AN1439
Application note
30 W AC-DC adapter with the L6565
quasi-resonant PWM controller
Introduction
This application note describes the evaluation board of the Quasi-resonant (QR) PWM
controller L6565 (order code: STEVAL-ISC001V1 - previous code EVAL6565N) and
presents the results of its bench evaluation. The board implements a 30 W, single-output
(15 V/2 A), wide-range mains input, QR converter that can be used as a reference design for
an AC-DC adapter, where good performance is to be achieved at low cost.
March 2008
Rev 7
1/17
www.st.com
Contents
AN1439
Contents
1
Design specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1
Evaluation board functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2/17
AN1439
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
STEVAL-ISC001V1 evaluation board: electrical specifications . . . . . . . . . . . . . . . . . . . . . . 5
STEVAL-ISC001V1 evaluation board: bill of material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
STEVAL-ISC001V1: transformer specification (part number 558179, supplied by
Albe s.r.l.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Limits set by European code of conduct on efficiency of external power supplies . . . . . . . . 8
STEVAL-ISC001V1: typical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
STEVAL-ISC001V1: line/load regulation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
STEVAL-ISC001V1: light-load input power (at Pout = 0.5 W) . . . . . . . . . . . . . . . . . . . . . . . 10
STEVAL-ISC001V1: no-load input power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
STEVAL-ISC001V1: maximum power capability (measured at 0.95·Vout) . . . . . . . . . . . . . 10
STEVAL-ISC001V1: typical wakeup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
STEVAL-ISC001V1 modified as per optimization steps 1 to 3: no-load input power measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3/17
List of figures
AN1439
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
4/17
STEVAL-ISC001V1 evaluation board: electrical schematic . . . . . . . . . . . . . . . . . . . . . . . . . 5
STEVAL-ISC001V1: PCB layout, silk + bottom layer (top view). . . . . . . . . . . . . . . . . . . . . . 7
STEVAL-ISC001V1: full load, Vin = 100 VDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STEVAL-ISC001V1: full load, Vin = 380 VDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STEVAL-ISC001V1: half load, Vin = 100 VDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STEVAL-ISC001V1: half load, Vin = 380 VDC (note uneven skipping) . . . . . . . . . . . . . . . 11
STEVAL-ISC001V1: no load, Vin = 100 VDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
STEVAL-ISC001V1: no load, Vin = 380 VDC (burst mode) . . . . . . . . . . . . . . . . . . . . . . . . 12
STEVAL-ISC001V1: full-load output ripple at Vin = 110 Vac: high freq. . . . . . . . . . . . . . . . 12
STEVAL-ISC001V1: full-load output ripple at Vin = 110 Vac: line freq. . . . . . . . . . . . . . . . . 12
STEVAL-ISC001V1: behavior upon short-circuit on the output. Vin=220 Vac . . . . . . . . . . . 13
STEVAL-ISC001V1: behavior upon short-circuit on D7. Vin=220 Vac . . . . . . . . . . . . . . . . 13
STEVAL-ISC001V1: load transient (at Vin = 220 Vac: Iout = 0.5 to 2.5 A). . . . . . . . . . . . . . 13
High-voltage active startup circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Low-consumption feedback network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AN1439
1
Design specification
Design specification
Table 1 summarizes the electrical specifications of the application, Table 2 provides the
BOM and Table 3 lists the transformer's specifications. The electrical schematic is shown in
Figure 1 and the PCB layout in Figure 2.
Table 1.
STEVAL-ISC001V1 evaluation board: electrical specifications
Input voltage range (Vin)
88 to 264 Vac
Mains frequency (fL)
50/60 Hz
Maximum output power (Pout)
30 W
–
–
–
Output
Vout= 15 V ± 3%;
Iout = 0 to 2 A;
Vripple≤1%
Minimum switching frequency (at 100 VDC input voltage)
60 kHz
Target efficiency (at Pout= 30 W, Vin= 88÷264 Vac)
η> 80%
< 0.75 W (1)
Maximum no-load input power
1. Compliant with European Code of Conduct on Efficiency of External Power Supplies, phase 2, 01.01.2003.
Figure 1.
F1 2A fuse
STEVAL-ISC001V1 evaluation board: electrical schematic
NTC1 10R
R1 100
Vin
88V to
264Vac
3 T1
B1 DF06G
C5
100 F
400V
C14
47nF
400V
D1
1N4148
D2
1N4148
D4
1.5KE220A
D3
STTH1L06
C15
100pF
1kV
8
10
Q1
STP5NK80ZFP
R6 220
L6565
R7 10
1
6
C7b
100nF
C12
330 F
25V
R15
5.6K
4
D6 1N4148
4
2
15V
2A
R11
1.5K
1
IC3 PC817X1
7
IC1
L2
10 H
C6 2.2nF Y1
5
R8 47K
5
3
4
C7
47 F
25V
R16
220K
R3
1.5M
C10,C11
680 F
25V
1
R5 4.7 D5 1N4148
R2
1.5M
D7
8 STPS8H100FP
R9
1.5
R10
1.5
3
1
R4
18K
C8
1nF
C9
2.2nF
R13
10K
R12 33K
2
3
IC2
TL431
C13
560nF
R14
2K
2
D01IN1303B
The electrical specification is typical of an AC-DC adapter for consumer equipment, usually
developed as an external unit. As such, it falls within the scope of the European "Code of
Conduct on Efficiency of External Power Supplies" and is required to be "efficient" under noload conditions as specified in Table 4. The design target is to fulfill the phase 2
requirements, so as to be up-to-date until the year 2005, when phase 3 sets even more
stringent limits. Some hints to upgrade the design according to phase 3 is given in the
section Evaluation board optimization for minimum no-load consumption on page 13.
5/17
Design specification
Table 2.
6/17
AN1439
STEVAL-ISC001V1 evaluation board: bill of material
Symbol
Value
Note
R1
100 Ω
5%
R2, R3
1.5 MΩ
R4
18 kΩ
R5
4.7 Ω
R6
220 Ω
R7
10 Ω
R8
47 kΩ
R9, R10
1.5 Ω
R11
1.5 kΩ
R12
33 kΩ
R13
10 kΩ
R14
2 kΩ
R15
5.6 kΩ
R16
220 kΩ
C5
100 µF
1 kV, Rubycon, MXR series or equivalent
C6
2.2 nF
Y1 class
C7
47 µF
25 V electrolytic
C7b
100 nF
Plastic film or ceramic
C8, C9
2.2 nF
Plastic film or ceramic
C10, C11
680 µF
25 V Rubycon, ZL series or equivalent
C12
330 µF
25 V Sanyo, CG series or equivalent
C13
560 nF
Plastic film or ceramic
C14
47 nF
400 V, polyester
C15
100 pF
1 kV, Y5P, Panasonic or equivalent
L2
10 µH
ELC08D100E, R=44 mΩ, Panasonic or equivalent
T1
558179
B1
DF06G
1A / 600 V bridge, DIP4, GI or equivalent
D1, D2, D5, D6
1N4148
0.3 A / 75 V, glass case, Vishay or equivalent
D3
STTH1L06
1 A / 600 V Turboswitch, F126, ST
D4
1.5KE220A
220 V Transil, CB429, ST
D7
STPS8H100FP
8 A / 100 V Schottky, TO-220FPAC, ST
IC1
L6565
QR PWM controller, DIP8, ST (1)
IC2
TL431CZ
Shunt regulator, TO92, ST
IC3
PC817X1J000F
Optocoupler, Sharp or equivalent
Metallic film
See spec in Table 3. Supplied by Albe s.r.l.
(Tel. +39 363 61493)
AN1439
Design specification
Table 2.
STEVAL-ISC001V1 evaluation board: bill of material (continued)
Symbol
Value
Note
Q1
STP5NK80ZFP
1.9 Ω/ 800 V, TO220FP, ST
NTC1
SSN550
NTC 10 Ω, Vishay or equivalent
F1
T2A250V
2 A, 250 V ELU
PCB
---
FR-4, Cu single layer 35 µm, 95.8 x 64.7 mm
1. If not otherwise specified, all resistors are 1%, ¼ W Q1 and D7 are both provided with a 40 °C/W heatsink
SK95/25/SA from Fischer Elektronik.
Table 3.
STEVAL-ISC001V1: transformer specification (part number 558179, supplied by Albe
s.r.l.)
Core
E25/13/7, N67 material or 3C85 or equivalent
Bobbin
Vertical mounting, 10 pins
Air gap
≈ 1 mm for an inductance 1-3 of 740 µH
Leakage inductance
< 20 µH (at 60 kHz) pins 1-3 with 4,5,7,8,9,10 shorted
Windings Spec & build
Figure 2.
Pin
start/end
Winding
Wire
Turns
Notes
1/2
Pri1
AWG26
40
Innermost winding
7/9
Sec1
2xAWG23
8
Pins 7-8 will be shorted on the PCB
8/10
Sec2
2xAWG23
8
Pins 9-10 will be shorted on the PCB
2/3
Pri2
AWG26
40
Pin2 will be cut for safety
4/5
Aux
AWG32
8
Evenly spaced
STEVAL-ISC001V1: PCB layout, silk + bottom layer (top view)
7/17
Design specification
Table 4.
AN1439
Limits set by European code of conduct on efficiency of external power
supplies
No-load power consumption
Rated input power
1.1
Phase 1 01.01.2001
Phase 2 01.01.2003
Phase 3 01.01.2005
≥0.3 W and < 15 W
1.0 W
0.75 W
0.30 W
≥15 W and < 50 W
1.0 W
0.75 W
0.50 W
Š50 W and < 75 W
1.0 W
0.75 W
0.75 W
Evaluation board functionality
The minimum switching frequency (60 kHz at Vin = 100 VDC) has been chosen trading off
the transformer's size against frequency-related losses. The reflected voltage has been
chosen equal to 150 V, then ZVS is achieved only when the converter operates from the 110
V mains. This value seems to provide a good compromise between capacitive and switching
losses at 220 V mains. To provide room for the leakage inductance spike, an 800 V Power
MOSFET (STP5NK80ZFP) is used.
To get 150 V reflected voltage, the primary-to-secondary turn ratio is made 1:10, which
originates relatively low reverse voltages at the secondary side and allows the use of a
Schottky rectifier as the secondary diode (D7).
An STPS8H100FP has been selected. Two design choices have been done to meet the noload consumption target. First, the converter is started up with a charge pump consisting of
D1, D2, C14 and R1 instead of the usual dropping resistor. This circuit, usable thanks to the
extremely low startup current of the L6565, provides a typical wakeup time going from 2.8 s
at 88 Vac to 0.75 s at 264 Vac, while dissipating less than 50 mW at 264 Vac, i.e. saving
about 200 mW as compared to a startup circuit made with a dropping resistor that gives the
same wakeup time. Second, the leakage inductance spikes are handled by a Transil clamp
(D4, with the addition of D3 to prevent direct conduction during Power MOSFET's ON-time),
instead of an RCD clamp, thus saving about 200 mW more. R2+R3 and R4 compensate for
the power capability change vs. the input voltage (Voltage Feedforward). Their ratio has
been found simply by fixing the high side one (using a high resistance value to keep the
losses low) and varying the low side resistance until the converter loses output voltage
regulation with the same load at 88 and 264 Vac. A 1nF film capacitor bypasses any noise
on pin #3 to ground.
To stay within ± 3% tolerance, the output voltage regulation is done with secondary
feedback, using a typical arrangement TL431+optocoupler. R12, C13 and C9 (on the
primary side) compensate the voltage loop for stability. Typically, the crossover frequency is
5 kHz with 70° phase margin. A 100 pF low-loss capacitor (C15) has been added across the
primary winding to optimize the Power MOSFET's losses at maximum load by a small
snubbing effect on the drain voltage rate of rise. The delay between transformer' s
demagnetization and the Power MOSFET's turn-on is adjusted by means of R8. The final
value of 47 kΩ has been experimentally determined so as to achieve the optimum turn-on
point (after the addition of C15).
The converter is fully protected against short-circuit. Under this condition it operates at the
frequency of the internal starter (2.5 kHz) and the reflected voltage on the auxiliary winding
drops, hence the supply voltage of the L6565 cannot be maintained. This results in
8/17
AN1439
Design specification
intermittent operation ("hiccup" mode) with low power throughput (< 1 W at 264 Vac). R10
prevents improper Power MOSFET's turn-on, due to signal bouncing on the pin, by pulling
up the ZCD pin that would be completely floating otherwise. Additionally, thanks to the 2nd
overcurrent level on the L6565's current sense pin, also a short-circuit directly across the
secondary winding - or D7 failing short - causes an intermittent operation with an even lower
level of power throughput.
Board evaluation: getting started
The AC voltage, generated by an AC source ranging from 88 Vac to 264 Vac, is applied to
connector M1 (at the bottom left-hand corner). Should one want to use a high-voltage DC
source, remember that the startup charge pump would not work and a dropping resistor
would be needed to let the L6565 start.
The 15 VDC output (connector M2) is located close to the bottom right-hand corner and will
be connected to the load. If an electronic load is going to be used in CC mode, make sure
that the voltage which the load starts sinking current at is > 1 V or use CR mode if this
cannot be set, otherwise the board may not start up at maximum load. This happens
because Vout needs to build up a little in order for the ZCD signal to be large enough to
trigger QR operation (refer to 2.: "L6565 Quasi-Resonant Controller" (AN1326).) Before that,
the converter runs at the frequency of the internal starter, with a much lower power
capability that may be easily exceeded if the load starts sinking the maximum current as Vout
is just above zero. In this case Vout gets clamped at a low value, the ZCD signal cannot
reach the minimum amplitude required, QR operation cannot take place and the system
cannot start up.
Caution:
Like in any offline circuit, extreme caution must be used when working with the
application board because it contains dangerous and lethal potentials. The
application must be tested with an isolation transformer connected between the AC
mains and the input of the board to avoid any risk of electrical shock.
Board evaluation: bench results and significant waveforms
Table 5, 6, and 7 summarize the results of some bench evaluations. A number of waveforms
under different load and line conditions are shown for the user's reference.
Table 5.
STEVAL-ISC001V1: typical performance
Parameter
Value
Unit
Regulated output voltage (at Vin= 220 Vac, Iout= 2 A)
14.924
V
Minimum operating frequency (at Vin= 88 Vac, Iout= 2 A)
60
kHz
Maximum operating frequency (at Vin= 264 Vac, Iout= 1.1 A)
214
kHz
Line regulation (Vin = 88 to 264 Vac, Iout= 2 A)
1
mV
Load regulation (Vin= 88 Vac, Iout= 0 to 2 A)
55
mV
High-frequency output voltage ripple (at Vin= 88 Vac, Iout= 2 A)
10
mV
Line-frequency output voltage ripple (at Vin= 88 Vac, fL = 60 Hz, Iout= 2 A)