0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EVAL6491HB

EVAL6491HB

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    BOARD EVAL FOR L6491

  • 数据手册
  • 价格&库存
EVAL6491HB 数据手册
L6491 Datasheet High voltage high and low-side 4 A gate driver Features SO-14 • • • • • • • • • • • • • • High voltage rail up to 600 V dV/dt immunity ± 50 V/ns in full temperature range Driver current capability: 4 A source/sink Switching times 15 ns rise/fall with 1 nF load 3.3 V, 5 V TTL/CMOS inputs with hysteresis Integrated bootstrap diode Comparator for fault protections Smart shutdown function Adjustable deadtime Interlocking function Compact and simplified layout Bill of material reduction Effective fault protection Flexible, easy and fast design Applications Product status link • L6491 Product label • • • • • • Motor driver for home appliances, factory automation, industrial drives and fans HID ballasts Power supply unit Induction heating Wireless chargers Industrial inverters UPS Description The L6491 is a high voltage device manufactured with the BCD6 “OFF-LINE” technology. It is a single-chip half-bridge gate driver for N-channel power MOSFET or IGBT. The high-side (floating) section is designed to stand a voltage rail up to 600 V. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy interfacing microcontroller/DSP. An integrated comparator is available for fast protection against over-current, overtemperature, etc. DS9763 - Rev 2 - March 2024 For further information contact your local STMicroelectronics sales office. www.st.com L6491 Block diagram 1 Block diagram Figure 1. Block diagram VCC PGND COMPARATOR DS9763 - Rev 2 page 2/23 L6491 Pin description 2 Pin description Figure 2. Pin configuration LIN 1 14 BOOT SD/OD 2 13 HVG HIN 3 12 OUT VCC 4 11 NC DT 5 10 CP+ SGND 6 9 CP- PGND 7 8 LVG Table 1. Pin description Pin number Pin name Type 1 LIN I 2 SD/OD (1) I/O 3 HIN I High-side driver logic input (active high) 4 VCC P Lower section supply voltage 5 DT I Deadtime setting 6 SGND P Signal ground 7 PGND P Power ground 8 (1) O Low-side driver output LVG Function Low-side driver logic input (active low) Shutdown logic input (active low)/open-drain comparator output 9 CP- I Comparator negative input 10 CP+ I Comparator positive input 11 NC 12 OUT Not connected (1) 13 HVG 14 BOOT P High-side (floating) common voltage O High-side driver output P Bootstrapped supply voltage 1. The circuit guarantees less than 1 V on the LVG and HVG pins (at Isink = 10 mA), with VCC > 3 V. This allows omitting the “bleeder” resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low. When the SD is set low, gate driver outputs are forced low and assure low impedance. DS9763 - Rev 2 page 3/23 L6491 Truth table 3 Truth table Table 2. Truth table Input Input SD LIN HIN LVG HVG L X (1) X (1) L L H H L L L H L H L L H L L H L H H H L H 1. X: don't care. DS9763 - Rev 2 page 4/23 L6491 Electrical data 4 Electrical data 4.1 Absolute maximum ratings Absolute maximum ratings are those values beyond which damage to the device may occur. These are stress ratings only and functional operation of the device at these conditions is not implied. Operating outside maximum recommended conditions for extended periods of time may impact product reliability and result in device failures. Table 3. Absolute maximum ratings Each voltage referred to SGND unless otherwise specified. Symbol Value Parameter Unit Min. Max. - 0.3 21 V Low-side driver ground VCC - 21 VCC + 0.3 V Vout Output voltage Vboot - 21 Vboot + 0.3 V Vboot Bootstrap voltage -0.3 620 V Vhvg High-side gate output voltage Vout - 0.3 Vboot + 0.3 V Vlvg Low-side gate output voltage PGND - 0.3 VCC + 0.3 V Vcp- Comparator negative input voltage (1) -0.3 5.5 V -0.3 5.5 V VCC VPGND Vcp+ Supply voltage Comparator positive input voltage (1) Vi Logic input voltage -0.3 15 V VOD Open-drain voltage -0.3 15 V Allowed output slew rate 50 V/ns Ptot Total power dissipation (TA = 25 °C) 1.0 W TJ Junction temperature 150 °C Tstg Storage temperature 150 °C ESD Human body model dVout/dt -50 2 kV 1. Spikes up to 20 V can be tolerated if the duration is shorter than 50 ns (fSW = 120 kHz). 4.2 Thermal data Table 4. Thermal data DS9763 - Rev 2 Symbol Parameter SO-14 Unit Rth (JA) Thermal resistance junction to ambient 120 °C/W page 5/23 L6491 Electrical data 4.3 Recommended operating conditions Table 5. Recommended operating conditions Symbol Pin VCC 4 VPS (1) Parameter Test conditions Supply voltage Min. Max. Unit 10 20 V 7-6 Low-side driver ground -1.5 +1.5 V VBO (2) 14 - 12 Floating supply voltage 9.3 20 V Vout 12 DC output voltage -9 (3) 580 V VCP- 9 Comparator negative input pin voltage VCP+ ≤ 2.5 V 5 (4) V VCP+ 10 Comparator positive input pin voltage VCP- ≤ 2.5 V 5 (4) V fsw Switching frequency HVG, LVG load CL = 1 nF 800 kHz TJ Junction temperature 125 °C -40 1. VPS = VPGND - SGND. 2. VBO = Vboot - Vout. 3. LVG off. VCC = 12.5 V. Logic is operational if Vboot > 5 V. 4. At least one of the comparator's inputs must be lower than 2.5 V to guarantee proper operation. DS9763 - Rev 2 page 6/23 L6491 Electrical characteristics 5 Electrical characteristics 5.1 AC operation Table 6. AC operation electrical characteristics VCC = 15 V; PGND = SGND; TJ = +25 °C Symbol ton toff tsd Pin 1 vs. 8 3 vs 13 2 vs. 8, 13 Shutdown to high/low-side driver propagation delay Min. OUT = 0 V BOOT = VCC CL = 1 nF Vi = 0 to 3.3 V see Figure 3 Measured applying a voltage step from 0 V to 3.3 V to pin CP+; CP- = 0.5 V Typ. Max. Unit 85 120 ns 85 120 ns 85 120 ns 175 220 ns 30 ns (1) 5 Deadtime setting range see Figure 4 Matching deadtime (2) MDT tf High/low-side driver turn-off propagation delay Test conditions Delay matching, HS and LS turn-on/off MT tr High/low-side driver turn-on propagation delay Comparator triggering to high/low-side driver turn-off propagation delay tisd DT Parameter 8,13 RDT = 0 Ω, CL = 1 nF 0.12 0.18 0.24 µs RDT = 100 kΩ, CL = 1 nF CDT = 100 nF 1.2 1.4 1.6 µs RDT = 200 kΩ, CL= 1 nF CDT = 100 nF 2.2 2.6 3 µs RDT = 0 Ω, CL = 1 nF 50 ns RDT = 100 kΩ, CL = 1 nF CDT = 100 nF 165 ns RDT = 200 kΩ, CL = 1 nF CDT = 100 nF 260 ns Rise time CL = 1 nF 15 40 ns Fall time CL = 1 nF 15 40 ns 1. MT = max. (|ton(LVG) - toff(LVG)|, |ton(HVG) - toff(HVG)|, |toff(LVG) - ton(HVG)|, |toff(HVG) - ton(LVG)|). 2. MDT = | DTLH - DTHL | (see Figure 5). DS9763 - Rev 2 page 7/23 L6491 Electrical characteristics Figure 3. Timing 50% LIN 50% tr tf 90% 90% LVG 10% 10% ton HIN toff 50% 50% tf tr 90% 90% HVG 10% 10% ton toff 50% SD tf 90% LVG/HVG 10% tsd Figure 4. Typical deadtime vs. DT resistor value 2.75 Approximated formula for Rdt calculation (typ): Rdt [kΩ] = 82 · DT [µs] -14.8 2.50 2.25 DT [µs] 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 0 50 100 150 200 250 Rdt [kΩ] DS9763 - Rev 2 page 8/23 L6491 Electrical characteristics 5.2 DC operation Table 7. Operation electrical characteristics VCC = 15 V; PGND = SGND; TJ = + 25 °C Symbol Pin Parameter Test conditions Min. Typ. Max. Unit VCC UV hysteresis 0.5 0.6 0.72 V VCC_thON VCC UV turn-ON threshold 8.7 9.3 9.8 V VCC_thOFF VCC UV turn-OFF threshold 8.2 8.7 9.2 V Undervoltage quiescent supply current VCC = 8 V SD = 5 V; LIN = 5 V; HIN = SGND; RDT = 0 Ω; CP+ = SGND; CP- = 5 V 160 210 μA Quiescent current VCC = 15 V SD = 5 V; LIN = 5 V; HIN = SGND; RDT = 0 Ω; CP+ = SGND; CP- = 5 V 540 700 μA 0.48 0.6 0.7 V Low-side supply voltage section VCC_hys Iqccu 4 Iqcc Bootstrapped supply voltage section (1) VBO_hys VBO UV hysteresis VBO_thON VBO UV turn-ON threshold 8 8.6 9.1 V VBO_thOFF VBO UV turn-OFF threshold 7.5 8.0 8.5 V 20 30 μA 90 120 μA 8 μA VCC = VBO = 7 V IQBOU 14-12 IQBO ILK Undervoltage VBO quiescent current SD = 5 V; LIN and HIN = 5 V; RDT = 0 Ω; CP+ = SGND; CP- = 5 V VBO quiescent current VBO = 15 SD = 5 V; LIN and HIN = 5 V; RDT = 0 Ω; CP+ = SGND; CP- = 5 V High voltage leakage current BOOT = HVG = OUT = 600 V Bootstrap driver on resistance RDS(on) (2) 175 Ω 4 A Driving buffer section High/low-side source peak current Iso 8, 13 Isi High/low-side sink peak current LVG/HVG ON TJ = 25 °C 3.5 Full temperature range 2.5 LVG/HVG OFF TJ = 25 °C 3.5 Full temperature range 2.5 A 4 A A Logic inputs Vil Vih DS9763 - Rev 2 1, 2, 3 Low level logic threshold 0.95 1.45 V High level logic threshold voltage 2 2.5 V page 9/23 L6491 Electrical characteristics Symbol Pin VSSD 2 Vil_S 1, 3 Test conditions 3 IHINl RPU_LIN 1 ILINh RPD_SD ISDh Typ. 2 ISDl Max. Unit 0.8 V 0.8 V Single input voltage LIN and HIN connected together and floating HIN pull-down resistor HIN = 15 V 58 75 125 kΩ HIN logic “1” input bias current HIN = 15 V 120 200 260 μA HIN logic “0” input bias current HIN = 0 V 1 μA LIN pull-up resistor ILINl Min. Smart SD unlatch threshold RPD_HIN IHINh Parameter 287 430 860 kΩ 5 10 15 μA 1 μA LIN logic “0” input bias current LIN = 0 V LIN logic “1” input bias current LIN = 15 V SD pull-down resistor SD = 15 V 250 375 750 kΩ SD logic “1” input bias current SD = 15 V 20 40 60 μA SD logic “0” input bias current SD = 0 V 1 μA 1. VBO = Vboot - Vout. 2. RDS(on) is tested in the following way: RDS(on) = [(VCC - VBOOT1) - (VCC - VBOOT2)] / [I1(VCC, VBOOT1) - I2(VCC, VBOOT2)] where I1 is pin 14 current when VBOOT = VBOOT1, I2 when VBOOT = VBOOT2. Table 8. Sense comparator VCC = 15 V, TJ = +25 °C Symbol Pin Vio 9, 10 Input offset voltage Iib 9, 10 Input bias current RON_SD IOD 2 td_comp SR Note: DS9763 - Rev 2 Parameter 2 SD on-resistance Open-drain low level sink current Test conditions Min. Typ. -15 VCP+ = 1 V, VCP- = 1 V SD\OD = 400 mV VCP+ = 1 V; VCP-= 0.5 V Max. Unit 15 mV 1 μA 15 20 31 kΩ 13 20 27 mA 155 ns Comparator delay Rpu = 100 kΩ to 5 V; VCP- = 0.5 V voltage step on CP+ = 0 to 3.3 V 50% CP+ to 90% SD 100 Slew rate CL=10 nF; Rpu = 5 kΩ to 5 V; 90% SD to 10% SD 10 V/μs Comparator is disabled when VCC is in UVLO condition. page 10/23 L6491 Waveform definitions 6 Waveform definitions Figure 5. Deadtime and interlocking waveform definitions ING ERL OCK LOC K HIN LVG INT INT ER CONTROL SIGNAL EDGES OVERLAPPED: INTERLOCKING + DEAD TIME ING LIN DTHL DTLH HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES SYNCHRONOUS (1): DEAD TIME HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES NOT OVERLAPPED, BUT INSIDE THE DEAD TIME: DEAD TIME HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES NOT OVERLAPPED, OUTSIDE THE DEAD TIME: DIRECT DRIVING HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) (*) HIN and LIN can be connected togheter and driven by just one control signal DS9763 - Rev 2 page 11/23 L6491 Smart shutdown function 7 Smart shutdown function The L6491 device integrates a comparator committed to the fault sensing function. The comparator input can be connected to an external shunt resistor in order to implement a simple overcurrent detection function. The output signal of the comparator is fed to an integrated MOSFET with the open-drain output available on pin 2, shared with the SD input. When the comparator triggers, the device is set in shutdown state and both its outputs are set to low level leaving the half-bridge in 3-state. Figure 6. Smart shutdown timing waveforms CP- CP+ HIN/LIN PROTECTION HVG/LVG SD/OD open drain gate (internal) disable time Fast shut down: the driver outputs are set in SD state immediately after the comparator triggering, even if the SD signal has not yet reach the lower input threshold An approximation of the disable time is given by: SHUT DOWN CIRCUIT VBIAS where: RSD SD/OD FROM/TO CONTROLLER CSD RON_OD SMART SD LOGIC RPD_SD DS9763 - Rev 2 page 12/23 L6491 Smart shutdown function In common overcurrent protection architectures, the comparator output is usually connected to the SD input and an RC network is connected to this SD/OD line in order to provide a monostable circuit, which implements a protection time following the fault condition. Differently from the common fault detection systems, the L6491 smart shutdown architecture allows immediate turn-off of the output gate driver in case of fault, by minimizing the propagation delay between the fault detection event and the current output switch-off. In fact the time delay between the fault and the output turn-off is no longer dependent on the RC value of the external network connected to the SD/OD pin. In the smart shutdown circuitry, the fault signal has a preferential path which directly switches off the outputs after the comparator triggering. At the same time, the internal logic turns on the open-drain output and holds it on until the SD voltage goes below the smart SD unlatch threshold VSSD. When such threshold is reached, the open-drain output is turned off, allowing the external pull-up to recharge the capacitor. The driver outputs restart following the input pins as soon as the voltage at the SD/OD pin reaches the higher threshold of the SD logic input. The smart shutdown system gives the possibility to increase the time constant of the external RC network (that determines the disable time after the fault event) up to very large values without increasing the delay time of the protection. Any external signal provided to the SD pin is not latched and can be used as control signal in order to perform, for instance, PWM chopping through this pin. In fact when a PWM signal is applied to the SD input and the logic inputs of the gate driver are stable, the outputs switch from the low level to the state defined by the logic inputs and vice versa. DS9763 - Rev 2 page 13/23 L6491 Typical application diagram 8 Typical application diagram Figure 7. Typical application diagram VCC BOOTSTRAP DRIVER VCC 4 FLOATING STRUCTURE 14 BOOT + CVCC1 FROM CONTROLLER HIN 3 Rfilt Cfilt LEVEL SHIFTER H.V. Cboot HVG DRIVER 13 HVG 12 OUT Rg 5V LOGIC FROM CONTROLLER LIN SHOOT THROUGH PREVENTION 1 Rfilt Cfilt VCC Vpu FROM/TO CONTROLLER RSD SD/OD TO LOAD LVG DRIVER 8 PGND 5V SMART SD COMPARATOR + 10 - DEAD 5 RLP CP+ CP- 9 CLP 7 CDT SGND 6 Vpu VCC Rp1 CVCC2 TIME RDT Rg 2 CSD DT LVG Cp2 PGND Rp2 Rshunt System power ground Figure 8. Suggested PCB layout Vpu SD/OD CBOOT Rfilt LIN Cfilt RSD CSD Rfilt Cfilt CVCC1 SGND plane VCC RDT CDT CLP Cp2 Cp+ HIN Rg Vpu CVCC2 Rp2 Rp1 RLP uC Signal GROUND Rshunt BOTTOM layer TOP layer DS9763 - Rev 2 POWER GROUND page 14/23 L6491 Bootstrap driver 9 Bootstrap driver A bootstrap circuitry is needed to supply the high voltage section. This function is usually accomplished by a high voltage fast recovery diode (see Section 9). In the L6491 an integrated structure replaces the external diode. Figure 9. Bootstrap driver with external high voltage fast recovery DBOOT VCC BOOT H.V. HVG CBOOT OUT TO LOAD LVG 9.1 CBOOT selection and charging To choose the proper CBOOT value the external MOS can be seen as an equivalent capacitor. This capacitor CEXT is related to the MOS total gate charge: Equation 1 CEXT = Qgate Vgate (1) The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss. It must be: CBOOT >> CEXT. For example: if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop would be 300 mV. If HVG must be supplied for a long period, the CBOOT selection must take into account also the leakage and quiescent losses. For example: HVG steady-state consumption is lower than 120 μA, therefore, if HVG ton is 5 ms, CBOOT must supply 0.6 μC to CEXT. This charge on a 1 μF capacitor means a voltage drop of 0.6 V. The internal bootstrap driver offers a big advantage: the external fast recovery diode can be avoided (it usually has very high leakage current). This structure can work only if VOUT is close to SGND (or lower) and, in the meantime, the LVG is on. The charging time (tcharge) of the CBOOT is the time in which both conditions are fulfilled and it Must be long enough to charge the capacitor. The bootstrap driver introduces a voltage drop due to the DMOS RDS(on) (typical value: 175 Ω). This drop can be neglected at low switching frequency, but it should be taken into account when operating at high switching frequency. Eq. (2) is useful to compute the drop on the bootstrap DMOS: Equation 2 Vdrop =  Icℎarge ∙  RDS(on)  Qgate cℎarge  Vdrop =   t ∙  RDS(on) (2) where Qgate is the gate charge of the external power MOS, RDS(on) is the ON-resistance of the bootstrap DMOS, and tcharge is the charging time of the bootstrap capacitor. For example: using a power MOS with a total gate charge of 30 nC, the drop on the bootstrap DMOS is about 1 V, if the tcharge is 5 μs. In fact: Equation 3 Vdrop = 30nC 5μs ∙ 175Ω~1V (3) Vdrop should be taken into account when the voltage drop on CBOOT is calculated: if this drop is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode can be used. DS9763 - Rev 2 page 15/23 L6491 Package information 10 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 10.1 SO-14 package outline Figure 10. SO-14 package information SEATING PLANE 0.25 mm GAGE PLANE h x 45° C L H A A2 8 DS9763 - Rev 2 1 14 D e B 7 E A1 page 16/23 L6491 Package information Table 9. SO-14 package mechanical data Dimensions (mm) Symbol Min. Typ. Max. A 1.35 1.75 A1 0.10 0.25 A2 1.10 1.65 B 0.33 0.51 C 0.19 0.25 D 8.55 8.75 E 3.80 4.00 e 1.27 H 5.80 6.20 h 0.25 0.50 L 0.40 1.27 k 0 8 ddd 0.10 0.60 1,27 Figure 11. SO-14 package suggested land pattern 4.0 6.7 DS9763 - Rev 2 page 17/23 L6491 Ordering information 11 Ordering information Table 10. Order code DS9763 - Rev 2 Order Code Package Package marking Packaging L6491D SO-14 L6941D Tube L6491DTR SO-14 L6941D Tape and reel page 18/23 L6491 Revision history Table 11. Document revision history DS9763 - Rev 2 Date Version Changes 11-Mar-2015 1 Initial release. 22-Mar-2024 2 Updated Table 7 (added RHIN_PD, RLIN_PU and RSD_PD ), Table 8 (added RON_SD) and Section 9. page 19/23 L6491 Contents Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 3 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 4 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 5 4.1 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.1 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 7 Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 8 Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 9 Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 9.1 10 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 10.1 11 CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 SO-14 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 DS9763 - Rev 2 page 20/23 L6491 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Pin description. . . . . . . . . . . . . . . . . Truth table . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . Thermal data. . . . . . . . . . . . . . . . . . Recommended operating conditions. . AC operation electrical characteristics Operation electrical characteristics . . . Sense comparator . . . . . . . . . . . . . . SO-14 package mechanical data . . . . Order code . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . DS9763 - Rev 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 4 . 5 . 5 . 6 . 7 . 9 10 17 18 19 page 21/23 L6491 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. DS9763 - Rev 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical deadtime vs. DT resistor value . . . . . . . . . . . . . Deadtime and interlocking waveform definitions . . . . . . Smart shutdown timing waveforms . . . . . . . . . . . . . . . Typical application diagram . . . . . . . . . . . . . . . . . . . . Suggested PCB layout. . . . . . . . . . . . . . . . . . . . . . . . Bootstrap driver with external high voltage fast recovery SO-14 package information . . . . . . . . . . . . . . . . . . . . SO-14 package suggested land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 8 . 8 11 12 14 14 15 16 17 page 22/23 L6491 IMPORTANT NOTICE – READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2024 STMicroelectronics – All rights reserved DS9763 - Rev 2 page 23/23
EVAL6491HB 价格&库存

很抱歉,暂时无法提供与“EVAL6491HB”相匹配的价格&库存,您可以联系我们找货

免费人工找货
EVAL6491HB
  •  国内价格 香港价格
  • 1+867.381831+108.11721

库存:2