0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L4981A_01

L4981A_01

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    L4981A_01 - POWER FACTOR CORRECTOR - STMicroelectronics

  • 数据手册
  • 价格&库存
L4981A_01 数据手册
® L4981A L4981B POWER FACTOR CORRECTOR CONTROL BOOST PWM UP TO 0.99P.F. LIMIT LINE CURRENT DISTORTION TO < 5% UNIVERSAL INPUT MAINS FEED FORWARD LINE AND LOAD REGULATION AVERAGE CURRENT MODE PWM FOR MINIMUM NOISE SENSITIVITY HIGH CURRENT BIPOLAR AND DMOS TOTEM POLE OUTPUT LOW START-UP CURRENT (0.3mA TYP.) UNDER VOLTAGE LOCKOUT WITH HYSTERESIS AND PROGRAMMABLE TURN ON THRESHOLD OVERVOLTAGE, OVERCURRENT PROTECTION PRECISE 2% ON CHIP REFERENCE EXTERNALLY AVAILABLE SOFT START DESCRIPTION The L4981 I.C. provides the necessary features to achieve a very high power factor up to 0.99. Realized in BCD 60II technology this power factor corrector (PFC) pre-regulator contains all the conBLOCK DIAGRAM MULTIPOWER BCD TECHNOLOGY DIP20 SO20 ORDERING NUMBERS: L4981X (DIP20) L4981XD (SO20) trol functions for designing a high efficiency-mode power supply with sinusoidal line current consumption. The L4981 can be easily used in systems with mains voltages between 85V to 265V without any line switch. This new PFC offers the possibility to work at fixed frequency (L4981A) or modulated frequency (L4981B) optimizing the size of the in- November 2001 1/16 L4981A - L4981B put filter; both the operating frequency modes working with an average current mode PWM controller, maintaining sinusoidal line current without slope compensation. Besides power MOSFET gate driver, precise voltage reference (externally available), error amplifier, undervoltage lockout, current sense and the ABSOLUTE MAXIMUM RATINGS Symbol VCC IGDRV VGDRV VVA-OUT IAC VCA-OUT VROSC ICOSC IFREQ-MOD VSYNC VIPK Ptot Top Tstg 13 4 5 17 11, 18 18 16 16 2 Pin 19 20 . Gate driv. output voltage t = 0.1µs Voltages at pins 3, 14, 7, 6, 12, 15 Error Amplifier Voltage AC Input Current Voltages at pin 8, 9 Current Amplifier Volt. (Isource = -20mA; Isink = 20mA) Voltage at pin 17 Voltage at pin 11, 18 Input Sink Current Frequency Modulation Sink Current (L4981B) Sync. Voltage (L4981A) Voltage at pin 2 Voltage at Pin 2 t = 1µs Power Dissipation at Tamb = 70°C Power Dissipation at Tamb = 70°C Operating Ambient Temperature StorageTemperature (DIP20) (SO20) Parameter Supply Voltage (ICC ≤50mA) (*) Gate driv. output peak current (t = 1µs) SINK SOURCE Value selflimit 2 1.5 -1 -0.3 to 9 -0.3 to 8.5 5 -0.5 to 7 -0.3 to 8.5 -0.3 to 3 -0.3 to 7 15 5 -0.3 to 7 -0.3 to 5.5 -2 1 0.6 -40 to 125 -55 to 150 Unit V Α A V V V mA V V V V mA mA V V V W W °C °C soft start are included. To limit the number of the external components, the device integrates protections as overvoltage and overcurrent. The overcurrent level can be programmed using a simple resistor for L4981A. For a better precision and for L4981B an external divider must be used. (*) Maximum package power dissipation limits must be observed. PIN CONNECTIONS (Top views) L4981A L4981B 2/16 L4981A - L4981B THERMAL DATA Symbol Rth j-amb Parameter Thermal Resistance Junction-ambient DIP 20 80 SO 20 120 Unit °C/W PIN FUNCTIONS N. 1 2 Name P-GND IPK Power ground. L4981A peak current limiting. A current limitation is obtained using a single resistor connected between Pin 2 and the sense resistor. To have a better precision another resistor between Pin 2 and a reference voltage (Pin 11) must be added. L4981B peak current limiting. A precise current limitation is obtained using two external resistor only. These resistors must be connected between the sense resistor, Pin 2 and the reference voltage. 3 OVP Overvoltage protection. At this input are compared an internal precise 5.1V (typ) voltage reference with a sample of the boost output voltage obtained via a resistive voltage divider in order to limit the maximum output peak voltage. Input for the AC current. An input current proportional to the rectified mains voltage generates, via a multiplier, the current reference for the current amplifier. Current amplifier output. An external RC network determinates the loop gain. Load feedforward; this voltage input pin allows to modify the multiplier output current proportionally to the load, in order to give a faster response versus load transient. The best control is obtained working between 1.5V and 5.3V. If this function is not used, connect this pin to the voltage reference (pin = 11). Input for proportional RMS line voltage. the VRMS input compesates the line voltage changes. Connecting a low pass filter between the rectified line and the pin 7, a DC voltage proportional to the input line RMS voltage is obtained. The best control is reached using input voltage between 1.5V and 5.5V. If this function is not used connect this pin to the voltage reference (pin = 11). Multiplier output. This pin common to the multiplier output and the current amplifier N.I. input is an high impedence input like ISENSE. The MULT-OUT pin must be taken not below -0.5V. Current amplifier inverting input. Care must be taken to avoid this pin goes down -0.5V. Signal ground. Output reference voltage (typ = 5.1V).Voltage refence at ± 2% of accuracy externally available, it’s internally current limited and can deliver an output current up to 10mA. A capacitor connected to ground defines the soft start time. An internal current generator delivering 100µA (typ) charges the external capacitor defining the soft start time constant. An internal MOS discharge, the external soft start capacitor both in overvoltage and UVLO conditions. Error amplifier output, an RC network fixes the voltage loop gain characteristics. Voltage error amplifier inverting input. This feedback input is connected via a voltage divider to the boost output voltage. Programmable under voltage lock out threshold input. A voltage divider between supply voltage and GND can be connected in order to program the turn on threshold. This synchronization input/output pin is CMOS logic compatible. Operating as SYNC in, a rectangular wave must be applied at this pin. Opearting as SYNC out, a rectangular clock pulse train is available to synchronize other devices. Frequency modulation current input. An external resistor must be connected between pin 16 and the rectified line voltage in order to modulate the oscillator frequency. Connecting pin 16 to ground a fixed frequency imposed by ROSC and COSC is obtained. An external resistor connected to ground fixes the constant charging current of C OSC. An external capacitor connected to GND fixes the switching frequency. Supply input voltage. Output gate driver. Bipolar and DMOS transistors totem pole output stage can deliver peak current in excess 1A useful to drive MOSFET or IGBT power stages. Description 4 5 6 IAC CA-OUT LFF 7 VRMS 8 9 10 11 12 MULT-OUT ISENSE S-GND VREF SS 13 14 15 16 VA-OUT VFEED P-UVLO SYNC (L4981A) FREQ-MOD (L4981B) 17 18 19 20 ROSC COSC VCC GDRV 3/16 L4981A - L4981B ELECTRICAL CHARACTERISTICS (Unless otherwise specified VCC = 18V, COSC = 1nF, ROSC = 24KΩ, CSS = 1µF, VCA-OUT = 3.5V, VISENSE = 0V, VLFF = VREF, IAC = 100µA, VRMS = 1V, VFEED = GND, VIPK = 1V, VOVP = 1V, TJ = 25°C Symbol VIO IIB V13H V13L Prameter Input Offset Voltage Input Bias Current Open Loop Gain Output High voltage Output Low Voltage Test Condition –25°C < TJ < 85°C VFEED = 0V VFEED = 4.7V IVA-OUT = -0.5mA VFEED = 5.5V IVA-OUT = 0.5mA VFEED = 4.7V; VVA-OUT = 3.5V VFEED = 5.5V; VVA-OUT = 3.5V –25°C < TJ < 85°C Tj = 25°C Iref = 0 1mA ≤ Iref ≤ 10mA –25°C < TJ < 85°C 12V ≤ VCC ≤ 19V –25°C < TJ < 85°C Vref = 0V Tj = 25°C 12V ≤ VCC ≤ 19V –25°C < TJ < 85°C VCOSC = 3.5V VCOSC = 3.5V 20 85 80 4.7 0.45 0.9 50% Amplitude VSYNC = 0.4V VCOSC = 0V VSYNC = 4.5V VCOSC = 6.7V 0.3 0.4 1 2 4 4.97 5.01 Min. Typ. Max. ±8 500 7.5 1 Unit mV nA dB V V mA mA 5.23 5.19 15 10 50 115 120 5.3 0.65 1.4 V V mV mV mA KHz KHz V mA mA V µs mA mA 0.9 3.5 800 85 100 74 76 115 V V ns KHz KHz KHz ERROR AMPLIFIER SECTION -500 70 5.5 -50 100 6.5 0.4 10 20 5.1 5.1 3 3 30 100 100 5 0.55 11.5 1.15 0.8 0.8 6 Output Source Current -I13 Output Sink Current I13 REFERENCE SECTION Vref ∆Vref ∆Vref Iref sc fosc Reference Output Voltage Load Regulation Line Regulation Short Circuit Current Initial Accuracy Frequency Stability Ramp Valley to Peak Charge Current Discharge Current OSCILLATOR SECTION Vsvp I18C I18D Ramp Valley Voltage V18 SYNC SECTION (Only for L4981A) tW I16 -I16 V16L V16H Output Pulse Width Sink Current with Low Output Voltage Source Current with High Output Voltage Low Input Voltage High Input Voltage Pulse for Synchronization td FREQUENCY MODULATION FUNCTION (Only for L4981B) f18max f18min Maximum Oscillation Frequency Minimum Oscillator Frequency VFREQ-MOD = 0V (Pin 16) Ifreq = 0 IFREQ-MOD = 360µA (Pin 16) VVRMS = 4V (Pin 7) IFREQ-MOD = 180µA (Pin 16) VVRMS = 2V (Pin 7) SOFT START SECTION ISS V12sat Soft Start Source Current Output Saturation Voltage VSS = 3V V3 = 6V, ISS = 2mA 60 100 0.1 140 0.25 µA V 4/16 L4981A - L4981B ELECTRICAL CHARACTERISTICS (continued) Symbol SUPPLY VOLTAGE Operating Supply Voltage VCC OVER VOLTAGE PROTECTION COMPARATOR Vthr V3Hys I3 td Vth td Rising Threshold Voltage Hysteresis Input Bias Current Propagation delay to output Threshold Voltage Propagation delay to Output VOVP = Vthr +100mV Vref -20mV 180 5.1 250 0.05 1 19.5 Vref +20mV 320 1 2 ±30 0.9 105 5 ±2 -500 70 68 6.2 0.9 2 2 10 10 0.5 11.5 12.5 50 13 30 16 0.3 8 12 20 14.5 Pin 15 to VCC = 220K Pin15 to GND = 33K V6 = 1.6V V6 = 5.3V VI Input Voltage Range 1.6 9 10.6 25 15.5 10 12 150 100 19 0.5 12 16 30 16.5 11 13.4 0.8 50 100 90 500 V V mV µA µs mV µs µA µA mV nA dB dB V V mA mA V V ns ns V mA mA mA V V V V Parameter Test Condition Min. Typ. Max. Unit OVER CURRENT PROTECTION COMPARATOR VOCP = Vthr -0.2V VIPK = -0.1V VIPK = -0.1V only for L4981A only for L4981B 65 0.4 85 Current Source Generator Iipk IL Leakage Current CURRENT AMPLIFIER SECTION Voffset I9bias SVR V5H V5L -I5 I5 V20L V20H tr tf VGDRV I19start I19on I19 Input Offset Voltage Input Bias Current Open Loop Gain Supply Voltage Rejection Output High Voltage Output Low Voltage Output Source Current Output Sink Current Output Voltage Low Output Voltage High Output Voltage Rise Time Output Voltage Fall Time Voltage Clamp Supply Current before start up Supply Current after turn on Operating Supply Current VMULT OUT = VSENSE = 3.5V VSENSE = 0V 1.1V ≤ VCA OUT ≤ 6V 12V ≤ VCC ≤ 19V VMULT OUT = 3.5V VSENSE = 3.5V VMULT OUT = 200mV ICA OUT = -0.5mA, VIAC = 0V VMULT OUT = -200mV ICA OUT = 0.5mA, VIAC = 0V VMULT OUT = 200mV, VIAC = 0V, VCA-OUT = 3.5V ISINK = 250mA ISOURCE = 250mA VCC = 15V COUT = 1nF COUT = 1nF ISOURCE = 0mA VCC = 14V VIAC = 0V, VCOSC = 0, Pin17 = Open Pin20 = 1nF (*) OUTPUT SECTION TOTAL STANDBY CURRENT SECTION Zener Voltage VCC UNDER VOLTAGE LOCKOUT SECTION Vth ON Vth OFF Turn on Threshold Turn off Threshold Programmable Turn-on Threshold LOAD FEED FORWARD ILFF Bias Current 70 200 140 300 5.3 µA µA V (*) Maximum package power dissipation limits must be observed. 5/16 L4981A - L4981B ELECTRICAL CHARACTERISTICS (continued) Symbol MULTIPLIER SECTION Multipler Output Current VVA-OUT = 4V, VRMS = 2V, VMULTOUT = 0, VLFF = 5.1V IAC = 50µA, COSC = 0V VVA-OUT = 4V, VRMS = 2V, VMULTOUT = 0, VLFF = 5.1V IAC = 200µA, COSC = 0V VVA-OUT = 2V, VRMS = 2V, VMULTOUT = 0, VLFF = 5.1V IAC = 100µA, COSC = 0V VVA-OUT = 2V, VRMS = 4V, VMULTOUT = 0, VLFF = 5.1V IAC = 100µA, COSC = 0V VVA-OUT = 4V, VRMS = 4V, VMULTOUT = 0, VLFF = 5.1V IAC = 100µA, COSC = 0V VVA-OUT = 4V, VRMS = 2V, VMULTOUT = 0, VLFF = 2.5V COSC = 0V, IAC = 200µA VVA-OUT = 4V, VRMS = 4V VMULTOUT = 0, VLFF = 5.1V IAC = 200µA, COSC = 0V VVA-OUT = 2V, VRMS = 4V, VMULTOUT = 0, VLFF = 5.1V IAC = 0, COSC = 0V K Multiplier Gain 20 35 52 µA µA µA µA µA µA µA µA Prameter Test Condition Min. Typ. Max. Unit 100 135 170 10 20 30 2 5.5 11 10 22 34 20 37 54 20 39 54 -2 0 2 0.37 IMULT−OUT = K ⋅ IAC (VVA−OUT − 1.28) ⋅ (0.8 ⋅ VLFF − 1.28) (VVRMS)2 (VVA−OUT − 1.28) (VVRMS) 2 if VLFF = VREF; where: K1 = 1V IMULT−OUT = IAC ⋅ K1 Figure 1: MULTI-OUT vs. IAC (VRMS = 1.7V; VLFFD = 5.1V) Figure 2: MULTI-OUT vs. IAC (VRMS = 2.2V; VLFFD = 5.1V) 6/16 L4981A - L4981B Figure 3: MULTI-OUT vs. IAC (VRMS = 4.4V; VLFFD = 5.1V) Figure 4: MULTI-OUT vs. IAC (VRMS = 5.3V; VLFFD = 5.1V) Figure 5: MULTI-OUT vs. IAC (VRMS = 1.7V; VLFFD = 2.5V) Figure 6: MULTI-OUT vs. IAC (VRMS = 2.2V; VLFFD = 2.5V) Figure 7: MULTI-OUT vs. IAC (VRMS = 4.4V; VLFFD = 2.5V) Figure 8: MULTI-OUT vs. IAC (VRMS = 5.3V; VLFFD = 2.5V) 7/16 L4981A - L4981B Figure 9A: L4981A Power Factor Corrector (200W) L 0.9mH R17 806K 1% R17 806K 1% C8 220nF 100V R6 620K 5% R7 360K 5% R6 620K 5% R19 1.1M 5% R19 1.1M 5% + D1 5TTA5060 R1 412K 1% R9 910K 1% Vo R8 33K 5% D3 C7 2N2222 220nF 100V R15 10K R14 0.5W 56 Q2 0.5W STK2N50 D3 1N4150 DZ 22V 0.5W C11 100µF 25V C10 15nF 100V D4 1N4150 R23 R20 10K 5% FUSE 4 BRIDGE 4 x BY214 Vi 88VAC to 254VAC C1 220nF 400V 7 15 19 14 R12 220K 5% C9 330nF R22 R1 412K 1% R9 910K 1% L4981A 2 13 3 D2 1N4150 R13 15 5% D5 BYT 11600 STH/STW15NB50 C12 270pF 630V R18 1.8K 4W R2 11K 1% C2 100µF 450V NTC R11 560 1% R21 5.1K 1% 8 5 R5 27K 5% R3 2.7K 5% RS C3 1nF R4 2.7K 5% C4 1nF R16 24K 1% C6 1µF 16V C5 1µF 16V 9 18 17 12 11 6 1 20 Q1 R10 21K 1% D93IN029C 0.07 2W fSW = 80kHz; PO = 200W; VOUT = 400V; Irms max = 2.53A; VOVP = 442V; IPK max = 6.2A Figure 9B: L4981B Power Factor Corrector (200W) L 0.9mH R17 806K 1% R17 806K 1% C8 220nF 100V R6 620K 5% R7 360K 5% R6 620K 5% R19 1.1M 5% R19 1.1M 5% R15 10K R14 0.5W 56 Q2 0.5W STK2N50 D3 1N4150 DZ 22V 0.5W R23 R20 10K 5% FUSE 4 BRIDGE 4 x BY214 Vi 88VAC to 254VAC C1 220nF 400V 16 7 15 19 14 R12 220K 5% C9 330nF R22 C11 100µF 25V D1 5TTA5060 R1 412K 1% R9 910K 1% + Vo R22 1.1M R8 33K 5% D3 C7 2N2222 220nF 100V C10 15nF 100V D4 1N4150 R1 412K 1% R9 910K 1% L4981B 2 13 3 D2 1N4150 R13 15 5% D5 BYT 11600 STH/STW15NB50 C12 270pF 630V R18 1.8K 4W R2 11K 1% C2 100µF 450V NTC R11 560 1% R21 5.1K 1% 8 5 R5 27K 5% R3 2.7K 5% RS C3 1nF R4 2.7K 5% R16 24K 1% C6 1µF 16V C5 1µF 16V 9 18 17 12 11 6 1 20 Q1 R10 21K 1% C4 1.1nF D95IN220A 0.07 2W fSW = 80 to 92kHz; PO = 200W; VOUT = 400V; Irms max = 2.53A; VOVP = 442V; IPK max = 6.2A 8/16 L4981A - L4981B Figure 10: Reference Voltage vs. Source Reference Current Figure 11: Reference Voltage vs. Supply Voltage Figure 12: Reference Voltage vs. Junction Temperature Figure 13: Switching Frequency vs. Junction Temperature Figure 14: Gate Driver Rise and Fall Time Figure 15: Operating Supply Current vs. Supply Voltage 9/16 L4981A - L4981B Figure 16: Programmable Under Voltage Lockout Thresholds Figure 17: Modulation Frequency Normalized in an Half Cycle of the Mains Voltage 1 Vl fsw 1 0.8 0.8 R22 = R23 ⋅ 6.8 0.4 0.4 0.2 0.2 0 R23 (Kohm) 0 45 90 0 135 180 Electrical degrees Table 1: Programmable Under Voltage Lockout Thresholds. VCC ON 11V 12V 13V 14V 14.5V 15V VCC OFF 10V 10.1V 10.5V 10.8V 10.9V 11V R22 82kΩ 220kΩ 430kΩ 909kΩ 1.36MΩ 2.7MΩ R23 12kΩ 33kΩ 62kΩ 133kΩ 200kΩ 390kΩ Figure 18: Oscillator Diagram 10/16 L4981A - L4981B Figure 19: Demo Board Circuit (VO = 400V; PO = 360W). B2= D1+D2 +D8+D9 R14 68 Dz1 18V VCC C10 150uF D4-STTH8R06 to220 (/40CW) NTC 2.5 V+ BUS=400V C2 330n R4 1.2M R6 500k R11 56k R12 56k L1=0.5mE42*21*15 gap=1.9 58/6 turns 20*.2mm VCC C11 220n D5STTA106 D6 DZW06-48 L2 3u C14 100n R18 6.8 2W R19 750k C3 330n F1 T15A250V R5 220k R7 500k R22 750k BRIDGE B1 8A R2 33k C8 100n R16 220k D7-STTA406 R20 750k R23 750k 88 to 264 Vac 7 Cf .22uF 600V C1 330nF 400V 4 1 19 13 14 3 D3 15 16 RAux1 L4981A/ B** 8 5 R10 5k C15 220uF 450V R17 15 Cs 330pF 20 6 ** RAux2 2 9 18 10 17 12 11 Q1+Q2# R21 19.6k Q4 4007 R25 1k 2W R24 16.9k TP1 R3 2.2k R8 17k C6 3.3n R13 2.2k C9 1n R15 24k C12 1u C13 1u R1 460 # // Q1&Q2 TO220*2 STM12NM50 / 7C/W R9 (RS) 50m // 3*0.15) Figure 20: Component Layout (Dimensions 88 x 150mm). 11/16 L4981A - L4981B Figure 20: P.C.B. Component Side (Dimensions 88 x 150mm). Figure 20: P.C.B. Solder Side (Dimensions 88 x 150mm). 12/16 L4981A - L4981B DEMO BOARD EVALUATION RESULTS Table 2. Nominal Power range at 110Vac. Vmains 88Vac 110Vac 132Vac Pout 366W 370W 372W Vout 404Vdc 406Vdc 407Vdc Pin 397W 395W 394W THD 5% 2.2% 3% PF 0.998 0.999 0.999 Eff. .92 .94 .945 Table 3. Nominal Power range at 220Vac. Vmains 176Vac 220Vac 264Vac Pout 378W 381W 381W Vout 410Vdc 412Vdc 412Vdc Pin 394W 395W 395W THD 4.7% 6.4% 8.1% PF 0.997 0.993 0.987 Eff. .959 .964 .964 REFERENCE: AN628 - DESIGNING A HIGH POWER FACTOR SWITCHING PREREGULATOR WITH THE L4981 CONTINUOUS MODE 13/16 L4981A - L4981B mm DIM. MIN. A A1 B C D E e H h L K 10 0.25 0.4 2.35 0.1 0.33 0.23 12.6 7.4 1.27 10.65 0.75 1.27 0.394 0.010 0.016 TYP. MAX. 2.65 0.3 0.51 0.32 13 7.6 MIN. 0.093 0.004 0.013 0.009 0.496 0.291 inch TYP. MAX. 0.104 0.012 0.020 0.013 0.512 0.299 0.050 0.419 0.030 0.050 OUTLINE AND MECHANICAL DATA SO20 0˚ (min.)8˚ (max.) L h x 45˚ A B e K H D A1 C 20 11 E 1 0 1 SO20MEC 14/16 L4981A - L4981B DIM. MIN. a1 B b b1 D E e e3 F I L Z 0.254 1.39 mm TYP. MAX. MIN. 0.010 1.65 0.45 0.25 25.4 8.5 2.54 22.86 7.1 3.93 3.3 1.34 0.055 inch TYP. MAX. OUTLINE AND MECHANICAL DATA 0.065 0.018 0.010 1.000 0.335 0.100 0.900 0.280 0.155 0.130 DIP20 0.053 15/16 L4981A - L4981B Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com 16/16
L4981A_01 价格&库存

很抱歉,暂时无法提供与“L4981A_01”相匹配的价格&库存,您可以联系我们找货

免费人工找货