0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6387D

L6387D

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8

  • 描述:

    IC GATE DRVR HALF-BRIDGE 8SO

  • 数据手册
  • 价格&库存
L6387D 数据手册
L6387 ® HIGH-VOLTAGE HIGH AND LOW SIDE DRIVER HIGH VOLTAGE RAIL UP TO 600 V dV/dt IMMUNITY +- 50 V/nsec IN FULL TEMPERATURE RANGE DRIVER CURRENT CAPABILITY: 400 mA SOURCE, 650 mA SINK SWITCHING TIMES 50/30 nsec RISE/FALL WITH 1nF LOAD CMOS/TTL SCHMITT TRIGGER INPUTS WITH HYSTERESIS AND PULL DOWN INTERNAL BOOTSTRAP DIODE OUTPUTS IN PHASE WITH INPUTS DESCRIPTION The L6387 is an high-voltage device, manufactured with the BCD"OFF-LINE" technology. It has a Driver structure that enables to drive independent referenced N Channel Power MOS or BLOCK DIAGRAM ) s ( ct SO8 Minidip ORDERING NUMBERS: c u d L6387D L6387 o r P IGBT. The Upper (Floating) Section is enabled to work with voltage Rail up to 600V. The Logic Inputs are CMOS/TTL compatible for ease of interfacing with controlling devices. e t le o s b O - u d o BOOTSTRAP DRIVER VCC 3 r P e UV DETECTION t e l o HIN bs O LIN 2 8 Vboot H.V. HVG DRIVER R LOGIC ) s t( LEVEL SHIFTER Cboot HVG 7 S OUT VCC 1 LVG DRIVER 6 TO LOAD 5 LVG 4 GND D00IN1135 May 2001 1/9 L6387 ABSOLUTE MAXIMUM RATINGS Symbol Value Unit Vout Output Voltage Parameter -3 to Vboot - 18 V Vcc Supply Voltage - 0.3 to +18 V Vboot Floating Supply Voltage - 1 to 618 V Vhvg Vlvg Upper Gate Output Voltage Lower Gate Output Voltage - 1 to Vboot -0.3 to Vcc +0.3 V V Vi dVout/dt Logic Input Voltage Allowed Output Slew Rate -0.3 to Vcc +0.3 50 V V/ns Ptot Total Power Dissipation (Tj = 85 °C) 750 mW Tj Junction Temperature 150 °C Ts Storage Temperature -50 to 150 °C Note: ESD immunity for pins 6, 7 and 8 is guaranteed up to 900V (Human Body Model) PIN CONNECTION LIN 1 8 Vboot HIN 2 7 HVG Vcc 3 6 GND 4 5 o s b O - D97IN517 ) s ( ct THERMAL DATA Symbol Rth j-amb Parameter u d o r P e 1 2 3 4 Name Type LIN HIN Vcc GND I I I Lower Driver Logic Input Upper Driver Logic Input Low Voltage Power Supply Ground s b O O O O Low Side Driver Output Upper Driver Floating Reference High Side Driver Output t e l o 5 6 7 LVG (*) VOUT HVG (*) 8 Vboot o r P LVG Thermal Resistance Junction to Ambient PIN DESCRIPTION N. e t le OUT c u d ) s t( SO8 Minidip Unit 150 100 °C/W Function Bootstrap Supply Voltage (*) The circuit guarantees 0.3V maximum on the pin (@ Isink = 10mA). This allows to omit the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low. 2/9 L6387 RECOMMENDED OPERATING CONDITIONS Symbol Pin Vout 6 Output Voltage Note 1 580 V VbootVout 8 Floating Supply Voltage Note 1 17 V 2 Switching Frequency Supply Voltage 400 17 kHz V 125 °C Max. Unit fsw Vcc Parameter Test Condition Min. HVG,LVG load CL = 1nF Junction Temperature Tj Typ. -45 Max. Unit Note 1: If the condition Vboot - Vout < 18V is guaranteed, Vout can range from -3 to 580V. ELECTRICAL CHARACTERISTICS AC Operation (Vcc = 15V; Tj = 25°C) Symbol Pin ton 1 vs 7 High/Low Side Driver Turn-On Propagation Delay Parameter Vout = 0V Test Condition Min. 110 ns toff 2 vs 5 High/Low Side Driver Turn-Off Propagation Delay Vout = 600V 105 tr 7,5 Rise Time CL = 1000pF 50 tf 7,5 Fall Time CL = 1000pF 30 ) s t( DC OPERATION (Vcc = 15V; Tj = 25°C) Symbol Pin Parameter Test Condition Low Supply Voltage Section Vcc Vccth1 3 Vccth2 Vcc UV Turn Off Threshold Vcchys Iqccu Vcc UV Hysteresis Undervoltage Quiescent Supply Current Iqcc Rdson (s) Quiescent Current Bootstrap Driver on Resistance (*) t c u Bootstrapped supply Voltage Section VBS 8 od bs O Vil Vih Iih Iil r P e t e l o 5,7 Isi Logic Inputs 2,3 5 b O Vcc ≤ 9V Max. Unit 6 17 6.5 V V 5.5 6 V 220 V µA 0.5 150 Vcc = 15V Vcc ≥ 12.5V ns ns Typ. 250 125 Bootstrap Supply Voltage IQBS VBS Quiescent Current ILK High Voltage Leakage Current High/Low Side Driver Iso so 5.5 ns c u d o r P Min. e t le Supply Voltage Vcc UV Turn On Threshold Typ. HVG ON VS = VB = 600V 320 µA Ω 17 V 200 10 µA µA Source Short Circuit Current VIN = Vih (tp < 10µs) 300 400 mA Sink Short Circuit Current VIN = Vil (tp < 10µs) 450 650 mA Low Level Logic Threshold Voltage High Level Logic Threshold Voltage High Level Logic Input Current Low Level Logic Input Current (*) RDSON is tested in the following way: RDSON = 1.5 3.6 VIN = 15V VIN = 0V 50 70 1 V V µA µA (VCC − VCBOOT1) − (VCC − VCBOOT2) I1(VCC,VCBOOT1) − I2(VCC,VCBOOT2) where I1 is pin 8 current when VCBOOT = VCBOOT1, I2 when VCBOOT = VCBOOT2. 3/9 L6387 Figure 1. Typical Rise and Fall Times vs. Load Capacitance time (nsec) Figure 2. Quiescent Current vs. Supply Voltage Iq (µA) 104 D99IN1054 250 D99IN1055 200 Tr 103 150 Tf 100 102 50 0 10 0 1 2 3 4 5 C (nF) For both high and low side buffers @25˚C Tamb 0 Input Logic L6387 Input Logic is VCC (17V) compatible. An interlocking features is offered (see truth table below) to avoid undesired simultaneous turn ON of both Power Switches driven. Table 1. Input Output HIN 0 0 1 1 LIN 0 1 0 1 HVG LVG 0 0 0 1 1 0 0 0 ) s ( ct 4 6 8 CEXT = 10 12 14 c u d Qgate Vgate ) s t( 16 VS(V) o r P The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss . It has to be: e t le so CBOOT>>>CEXT b O - BOOTSTRAP DRIVER A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (fig. 3a). In the L6387 a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low side driver (LVG), with in series a diode, as shown in fig. 3b An internal charge pump (fig. 3b) provides the DMOS driving voltage . The diode connected in series to the DMOS has been added to avoid undesirable turn on of it. u d o r P e t e l o s b O CBOOT selection and charging: To choose the proper CBOOT value the external MOS can be seen as an equivalent capacitor. This capacitor CEXT is related to the MOS total gate charge : 4/9 2 e.g.: if Qgate is 30nC and Vgate is 10V, CEXT is 3nF. With CBOOT = 100nF the drop would be 300mV. If HVG has to be supplied for a long time, the CBOOT selection has to take into account also the leakage losses. e.g.: HVG steady state consumption is lower than 200µA, so if HVG TON is 5ms, CBOOT has to supply 1µC to CEXT. This charge on a 1µF capacitor means a voltage drop of 1V. The internal bootstrap driver gives great advantages: the external fast recovery diode can be avoided (it usually has great leakage current). This structure can work only if VOUT is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (Tcharge ) of the CBOOT is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor. The bootstrap driver introduces a voltage drop due to the DMOS RDSON (typical value: 125 Ohm). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account. The following equation is useful to compute the L6387 drop on the bootstrap DMOS: DMOS is about 1V, if the Tcharge is 5µs. In fact: Qgate Rdson Tcharge Vdrop = IchargeRdson → Vdrop = Vdrop = where Qgate is the gate charge of the external power MOS, Rdson is the on resistance of the bootstrap DMOS, and Tcharge is the charging time of the bootstrap capacitor. For example: using a power MOS with a total gate charge of 30nC the drop on the bootstrap 30nC ⋅ 125Ω ~ 0.8V 5µs Vdrop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode can be used. Figure 3. Bootstrap Driver. DBOOT VS VBOOT VBOOT VS H.V. H.V. HVG ro VOUT P e let TO LOAD LVG LVG so a (s) Figure 4. Turn On Time vs. Temperature 250 @ Vcc = 15V t e l o Typ. 100 s b O 50 200 Toff (ns) Ton (ns) r P e 150 Typ. 100 50 0 -45 TO LOAD D99IN1056 b @ Vcc = 15V 150 VOUT Figure 5. Turn Off Time vs. Temperature od 200 CBOOT b O - t c u 250 c u d HVG CBOOT ) s t( 0 -25 0 25 50 Tj (°C) 75 100 125 -45 -25 0 25 50 Tj (°C) 75 100 125 5/9 L6387 Figure 6. Output Source Current vs. Temperature Figure 7. Output Sink Current vs. Temperature 1000 1000 @ Vcc = 15V @ Vcc = 15V 800 current (mA) current (mA) 800 600 Typ. 400 600 Typ. 400 200 200 0 0 -45 -25 0 25 50 Tj (°C) 75 100 125 -45 -25 0 25 50 Tj (°C) 75 c u d e t le ) s ( ct u d o r P e t e l o s b O 6/9 o s b O - o r P 100 125 ) s t( L6387 mm DIM. MIN. A TYP. inch MAX. MIN. 3.32 TYP. MAX. 0.131 a1 0.51 B 1.15 1.65 0.045 0.065 b 0.356 0.55 0.014 0.022 b1 0.204 0.304 0.008 0.012 0.020 D 10.92 E 7.95 9.75 0.430 0.313 0.384 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 6.6 0.260 I 5.08 0.200 L OUTLINE AND MECHANICAL DATA 3.18 Z 3.81 0.125 c u d o r Minidip P e let 0.150 1.52 0.060 ) s ( ct ) s t( o s b O - u d o r P e t e l o s b O 7/9 L6387 mm DIM. MIN. TYP. A inch MAX. MIN. TYP. a1 1.75 0.1 0.004 0.010 1.65 0.065 a3 0.65 0.85 0.026 0.033 b 0.35 0.48 0.014 0.019 b1 0.19 0.25 0.007 0.010 C 0.25 0.5 0.010 0.020 D (1) 4.8 5.0 0.189 0.197 E 5.8 6.2 0.228 0.244 c1 OUTLINE AND MECHANICAL DATA 0.069 0.25 a2 MAX. 45° (typ.) e 1.27 0.050 e3 3.81 0.150 F (1) 3.8 4.0 0.15 0.157 L 0.4 1.27 0.016 0.050 M 0.6 8 ° (max.) S e t le (1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch). ) s ( ct u d o r P e t e l o s b O 8/9 o r P SO8 0.024 o s b O - c u d ) s t( L6387 c u d e t le ) s ( ct ) s t( o r P o s b O - u d o r P e t e l o s b O Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 9/9
L6387D 价格&库存

很抱歉,暂时无法提供与“L6387D”相匹配的价格&库存,您可以联系我们找货

免费人工找货