
fop
Transfer frequency
Design Information
-
8
MHz
tsclk
SCK period
Design Information
125
-
ns
tlead
Enable Lead time
Design Information
525
-
ns
tlag
Enable lag time
Design Information
50
-
ns
tsclkhs
SCK high time
Design Information
38
-
ns
tsclkls
SCK low time
Design Information
38
-
ns
tsus
DIN input setup time
Design Information
20
-
ns
ths
DIN input hold time
Design Information
20
-
ns
ta
DO access time
50 pF load
-
60
ns
dis
DO disable time
50 pF load
-
100
ns
t
vs
DO output valid time
50 pF load
-
66
ns
ho
DO output hold time
50 pF load
0
-
ns
tr
DO rise time
50 pF load
-
30
ns
tf
-
30
ns
t
t
DO fall time
50 pF load
tcsn
CS negated time
Design Information
640
-
ns
tsh
SCK hold time
Design Information
20
-
ns
CS noise glitch rejection time
-
50
300
ns
SPI interframe time
Design Information
1.5
-
µs
tcsgrt
tnodata
DocID027721 Rev 2
109/141
140
Functional description
L9779WD-SPI
Electrical characteristics
-
Pin
SCK
Symbol
CS
Min
Typ
Max
Unit
-
-0.3
-
1.1
V
SCKH
High input level
-
2.3
-
VDD5
+0.3
V
VHYST
Hysteresis
-
0.1
-
-
V
Input current
-
-
5
µA
SCKL
Low input level
-
-0.3
-
1.1
V
SCKH
High input level
-
2.3
-
VDD5
+0.3
V
VHYST
Hysteresis
-
0.1
-
-
V
Input current
-
-
-
5
µA
VDO_L
DO output low level
Isink current = 2 mA
-
-
0.5
V
VDO_H
DO output high level Isource current = 2 mA
VDD5
-0.5
-
-
V
ENL
Low input level
-
-0.3
-
1.1
V
ENH
High input level
-
2.3
-
VDD5
+0.3
V
VHYST
Hysteresis
-
0.1
-
-
V
Input current
-
-
-
5
µA
Pull up resistor
-
50
-
250
k
IIN
RPU
6.16.3
Test condition
Low input level
IIN
DO
Parameter
SCKL
IIN
DIN
Table 54. Electrical characteristics
SPI registers
Table 55. SPI registers
Register
110/141
R/W
Address
CONFIG_REG1
W
0x01
CONFIG_REG2
W
0x02
CONFIG_REG3
W
0x03
CONFIG_REG4
W
0x04
CONFIG_REG5
W
0x05
CONFIG_REG6
W
0x06
CONFIG_REG7
W
0x07
CONFIG_REG9/SPI RESPTIME
W
0x11
CONFIG_REG10/CPS
W
0x12
DocID027721 Rev 2
Description
Configuration registers
L9779WD-SPI
Functional description
Table 55. SPI registers (continued)
Register
R/W
Address
LOCK_UNLOCK_SW_RST
W
0x0C
Disable writing of all
configuration bits/ software
reset for the device
START_REACT
W
0x0D
Enable power stages/MRD
reactivate
Communicate the WD
appropriate answer to WD
query/U1A9 WDA Response to
query
WD_ANSW/WDA RESP
CONFIG_REG8
W
0x0E
CONTR_REG1
W
0x08
CONTR_REG2
W
0x09
CONTR_REG3
W
0x0A
CONTR_REG4
W
0x0B
Description
Control register to switch on/off
the OUT
Following Registers have 0x10+subaddress SPI format
IDENT_REG
R
0x10+0x00
DIA_REG1
R
0x10+0x01
DIA_REG2
R
0x10+0x02
DIA_REG3
R
0x10+0x03
DIA_REG4
R
0x10+0x04
DIA_REG5
R
0x10+0x05
DIA_REG6
R
0x10+0x06
DIA_REG7
R
0x10+0x07
DIA_REG8
R
0x10+0x08
DIA_REG9
R
0x10+0x09
DIA_REG10
R
0x10+0x0A
DIA_REG11
R
0x10+0x0B
DIA_REG12
R
0x10+0x0C Diagnostic register 12
DIA_REG13
R
0x10+0x0D WDA RESPTIME
DIA_REG14
R
0x10+0x0E WDA REQULO
DIA_REG15
R
0x10+0x0F WDA REQUHI
DIA_REG16
R
0x10+0x10
DocID027721 Rev 2
Identifier (000)
Diagnosis information of
device
WDA RST_AB1_CNT
111/141
140
Functional description
L9779WD-SPI
Command register
Table 56. CLOCK_UNLOCK_SW_RST
Bit
DIN
DO
15
X
SPI ERROR
14
ADD(4)
ADD(4)
13
ADD(3)
ADD(3)
12
ADD(2)
ADD(2)
11
ADD(1)
ADD(1)
10
ADD(0)
ADD(0)
9
X
0
8
X
0
7
X
0
6
X
0
5
X
0
4
X
0
3
X
0
2
SW_RESET
0
1
LOCK
LOCK
0
Odd Parity
Odd Parity
This command disables (“lock”) writing of all configuration registers. The commands have
no relevant data as command data bit – they may be set to ‘1’ or ‘0’.
Default state is configuration registers not locked.
The content of lockable bit is valid both if the bits are locked or if they are unlocked. Writing
data to the bit is possible if the bits are unlocked; the new values become valid during the
execution of the write command.
This command generates a L9779WD-SPI internal reset initiated by the µC’s software
(“software reset”) that clears all the configuration and diagnostic registers and switch-off all
the drivers.
The command has no relevant data as command data bit – they may be set to ‘1’ or ‘0’.
Table 57. START_REACT
112/141
Bit
DIN
DO
15
X
SPI ERROR
14
ADD(4)
ADD(4)
13
ADD(3)
ADD(3)
12
ADD(2)
ADD(2)
11
ADD(1)
ADD(1)
DocID027721 Rev 2
L9779WD-SPI
Functional description
Table 57. START_REACT (continued)
Bit
DIN
DO
10
ADD(0)
ADD(0)
9
X
0
8
X
0
7
X
0
6
X
0
5
X
0
4
X
0
3
STOP
0
2
START
0
1
MRD_REACT
OUT_DIS
0
Odd Parity
Odd Parity
The command START sets the bit to ‘0’. With = ‘0’ the outputs
[OUT1...OUT10] [OUT13…OUT28] and [IGN1...IGN4] can be activated using control
registers. After a reset (default state) the bit is =’1’ and the outputs are disabled
(so any SPI data frame writing control registers is ignored and the power stages are all
switched off).
The command has no relevant data as command data bit – they may be set to ‘1’ or ‘0’.
This command allows the µC turning on the MRD if it is switched off due to over current.
DocID027721 Rev 2
113/141
140
Functional description
L9779WD-SPI
Configuration registers
CONFIG_REG1
7
Configuration register 1
6
5
1
0
RESERVED
4
VRS mode
MRD_OT_DID
-
W
W
Address:
0 0001
Type:
W (write access: WRITE_CONFIG1)
Reset:
0000 1000
3
2
[7:5] RESERVED
[4:2] RESERVED
[1] VRS mode:
0 = limited adaptive (default)
1 = full adaptive
[0] MRD_OT_DIS: Disables OT switch_off for MRD:
0 = MRD OT switches off the driver
1 = MRD OT does NOT switch off the driver
CONFIG_REG2
7
6
Configuration register 2
5
1
0
RESERVED
4
Charge pump OFF
LS_IGN_OFF
-
W
W
Address:
0 0010
Type:
W (write access: WRITE_CONFIG2)
Reset:
3
0000 1000
[7:5] RESERVED
[4:2] RESERVED
[1] Charge pump OFF
0= ON (default)
1= OFF
[0] LS_IGN_OFF Control LS stage of IGN driver
0 = normal behaviour
1 = LS of IGN driver always OFF
114/141
DocID027721 Rev 2
2
L9779WD-SPI
Functional description
CONFIG_REG3
7
6
Configuration register 3
5
4
3
2
RESERVED
1
0
EN_FALLING_FILT
-
HYS_FB_SEL
W
Address:
0 0011
Type:
W (write access: WRITE_CONFIG3)
Reset:
0000 1000
[7:5] RESERVED
[4:2] RESERVED
[1] EN_FALLING_FILT:
0 = Falling edge filter disabled
1 = Falling edge filter enabled
[0] HYS_FB_SEL:
0 = VRS hyst. Feedback connected before adaptative filter
1 = VRS hyst. Feedback connected after adaptative filter
DocID027721 Rev 2
115/141
140
Functional description
L9779WD-SPI
CONFIG_REG4
7
Configuration register 4
6
5
PWL_TIMEOUT_CONF[2:0]
4
OFF_LCDR
3
2
RESERVED
W
0
LOCK
-
Address:
0 0100
Type:
W (write access: WRITE_CONFIG4)
Reset:
1
ISO_SRC
W
0000_0010
[7:5] PWL_TIMEOUT_CONF[2:0]: Power latch mode time-out configuration.
000: Disabled (default)
001: 4.7 minutes ±5%
010: 9 minutes ±5%
011: 19 minutes ±5%
100: 28 minutes ±5%
101: 37 minutes ±5%
110: 75 minutes ±5%
111: 470 ms ±5%
[4] OFF_LCDR: Off state diagnosis for Low-current drive
1 = Off state diagnosis and the bias current of OUT20 is active
0 = Off state diagnosis and the bias current of OUT20 is disabled
[3:2] RESERVED
[1] ISO_SRC: Slew-rate control for the ISO9141 serial interface (K-Line)
0 = No slew rate limitation
1 = Slew-rate limitation active
[0] LOCK: Lock bit status. Set by LOCK command and cleared with UNLOCK command
1 = ALL configuration registers are locked and cannot be changed
0 = all configuration registers can be changed
116/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
CONFIG_REG5
Configuration register 5
7
6
5
4
3
2
1
0
RESERVED
RESERVED
VRS_DIAG
VRS_MODE1
VRS_MODE0
VRS_HYST2
VRS_HYST1
VRS_HYST0
-
-
W
Address:
0 0101
Type:
W (write access: WRITE_CONFIG5)
Reset:
1101_1000
[7:6] RESERVED: not used
[5] If fully adaptive mode selected:
VRS diag: VRS diagnosis enable
1: diagnosis function is enabled
0: diagnosis function is disabled
If limited adaptive mode selected:
Forces VRS minimum hysteresis (5 μA)
1: minimum hysteresis forced
0: normal operation as per VRS_HYST configuration
[4:3] VRS_MODE
00: Internal auto-adaptive hysteresis OFF, internal auto-adaptive filter time OFF
01: Internal auto-adaptive hysteresis ON, internal auto-adaptive filter time OFF
10: Internal auto-adaptive hysteresis OFF, internal auto-adaptive filter time ON
11: Internal auto-adaptive hysteresis ON, internal auto-adaptive filter time ON
[2:0] VRS_HYST
000: Hys current = 17 µA (Hys VRS = 347 mV with 10 k ext resistors) [default]
001: Hys current = 5 µA (Hys VRS=100mV with 10 k ext resistors)
010: Hys current = 10 µA (Hys VRS=200mV with 10 k ext resistors)
011: Hys current = 17 µA (Hys VRS=347mV with 10 k ext resistors)
100: Hys current = 32 µA (Hys VRS=644mV with 10 k ext resistors)
101: Hys current = 51 µA (Hys VRS=967mV with 10 k ext resistors)
110: Hys current = 17 µA (Hys VRS=347mV with 10 k ext resistors)
111: Hys current = 0 µA (used only for test purpose)
Note:
When VRS limited amplitude adaptive mode is set, VRS_HYST limits the minimum
hysteresis to the set value.
When VRS limited mode is set, filter time must be enabled at operation start, and shall
never be disabled afterwards.
When VRS limited mode is set, VRS diagnostic function is not available.
DocID027721 Rev 2
117/141
140
Functional description
L9779WD-SPI
CONFIG_REG6
Configuration register 6
7
6
5
4
3
2
1
0
CAN_ERR_EN
NL_RST
PWL_EN_N/
SEO_EN_N
PSOFF
VDD5_UV RST
mask
VDD5_UV WDA
mask
WDA time base
setting
(RESPTIME)
PWL/SEO
timeout
W
Address:
0 0110
Type:
W (write access: WRITE_CONFIG6)
Reset:
0010 0010
[7] CAN_ERR_EN: CAN error handling
1: CAN error handling enabled
0: CAN error handling disabled
[6] NL_RST: Reset generation during Power latch mode when KEY_ON 0 --> 1
1: reset generated
0: reset not generated
[5] PWL_EN_N: Power latch mode enable
PWL_EN_N/SEO_EN_N: Power latch/secure engine off mode enable
1: power latch mode function is disabled (default)
0: power latch mode function is enabled
[4] PSOFF: Power supply off (VDD5, VTRK1, VTRK2, Charge-pump, internal supply) when
KEY_ON = 0 and PWL_EN_N = 0
0: switch off power supply and switch off MRD
1: do not switch off power supply and switch off MRD
[3] VDD5_UV RST mask
1: mask VDD5_UV with generating RST event
0: mask removed (default), VDD5_UV event generates RST
[2] VDD5_UV WDA mask
1: mask VDD5_UV with generating WDA event
0: mask removed (defualt). Any VDD5_UV event pulls WDA pin low and disables safety drivers
[1] WDA time base setting
This bit selects the RESPTIME time base
1: (default) sets time base to 1/64 kHz
0: sets time base to 1/39 kHz
[0] PWL/SEO timeout
0: PWL timeout counter has priority over SEO (default)
1: SEO timeout counter has priority over PW
118/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
6
IGN_DIA_MODE IGN_DIA_SGEN
5
4
3
2
1
0
TD_MASK_X2
CPS/Stepper
Unlock
OUTA_HS_EN_LB
7
Configuration register 7
OUTC_HS_EN_LB
CONFIG_REG7
OUT14_EN_LB
OUT13_EN_LB
W
Address:
0 0111
Type:
W (write access: WRITE_CONFIG7)
Reset:
0101 0000
[7] IGN_DIA_MODE: IGN diagnosis mode for short to battery:
1: latch mode
0: no latch mode
[6] IGN_DIA_SGEN: IGN diagnosis enable for short to ground:
1: Current diagnosis enabled
0: Voltage diagnosis disabled
[5] TD_MASK_X2:
0: Td_mask as specified in respective tables for OUT13 to OUT28
1: Td_mask doubled for OUT13 to OUT28
[4] CPS/Stepper Unlock bit:
1: Stepper mode selected (default)
0: CPS mode selected
[3] OUTC_HS_EN_LB: Low battery function enable
1: LB function is enabled for OUTC_HS
0: LB function is disabled for OUTC_HS
[2] OUTA_HS_EN_LB: Low battery function enable
1: LB function is enabled for OUTA_HS
0: LB function is disabled for OUTA_HS
[1] OUT14_EN_LB: Low battery function enable
1: LB function is enabled for OUT14
0: LB function is disabled for OUT14
[0] OUT13_EN_LB: Low battery function enable
1: LB function is enabled for OUT13
0: LB function is disabled for OUT13
Note: The bit OUTA_HS, OUTC_HS_EN_LB has priority over the CPS_CONFx bit, this
means that if one of OUT21,25_EN_LB is set to 1 the OUT21…28 become
independent power stages.
DocID027721 Rev 2
119/141
140
Functional description
L9779WD-SPI
WD_ANSW/WDA RESP/CONFIG_REG8
7
6
5
4
RESP
RESP
RESP
RESP
Configuration register 8
3
2
1
0
RESP
RESP
RESP
RESP
W
Address:
0 1110
Type:
W
Reset:
[7:0] RESP: the answer of the µC to the monitoring module question of the U-Chip - to the U-Chipinternal logic of the monitoring module.
CONFIG_REG9/SPI RESPTIME
Configuration register 9
7
6
5
4
3
2
1
0
INIT_WDR
CAN_TDI
RESPTIME
RESPTIME
RESPTIME
RESPTIME
RESPTIME
RESPTIME
W
Address:
1 0001
Type:
W
Reset:
[7] IINIT_WDR (enable WDA reset)
[6] CAN_TDI (disable CAN in case of WDA event)
[5:0] RESPTIME of the monitoring module
120/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
CONFIG_REG10 (CPS Configuration register)
7
6
5
4
Configuration register 10
3
2
1
0
see Table 37
CPS_CONF
W
Address:
1 0010
Type:
WR_CPS
Reset:
[7:1] See Table 37
[0] CPS_CONF (CPS mode is enabled if REG7 bit4 is cleared first)
1: OUTA...OUTD are configured as 2 full-bridge for stepper motor driving (default)
0: OUTA...OUTD are configured as half bridges
IDENT_REG/DIA_REG[1:5]
7
DIA_REG1
DIA_REG2
6
5
OUT4_DIAG
0
Diagnostic register 1, 2, 3, 4, 5
4
3
OUT3_DIAG
0
OUT7_DIAG
DIA_REG3
OUT14_DIAG
OUT13_DIAG
DIA_REG4
OUT18_DIAG
OUT17_DIAG
DIA_REG5
1 0000
Subaddress:
0000 0001,
0000 0010,
0000 0011,
0000 0100,
0000 0101
Type:
R (Read only)
Reset:
0000 0000
1
OUT5_DIAG
1
0
OUT16_DIAG
OUT20_DIAG
0
OUT1_DIAG
OUT6_DIAG
WDA_STATUS
RESERVED
Address:
2
OUT2_DIAG
0
OUT15_DIAG
0
0
DIA_REG1:[7:6] OUT4_DIAG: Diagnosis bit of power stage OUT4
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG1:[5:4] OUT3_DIAG: Diagnosis bit of power stage OUT3
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DocID027721 Rev 2
121/141
140
Functional description
L9779WD-SPI
DIA_REG1:[3:2] OUT2_DIAG: Diagnosis bit of power stage OUT2
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG1:[1:0] OUT1_DIAG: Diagnosis bit of power stage OUT1
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG2:[7:6] 00
DIA_REG2:[5:4] OUT7_DIAG: Diagnosis bit of power stage OUT7
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG2:[3:2] OUT6_DIAG: Diagnosis bit of power stage OUT6
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG2:[1:0] OUT5_DIAG: Diagnosis bit of power stage OUT5
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG3:[7:6] OUT14_DIAG: Diagnosis bit of power stage OUT14
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG3:[5:4] OUT13_DIAG: Diagnosis bit of power stage OUT13
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG3:[3] WDA STATUS: status of WDA pin, not latched
DIA_REG3:[2] RESERVED: not used
DIA_REG3:[1:0] 00
DIA_REG4:[7-6] OUT18_DIAG: Diagnosis bit of power stage OUT18
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
122/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
DIA_REG4:[5-4] OUT17_DIAG: Diagnosis bit of power stage OUT17
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG4:[3-2] OUT16_DIAG: Diagnosis bit of power stage OUT16
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG4:[1-0] OUT15_DIAG: Diagnosis bit of power stage OUT15
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG5:[7:4] RESERVED: All bit read 1
DIA_REG5:[3-2] OUT20_DIAG: Diagnosis bit of power stage OUT20
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
DIA_REG5:[1-0] 00
Note: All diagnosis bits (including OT1, F1, OT2, F2) will be cleared automatically by
reading – i.e. if a diagnosis bit indicates a fault this fault has occurred after the last
read access to this register.
DocID027721 Rev 2
123/141
140
Functional description
L9779WD-SPI
Diagnostic register 6 and 7
DIA_REG6
Diagnostic register 6
7
Configured as
single power stages
6
OUT24_DIAG
5
4
3
OUT23_DIAG
Configured as H bridge
OUT22_DIAG
H1_DIAG
Address:
1 0000
Subaddress:
0000 0110
Type:
R (Read only)
Reset:
0000 0000
Configured as single power stages
[7-6] OUT24_diag[1:0]: Diagnosis bit of OUT24
00: Short-circuit to ground
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
[5-4] OUT23_diag[1:0]: Diagnosis bit of OUT23
00: Short-circuit to VB
01: Open load (OL)
10: Short-circuit to GND
11: Power stage OK
NO FAIL
[3-2] OUT22_diag[1:0]: Diagnosis bit of OUT22
00: Short-circuit to ground
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
[1-0] OUT21_diag[1:0]: Diagnosis bit of OUT21
00: Short-circuit to VB
01: Open load (OL)
10: Short-circuit to GND
11: Power stage OK NO FAIL
Configured as H bridge
[7-0] H1_diag[7:0]: Diagnosis bit of H1 bridge
00000001: Short to Ground (OFF)
00000101: Short to VBAT (OFF)
00000100: Open Load (OFF)
00000010: Open Load (ON)
00000011: Over current (ON)
00000111: Fault detection running (ON)
11111111: Power stages OK NO FAULT
All other combinations: NOT USED
124/141
2
DocID027721 Rev 2
1
0
OUT21_DIAG
L9779WD-SPI
Functional description
DIA_REG7
Diagnostic register 7
7
Configured as
single power stages
6
OUT28_DIAG
5
4
3
OUT27_DIAG
Configured as
H bridge
2
OUT26_DIAG
1
0
OUT25_DIAG
H2_DIAG
Address:
1 0000
Subaddress:
0000 0111
Type:
R (Read only)
Reset:
0000 0000
Configured as single power stages
[7-6] OUT28_DIAG[1:0]: Diagnosis bit of OUT28
00: Short-circuit to ground
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
[5-4] OUT27_DIAG[1:0]: Diagnosis bit of OUT27
00: Short-circuit to ground
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage OK
NO FAIL
[3-2] OUT26_DIAG[1:0]: Diagnosis bit of OUT26
00: Short-circuit to VB
01: Open load (OL)
10: Short-circuit to GND
11: Power stage OK
NO FAIL
[1-0] OUT25_DIAG[1:0]: Diagnosis bit of OUT25
00: Short-circuit to VB
01: Open load (OL)
10: Short-circuit to GND
11: Power stage OK NO FAIL
Configured as H bridge
[7-0] H2_diag[7:0]: Diagnosis bit of H2 bridge
00000001: Short to Ground (OFF)
00000101: Short to VBAT (OFF)
00000100: Open Load (OFF)
00000010: Open Load (ON)
00000011: Over current (ON)
00000111: Fault detection running (ON)
11111111: Power stages OK NO FAULT
All other combinations: NOT USED
DocID027721 Rev 2
125/141
140
Functional description
L9779WD-SPI
DIA_REG8
7
Diagnostic register 8
6
5
IGN4_DIAG[1:0]
IGN3_DIAG[1:0]
Address:
1 0000
Subaddress:
0000 1000
Type:
R (Read only)
Reset:
4
3
2
IGN2_DIAG[1:0]
0000 0000
[7:6] IGN4_DIAG[1:0]: Diagnosis bit of IGN4
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage ok
NO FAIL
[5:4] IGN3_DIAG[1:0]: Diagnosis bit of IGN3
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage ok
NO FAIL
[3:2] IGN2_DIAG[1:0]: Diagnosis bit of IGN2
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage ok
NO FAIL
[1:0] IGN1_DIAG[1:0]: Diagnosis bit of IGN1
00: Short-circuit to ground (SCG)
01: Open load (OL)
10: Short-circuit to BAT (SCB)
11: Power stage ok
NO FAIL
126/141
DocID027721 Rev 2
1
0
IGN1_DIAG[1:0]
L9779WD-SPI
Functional description
DIA_REG9
Diagnostic register 9
7
6
5
4
KEY_ON_
STATUS
MRD_OVC
VRS_STAT
VRS_DIAG
3
2
VTRK2_DIAG[1:0]
1
0
VTRK1_DIAG[1:0]
R/W
Address:
1 0000
Subaddress:
0000 1001
Type:
R (Read only)
Reset:
0000 0000
[7] KEY_ON_STATUS
1: KEY_ON voltage above KEY_ON_H
0: KEY_ON voltage below KEY_ON_L
[6] MRD_OVC
1: Current MRD status is OFF due to previous Over current
0: Current MRD status is ON (no OVC detected)
[5] VRS_STAT
1: Diag ON
0: Diag OFF
[4] VRS_DIAG
0: No Fault
1: Generic fault detected
[3-2] VTRK2_DIAG[1:0]: Diagnosis bit of VTRK2
00: Not used
01: Overload condition/out of regulation
10: Overvoltage (OV) or over temperature (OT) (Lower priority respect to Overload condition)
11: Sensor supply VTRK ok
NO FAIL
[1-0] VTRK1_DIAG[1:0]: Diagnosis bit of VTRK1
00: Not used
01: Overload condition/out of regulation
10: Overvoltage (OV) or over temperature (OT) (Lower priority respect to overload condition)
11: Sensor supply VTRK OK
NO FAIL
DocID027721 Rev 2
127/141
140
Functional description
L9779WD-SPI
DIA_REG10
Diagnostic register 10
7
6
5
4
3
2
1
0
TNL_RST
F1
CRK_RST
F2
VDD5_OV
V3V3_UV
OUT_DIS
OV_RST
Address:
1 0000
Subaddress:
0000 1010
Type:
R (Read only)
Reset:
0000 0000
[7] TNL_RST
0: No reset generated
1: Reset generated by TNL
[6] F1
0: No fault
1: any fault occurred in OUT1...10, OUT13...20, IGN1…4
[5] CRK_RST
0: No reset generated
1: Reset generated by VDD_UV (tTHOLD)
[2] CAN_ERROR
0: No fault
1: fault present (one of the 4 possible error on CAN)
[1] WD_FAULT_LATCHED
1: WDA has generated a RST event
0: no event
[0] 0
DocID027721 Rev 2
129/141
140
Functional description
L9779WD-SPI
Diagnostic register 12
7
6
5
4
3
RESERVED
WD_FAULT_LATCHED
DIA_REG12
SEO OUT1-4
SEO OUT1314
WD_FAULT
Address:
1 0000
Subaddress:
0000 1100
Type:
R (Read only)
Reset:
0000 0000
2
1
RESERVED
0
KEY_ON_FLT
[7] RESERVED
[6] WDA_FAULT latched:
1: WDA has generated a RST event
0: no event
[5] SEO event when the OUT1-4 are switched off after 225 ms
[4] SEO event when the OUT13-14 after 600ms when KEY is OFF
[3] WDA_FAULT not latched:
1: WDA has generated a RST event (the DIA_REG12 is read by READ_DATA 7 but the bit
WD_FAULT_LATCHED is reset by READ_DATA5).
0: no event
[2:1] RESERVED: not used
[0] KEY_ON_FLT: Key on after filter
130/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
Watchdog related SPI registers
SPI registers WDA_RESPTIME,REQULO, REQUHI, RST_AB1_CNT are defined as here
below:
DIA_REG13/WDA_RESPTIME
Diagnostic register 13
7
6
5
4
3
2
1
0
0
0
RESPTIME5
RESPTIME4
RESPTIME3
RESPTIME2
RESPTIME1
RESPTIME0
R
Address:
1 0000
Subaddress:
0000 1101
Type:
R (Read only)
Reset:
0011 1111b (reset source: Bit 5-0: RST_UV, RST_PRL; Bit 6-7: RST_UV)
[7] 0
[6] 0
[5-0] RESPTIME (5-0): Response-time = (1+ 101*RESPTIME(5-0)) * 1/f_clk with f_clk = 64kHz
The error counter is incremented by one on a controller write access to this register!
not locked by command LOCK
may be written by the command WR_RESPTIME
DIA_REG14/REQULO
Diagnostic register 14
7
6
5
4
3
2
1
0
WDA_INT
ERR_CNT2
ERR_CNT1
ERR_CNT0
REQU3
REQU2
REQU1
REQU0
R
Address:
1 0000
Subaddress:
0000 1110
Type:
R (Read only)
Reset:
1110 0000b (reset source: Bit 6-4: RST_UV, RST_PRL; Bit 7, 3-0: RST_UV)
[7] WDA_INT: '1': ERROR COUNTER > 4
[6-4] ERR_CNT (2-0): value of the ERROR COUNTER
[3-0] REQU (3-0): 4-bit question
DocID027721 Rev 2
131/141
140
Functional description
L9779WD-SPI
DIA_REG15/REQUHI
Diagnostic register 15
7
6
5
4
3
2
1
0
RESP_CNT1
RESP_CNT0
RESP_ERR
RESP_Z0
CHRT
W_RESP
NO_RESP
RESP_TO_EAR
LY
R
Address:
1 0000
Subaddress:
0000 1111
Type:
R (Read only)
Reset:
1100 0000b (reset source: RST_UV, Bit 4 additionally RST_PRL)
[7-6] RESP_CNT(1-0):
'1': Response before time window was opened; reset to zero at sequencer-run1(1)
[5] RESP_ERR:
'1': 1 byte of the 32-bit response is incorrect(1)
[4] RESP_Z0:
'1': Controller set response-time to 0ms; a correct response within the time window
nevertheless increments the error counter by one '0': Response-time is greater than 0ms
[3] CHRT:
'1': Controller has changed response-time; reset to zero after a read access and after the next
sequencer run
[2] W_RESP:
'1': incorrect response in value; reset to zero at sequencer-run (1)
[1] NO_RESP:
'1': no response; timer is restarted automatically; reset to zero after a read access
[0] RESP_TO_EARLY:
'1': Response before time window was opened; reset to zero at sequencer-run (1)
1. Sequencer-run: A sequencer-run is initiated by the writing of a complete response (RESP_BYTE3…RESP_BYTE0) or by
writing of a response-time or by reaching the end of a time window. In case WDA reference time base
(1/f_clk) has to be changed to f_clk = 39 kHz, CONFIG6 bit1 has to be written to 0 before sequencer-run is started.
RESP_TO_EARLY = '1':
monitoring module has received a response before beginning of the time window and
therefore this was rejected. Reception of a response means "end of reception of
RESP_BYTE0" after the other response bytes (i.e. RESP_BYTE3, RESP_BYTE2,
RESP_BYTE1 - in this order!) have been received.
NO_RESP = '1':
monitoring module has received no response at all or a response too late after the
time window already closed. However, a response too late might be read as
RESP_TO_EARLY, as a too late response is at the same time a too early response
concerning the next WDG cycle. Which results in the NO_RESP monitoring being
overwritten by a RESP_TO_EARLY monitoring.
This means that no "end of reception of RESP_BYTE0" was detected before the end
of the time window - neither during the time window nor before beginning of the time
window. (Remember: RESP_BYTE0 is the last of four response bytes!)
132/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
W_RESP = '1':
an error occurred during the sequencer run before.
RESP_ERR = '1':
an error occurred during the actual sequencer run. The bit will be set to '1' after
receiving any incorrect answer byte and will remain '1' until the end of the actual
sequencer run (no matter if the other answer bytes in this sequencer run are correct
or not).
At the end of a sequencer run the error bit W_RESP will be set to the actual value of
RESP_ERR, and thereafter the error bit RESP_ERR will be cleared to '0'.
RESP_CNT = '11': waiting for RESP_BYTE3
RESP_CNT = '10': waiting for RESP_BYTE2 (after RESP_BYTE3 was received)
RESP_CNT = '01': waiting for RESP_BYTE1 (after RESP_BYTE2 was received)
RESP_CNT = '00': waiting for RESP_BYTE0 (after RESP_BYTE1 was received)
DIAG_REG16/RST_AB1_CNT
Diagnostic register 16
7
6
5
4
3
2
1
0
0
0
AB1_CNT2
AB1_CNT1
AB1_CNT0
RST_CNT2
RST_CNT1
RST_CNT0
R
Address:
1 0000
Subaddress:
0001 0000
Type:
R (Read only)
Reset:
0000 0000b (reset source: Bit 6…0: only RST_UV; RST_PRL has no effect)
[7] 0
[6] 0
[5-3] AB1_CNT (2-0)
[2-0] RST_CNT (2-0) reset counter RST_CNT
DocID027721 Rev 2
133/141
140
Functional description
L9779WD-SPI
Control registers CONTR1 to 4
They control the output stages OUT1…10, OUT13…20, OUT21…28 and IGNn.
CMD = 1 OUTPUT ONCMD = 0 OUTPUT OFF
CONTR_REG1
Control register 1
7
6
5
4
CMD_OUT1
CMD_OUT2
CMD_OUT3
CMD_OUT4
3
2
1
0
CMD_OUT5
CMD_OUT20
RESERVED
RESERVED
W
Address:
0 1000
Type:
Via DATA frame
Reset:
0000 0000 (ALL outputs switched OFF)
[7] CMD_OUT1
1: OUT1 - Power stage switched ON
0: OUT1 - Power stage switched OFF
[6] CMD_OUT2
1: OUT2 - Power stage switched ON
0: OUT2 - Power stage switched OFF
[5] CMD_OUT3
1: OUT3 - Power stage switched ON
0: OUT3 - Power stage switched OFF
[4] CMD_OUT4
1: OUT4 - Power stage switched ON
0: OUT4 - Power stage switched OFF
[3] CMD_OUT5
1: OUT5 - Power stage switched ON
0: OUT5 - Power stage switched OFF
[2] CMD_OUT20
1: OUT20 - Power stage switched ON
0: OUT20 - Power stage switched OFF
[1] RESERVED
[0] RESERVED
134/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
CONTR_REG2
Control register 2
7
6
5
4
3
2
1
0
CMD_OUT15
CMD_OUT14
DON'T CARE
RESERVED
CMD_IGN1
CMD_IGN2
CMD_IGN3
CMD_IGN4
Address:
0 1001
Type:
Via DATA frame
Reset:
0000 0000 (ALL outputs switched OFF)
[7] CMD_OUT15
1: OUT15 - Power stage switched ON
0: OUT15 - Power stage switched OFF
[6] CMD_OUT14
1: OUT14 - Power stage switched ON
0: OUT14 - Power stage switched OFF
[5] DON'T CARE
[4] RESERVED
[3] CMD_IGN1
1: IGN1 - Power stage switched ON
0: IGN1 - Power stage switched OFF
[2] CMD_IGN2
1: IGN2 - Power stage switched ON
0: IGN2 - Power stage switched OFF
[1] CMD_IGN3
1: IGN3 - Power stage switched ON
0: IGN3 - Power stage switched OFF
[0] CMD_IGN4
1: IGN4 - Power stage switched ON
0: IGN4 - Power stage switched OFF
DocID027721 Rev 2
135/141
140
Functional description
L9779WD-SPI
CONTR_REG3
Control register 3
7
6
CPS_CONF = 0 CMD_OUT22
CPS_CONF = 1
CMD_OUT21
DIR
ENABLE
Address:
0 1010
Type:
Via DATA frame
Reset:
5
4
3
2
1
0
CMD_OUT16
CMD_OUT13
CMD_OUT17
CMD_OUT18
CMD_OUT7
CMD_OUT6
0000 0000 (ALL outputs switched OFF)
0 CMD_OUT6
1: OUT6 - Power stage switched ON
0: OUT6 - Power stage switched OFF
1 CMD_OUT7
1: OUT7 - Power stage switched ON
0: OUT7 - Power stage switched OFF
2 CMD_OUT18
1: OUT18 - Power stage switched ON
0: OUT18 - Power stage switched OFF
3 CMD_OUT17
1: OUT17 - Power stage switched ON
0: OUT17 - Power stage switched OFF
4 CMD_OUT13
1: OUT13 - Power stage switched ON
0: OUT13 - Power stage switched OFF
5 CMD_OUT16
1: OUT16 - Power stage switched ON
0: OUT16 - Power stage switched OFF
6 CMD_OUT21
1: OUT21 - Power stage switched ON (High side driver)
0: OUT21 - Power stage switched OFF
Note: If CPS_CONF=0 (single power stages configuration)
ENABLE
0: stepper motor driver disabled
1: stepper motor driver enabled
Note: If CPS_CONF=1(stepper motor driving configuration)
7 CMD_OUT22
1: OUT22 - Power stage switched ON
Note: If CPS_CONF=0 (single power stages configuration)
0: OUT22 - Power stage switched OFF
DIR
0: forward direction
1: backward direction
Note: if CPS_CONF=1(stepper motor driving configuration)
Note: The meaning of some CONTR_REG3 bit depends on the configuration of bit
CPS_CONF of CONF_REG1.
136/141
DocID027721 Rev 2
L9779WD-SPI
Functional description
CONTR_REG4
Control register 4
7
CPS_CONF = 0
CPS_CONF = 1
Address:
6
RESERVED
5
4
3
2
1
CMD_OUT28
CMD_OUT27
CMD_OUT26
CMD_OUT25
CMD_OUT24
0
CMD_OUT23
PWM
0 1011
Type:
Reset:
0000 0000 (ALL outputs switched OFF)
[6-7] RESERVED: NOT used
[5] CMD_OUT28
1: OUT28 Power stage switched ON
0: OUT28 Power stage switched OFF
[4] CMD_OUT27
1: OUT27 Power stage switched ON
0: OUT27 Power stage switched OFF
[3] CMD_OUT26
1: OUT26 - Power stage switched ON (High side driver)
0: OUT26 - Power stage switched OFF
[2] CMD_OUT25
1: OUT25 - Power stage switched ON (High side driver)
0: OUT25 - Power stage switched OFF
[1] CMD_OUT24
1: OUT24 - Power stage switched ON
0: OUT24 - Power stage switched OFF
[0] If CPS_CONF=0 (single power stages configuration)
CMD_OUT23
1: OUT23 Power stage switched ON
0: OUT23 Power stage switched OFF
if CPS_CONF=1(stepper motor driving configuration)
PWM
1 0: no step change in the driving sequence
0 1: step change in the driving sequence (next step applied)
Note: The meaning of some CONTR_REG4 bit depends on the configuration of bit
CPS_CONF of CONF_REG1.
DocID027721 Rev 2
137/141
140
Package information
7
L9779WD-SPI
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
HiQUAD-64 package information
Figure 74. HiQUAD-64 package outline
1
F
$
$
(
1
$
E
) 0 $ %
H
(
%277209,(:
VOXJWRSYLHZ
'
%
(
(
(
*$8*(3/$1(
F
VOXJ
ERWWRPVLGH
$
6
/
VHDWLQJSODQH
&
&RSODQDULW\
(VOXJOHQJKW
$
'
'
*$3*36
B)B0
138/141
DocID027721 Rev 2
L9779WD-SPI
Package information
Table 58. HiQUAD-64 package mechanical data
Dimensions
Ref
Inches(1)
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
3.15
-
-
0.1240
A1
0
-
0.25
0
-
0.0098
A2
2.50
-
2.90
0.0984
-
0.1142
A3
0
-
0.10
0
-
0.0039
b
0.22
-
0.38
0.0087
-
0.0150
c
0.23
-
0.32
0.0091
-
0.0126
(2)
D
17.00
-
17.40
0.6693
-
0.6850
D1
13.90
14.00
14.10
0.5472
0.5512
0.5551
D2
2.65
2.80
2.95
0.1043
0.1102
0.1161
E
17.00
-
17.40
0.6693
-
0.6850
13.90
14.00
14.10
0.5472
0.5512
0.5551
E2
2.35
-
2.65
0.0925
-
0.1043
E3
9.30
9.50
9.70
0.3661
0.3740
0.3819
E4
13.30
13.50
13.70
0.5236
0.5315
0.5394
e
-
0.65
-
-
0.0256
-
F
-
0.12
-
-
0.0047
-
G
-
0.10
-
-
0.0039
-
L
0.80
-
1.10
0.0315
-
0.0433
N
-
-
10°
-
-
10°
s
0°
-
7°
0°
-
7°
(1)
E1
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
0.15mm (.006inc.).
DocID027721 Rev 2
139/141
140
Revision history
8
L9779WD-SPI
Revision history
Table 59. Document revision history
140/141
Date
Revision
Changes
08-Apr-2015
1
Initial release.
08-May-2015
2
Updated Table 30, 31, 32 and 33 for the pins OUTA/B/C/D
(High-side) the “Ron max” value is changed in 1.7 Ω.
DocID027721 Rev 2
L9779WD-SPI
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID027721 Rev 2
141/141
141