0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IIS3DWBTR

IIS3DWBTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LGA-14_3X2.5MM

  • 描述:

    超宽带、低噪声、三轴数字振动传感器

  • 数据手册
  • 价格&库存
IIS3DWBTR 数据手册
IIS3DWB Datasheet Ultra-wide bandwidth, low-noise, 3-axis digital vibration sensor Features LGA-14L (2.5 x 3.0 x 0.83 mm) typ. • • • • • • • • • • • • • • • • 3-axis vibration sensor with digital output User-selectable full-scale: ±2/±4/±8/±16 g Ultra-wide and flat frequency response range: from dc to 6 kHz (±3 dB point) Ultra-low noise density: down to 75 µg/√Hz in 3-axis mode / 60 µg/√Hz in singleaxis mode High stability of the sensitivity over temperature and against mechanical shocks Extended temperature range from -40 to +105 °C Low power: 1.1 mA with all 3 axes delivering full performance SPI serial interface Low-pass or high-pass filter with selectable cut-off frequency Interrupts for wake-up / activity - inactivity / FIFO thresholds Embedded FIFO: 3 kB Embedded temperature sensor Embedded self-test Supply voltage: 2.1 V to 3.6 V Compact package: LGA 2.5 x 3 x 0.83 mm 14-lead ECOPACK, RoHS and “Green” compliant Applications Product status link IIS3DWB Product summary Order code IIS3DWBTR IIS3DWB Temp. range [°C] -40 to +105 Package LGA-14 Packing Tape and reel Product labels • • • • Vibration monitoring Condition monitoring Predictive maintenance Test and measurements Description Tray The IIS3DWB is a system-in-package featuring a 3-axis digital vibration sensor with low noise over an ultra-wide and flat frequency range. The wide bandwidth, low noise, very stable and repeatable sensitivity, together with the capability of operating over an extended temperature range (up to +105 °C), make the device particularly suitable for vibration monitoring in industrial applications. The high performance delivered at low power consumption together with the digital output and the embedded digital features like the FIFO and the interrupts are enabling features for battery-operated industrial wireless sensor nodes. The IIS3DWB has a selectable full-scale acceleration range of ±2/±4/±8/±16 g and is capable of measuring accelerations with a bandwidth up to 6 kHz with an output data rate of 26.7 kHz. A 3 kB first-in, first-out (FIFO) buffer is integrated in the device to avoid any data loss and to limit intervention of the host processor. DS12569 - Rev 6 - August 2020 For further information contact your local STMicroelectronics sales office. www.st.com IIS3DWB The MEMS sensor module family from ST leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes to serve automotive, industrial and consumer markets. The sensing elements are manufactured using ST’s proprietary micromachining process, while the embedded IC interfaces are developed using CMOS technology. The IIS3DWB has a self-test capability which allows checking the functioning of the sensor in the final application. The IIS3DWB is available in a 14-lead plastic land grid array (LGA) package and is guaranteed to operate over an extended temperature range from -40 °C to +105 °C. DS12569 - Rev 6 page 2/59 IIS3DWB Pin description 1 Pin description Figure 1. Pin connections Table 1. Pin desription Pin # Name 1 SDO/SA0 2 RES Function SPI 4-wire interface serial data output (SDO) I²C(1) least significant bit of the device address (SA0) Connect to VDD_IO or GND 3 RES Connect to VDD_IO or GND 4 INT1 Programmable interrupt #1 5 VDD_IO(2) 6 GND Connect to GND 7 GND Connect to GND 8 VDD(2) 9 INT2 Programmable interrupt #2 10 RES Connect to VDD_IO or leave unconnected(3) 11 RES Connect to VDD_IO or leave unconnected(3) Power supply for I/O pins Power supply I²C/SPI(1) mode selection 12 CS (1: SPI idle mode / I²C(1) communication enabled; 0: SPI communication mode / I²C(1) disabled) 13 SPC/SCL 14 SDI/SDO/SDA SPI serial port clock (SPC) I²C serial clock (SCL) SPI serial data input (SDI) 3-wire interface serial data output (SDO) I²C serial data (SDA) 1. Only the SPI interface supports all the device features and capabilities. Due to limited throughput, the I²C interface can be used only in single-axis mode and it is not recommended. 2. Recommended 100 nF filter capacitor. 3. Leave pin electrically unconnected and soldered to PCB. DS12569 - Rev 6 page 3/59 IIS3DWB Default pin configuration 1.1 Default pin configuration The IIS3DWB default pin configuration and behavior is given in the table below. Table 2. Default pin status Pin# Name 1 SDO/SA0 2 3 Function Default status Recommended connection SPI 4-wire interface serial data output (SDO) Input without pull-up I²C least significant bit of the device address (SA0) Pull-up is enabled if bit SDO_PU_EN=1 in reg 02h Application specific RES Reserved Input without pull-up Connect to VDD_IO or GND RES Reserved Input without pull-up Connect to VDD_IO or GND 4 INT1 Programmable interrupt #1 Input with pull-down 5 VDD_IO Power supply for I/O pin - 6 GND Ground - Must be set to 0 or left unconnected during device power-up. After device power-up, connection is application specific. 7 GND Ground - 8 VDD Power supply - 9 INT2 Programmable interrupt #2 Output forced to GND Application specific 10 RES Reserved Input with pull-up Connect to VDD_IO or leave pin electrically unconnected and soldered to PCB 11 RES Reserved Input with pull-up Connect to VDD_IO or leave pin electrically unconnected and soldered to PCB I²C/SPI mode selection 12 CS (1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled) 13 SPC/SCL SPI serial port clock (SPC) I²C serial clock (SCL) Input with pull-up Pull-up is disabled if bit I2C_DISABLE=1 in reg 13h Application specific Input without pull-up Application specific Input without pull-up Application specific SPI serial data input (SDI) 14 SDI/SDO/SDA 3-wire interface serial data output (SDO) I²C serial data (SDA) DS12569 - Rev 6 page 4/59 IIS3DWB Module specifications 2 Module specifications 2.1 Mechanical characteristics @Vdd = 3.0 V, T = +25 °C unless otherwise noted. The product is factory calibrated at 3.0 V. The operational power supply range is from 2.1 V to 3.6 V. Table 3. Mechanical characteristics Symbol Parameter Test conditions Min.(1) Typ.(2) Max.(1) Unit ±2 FS ±4 Linear acceleration measurement range g ±8 ±16 @FS = ±2 g So @FS = ±4 g Linear acceleration sensitivity(3) @FS = ±8 g 0.061 -2% @FS = ±16 g SoDr Linear acceleration sensitivity change vs. temperature(4) TyOff Linear acceleration zero-g level offset accuracy(5) TCOff Linear acceleration zero-g level change vs. Acceleration noise density 3 axes delta from T = +25°C ODR_ACC enabled(6) Signal bandwidth ±1 ±2 % ±60 +180 mg mg/°C X-axis 75 110 Y-axis 75 110 Z-axis 110 190 X-axis 60 90 Y-axis 60 90 Z-axis 80 130 ±3 dB point 5 Linear acceleration output data rate ODR accuracy mg/LSB ±1 Acceleration noise density only 1 axis enabled(6) ODR -180 temperature(4) An BW +2% 0.244 0.488 from -40°C to +105°C T = 25 °C 0.122 Error wrt 26667 Hz 6.3 kHz 26.667 kHz ±1 @Vdd 3.0 V, T = +25°C µg/√Hz ±2 % ±0.03 %/°C Error wrt 26667 Hz ODR_TC ODR change vs. temperature @Vdd 3.0 V, from -40°C to +105°C delta from T = +25°C F0 Sensor resonant frequency Vst Linear acceleration self-test output change(7)(8)(9) Top Operating temperature range DS12569 - Rev 6 X-axis 6.9 Y-axis 6.9 Z-axis 7.0 FS = ±4 g kHz 800 3200 mg -40 +105 °C page 5/59 IIS3DWB Electrical characteristics 1. Min/Max values are based on characterization results at 3σ on a limited number of samples, not tested in production and not guaranteed. 2. Typical specifications are not guaranteed. 3. Sensitivity values after factory calibration test and trimming. 4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured in production and not guaranteed. 5. Values after factory calibration test and trimming. 6. Frequency range 100 Hz - 6.3 kHz. Noise density is independent of the FS selected. 7. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes. 8. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). 1LSb =0.122 mg at ±4 g full scale. 9. Accelerometer self-test limits are full-scale independent. The self-test should be executed with FS setting ≥4 g. 2.2 Electrical characteristics @ Vdd = 3.0 V, T = 25 °C unless otherwise noted. Table 4. Electrical characteristics Symbol Vdd Vdd_IO Idd IddPD Ton VIH(4) (4) Parameter Test conditions Typ. (2) Max.(1) Unit Supply voltage 2.1 3.6 V Power supply for I/O 1.62 Vdd + 0.1 V 1.1 1.3 mA Accelerometer current consumption during power-down 5 16 µA Turn-on time(3) 10 Accelerometer current consumption ODR = 26.667 kHz Digital high-level input voltage ms 0.7 *VDD_IO VIL Digital low-level input voltage VOH(4) High-level output voltage IOH = 4 mA(5) VOL(4) Low-level output voltage IOL = 4 mA(5) Top Min.(1) V 0.3 *VDD_IO Operating temperature range VDD_IO - 0.2 -40 V V 0.2 V +105(6) °C 1. Min/Max values are based on characterization results at 3σ, not tested in production and not guaranteed. 2. Typical specifications are not guaranteed. 3. Time to obtain valid data switching from power-down to normal operation. 4. Guaranteed by design characterization and not tested in production. 5. 4 mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels VOH and VOL. 6. The IIS3DWB has been qualified with HTOL@125°C for 1000h. In case, in the application, the IIS3DWB has to be operated frequently at high temperature (>50°C), it is recommended, in order to maximize its lifetime, to switch off the sensor, by setting its power supplies to 0 V, when the sensor is not needed to perform measurements. The lower the duty cycle of the IIS3DWB in powered condition, the longer the lifetime of the device which can be extrapolated based on the results of reliability trials. DS12569 - Rev 6 page 6/59 IIS3DWB Temperature sensor characteristics 2.3 Temperature sensor characteristics @ Vdd = 3.0 V, T = 25 °C unless otherwise noted. The product is factory calibrated at 3.0 V. Symbol TODR Toff TSen T_delta_Acc Parameter Test condition Min.(1) Temperature refresh rate Temperature -15 Temperature sensitivity Delta temperature Max.(1) 104 offset(3) accuracy(4) Typ.(2) Hz +15 256 from 25°C to 105°C Unit °C LSB/°C 4 °C Temperature stabilization time(5) 10 ms T_ADC_res Temperature ADC resolution 16 bit Top Operating temperature range TST -40 +105 °C 1. Min/Max values are based on characterization results at 3σ on a limited number of samples, not tested in production and not guaranteed. 2. Typical specifications are not guaranteed. 3. The output of the temperature sensor is 0 LSB (typ.) at 25 °C. Absolute temperature accuracy can be improved (reducing the effect of temperature offset) by performing OPC (one-point calibration) at room temperature (25 °C). 4. Applicable if temperature offset is removed with OPC (one-point calibration) at room temperature (25 °C). 5. Time from power ON to valid output data. DS12569 - Rev 6 page 7/59 IIS3DWB Communication interface characteristics 2.4 Communication interface characteristics 2.4.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 5. SPI slave timing values Symbol Parameter Value(1) Min tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 5 th(CS) CS hold time 20 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) SDO output disable time Max Unit ns 100 10 MHz ns 50 5 50 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. Figure 2. SPI slave timing diagram Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. DS12569 - Rev 6 page 8/59 IIS3DWB Absolute maximum ratings 2.5 Absolute maximum ratings Stresses above those listed as “Absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 6. Absolute maximum ratings Symbol Ratings Maximum value Unit Vdd Supply voltage -0.3 to 4.8 V TSTG Storage temperature range -40 to +125 °C 10,000 g 2 kV 0.3 to Vdd_IO +0.3 V Sg ESD Vin Acceleration g for 0.2 ms Electrostatic discharge protection (HBM) Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) Note: Supply voltage on any pin should never exceed 4.8 V. This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part. This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part. DS12569 - Rev 6 page 9/59 IIS3DWB Terminology 2.6 2.6.1 Terminology Sensitivity Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see Table 3). 2.6.2 Zero-g level Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Linear acceleration zero-g level change vs. temperature” in Table 3. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors. DS12569 - Rev 6 page 10/59 IIS3DWB Digital interface 3 Digital interface 3.1 SPI interface The registers embedded inside the IIS3DWB may be accessed through the SPI serial interface that can be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3. The SPI interface is mapped to the same pins as an I²C interface. However, since it is only with the throughput of the SPI interface that all the device features and capabilities are supported, the I²C interface is not described. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO). Table 7. Serial interface pin description Pin name Pin description SPI enable CS I²C(1)/SPI mode selection (1: SPI idle mode / I²C(1) communication enabled; 0: SPI communication mode / I²C(1) disabled) SPC/SCL SPI serial port clock (SPC) I²C(1) serial clock (SCL) SPI serial data input (SDI) SDI/SDO/SDA 3-wire interface serial data output (SDO) I²C(1) serial data (SDA) SDO/SA0 SPI 4-wire interface serial data output (SDO) I²C(1) least significant bit of the device address (SA0) 1. Only the SPI interface supports all the device features and capabilities. Due to limited throughput, the I²C interface can be used only in single-axis mode and it is not recommended. DS12569 - Rev 6 page 11/59 IIS3DWB SPI bus interface 3.2 SPI bus interface The IIS3DWB SPI is a bus slave. The SPI allows writing to and reading from the registers of the device. The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO. Figure 3. Read and write protocol (in mode 3) CS SPC SDI RW DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 AD6 AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are, respectively, the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive SDO at the start of bit 8. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is ‘0’, the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is ‘1’, the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. DS12569 - Rev 6 page 12/59 IIS3DWB SPI bus interface 3.2.1 SPI read Figure 4. SPI read protocol (in mode 3) CS SPC SDI RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first). bit 16-...: data DO(...-8). Further data in multiple byte reads. Figure 5. Multiple byte SPI read protocol (2-byte example) (in mode 3) CS SPC SDI RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15 DO14DO13DO12 DO11DO10 DO9 DO8 DS12569 - Rev 6 page 13/59 IIS3DWB SPI bus interface 3.2.2 SPI write Figure 6. SPI write protocol (in mode 3) CS SPC SDI RW DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 AD6 AD5 AD4 AD3 AD2 AD1 AD0 The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple byte writes. Figure 7. Multiple byte SPI write protocol (2-byte example) (in mode 3) CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8 RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 3.2.3 SPI read in 3-wire mode A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to ‘1’ (SPI serial interface mode selection). Figure 8. SPI read protocol in 3-wire mode (in mode 3) CS SPC SDI/O DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode. DS12569 - Rev 6 page 14/59 IIS3DWB Functionality 4 Functionality 4.1 Operating modes The IIS3DWB has two operating modes: • 3-axis mode: all three axes (X, Y, Z) are simultaneously active and acceleration data can be read from the sensor concurrently for the 3-axis (using registers OUTX_L_A (28h) and OUTX_H_A (29h); OUTY_L_A (2Ah) and OUTY_H_A (2Bh); OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh) or the FIFO registers: FIFO_DATA_OUT (79h – 7Eh) • single-axis mode: only one axis is active. The active axis, among X or Y or Z, can be selected when the device is in power-down mode. Acceleration data can be read from the registers associated with the active axis or from the corresponding registers of the FIFO. In single-axis mode, while the power consumption of IIS3DWB remains the same as 3-axis mode, the resolution (noise density) of the active axis significantly improves. To change the configuration of the active axis, the device should be in power-down mode. An example of the procedure that can be applied is: Set the device in power-down mode: CTRL1_XL (10h) XL_EN[2:0] = 000b Enable the axis: CTRL6_C (15h) XL_AXIS_SEL[1:0] = xxb (00 = 3 axes; 01 = X-axis; 10 = Y-axis ; 11 = Z-axis) Enable the device: CTRL1_XL (10h) XL_EN[2:0] = 101b DS12569 - Rev 6 page 15/59 IIS3DWB Block diagrams 4.2 Block diagrams The IIS3DWB architecture is composed of the following functional blocks: • MEMS mechanical element • ADC • Low-pass digital filter (LPF1) • Composite filter Figure 9. Accelerometer architecture X A2D M E M S S E N S O R dC/dV converter I2C/SPI Interface Low Pass Filter (LPF1) A2D Composite Filter Digital Processing and functions ZA2D Temperature sensor Voltage and current reference Interrupt Mgmt CS SCL/SPC SDA/SDIO SDO INT1 INT2 A2D Trimming Circuit & Test Interface Clock & Phase Generator Power Management NVM Memory Figure 10. Accelerometer composite filter 0 0 LPF2 1 User Offset 1 USR_OFF_W OFS_USR[7:0] USR_OFF_ON_OUT HPCF_XL_[2:0] LPF2_XL_EN ADC LPF1 SPI/I2C 1 0 Wake-up 0 0 1 Activity / Inactiivity 1 USR_OFF_ON_WU FIFO SLOPE_FDS HPF FDS HPCF_XL_[2:0] Slope Filter DS12569 - Rev 6 HPCF_XL_[2:0] page 16/59 IIS3DWB FIFO 4.3 FIFO The presence of a FIFO allows consistent power saving for the system since the host processor does not need to continuously poll data from the sensor, but It can wake up only when needed and burst the significant data out from the FIFO. The IIS3DWB embeds 3 kbytes of data in FIFO to store the following data: • Accelerometer • Timestamp • Temperature Writing data in the FIFO is triggered by the accelerometer data-ready signal. It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32 compared to the accelerometer BDR (Batch Data Rate). The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO. FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change in the BDR configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device. The programmable FIFO watermark threshold can be set in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h) using the WTM[8:0] bits. To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of these status events, the configuration can be set in INT1_CTRL (0Dh) and INT2_CTRL (0Eh). The FIFO buffer can be configured according to six different modes: • Bypass mode • FIFO mode • Continuous mode • Continuous-to-FIFO mode • Bypass-to-Continuous mode • Bypass-to-FIFO mode Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 (0Ah) register. 4.3.1 Bypass mode In Bypass mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode. 4.3.2 FIFO mode In FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full. To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL4 (0Ah) (FIFO_MODE_[2:0]) to '001'. The FIFO buffer memorizes up to 3 kbytes of data but the depth of the FIFO can be resized by setting the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). If the STOP_ON_WTM bit in FIFO_CTRL2 (08h) is set to '1', FIFO depth is limited up to the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). DS12569 - Rev 6 page 17/59 IIS3DWB FIFO 4.3.3 Continuous mode Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded. A FIFO threshold flag FIFO_STATUS2 (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h)(WTM [8:0]). It is possible to route the FIFO_WTM_IA flag to the INT1 pin by writing in register INT1_CTRL (0Dh) (INT1_FIFO_TH) = '1' or to the INT2 pin by writing in register INT2_CTRL (0Eh)(INT2_FIFO_TH) = '1'. A full-flag interrupt can be enabled, INT1_CTRL (0Dh)(INT1_FIFO_FULL) = '1' or INT2_CTRL (0Eh) (INT2_FIFO_FULL) = '1', in order to indicate FIFO saturation and eventually read its content all at once. If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag in FIFO_STATUS2 (3Bh) is asserted. In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)(DIFF_FIFO_[9:0]). 4.3.4 Continuous-to-FIFO mode In Continuous-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event (wake-up) detected. When the selected trigger bit is equal to '1', FIFO operates in FIFO mode. When the selected trigger bit is equal to '0', FIFO operates in Continuous mode. 4.3.5 Bypass-to-Continuous mode In Bypass-to-Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode). FIFO behavior changes according to the trigger event detected (wake-up). 4.3.6 Bypass-to-FIFO mode In Bypass-to-FIFO mode FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '111'), data measurement storage inside FIFO operates in FIFO mode when selected triggers (Wake-up) are equal to '1', otherwise FIFO content is reset (Bypass mode) 4.3.7 FIFO reading procedure The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (FIFO_DATA_OUT_TAG (78h), in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT registers from (79h) to (7Eh)). The DIFF_FIFO_[9:0] field in the FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO. In addition, it is possible to configure a counter of the batch events of the sensor. The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter has reached a selectable threshold (CNT_BDR_TH_[10:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events, the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits (INT1_CNT_BDR of INT1_CTRL (0Dh) and INT2_CNT_BDR of INT2_CTRL (0Eh)). DS12569 - Rev 6 page 18/59 IIS3DWB Frequency response 5 Frequency response The IIS3DWB has been specifically designed to provide a wide bandwidth with very flat frequency response in the pass band and a very high attenuation in the stop band so to virtually eliminate any frequency aliasing. The following figure illustrates the filtering chain and its components. Figure 11. Filtering chain f0=7 kHz MEMS Analog Front-end+ ADC Low-Pass Filter ADC LPF1 26.7 kHz Composite Filter Composite Filter The output of the ADC converter is filtered with a digital low-pass filter to ensure the intended sensor’s frequency response. The frequency response at the output of the LPF1 filter is indicated in the following figure. Figure 12. Frequency response at the output of LPF1 filter Note: Frequency response determined by CAD simulation – at the output of LPF1. After the LPF1 filter, it is possible to enable another level of digital filtering through the digital composite filter (refer to Figure 10. Accelerometer composite filter). The digital composite filter could be: • High-pass filter • Low-pass filter DS12569 - Rev 6 page 19/59 IIS3DWB Frequency response Figure 13. Frequency response with LPF2 enabled Note: Frequency response determined by CAD simulation Figure 14. Frequency response with HPF enabled Note: Frequency response determined by CAD simulation DS12569 - Rev 6 page 20/59 IIS3DWB Typical performance characteristics 6 Typical performance characteristics 6.1 Frequency response measurements The frequency response of the IIS3DWB, measured on a mechanical shaker, is indicated in the following figures. Measurements have been performed with the IIS3DWB configured with the digital composite filter bypassed. Figure 15. Frequency response - X-axis Note: Characterization data on 10 parts. Not measured in production and not guaranteed. Figure 16. Frequency response - Y-axis Note: Characterization data on 10 parts. Not measured in production and not guaranteed. DS12569 - Rev 6 page 21/59 IIS3DWB Frequency response measurements Figure 17. Frequency response - Z-axis Note: Characterization data on 10 parts. Not measured in production and not guaranteed. DS12569 - Rev 6 page 22/59 IIS3DWB Sensitivity change versus temperature 6.2 Sensitivity change versus temperature Figure 18. Sensitivity change versus temperature Note: Characterization data. Not measured in production and not guaranteed. 6.3 ODR change versus temperature Figure 19. ODR change versus temperature Note: Characterization data. Not measured in production and not guaranteed. DS12569 - Rev 6 page 23/59 IIS3DWB Application hints 7 Application hints 7.1 IIS3DWB electrical connections CS SPC/SCL SDI/SDO/SDA Figure 20. IIS3DWB electrical connections HOST 12 14 I2C/SPI (3/4-w) 1 SDO/SA0 11 TOP VIEW RES (1) IIS3DWB RES (1) INT2 GND or Vdd IO 4 INT1 8 Vdd VDD C1 C2 Vdd_IO GND GND 7 GND VDD_IO 5 I2C configuration 100nF Rpu Rpu SCL Vdd_IO 100nF GND SDA Pull-up to be added Rpu=10kOhm The device core is supplied through the Vdd line while the I/O pads are supplied through the Vdd_IO line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the the supply pin of the device (common design practice). The functionality of the device and the measured acceleration data are selectable and accessible through the I²C or SPI interfaces. When using the I²C protocol, CS must be tied high. Every time the CS line is set to low level, the I²C bus is internally reset. All the functions, the threshold and the timing of the two interrupt pins can be completely programmed by the user through the I²C/SPI interface. Note: Only the SPI interface supports all the device features and capabilities. The I²C interface can be used only in single-axis mode and it is not recommended. DS12569 - Rev 6 page 24/59 IIS3DWB Measuring the actual ODR 7.2 Measuring the actual ODR For applications requiring higher ODR accuracy, it is possible to configure the device to generate an interrupt signal on the INT1/2 pin each time new data is generated. By using an accurate timer (i.e. with a microcontroller) it is possible to measure the time interval between consecutive interrupt signals obtaining a very accurate value of the actual ODR of the device. In order to enable the generation of the data_ready interrupt on the INT1 or INT2 pin: • The dataready_pulsed bit of the COUNTER_BDR_REG1 (0Bh) register should to be set to 1 (optional) • The INTx_ DRDY_XL bit of the INT1_CTRL (0Dh) / INT2_CTRL (0Eh) register has to be set to 1 Figure 21. Accurately measuring ODR SPI µC IIS3DWB INT1/2 pin DS12569 - Rev 6 page 25/59 IIS3DWB Register mapping 8 Register mapping The table given below provides a listing of the 8/16-bit registers embedded in the device and the corresponding addresses. Table 8. Register address map DS12569 - Rev 6 Name Type RESERVED - Register address Hex Binary Default Comment 01 PIN_CTRL RW 02 RESERVED - 03-06 00000010 00111111 FIFO_CTRL1 RW 07 00000111 00000000 FIFO_CTRL2 RW 08 00001000 00000000 FIFO_CTRL3 RW 09 00001001 00000000 FIFO_CTRL4 RW 0A 00001010 00000000 COUNTER_BDR_REG1 RW 0B 00001011 00000000 COUNTER_BDR_REG2 RW 0C 00001100 00000000 INT1_CTRL RW 0D 00001101 00000000 INT2_CTRL RW 0E 00001110 00000000 WHO_AM_I R 0F 00001111 01111011 CTRL1_XL RW 10 00010000 00000000 RESERVED - 11 CTRL3_C RW 12 00010010 00000100 CTRL4_C RW 13 00010011 00000000 CTRL5_C RW 14 00010100 00000000 CTRL6_C RW 15 00010101 00000000 CTRL7_C RW 16 00011100 00000000 CTRL8_XL RW 17 00010111 00000000 RESERVED - 18 CTRL10_C RW 19 00011001 00000000 ALL_INT_SRC R 1A 00011010 output WAKE_UP_SRC R 1B 00011011 output RESERVED - 1C-1D STATUS_REG R 1E 00011110 output RESERVED - 1F 00011111 OUT_TEMP_L R 20 00100000 output OUT_TEMP_H R 21 00100001 output RESERVED - 22-27 OUTX_L_A R 28 00101000 output OUTX_H_A R 29 00101001 output OUTY_L_A R 2A 00101010 output page 26/59 IIS3DWB Register mapping DS12569 - Rev 6 Name Type OUTY_H_A Register address Default Hex Binary R 2B 00101011 output OUTZ_L_A R 2C 00101100 output OUTZ_H_A R 2D 00101101 output RESERVED - 2E-39 FIFO_STATUS1 R 3A 00111010 output FIFO_STATUS2 R 3B 00111011 output RESERVED - 3C-3F TIMESTAMP0 R 40 01000000 output TIMESTAMP1 R 41 01000001 output TIMESTAMP2 R 42 01000010 output TIMESTAMP3 R 43 01000011 output RESERVED - 44-55 SLOPE_EN RW 56 01010111 00000000 RESERVED - 57 INTERRUPTS_EN RW 58 01011000 00000000 RESERVED - 59-5A WAKE_UP_THS RW 5B 01011011 00000000 WAKE_UP_DUR RW 5C 01011100 00000000 RESERVED - 5D MD1_CFG RW 5E 01011110 00000000 MD2_CFG RW 5F 01011111 00000000 RESERVED - 60-62 INTERNAL_FREQ_FINE R 63 01100011 output RESERVED - 64-72 X_OFS_USR RW 73 01110011 00000000 Y_OFS_USR RW 74 01110100 00000000 Z_OFS_USR RW 75 01110101 00000000 RESERVED - 76-77 FIFO_DATA_OUT_TAG R 78 01111000 output FIFO_DATA_OUT_X_L R 79 01111001 output FIFO_DATA_OUT_X_H R 7A 01111010 output FIFO_DATA_OUT_Y_L R 7B 01111011 output FIFO_DATA_OUT_Y_H R 7C 01111100 output FIFO_DATA_OUT_Z_L R 7D 01111101 output FIFO_DATA_OUT_Z_H R 7E 01111110 output Comment page 27/59 IIS3DWB Register description 9 Register description 9.1 PIN_CTRL (02h) SDO pin pull-up enable/disable register (r/w) Table 9. PIN_CTRL register 0 SDO_PU_EN 1 1 1 1 1 1 WTM1 WTM0 Table 10. PIN_CTRL register description SDO_PU_EN 9.2 Enable pull-up on SDO pin (0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up) FIFO_CTRL1 (07h) FIFO control register 1 (r/w) Table 11. FIFO_CTRL1 register WTM7 WTM6 WTM5 WTM4 WTM3 WTM2 Table 12. FIFO_CTRL1 register description FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h). WTM[7:0] 1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level. 9.3 FIFO_CTRL2 (08h) FIFO control register 2 (r/w) Table 13. FIFO_CTRL2 register STOP_ON _WTM 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) WTM8 1. This bit must be set to '0' for the correct operation of the device. Table 14. FIFO_CTRL2 register description Sensing chain FIFO stop values memorization at threshold level STOP_ON_WTM (0: FIFO depth is not limited (default); 1: FIFO depth is limited to threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h)) FIFO watermark threshold, in conjunction with WTM_FIFO[7:0] in FIFO_CTRL1 (07h) WTM8 1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level. DS12569 - Rev 6 page 28/59 IIS3DWB FIFO_CTRL3 (09h) 9.4 FIFO_CTRL3 (09h) FIFO control register 3 (r/w) Table 15. FIFO_CTRL3 register 0(1) 0(1) 0(1) 0(1) BDR_XL_3 BDR_XL_2 BDR_XL_1 BDR_XL_0 FIFO_ MODE_1 FIFO_ MODE_0 1. This bit must be set to '0' for the correct operation of the device. Table 16. FIFO_CTRL3 register description Selects Batch Data Rate (write frequency in FIFO) for accelerometer data. (0000: Accelerometer not batched in FIFO (default); BDR_XL_[3:0] 1010: 26667 Hz; 1011 - 1111: not allowed) 9.5 FIFO_CTRL4 (0Ah) FIFO control register 4 (r/w) Table 17. FIFO_CTRL4 register DEC_TS_ BATCH_1 DEC_TS_ BATCH_0 ODR_T_ BATCH_1 ODR_T_ BATCH_0 0(1) FIFO_ MODE_2 1. This bit must be set to '0' for the correct operation of the device. Table 18. FIFO_CTRL4 register description Selects decimation for timestamp batching in FIFO. Write rate will be the rate between XL BDR divided by decimation decoder. DEC_TS_ BATCH[1:0] (00: Timestamp not batched in FIFO (default); 01: Decimation 1: BDR_XL[Hz]; 10: Decimation 8: BDR_XL[Hz]/8; 11: Decimation 32: BDR_XL[Hz]/32) Selects batch data rate (write frequency in FIFO) for temperature data ODR_T_ BATCH[1:0] (00: Temperature not batched in FIFO (default); 11: 104 Hz) FIFO mode selection (000: Bypass mode: FIFO disabled; 001: FIFO mode: stops collecting data when FIFO is full; 010: Reserved; FIFO_ MODE[2:0] 011: Continuous-to-FIFO mode: Continuous mode until trigger is deasserted, then FIFO mode; 100: Bypass-to-Continuous mode: Bypass mode until trigger is deasserted, then Continuous mode; 101: Reserved; 110: Continuous mode: if the FIFO is full, the new sample overwrites the older one; 111: Bypass-to-FIFO mode: Bypass mode until trigger is deasserted, then FIFO mode.) DS12569 - Rev 6 page 29/59 IIS3DWB COUNTER_BDR_REG1 (0Bh) 9.6 COUNTER_BDR_REG1 (0Bh) Counter batch data rate register 1 (r/w) Table 19. COUNTER_BDR_REG1 register dataready _pulsed RST_ COUNTER _BDR 0(1) 0(1) 0(1) CNT_BDR _TH_10 CNT_BDR _TH_9 CNT_BDR _TH_8 1. This bit must be set to '0' for the correct operation of the device. Table 20. COUNTER_BDR_REG1 register description Enables pulsed data-ready mode dataready_pulsed 9.7 (0: Data-ready latched mode (returns to 0 only after an interface reading) (default); 1: Data-ready pulsed mode (the data ready pulses are 18.75 µs long) RST_ COUNTER_BDR Resets the internal counter of batch events. This bit is automatically reset to zero if it was set to ‘1’. CNT_BDR_TH_ [10:8] In conjunction with CNT_BDR_TH[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the internal counter of batch events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to ‘1’. COUNTER_BDR_REG2 (0Ch) Counter batch data rate register 2(r/w) Table 21. COUNTER_BDR_REG2 register CNT_BDR _TH_7 CNT_BDR _TH_6 CNT_BDR _TH_5 CNT_BDR _TH_4 CNT_BDR _TH_3 CNT_BDR _TH_2 CNT_BDR _TH_1 CNT_BDR _TH_0 Table 22. COUNTER_BDR_REG2 register description CNT_BDR_TH_ [7:0] DS12569 - Rev 6 In conjunction with CNT_BDR_TH[10:8] in COUNTER_BDR_REG1 (0Bh), sets the threshold for the internal counter of batch events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to ‘1’. page 30/59 IIS3DWB INT1_CTRL (0Dh) 9.8 INT1_CTRL (0Dh) INT1 pin control register (r/w) Each bit in this register enables a signal to be carried over INT1. Table 23. INT1_CTRL register 0(1) INT1_ CNT_BDR INT1_ FIFO _FULL INT1_ FIFO_ OVR INT1_ FIFO_TH INT1_ BOOT 0(1) INT1_ DRDY_XL 0(1) INT2_ DRDY_XL 1 1 1. This bit must be set to '0' for the correct operation of the device. Table 24. INT1_CTRL register description 9.9 INT1_CNT_BDR Enables COUNTER_BDR_IA interrupt on INT1. INT1_ FIFO _FULL Enables FIFO full flag interrupt on INT1 pin. INT1_ FIFO_ OVR Enables FIFO overrun interrupt on INT1 pin. INT1_FIFO_TH Enables FIFO threshold interrupt on INT1 pin. INT1_BOOT Enables boot status on INT1 pin INT1_ DRDY_XL Enables accelerometer data-ready interrupt on INT1 pin. INT2_CTRL (0Eh) INT2 pin control register (r/w) Each bit in this register enables a signal to be carried over INT2. Table 25. INT2_CTRL register 0(1) INT2_ CNT_BDR INT2_ FIFO _FULL INT2_ FIFO_ OVR INT2_ FIFO_TH INT2_ DRDY_TEMP 1. This bit must be set to '0' for the correct operation of the device. Table 26. INT2_CTRL register description 9.10 INT2_CNT_BDR Enables COUNTER_BDR_IA interrupt on INT2. INT2_ FIFO _FULL Enables FIFO full flag interrupt on INT2 pin. INT2_ FIFO_ OVR Enables FIFO overrun interrupt on INT2 pin. INT2_FIFO_TH Enables FIFO threshold interrupt on INT2 pin. INT2_DRDY_TEMP Enables temperature sensor data-ready interrupt on INT2 pin. INT2_ DRDY_XL Enables accelerometer data-ready interrupt on INT2 pin. WHO_AM_I (0Fh) Device identification register Table 27. WHO_AM_I register 0 DS12569 - Rev 6 1 1 1 1 0 page 31/59 IIS3DWB CTRL1_XL (10h) 9.11 CTRL1_XL (10h) Accelerometer control register 1 (r/w) Table 28. CTRL1_XL register XL_EN_2 XL_EN_1 XL_EN_0 0(1) FS1_XL FS0_XL LPF2_XL_EN 0(1) 1. This bit must be set to '0' for the correct operation of the device. Table 29. CTRL1_XL register description Enables accelerometer: XL_EN[2:0] (000: Power-down (default); 101: accelerometer enabled;) All other configurations are not allowed. FS[1:0]_XL Selects accelerometer full-scale (see Table 30). Selects accelerometer high-resolution. LPF2_XL_EN (0: output from first stage digital filtering selected (default); 1: output from LPF2 second filtering stage selected) Table 30. Accelerometer full-scale selection DS12569 - Rev 6 FS[1:0]_XL Full scale 00 (default) ±2 g 01 ±16 g 10 ±4 g 11 ±8 g page 32/59 IIS3DWB CTRL3_C (12h) 9.12 CTRL3_C (12h) Control register 3 (r/w) Table 31. CTRL3_C register BOOT BDU H_LACTIVE PP_OD SIM IF_INC 0(1) SW_RESET 1. This bit must be set to '0' for the correct operation of the device. Table 32. CTRL3_C register description Reboots memory content. Default value: 0 BOOT (0: normal mode; 1: reboot memory content) Note: the accelerometer must be ON. This bit is automatically cleared. Block Data Update. Default value: 0 BDU (0: continuous update; 1: output registers are not updated until MSB and LSB have been read) H_LACTIVE PP_OD SIM IF_INC Interrupt activation level. Default value: 0 (0: interrupt output pins active high; 1: interrupt output pins active low) Push-pull/open-drain selection on INT1 and INT2 pins. Default value: 0 (0: push-pull mode; 1: open-drain mode) SPI Serial Interface Mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface) Register address automatically incremented during a multiple byte access with a serial interface (I²C or SPI). Default value: 1 (0: disabled; 1: enabled) Software reset. Default value: 0 SW_RESET (0: normal mode; 1: reset device) This bit is automatically cleared. DS12569 - Rev 6 page 33/59 IIS3DWB CTRL4_C (13h) 9.13 CTRL4_C (13h) Control register 4 (r/w) Table 33. CTRL4_C register 0(1) INT2_ on_INT1 0(1) DRDY_ MASK 0(1) 0(1) I2C_disable 1AX_TO_ 3REGOUT 1. This bit must be set to '0' for the correct operation of the device. Table 34. CTRL4_C register description Enables bit to route all interrupt signals available on INT1 pin. Default value: 0 INT2_on_INT1 (0: interrupt signals divided between INT1 and INT2 pins; 1: all interrupt signals in logic OR on INT1 pin) Enables data available DRDY_MASK (0: disabled; 1: mask DRDY on pin until filter settling ends. Disables I²C interface. Default value: 0 I2C_disable (0: SPI and I²C interfaces enabled (default); 1: I²C interface disabled) 1AX_TO_3REGOUT 9.14 In single-axis mode, uses output of XYZ registers to give 3 consecutive samples of the selected single axis. CTRL5_C (14h) Control register 5 (r/w) Table 35. CTRL5_C register 0(1) ROUNDING1 ROUNDING0 0(1) 0(1) 0(1) ST1_XL ST0_XL 1. This bit must be set to '0' for the correct operation of the device. Table 36. CTRL5_C register description Circular burst-mode (rounding) read from the output registers. Default value: 00 ROUNDING[1:0] (00: no rounding; 01: rounding enabled) Linear acceleration sensor self-test enable. Default value: 00 ST[1:0]_XL (00: Self-test disabled; Other: refer to Table 37) Table 37. Linear acceleration sensor self-test mode selection DS12569 - Rev 6 ST1_XL ST0_XL Self-test mode 0 0 Normal mode 0 1 Positive sign self-test 1 0 Negative sign self-test 1 1 Not allowed page 34/59 IIS3DWB CTRL6_C (15h) 9.15 CTRL6_C (15h) Control register 6 (r/w) Table 38. CTRL6_C register 0(1) 0(1) 0(1) 0(1) USR_ OFF_W 0(1) XL_AXIS_ SEL_1 XL_AXIS_ SEL_0 1. This bit must be set to '0' for the correct operation of the device. Table 39. CTRL6_C register description Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h) USR_OFF_W (0 = 2-10 g/LSB; 1 = 2-6 g/LSB) Selects the active axis of the accelerometer in single-axis mode. Refer to Table 40 XL_AXIS_SEL[1:0] The selection or the switching of the active axis (3 axes or 1 axis among X, Y, Z) should be performed when the device is in power-down condition Table 40. Accelerometer active axis 9.16 XL_AXIS_ SEL[1:0] Active axis 00 (default) 3 axes (XYZ) 01 X-axis 10 Y-axis 11 Z-axis CTRL7_C (16h) Control register 7 (r/w) Table 41. CTRL7_C register 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) USR_OFF_ ON_OUT 0(1) 1. This bit must be set to ‘0’ for the correct operation of the device. Table 42. CTRL7_C register description Enables the accelerometer user offset correction block; it’s valid for the low-pass path - see Figure 10. Accelerometer composite filter. Default value: 0 USR_OFF_ON_OUT (0: accelerometer user offset correction block bypassed; (1: accelerometer user offset correction block enabled) DS12569 - Rev 6 page 35/59 IIS3DWB CTRL8_XL (17h) 9.17 CTRL8_XL (17h) Control register 8 (r/w) Table 43. CTRL8_XL register HPCF_XL_2 HPCF_XL_1 HP_REF_ MODE_XL HPCF_XL_0 FASTSETTL_ MODE_XL FDS 0(1) 0(1) 1. This bit must be set to '0' for the correct operation of the device. Table 44. CTRL8_XL register description HPCF_XL_[2:0] Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to Table 45. HP_REF_MODE_XL Enables accelerometer high-pass filter reference mode (valid for high-pass path - FDS bit must be ‘1’ and HPCF_XL_[2:0] must be set to “111”). Default value: 0(1) (0: disabled, 1: enabled) Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after FASTSETTL_MODE_XL writing this bit. Default value: 0 (0: disabled, 1: enabled) FDS Accelerometer low-pass / high-pass filter selection. Refer to Figure 10. 1. When enabled, the first output data have to be discarded. Table 45. Accelerometer bandwidth configurations Filter type Low pass High pass DS12569 - Rev 6 FDS 0 1 LPF2_XL_EN HPCF_XL_[2:0] Bandwidth 0 - 6.3 kHz 000 ODR/4 001 ODR/10 010 ODR/20 011 ODR/45 100 ODR/100 101 ODR/200 110 ODR/400 111 ODR/800 000 SLOPE (ODR/4) 001 ODR/10 010 ODR/20 011 ODR/45 100 ODR/100 101 ODR/200 110 ODR/400 111 ODR/800 1 -- page 36/59 IIS3DWB CTRL10_C (19h) 9.18 CTRL10_C (19h) Control register 10 (r/w) Table 46. CTRL10_C register 0(1) 0(1) TIMESTAMP _EN 0(1) 0(1) 0(1) 0(1) 0(1) 1. This bit must be set to '0' for the correct operation of the device. Table 47. CTRL10_C register description Enables timestamp counter. Default value: 0 TIMESTAMP_EN (0: disabled; 1: enabled) The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h). 9.19 ALL_INT_SRC (1Ah) Source register for all interrupts (r) Table 48. ALL_INT_SRC register TIMESTAMP _ENDCOUNT 0 SLEEP_ CHANGE_IA 0 0 0 WU_IA 0 Table 49. ALL_INT_SRC register description TIMESTAMP_ENDCOUNT SLEEP_CHANGE_IA WU_IA DS12569 - Rev 6 Alerts timestamp overflow within 6.4 ms Detects change event in activity/inactivity status. Default value: 0 (0: change status not detected; 1: change status detected) Wake-up event status. Default value: 0 (0: event not detected, 1: event detected) page 37/59 IIS3DWB WAKE_UP_SRC (1Bh) 9.20 WAKE_UP_SRC (1Bh) Wake-up interrupt source register (r) Table 50. WAKE_UP_SRC register 0 SLEEP_ CHANGE_IA 0 SLEEP_ STATE_IA WU_IA X_WU Y_WU Z_WU Table 51. WAKE_UP_SRC register description Detects change event in activity/inactivity status. Default value: 0 SLEEP_CHANGE_IA (0: change status not detected; 1: change status detected) Sleep event status. Default value: 0 SLEEP_STATE_IA (0: sleep event not detected; 1: sleep event detected) Wakeup event detection status. Default value: 0 WU_IA (0: wakeup event not detected; 1: wakeup event detected.) Wakeup event detection status on X-axis. Default value: 0 X_WU (0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected) Wakeup event detection status on Y-axis. Default value: 0 Y_WU (0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected) Wakeup event detection status on Z-axis. Default value: 0 Z_WU 9.21 (0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected) STATUS_REG (1Eh) Status register (r) Table 52. STATUS_REG register 0 0 0 0 0 TDA 0 XLDA Table 53. STATUS_REG register description Temperature new data available. Default: 0 TDA (0: no set of data is available at temperature sensor output; 1: a new set of data is available at temperature sensor output) Accelerometer new data available. Default value: 0 XLDA (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output) DS12569 - Rev 6 page 38/59 IIS3DWB OUT_TEMP_L (20h), OUT_TEMP_H (21h) 9.22 OUT_TEMP_L (20h), OUT_TEMP_H (21h) Temperature data output register (r). L and H registers together express a 16-bit word in two’s complement. Table 54. OUT_TEMP_L register Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0 Temp10 Temp9 Temp8 Table 55. OUT_TEMP_H register Temp15 Temp14 Temp13 Temp12 Temp11 Table 56. OUT_TEMP register description Temp[15:0] 9.23 Temperature sensor output data The value is expressed as two’s complement sign extended on the MSB. OUTX_L_A (28h) and OUTX_H_A (29h) Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two’s complement. Table 57. OUTX_L_A register D7 D6 D5 D4 D3 D2 D1 D0 Table 58. OUTX_H_A register D15 D14 D13 D12 D11 D10 D9 D8 Table 59. OUTX_H_A register description D[15:0] DS12569 - Rev 6 X-axis linear acceleration value D[15:0] expressed in two’s complement page 39/59 IIS3DWB OUTY_L_A (2Ah) and OUTY_H_A (2Bh) 9.24 OUTY_L_A (2Ah) and OUTY_H_A (2Bh) Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two’s complement. Table 60. OUTY_L_A register D7 D6 D5 D4 D3 D2 D1 D0 Table 61. OUTY_H_A register D15 D14 D13 D12 D11 D10 D9 D8 Table 62. OUTY_H_A register description D[15:0] 9.25 Y-axis linear acceleration value D[15:0] expressed in two’s complement OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh) Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two’s complement. Table 63. OUTZ_L_A register D7 D6 D5 D4 D3 D2 D1 D0 Table 64. OUTZ_H_A register D15 D14 D13 D12 D11 D10 D9 D8 Table 65. OUTZ_H_A register description D[15:0] DS12569 - Rev 6 Z-axis linear acceleration value D[15:0] expressed in two’s complement page 40/59 IIS3DWB FIFO_STATUS1 (3Ah) 9.26 FIFO_STATUS1 (3Ah) FIFO status register 1 (r) Table 66. FIFO_STATUS1 register DIFF_ FIFO_7 DIFF_ FIFO_6 DIFF_ FIFO_5 DIFF_ FIFO_4 DIFF_ FIFO_3 DIFF_ FIFO_2 DIFF_ FIFO_1 DIFF_ FIFO_0 DIFF_ FIFO_9 DIFF_ FIFO_8 Table 67. FIFO_STATUS1 register description Number of unread sensor data (TAG + 6 bytes) stored in FIFO DIFF_FIFO_[7:0] 9.27 In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh). FIFO_STATUS2 (3Bh) FIFO status register 2 (r) Table 68. FIFO_STATUS2 register FIFO_ WTM_IA FIFO_ OVR_IA FIFO_ FULL_IA COUNTER_ BDR_IA FIFO_OVR_ LATCHED 0 Table 69. FIFO_STATUS2 register description FIFO watermark status. Default value: 0 FIFO_WTM_IA (0: FIFO filling is lower than WTM; 1: FIFO filling is equal to or greater than WTM) Watermark is set through bits WTM[8:0] in FIFO_CTRL2 (08h) and FIFO_CTRL1 (07h). FIFO_OVR_IA FIFO_FULL_IA COUNTER_BDR_IA FIFO overrun status. Default value: 0 (0: FIFO is not completely filled; 1: FIFO is completely filled) Smart FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR) Counter BDR reaches the CNT_BDR_TH_[10:0] threshold set in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch). Default value: 0 This bit is reset when these registers are read. FIFO_OVR_LATCHED DIFF_FIFO_[9:8] DS12569 - Rev 6 Latched FIFO overrun status. Default value: 0 This bit is reset when this register is read. Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00 In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah) page 41/59 IIS3DWB TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h) 9.28 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h) Timestamp first data output register (r). The value is expressed as a 32-bit word and the bit resolution is 12.5 µs. Table 70. TIMESTAMP output registers D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D7 D14 D6 D13 D12 D5 D4 D11 D3 D10 D2 D9 D1 D8 D0 Table 71. TIMESTAMP output register description D[31:0] Timestamp output registers: 1LSB = 12.5 µs The formula below can be used to calculate a better estimation of the actual timestamp resolution: TS_Res = 1 / (80000 + (0.0015 * INTERNAL_FREQ_FINE * 80000)) where INTERNAL_FREQ_FINE is the content of INTERNAL_FREQ_FINE (63h). 9.29 SLOPE_EN (56h) Slope enable (r/w) Table 72. SLOPE_EN register 0(1) 0(1) SLEEP_STATUS _ON_INT SLOPE_FDS 0(1) 0(1) 0(1) LIR 1. This bit must be set to '0' for the correct operation of the device. Table 73. SLOPE_EN register description Activity/inactivity interrupt mode configuration. If the INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, drives the sleep status or sleep change on the INT SLEEP_STATUS_ON_INT pins. Default value: 0 (0: sleep change notification on INT pins; 1: sleep status reported on INT pins) SLOPE_FDS LIR DS12569 - Rev 6 HPF or slope filter selection on wake-up and activity/inactivity functions. Default value: 0 (0: Slope filter applied; 1: HPF applied) Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) page 42/59 IIS3DWB INTERRUPTS_EN (58h) 9.30 INTERRUPTS_EN (58h) Enables interrupt functions (r/w) Table 74. INTERRUPTS_EN register INTERRUPTS _ENABLE 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 1. This bit must be set to '0' for the correct operation of the device. Table 75. INTERRUPTS_EN register description Enables wake-up and activity/inactivity interrupt logic. Default value: 0 INTERRUPTS_ENABLE 9.31 (0: interrupt disabled; 1: interrupt enabled) WAKE_UP_THS (5Bh) Wake-up configuration (r/w) Table 76. WAKE_UP_THS register 0(1) USR_OFF_ ON_WU WK_THS5 WK_THS4 WK_THS3 WK_THS2 WK_THS1 WK_THS0 1. This bit must be set to '0' for the correct operation of the device. Table 77. WAKE_UP_THS register description 9.32 USR_OFF_ON_WU Drives the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the wakeup function. WK_THS[5:0] Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch). Default value: 000000 WAKE_UP_DUR (5Ch) Wakeup and sleep mode functions duration setting register (r/w) Table 78. WAKE_UP_DUR register 0(1) WAKE_ DUR1 WAKE_ DUR0 WAKE_ THS_W SLEEP_ DUR3 SLEEP_ DUR2 SLEEP_ DUR1 SLEEP_ DUR0 1. This bit must be set to '0' for the correct operation of the device. Table 79. WAKE_UP_DUR register description WAKE_DUR[1:0] Wake up duration event. Default: 00 1LSB = 1 ODR_time Weight of 1 LSB of wakeup threshold. Default: 0 WAKE_THS_W (0: 1 LSB = FS_XL / (26); 1: 1 LSB = FS_XL / (28) ) SLEEP_DUR[3:0] DS12569 - Rev 6 Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR) 1 LSB = 512 ODR page 43/59 IIS3DWB MD1_CFG (5Eh) 9.33 MD1_CFG (5Eh) Functions routing on INT1 register (r/w) Table 80. MD1_CFG register INT1_SLEEP _CHANGE 0(1) INT1_WU 0(1) 0(1) 0(1) 0(1) 0(1) 1. This bit must be set to '0' for the correct operation of the device. Table 81. MD1_CFG register description Routing of activity/inactivity recognition event on INT1. Default: 0 INT1_SLEEP_CHANGE(1) (0: routing of activity/inactivity event on INT1 disabled; 1: routing of activity/inactivity event on INT1 enabled) Routing of wakeup event on INT1. Default value: 0 INT1_WU (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled) 1. Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in SLOPE_EN (56h) register. 9.34 MD2_CFG (5Fh) Functions routing on INT2 register (r/w) Table 82. MD2_CFG register INT2_SLEEP _CHANGE 0(1) INT2_WU 0(1) 0(1) 0(1) 0(1) INT2_ TIMESTAMP 1. This bit must be set to '0' for the correct operation of the device. Routing of activity/inactivity recognition event on INT2. Default: 0 INT2_SLEEP_CHANGE(1) (0: routing of activity/inactivity event on INT2 disabled; 1: routing of activity/inactivity event on INT2 enabled) Routing of wakeup event on INT2. Default value: 0 INT2_WU (0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled) INT2_TIMESTAMP Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms 1. Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in SLOPE_EN (56h) register. DS12569 - Rev 6 page 44/59 IIS3DWB INTERNAL_FREQ_FINE (63h) 9.35 INTERNAL_FREQ_FINE (63h) Internal frequency register (r) Table 83. INTERNAL_FREQ_FINE register FREQ_ FINE7 FREQ_ FINE6 FREQ_ FINE5 FREQ_ FINE4 FREQ_ FINE3 FREQ_ FINE2 FREQ_ FINE1 FREQ_ FINE0 Table 84. INTERNAL_FREQ_FINE register description FREQ_FINE[7:0] Difference in percentage of the effective ODR (and timestamp rate) with respect to the typical. Step: 0.15%. 8-bit format, 2's complement. The formula below can be used to calculate a better estimation of the actual ODR: ODR_Actual = (26667 + ((0.0015 * INTERNAL_FREQ_FINE) * 26667)) 9.36 X_OFS_USR (73h) Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally subtracted from the acceleration value measured on the X-axis. Table 85. X_OFS_USR register X_OFS_ USR_7 X_OFS_ USR_6 X_OFS_ USR_5 X_OFS_ USR_4 X_OFS_ USR_3 X_OFS_ USR_2 X_OFS_ USR_1 X_OFS_ USR_0 Table 86. X_OFS_USR register description X_OFS_USR_[7:0] 9.37 Accelerometer X-axis user offset correction expressed in two’s complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127]. Y_OFS_USR (74h) Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally subtracted from the acceleration value measured on the Y-axis. Table 87. Y_OFS_USR register Y_OFS_ USR_7 Y_OFS_ USR_6 Y_OFS_ USR_5 Y_OFS_ USR_4 Y_OFS_ USR_3 Y_OFS_ USR_2 Y_OFS_ USR_1 Y_OFS_ USR_0 Table 88. Y_OFS_USR register description Y_OFS_USR_[7:0] DS12569 - Rev 6 Accelerometer Y-axis user offset calibration expressed in 2’s complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127]. page 45/59 IIS3DWB Z_OFS_USR (75h) 9.38 Z_OFS_USR (75h) Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis. Table 89. Z_OFS_USR register Z_OFS_ USR_7 Z_OFS_ USR_6 Z_OFS_ USR_5 Z_OFS_ USR_4 Z_OFS_ USR_3 Z_OFS_ USR_2 Z_OFS_ USR_1 Z_OFS_ USR_0 Table 90. Z_OFS_USR register description Z_OFS_USR_[7:0] 9.39 Accelerometer Z-axis user offset calibration expressed in 2’s complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127]. FIFO_DATA_OUT_TAG (78h) FIFO tag register (r) Table 91. FIFO_DATA_OUT_TAG register TAG_ SENSOR_4 TAG_ SENSOR_3 TAG_ SENSOR_2 TAG_ SENSOR_1 TAG_ SENSOR_0 TAG_CNT_1 TAG_CNT_0 TAG_ PARITY Table 92. FIFO_DATA_OUT_TAG register description FIFO tag: identifies the sensor in: TAG_SENSOR_[4:0] FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah), FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch), and FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh) For details, refer to Table 93. TAG_CNT_[1:0] 2-bit counter which identifies sensor time slot TAG_PARITY Parity check of TAG content Table 93. FIFO tag DS12569 - Rev 6 TAG_SENSOR_[4:0] Sensor name 0x02 Accelerometer 0x03 Temperature 0x04 Timestamp page 46/59 IIS3DWB FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah) 9.40 FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah) FIFO data output X (r) Table 94. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Table 95. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description D[15:0] 9.41 FIFO X-axis output FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch) FIFO data output Y (r) Table 96. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Table 97. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description D[15:0] 9.42 FIFO Y-axis output FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh) FIFO data output Z (r) Table 98. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Table 99. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description D[15:0] DS12569 - Rev 6 FIFO Z-axis output page 47/59 IIS3DWB Soldering information 10 Soldering information The LGA package is compliant with the ECOPACK, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Land pattern and soldering recommendations are available at www.st.com/mems. DS12569 - Rev 6 page 48/59 IIS3DWB Package information 11 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 11.1 LGA-14L package information Figure 22. LGA-14L 2.5 x 3.0 x 0.83 mm³ (typ) package outline and mechanical data Pin1 indicator Pin1 indicator H 0.5 4x 1 TOP VIEW (0.1) 14x 0.5 L 1.5 W 14x 0.25±0.05 0.475±0.05 BOTTOM VIEW Dimensions are in millimeter unless otherwise specified General tolerance is +/-0.1mm unless otherwise specified OUTER DIMENSIONS ITEM Length [L] W idth [W ] Height [H] DIMENSION [mm] 2.50 3.00 0.86 TOLERANCE [mm] ±0.1 ±0.1 MA X DM00249496_1 DS12569 - Rev 6 page 49/59 IIS3DWB LGA-14 packing information 11.2 LGA-14 packing information Figure 23. Carrier tape information for LGA-14 package Figure 24. LGA-14 package orientation in carrier tape DS12569 - Rev 6 page 50/59 IIS3DWB LGA-14 packing information Figure 25. Reel information for carrier tape of LGA-14 package T 40mm min. Access hole at slot location B C N D A Full radius G measured at hub Tape slot in core for tape start 2.5mm min. width Table 100. Reel dimensions for carrier tape of LGA-14 package Reel dimensions (mm) DS12569 - Rev 6 A (max) 330 B (min) 1.5 C 13 ±0.25 D (min) 20.2 N (min) 60 G 12.4 +2/-0 T (max) 18.4 page 51/59 IIS3DWB Revision history Table 101. Document revision history Date Version 29-Jan-2020 3 Changes First public release Updated CTRL8_XL (17h) Updated SLOPE_EN (56h) 20-Feb-2020 4 Added INTERRUPTS_EN (58h) Updated Table 92. FIFO tag Minor textual changes Updated Section 3.3.7 FIFO reading procedure 21-Jul-2020 5 Updated description of dataready_pulsed bit in COUNTER_BDR_REG1 (0Bh) Updated TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h) 13-Aug-2020 DS12569 - Rev 6 6 Added Section 3 Digital interface page 52/59 IIS3DWB Contents Contents 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 2 Default pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.1 3 4 5 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.6.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Digital interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.1 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4.1 Operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.3 Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.4 Continuous-to-FIFO mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.5 Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.6 Bypass-to-FIFO mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.7 FIFO reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 DS12569 - Rev 6 page 53/59 IIS3DWB Contents 6 7 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 6.1 Frequency response measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.2 Sensitivity change versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.3 ODR change versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 7.1 IIS3DWB electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.2 Measuring the actual ODR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 Register mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 9 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 9.1 PIN_CTRL (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.2 FIFO_CTRL1 (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.3 FIFO_CTRL2 (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.4 FIFO_CTRL3 (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.5 FIFO_CTRL4 (0Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.6 COUNTER_BDR_REG1 (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9.7 COUNTER_BDR_REG2 (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 9.8 INT1_CTRL (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 9.9 INT2_CTRL (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 9.10 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 9.11 CTRL1_XL (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.12 CTRL3_C (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.13 CTRL4_C (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.14 CTRL5_C (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9.15 CTRL6_C (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9.16 CTRL7_C (16h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9.17 CTRL8_XL (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 9.18 CTRL10_C (19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.19 ALL_INT_SRC (1Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.20 WAKE_UP_SRC (1Bh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.21 STATUS_REG (1Eh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 DS12569 - Rev 6 page 54/59 IIS3DWB Contents 9.22 OUT_TEMP_L (20h), OUT_TEMP_H (21h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.23 OUTX_L_A (28h) and OUTX_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.24 OUTY_L_A (2Ah) and OUTY_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.25 OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.26 FIFO_STATUS1 (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.27 FIFO_STATUS2 (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.28 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h) 42 9.29 SLOPE_EN (56h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.30 INTERRUPTS_EN (58h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.31 WAKE_UP_THS (5Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.32 WAKE_UP_DUR (5Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.33 MD1_CFG (5Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.34 MD2_CFG (5Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.35 INTERNAL_FREQ_FINE (63h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.36 X_OFS_USR (73h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.37 Y_OFS_USR (74h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.38 Z_OFS_USR (75h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.39 FIFO_DATA_OUT_TAG (78h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.40 FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah) . . . . . . . . . . . . . . . . . . . . . 47 9.41 FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch) . . . . . . . . . . . . . . . . . . . . . 47 9.42 FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh) . . . . . . . . . . . . . . . . . . . . . 47 10 Soldering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 11 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 11.1 LGA-14L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 11.2 LGA-14 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 DS12569 - Rev 6 page 55/59 IIS3DWB List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Pin desription . . . . . . . . . . . . . . . . . . . . . . . . . . Default pin status . . . . . . . . . . . . . . . . . . . . . . . . Mechanical characteristics . . . . . . . . . . . . . . . . . Electrical characteristics . . . . . . . . . . . . . . . . . . . SPI slave timing values. . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . Serial interface pin description . . . . . . . . . . . . . . . Register address map . . . . . . . . . . . . . . . . . . . . PIN_CTRL register. . . . . . . . . . . . . . . . . . . . . . . PIN_CTRL register description . . . . . . . . . . . . . . FIFO_CTRL1 register . . . . . . . . . . . . . . . . . . . . . FIFO_CTRL1 register description. . . . . . . . . . . . . FIFO_CTRL2 register . . . . . . . . . . . . . . . . . . . . . FIFO_CTRL2 register description. . . . . . . . . . . . . FIFO_CTRL3 register . . . . . . . . . . . . . . . . . . . . . FIFO_CTRL3 register description. . . . . . . . . . . . . FIFO_CTRL4 register . . . . . . . . . . . . . . . . . . . . . FIFO_CTRL4 register description. . . . . . . . . . . . . COUNTER_BDR_REG1 register . . . . . . . . . . . . . COUNTER_BDR_REG1 register description . . . . . COUNTER_BDR_REG2 register . . . . . . . . . . . . . COUNTER_BDR_REG2 register description . . . . . INT1_CTRL register . . . . . . . . . . . . . . . . . . . . . . INT1_CTRL register description . . . . . . . . . . . . . . INT2_CTRL register . . . . . . . . . . . . . . . . . . . . . . INT2_CTRL register description . . . . . . . . . . . . . . WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . CTRL1_XL register . . . . . . . . . . . . . . . . . . . . . . CTRL1_XL register description . . . . . . . . . . . . . . Accelerometer full-scale selection . . . . . . . . . . . . CTRL3_C register . . . . . . . . . . . . . . . . . . . . . . . CTRL3_C register description . . . . . . . . . . . . . . . CTRL4_C register . . . . . . . . . . . . . . . . . . . . . . . CTRL4_C register description . . . . . . . . . . . . . . . CTRL5_C register . . . . . . . . . . . . . . . . . . . . . . . CTRL5_C register description . . . . . . . . . . . . . . . Linear acceleration sensor self-test mode selection CTRL6_C register . . . . . . . . . . . . . . . . . . . . . . . CTRL6_C register description . . . . . . . . . . . . . . . Accelerometer active axis . . . . . . . . . . . . . . . . . . CTRL7_C register . . . . . . . . . . . . . . . . . . . . . . . CTRL7_C register description . . . . . . . . . . . . . . . CTRL8_XL register . . . . . . . . . . . . . . . . . . . . . . CTRL8_XL register description . . . . . . . . . . . . . . Accelerometer bandwidth configurations . . . . . . . . CTRL10_C register . . . . . . . . . . . . . . . . . . . . . . CTRL10_C register description . . . . . . . . . . . . . . ALL_INT_SRC register . . . . . . . . . . . . . . . . . . . . ALL_INT_SRC register description. . . . . . . . . . . . WAKE_UP_SRC register . . . . . . . . . . . . . . . . . . WAKE_UP_SRC register description . . . . . . . . . . STATUS_REG register . . . . . . . . . . . . . . . . . . . . DS12569 - Rev 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 4 . 5 . 6 . 8 . 9 11 26 28 28 28 28 28 28 29 29 29 29 30 30 30 30 31 31 31 31 31 32 32 32 33 33 34 34 34 34 34 35 35 35 35 35 36 36 36 37 37 37 37 38 38 38 page 56/59 IIS3DWB List of tables Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. STATUS_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . OUT_TEMP_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUT_TEMP_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUT_TEMP register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTX_L_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTX_H_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTX_H_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTY_L_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTY_H_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTY_H_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTZ_L_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTZ_H_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OUTZ_H_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FIFO_STATUS1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FIFO_STATUS1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . FIFO_STATUS2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FIFO_STATUS2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . TIMESTAMP output registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TIMESTAMP output register description . . . . . . . . . . . . . . . . . . . . . . . SLOPE_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SLOPE_EN register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTERRUPTS_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTERRUPTS_EN register description . . . . . . . . . . . . . . . . . . . . . . . . WAKE_UP_THS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WAKE_UP_THS register description . . . . . . . . . . . . . . . . . . . . . . . . . WAKE_UP_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WAKE_UP_DUR register description . . . . . . . . . . . . . . . . . . . . . . . . . MD1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MD1_CFG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MD2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTERNAL_FREQ_FINE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . INTERNAL_FREQ_FINE register description. . . . . . . . . . . . . . . . . . . . X_OFS_USR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X_OFS_USR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y_OFS_USR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y_OFS_USR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z_OFS_USR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z_OFS_USR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . FIFO_DATA_OUT_TAG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . FIFO_DATA_OUT_TAG register description . . . . . . . . . . . . . . . . . . . . FIFO tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers . . . . . . . . FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers . . . . . . . . FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers . . . . . . . . FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description. Reel dimensions for carrier tape of LGA-14 package . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS12569 - Rev 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 39 39 39 39 39 39 40 40 40 40 40 40 41 41 41 41 42 42 42 42 43 43 43 43 43 43 44 44 44 45 45 45 45 45 45 46 46 46 46 46 47 47 47 47 47 47 51 52 page 57/59 IIS3DWB List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. DS12569 - Rev 6 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read and write protocol (in mode 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI read protocol (in mode 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple byte SPI read protocol (2-byte example) (in mode 3) . . . . . . . . . . SPI write protocol (in mode 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple byte SPI write protocol (2-byte example) (in mode 3) . . . . . . . . . . SPI read protocol in 3-wire mode (in mode 3) . . . . . . . . . . . . . . . . . . . . . Accelerometer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accelerometer composite filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filtering chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency response at the output of LPF1 filter . . . . . . . . . . . . . . . . . . . Frequency response with LPF2 enabled . . . . . . . . . . . . . . . . . . . . . . . . Frequency response with HPF enabled . . . . . . . . . . . . . . . . . . . . . . . . . Frequency response - X-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency response - Y-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency response - Z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sensitivity change versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . ODR change versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IIS3DWB electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accurately measuring ODR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LGA-14L 2.5 x 3.0 x 0.83 mm³ (typ) package outline and mechanical data . Carrier tape information for LGA-14 package . . . . . . . . . . . . . . . . . . . . . LGA-14 package orientation in carrier tape. . . . . . . . . . . . . . . . . . . . . . . Reel information for carrier tape of LGA-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 8 12 13 13 14 14 14 16 16 19 19 20 20 21 21 22 23 23 24 25 49 50 50 51 page 58/59 IIS3DWB IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DS12569 - Rev 6 page 59/59
IIS3DWBTR 价格&库存

很抱歉,暂时无法提供与“IIS3DWBTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IIS3DWBTR
  •  国内价格
  • 1+154.44711

库存:1561

IIS3DWBTR
  •  国内价格
  • 1+154.44711

库存:1

IIS3DWBTR
  •  国内价格
  • 10+261.03000
  • 200+195.22420
  • 1000+151.35350
  • 5000+109.67650
  • 25000+98.70880

库存:7071

IIS3DWBTR
  •  国内价格
  • 1+162.54499
  • 10+148.76999
  • 30+146.01499

库存:197

IIS3DWBTR
  •  国内价格 香港价格
  • 5000+105.374355000+12.64850

库存:2780

IIS3DWBTR
  •  国内价格 香港价格
  • 1+157.390801+18.89223
  • 5+140.151265+16.82290
  • 10+133.9698710+16.08093
  • 25+126.7852825+15.21853
  • 50+122.0025250+14.64444
  • 100+117.71494100+14.12979
  • 500+109.38960500+13.13046

库存:2780

IIS3DWBTR
    •  国内价格
    • 1+91.53000
    • 100+85.42800
    • 250+84.20760

    库存:7059

    IIS3DWBTR
    •  国内价格
    • 1+132.88320
    • 10+122.92560
    • 30+114.54480

    库存:19