IPS160H, IPS161H
Datasheet
60 V, 60 mΩ single high-side switches
Features
•
•
•
•
•
•
•
8 V to 60 V operating voltage range
Minimum output current limitation: 0.7 A (IPS161H) or 2.5 A (IPS160H)
Fast demagnetization of inductive load
Non-dissipative short-circuit protection (cut-off)
Programmable cut-off delay time using external capacitor
Ground disconnection protection
VCC disconnection protection
•
•
•
Thermal shutdown protection
Undervoltage lock-out
Diagnostic signalization for: open load in off-state, cut-off and junction thermal
shutdown
Designed to meet IEC 61131-2
PowerSSO12 package
•
•
Applications
•
•
•
•
•
Product status
IPS160H
Description
IPS161H
The IPS160H (IOUT < 2.5 A) and IPS161H (IOUT < 0.7 A) are monolithic devices
which can drive capacitive, resistive or inductive loads with one side connected to
ground.
Product label
Product summary
Order code
Package
Packing
IPS160H
IPS160HTR
IPS161H
IPS161HTR
PowerSSO12
Tube
Programmable logic control
Industrial PC peripheral input/output
Numerical control machines
Domotics
Generic power supply switch
The 60 V operating range and Ron = 60 mΩ, combined with the extended diagnostic
(Open Load, Over Load, Overtemperature) make the IC suitable for applications
implementing the proper architectures to address higher SIL levels.
The built-in overload and thermal shutdown protections guarantee the ICs, the
application and the load against electrical and thermal overstress. Furthermore, in
order to minimize the power dissipation when the output is shorted, a low-dissipative
short-circuit protection (cut-off) is implemented to limit the output average current
value and consequent device overheating.Cut-off delay time can be set by soldering
an external capacitor or disabled by a resistor on pin 4 (CoD).
The DIAG common diagnostic open drain pin reports the open load in off-state, cutoff
(overload) and thermal shutdown.
Tape and
reel
DS10907 - Rev 11 - December 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
IPS160H, IPS161H
Block diagram
1
Block diagram
Figure 1. Block diagram
IN
DIAG
Logic interface
Undervoltage
detection
Vcc
Vcc clamp
Output clamp
Current limitation
cut -off
Open load in off-state
OUT
CoD
Junction
Overtemperature
GND
DS10907 - Rev 11
GIPG1702151307LM
page 2/24
IPS160H, IPS161H
Pin description
2
Pin description
Figure 2. Pin connection (top view)
VCC
1
12 VCC
IN
2
11
OUT
DIAG
3
10
OUT
CoD
4
9
OUT
NC
5
8
OUT
NC
6
7
GND
TAB=Vcc
GIPG1702151321LM
Table 1. Pin configuration
Number
Name
Type
1, 12, TAB
VCC
Device supply voltage
Supply
2
IN
Channel input
Input
3
DIAG
Common diagnostic pin both for thermal shutdown, cut-off and open load
Output open
drain
4
CoD
Cut-off delay pin, cannot be left floating.
Connected to GND by 1 kΩ resistor to disable the cut-off function. Connect to a CCoD
capacitor to set the cut-off delay see Table 8. Protection and diagnostic
Input
5, 6
NC
Not connected
7
GND
Device ground
Ground
Channel power stage output
Output
8, 9, 10, 11 OUT
2.1
Function
IN
This pin drives the output stage to pin OUT. IN pin has internal weak pull-down resistors, see Table 7. Logic
inputs.
2.2
OUT
Output power transistor is in high-side configuration, with active clamp for fast demagnetization.
2.3
DIAG
This pin is used for diagnostic purpose and it is internally wired to an open drain transistor. The open drain
transistor is turned on in case of junction thermal shutdown, cut-off, or open load in off-state.
DS10907 - Rev 11
page 3/24
IPS160H, IPS161H
CoD
2.4
CoD
This pin cannot be left floating and can be used to program the cut-off delay time tcoff, see Table 8. Protection
and diagnostic through an external capacitor (CCoD). The cut-off function can be completely disabled connecting
the CoD pin to GND through 1 kΩ resistor: in this condition the output channel remains in limitation condition,
supplying the current to the load until the input is forced LOW or the thermal shutdown threshold is triggered.
2.5
GND
IC ground.
2.6
VCC
IC supply voltage.
DS10907 - Rev 11
page 4/24
IPS160H, IPS161H
Reverse polarity
3
Reverse polarity
Reverse polarity
The IC can be protected against reverse polarity using two different solutions:
1. Placing a resistor RGND between IC GND pin and load connection point to GND (RGND > VCC/Icc, see Table 1.
Absolute maximum rating). Note that power dissipated by RGND during reverse polarity condition is Vcc^2/RGND.
2. Placing a diode in parallel to RGND
The diode must be selected such that its VRRM > |VCC| and power dissipation capability is higher than VF*IS
(see Table 1).
In normal operation (no reverse polarity), there is a voltage drop (ΔV) between GND of the device and GND of the
module.
Using option 1, ΔV = RGND * ICC.
Using option 2, ΔV = VF@(IS).
Figure 3. Reverse polarity protection schematic
DS10907 - Rev 11
page 5/24
IPS160H, IPS161H
Absolute maximum ratings
4
Absolute maximum ratings
Table 2. Absolute maximum ratings
Symbol
Parameter
VCC
Supply voltage
VOUT
Output channel voltage
Value
Unit
-0.3 to 65
V
Vcc-Vclamp to Vcc+0.3
V
-10 to +10
mA
IIN
Input current
VIN
IN voltage
VCC
V
VCOD
Output cut-off voltage pin
5.5
V
ICOD
Input current on cut-off pin
-1 to +10
mA
VDIAG
Fault voltage
VCC
V
IDIAG
Fault current
-5 to +10
mA
ICC (1)
Maximum DC reverse current flowing through the IC
from GND to VCC
-250
mA
IOUT
Output stage current
-IOUT (1)
EAS
(1)
Internally limited
A
Maximum DC reverse current flowing through the IC
from OUT to VCC
5
Single pulse avalanche energy (TAMB = 125 °C, VCC
= 24 V, Iload = 0.5 A)
3000
mJ
Single pulse avalanche energy (TAMB = 125 °C, VCC
= 24 V, Iload = 1.0 A)
1000
mJ
Internally limited
W
PTOT
Power dissipation at TC = 25 °C (2)
TSTG
Storage temperature range
-55 to 150
Junction temperature
-40 to 150
TJ
°C
1. Verified on STEVAL-IFP028V1 and STEVAL-IFP034V1 application board
2. (TJSD(MAX)-TC)/ Rth(JA)
Note:
Absolute maximum ratings are those values beyond which damage to the device may occur. Functional
operation under these conditions is not implied. All voltages are referenced to GND.
Table 3. Thermal data
Value
Symbol
Note:
Parameter
1s
2s2p
2s2p (with 4
thermal vias)
Rth(JC)
Thermal resistance junction-case
0.4
0.9
0.5
Rth(JA)
Thermal resistance junction-ambient
117
57
29
Unit
°C/W
Rth(JC) is intended between the die and the bottom case surface measured by cold plate as per JESD51. Rth(JA)
according JESD51-3 (1s) JESD51-5 (2s2p) and JESD51-7 (2s2p and thermal vias).
DS10907 - Rev 11
page 6/24
IPS160H, IPS161H
Electrical characteristics
5
Electrical characteristics
(8 V < VCC < 60 V; -40 °C < TJ < 125 °C, unless otherwise specified)
Table 4. Supply
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VUVON
60
V
VCC
Supply voltage
VUVON
Undervoltage on threshold
6.9
8
V
VUVOFF
Undervoltage off threshold
6.5
7.8
V
VUVH
Undervoltage hysteresis
0.15
Supply current in off-state
IS
Supply current in on-state
ILGND
GND disconnection output current
0.5
V
VCC = 24 V
300
500
VCC = 60 V
350
600
VCC = 24 V
1
1.4
VCC = 60 V
1.4
2.1
VGND = VIN = VCC, VOUT = 0 V; TJ = 25oC
0.5
VGND = VIN = VCC, VOUT = 0 V; TJ = 125oC
0.55
μA
mA
mA
Table 5. Output stage
Symbol
Parameter
Test conditions
Min. Typ. Max. Unit
VCC = 24 V
RDS(on)
On-state resistance
60
IOUT =0.5 A (IPS161H), 1 A (IPS160H) @ TJ = 25 °C
mΩ
VCC = 24 V
120
IOUT =0.5 A (IPS161H), 1 A (IPS160H) @ TJ = 125 °C
DS10907 - Rev 11
VOUT(OFF)
Off-state output voltage
IOUT(OFF)
Off-state output current
IOUT(OFF-min)
Off-state output current
80
VIN = 0 V and IOUT = 0 A
2
VCC = 24 V, VIN = 0 V, VOUT = 0 V
3
VCC = 60 V, VIN = 0 V, VOUT = 0 V
10
VIN = 0 V, VOUT = 4 V
-35
V
μA
0
page 7/24
IPS160H, IPS161H
Electrical characteristics
Table 6. Switching (VCC = 24 V; -40 °C < TJ < 125 °C, RLOAD = 48 Ω)
Symbol
Parameter
Test conditions
tr
Rise time
tf
Fall time
tPD(H-L)
Propagation delay time off
tPD(L-H)
Propagation delay time on
tD(VCC-ON)
Power-on delay time from
VCC rising edge
Min. Typ. Max.
IOUT = 0.5 A, Figure 4. Timing in normal operation
IOUT = 0.5 A, (see Figure 5. Propagation delay at startup)
10
20
10
20
20
35
20
35
Unit
μs
600 1200
Figure 4. Timing in normal operation
Figure 5. Propagation delay at start-up
VIN
t
VCC
VUVON
t
td(Vcc-on)
VOUT
10%
t
DS10907 - Rev 11
page 8/24
IPS160H, IPS161H
Electrical characteristics
Table 7. Logic inputs
Symbol
Parameter
VIL
Input low level voltage
VIH
Input high level voltage
VI(HYST)
Input hysteresis voltage
IIN
Input current
Test conditions
Min.
Typ.
Max.
Unit
0.8
V
2.2
0.4
VCC = VIN = 36 V
200
VCC = VIN = 60 V
550
μA
Table 8. Protection and diagnostic
Symbol
Parameter
Test conditions
Vclamp
VCC active clamp
ICC = 10 mA
Vdemag
Demagnetization voltage
IOUT = 0.5 A; load =1 mH
VOLoff
Open load (off-state) or short to
VCC detection threshold
tBKT
Open load blanking time
VDIAG
Voltage drop on DIAG
IDIAG
DIAG pin leakage current
IPK
IPS161H
Output current limitation activation
threshold
tcoff
Typ.
Max.
65.5
68.5
71.5
2
200
μs
1
V
VCC ≤ 36 V
110
36 V ˂ VCC ≤ 60 V
180
2.1
3.0
4.6
IPS161H Output current limitation
0.7
1.7
IPS160H Output current limitation
2.5
4.2
Cut-off current delay time
Programmable by the external
capacitor on CoD pin. Cut-off is
disabled when CoD pin is connected to
GND through 1 kΩ resistor.
V
4
IDIAG = 4 mA
VCC ≤ 24 V, RLOAD ≤ 10 mΩ
Unit
VCC-71.5 VCC-68.5 VCC-65.5
1.3
IPS160H
Output current limitation activation
threshold
ILIM
Min.
50xCCOD[nf] ± 35%(1)
μA
A
μs
TJ˂ TJSD
tres
Output stage restart delay time
TJSD
Junction temperature shutdown
TJHYST
Junction temperature thermal
hysteresis
TJ˂ TJSD
32xtcoff [μs]± 40%
150
170
15
190
°C
1. The formula is guaranteed in the range 10 nF ≤ CCOD ≤ 100 nF.
DS10907 - Rev 11
page 9/24
IPS160H, IPS161H
Output logic
6
Output logic
Table 9. Output stage truth table
Operation
Normal
Cut-off
Overtemperature
Open load
UVLO
DS10907 - Rev 11
IN
OUT
DIAG
L
L
H
H
H
H
L
L
L
H
L
L
L
L
L
H
L
L
L
H (external pull-up resistor is
used)
L (external pull-up resistor is
used)
H
H
X
L
X
X
L
X
H
page 10/24
IPS160H, IPS161H
Protection and diagnostic
7
Protection and diagnostic
The IC integrates several protections to ease the design of a robust application.
7.1
Undervoltage lock-out
The device turns off if the supply voltage falls below the turn-off threshold (VUV(off)). Normal operation restarts
after VCC exceeds the turn-on threshold (VUV(on)). Turn-on and turn-off thresholds are defined in Table 4. Supply.
7.2
Overtemperature
The output stage turns off when its internal junction temperature (TJ) exceeds the shutdown threshold TJSD.
Normal operation restarts when TJ comes back below the reset threshold (TJSD - TJHYST), see Table 8. Protection
and diagnostic. The internal fault signal is set when the channel is off due to thermal protection and it is reset
when the junction triggers the reset threshold. This same behavior is reported on DIAG pin.
7.3
Cut-off
The IC can limit the output current at the power stage by its embedded output current limitation circuit.
This circuit continuously monitor the output current and, when load is increasing, at the triggering of its activation
threshold (3.8A TYP) it starts limiting to ILIM limitation level (See Protection and diagnostic): while current
limitation is active the IC enters an high dissipation status.
The IC implements the cut-off feature which limits the duration of the current limitation condition.
The duration of the current limitation condition (Tcoff) can be set by a capacitor (CCoD) placed between CoD and
GND pins. The design rule for CCoD is:
tcoff[us] +/- 35% = 50 x Ccod[nF]
The drift of +/-35% is guaranteed in the range of 10 nF < Ccod < 100 nF; lower capacitance than 10 nF can be
used.
If ILIM threshold is triggered, the output stage remains in the current limitation condition (IOUT = ILIM) no longer
than tcoff. If tcoff elapses, the output stage turns off and restarts after the tres restart time.
Thermal shutdown protection has higher priority than cut-off:
•
IC is forced off if TJSD is triggered before tcoff elapses
•
if TJSD is triggered, IC is maintained off even after the tres has elapsed and until the TJ decreases below
TJSD-TJHYST
Figure 6. Current limitation and cut-off
I OUT
t COFF
t res
ILIM
TJ 36 V) the cut-off
function needs activating in order to avoid IC permanent damages. The following table reports the suggested
cut-off delay for the different operating voltage.
Table 10. Minimum cut-off delay for TAMB less than -20 °C
DS10907 - Rev 11
VCC [V]
Cut-off delay [μs]
Cut-off capacitance [nF]
36-48
100
2.2
48-60
50
1
page 12/24
IPS160H, IPS161H
Open load in off-state
7.4
Open load in off-state
The IC provides the open load detection feature which detects if the load is disconnected from the OUT pin. This
feature can be activated by a resistor (RPU) between OUT and VCC pins.
Figure 7. Open load off-state
Application board
VCC
SUPPLY RAIL
IC
VCC
EXPOSED PAD
Open load
detection signal
R PU
+
-
OUT
VOLOFF
RI
R LED
R LOAD
PGND
GROUND PLANE
In case of wire break and during the OFF state (IN = low), the output voltage VOUT rises according to the the
partitioning between the external pull-up resistor and the internal impedence of the IC (130 kΩ < RI < 360 kΩ).
The effect of the LED (if any) on the output pin has to be considered as well. In case of wire break and during the
ON state (IN = high), the output voltage VOUT is pulled up to VCC by the low resistive integrated switch. If the load
is not connected, in order to guarantee the correct open load signalization it must result:
VOUT > VOLoff(max.)
Referring to the circuit in figure 6:
therefore:
VOUT = VCC − RPU × IPU = VCC − RPU × IRI + ILED + IRL
VCC min − VOLoff max
RPU < V
VOLoff max − VLED
OLoff max
+
RLED
RI min
(1)
(2)
If the load is connected, in order to avoid any false signalization of the open load, it must result as follows:
VOUT < VOLoff(min)
By taking into account the circuit in figure 6:
so:
VOUT = VCC − RPU × IPU = VCC − RPU ×
VOUT VOUT − VLED VOUT
+ R
RI +
RLED
L
VCC max − VOLoff min
RPU > V
VOLoff min − VLED VOLoff min
OLoff min
+
+
RLED
RL
RI max
(3)
(4)
The fault condition is reported on the DIAG pin and the fault reset occurs when load is reconnected.
If the channel is switched on by IN pin, the fault condition is no longer detected.
When inductive load is driven, some ringing of the output voltage may be observed at the end of the
demagnetization. In fact, the load is completely demagnetized when ILOAD = 0 A and the OUT pin remains
floating until next turn-on. In order to avoid a fake signalization of the open load event driving inductive loads, the
open load signal is masked for tBKT. So, the open load is reported on the DIAG pin with a delay of tBKT and if the
open load event is triggered for more than tBKT.
DS10907 - Rev 11
page 13/24
IPS160H, IPS161H
VCC disconnection protection
7.5
VCC disconnection protection
The IC is protected despite the VCC disconnection event. This event is intended as the disconnection of the
VCC wire from the application board, see figure below. When this condition happens, the IC continues working
normally until the voltage on the VCC pin is ≥ VUVOFF. Once the VUVOFF is triggered, the output channel is turned
off independently on the input status. In case of inductive load, if the VCC is disconnected while the output channel
is still active, the IC allows the discharge of the energy still stored in the inductor through the integrated power
switch.
Figure 8. VCC disconnection
APPLICATION BOARD
VCC >VUVOFF
VCC
EXPOSED
PAD
CVCC
SUPPLY RAIL
ON
DRIVING
CIRCUITRY
OUT
IC
GND
GROUND PLANE
7.6
GND disconnection protection
GND disconnection is intended as the disconnection event of the application ground, see figure below. When this
event happens, the IC continues working normally until the voltage between VCC and GND pins of the IC results ≥
VUVOFF. The voltage on GND pin of the IC rises up to the supply rail voltage level. In case of GND disconnection
event, a current (ILGND) flows through OUT pin. Table 7. Logic inputs reports IOUT = ILGND for the worst case of
GND disconnection event in case of output shorted to ground.
Figure 9. GND disconnection
APPLICATION BOARD
SUPPLY RAIL
VCC
VCC
EXPOSED
PAD
CVCC
DRIVING
CIRCUITRY
ON
OUT
IC
LOAD
GROUND PLANE
DS10907 - Rev 11
GND
page 14/24
IPS160H, IPS161H
Active VDS clamp
8
Active VDS clamp
Active clamp is also known as fast demagnetization of inductive loads or fast current decay. When a high-side
driver turns off an inductance, an undervoltage is detected on output.
The OUT pin is pulled down to Vdemag. The conduction state is modulated by an internal circuitry in order to keep
the OUT pin voltage at about Vdemag until the load energy has been dissipated. The energy is dissipated both in
IC internal switch and in load resistance.
Figure 10. Active clamp equivalent principle schematic
APPLICATION BOARD
SUPPLY RAIL
IC
VCC
EXPOSED PAD
Clamp
circuitry
OUT
L LOAD
GROUND PLANE
GND
Figure 11. Fast demag waveforms
IOUT
tON
tDEMAG
~
ILOAD
t
VOUT
~
VCC
t
VCC-VDEMAG
VIN
~
t
The demagnetization of inductive load causes a huge electrical and thermal stress to the IC. The curve plotted
below shows the maximum demagnetization energy that the IC can support in a single demagnetization pulse
with VCC = 24 V and TAMB = 125 °C. If higher demagnetization energy is required then an external free-wheeling
Schottky diode has to be connected between OUT (cathode) and GND (anode) pins. Note that in this case the
fast demagnetization is inhibited.
DS10907 - Rev 11
page 15/24
IPS160H, IPS161H
Active VDS clamp
Figure 12. Typical demagnetization energy (single pulse) at VCC = 24 V and TAMB = 125 °C
4000
3500
EDEMAG [mJ]
3000
2500
2000
1500
1000
500
0
500
700
900
1100
1300
ILOAD
DS10907 - Rev 11
1500
1700
1900
2100
2300
2500
[mA]
page 16/24
IPS160H, IPS161H
Package information
9
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
9.1
PowerSSO12 package information
Figure 13. PowerSSO12 package outline
7392413 rev. D
Table 11. PowerSSO12 package mechanical data
Dim.
mm
Min.
Max.
A
1.250
1.700
A1
0.000
0.100
A2
1.100
1.600
B
0.230
0.410
C
0.190
0.250
D
4.800
5.000
E
3.800
4.000
e
0.800
H
5.800
6.200
h
0.250
0.55
L
0.400
1.270
k
0d
8d
X
1.900
2.500
Y
3.600
4.200
ddd
DS10907 - Rev 11
Typ.
0.100
page 17/24
IPS160H, IPS161H
PowerSSO12 package information
Note:
Dimension D doesn't include mold flash protrusions or gate burrs. Mold flash protrusions or gate burrs don't
exceed 0.15 mm in total both side.
Figure 14. PowerSSO12 recommended footprint
Figure 15. PowerSSO12 tape packing information [mm]
DS10907 - Rev 11
page 18/24
IPS160H, IPS161H
PowerSSO12 package information
Figure 16. PowerSS012 reel packing information [mm]
DS10907 - Rev 11
page 19/24
IPS160H, IPS161H
Revision history
Table 12. Document revision history
Date
Revision
19-Mar-2015
1
Changes
Initial release.
Minor text changes throughout the document.
04-Nov-2015
Added figure 7 titled "VCC disconnection", figure 10 titled: "Fast demag
waveforms" and figure 11 titled "Typical demagnetization energy (single pulse)
at VCC = 24 V and TAMB = 125 °C.
Updated tables titled: "Supply", "Switching (VCC = 24 V; 125 °C > TJ > -40 °C,
RLOAD = 48 Ω)" and "Protection diagnostic".
11-May-2016
3
20-May-2016
4
Document status promoted from preliminary to production data.
08-Mar-2018
5
Updated EAS value in Table 2. Absolute maximum ratings
14-Dec-2018
6
Added reel packaging information in Section 9.1 PowerSSO12 package
information
02-Dec-2019
7
Updated value in Table 4. Supply. Text change in Section 2.4 CoD. Change
to Figure 16 title.
03-Mar-2021
8
Merged IPS160H and IPS161H datasheets. Updated Section Description and
Section Applications target.
29-Mar-2021
9
Updated ILGND max value in Table 4
30-Jul-2021
10
Reviewed the feature list order in front page. Updated thermal data in Table 3
according to Jedec conditions
11
Updated Table Table 6. Switching (VCC = 24 V; -40 °C < TJ < 125 °C,
RLOAD = 48 Ω): filled column Max, added tD(VCC-ON) parameter. Added figure
Figure 5. Propagation delay at start-up. Added parameter IPK (activation
threshold of current activation feature) in table Table 8. Protection and
diagnostic. Reduced minimum and maximum values of ILIM for IPS160H in
table Table 8. Protection and diagnostic.
06-Dec-2022
DS10907 - Rev 11
2
Changed figures titled: "tPD(L-H) and tPD(H-L)" and "Current limitation and cutoff".
page 20/24
IPS160H, IPS161H
Contents
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.1
IN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2
OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3
DIAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4
CoD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Reverse polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
4
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6
Output logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
7
Protection and diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
7.1
Undervoltage lock-out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.2
Overtemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.3
Cut-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.4
Open load in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.5
VCC disconnection protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.6
GND disconnection protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8
Active clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
9
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
9.1
PowerSSO12 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
DS10907 - Rev 11
page 21/24
IPS160H, IPS161H
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . .
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching (VCC = 24 V; -40 °C < TJ < 125 °C, RLOAD = 48 Ω).
Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . .
Output stage truth table . . . . . . . . . . . . . . . . . . . . . . . . . .
Minimum cut-off delay for TAMB less than -20 °C . . . . . . . . .
PowerSSO12 package mechanical data . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . .
DS10907 - Rev 11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 6
. 6
. 7
. 7
. 8
. 9
. 9
10
12
17
20
page 22/24
IPS160H, IPS161H
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse polarity protection schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timing in normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Propagation delay at start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current limitation and cut-off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open load off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VCC disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GND disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active clamp equivalent principle schematic . . . . . . . . . . . . . . . . . . . . . . . . . .
Fast demag waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical demagnetization energy (single pulse) at VCC = 24 V and TAMB = 125 °C
PowerSSO12 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PowerSSO12 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PowerSSO12 tape packing information [mm] . . . . . . . . . . . . . . . . . . . . . . . . .
PowerSS012 reel packing information [mm] . . . . . . . . . . . . . . . . . . . . . . . . . .
DS10907 - Rev 11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 3
. 5
. 8
. 8
11
13
14
14
15
15
16
17
18
18
19
page 23/24
IPS160H, IPS161H
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS10907 - Rev 11
page 24/24