0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6398DTR

L6398DTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC-8

  • 描述:

    IC GATE DRVR HALF-BRIDGE 8SO

  • 数据手册
  • 价格&库存
L6398DTR 数据手册
L6398 High voltage high and low-side driver Datasheet - production data Applications  Motor driver for home appliances, factory automation, industrial drives and fans. 62 Description The L6398 is a high voltage device manufactured with the BCD™ “offline” technology. It is a singlechip half bridge gate driver for the N-channel power MOSFET or IGBT. Features  High voltage rail up to 600 V  dV/dt immunity ± 50 V/ns in full temperature range  Driver current capability: – 290 mA source – 430 mA sink The high-side (floating) section is designed to stand a voltage rail up to 600 V. The logic inputs are CMOS/TTL compatible down to 3.3 V for the easy interfacing microcontroller/DSP.  Switching times 75/35 ns rise/fall with 1 nF load  3.3 V, 5 V TTL/CMOS input comparators with hysteresis  Integrated bootstrap diode  Fixed 320 ns deadtime  Interlocking function  Compact and simplified layout  Bill of material reduction  Flexible, easy and fast design September 2015 This is information on a product in full production. DocID18199 Rev 4 1/16 www.st.com Contents L6398 Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.1 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Waveforms definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 7 Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8 Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 10 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2/16 DocID18199 Rev 4 L6398 Block diagram 1 Block diagram Figure 1. Block diagram #005453"1%3*7&3 7$$  67 %&5&$5*0/ 7 '-0"5*/(4536$563& GSPN-7(  )*/ )7( %3*7&3 -0(*$ 4  3 4)005 5)306() 13&7&/5*0/   )7(  065 7$$ %&"%5*.& (/% #005 67 %&5&$5*0/ -&7&4)*'5&3 -*/  -7( %3*7&3 -7(  $0Y DocID18199 Rev 4 3/16 16 Pin connection 2 L6398 Pin connection Figure 2. Pin connection (top view) -*/   #005 )*/   )7( 7$$   065 (/%   -7(  $0Y Table 1. Pin description Pin no. Pin name Type 1 LIN I Low side-driver logic input (active low) 2 HIN I High-side driver logic input (active high) 3 VCC P Lower section supply voltage 4 GND P Ground 5 LVG (1) O Low-side driver output 6 OUT P High-side (floating) common voltage O High-side driver output P Bootstrapped supply voltage (1) 7 HVG 8 BOOT Function 1. The circuit guarantees less than 1 V on the LVG and HVG pins (at Isink = 10 mA), with VCC > 3 V. This allows omitting the “bleeder” resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low. 4/16 DocID18199 Rev 4 L6398 3 Truth table Truth table Table 2. Truth table Input Output LIN HIN LVG HVG H L L L L H L L L L H L H H L H DocID18199 Rev 4 5/16 16 Electrical data L6398 4 Electrical data 4.1 Absolute maximum ratings Table 3. Absolute maximum rating Value Symbol Parameter Unit Min. Max. Vcc Supply voltage -0.3 21 V VOUT Output voltage VBOOT - 21 VBOOT + 0.3 V VBOOT Bootstrap voltage -0.3 620 V Vhvg High-side gate output voltage VOUT - 0.3 VBOOT + 0.3 V Vlvg Low-side gate output voltage -0.3 Vcc + 0.3 V Logic input voltage -0.3 15 V 50 V/ns Vi dVOUT/dt Allowed output slew rate 4.2 Ptot Total power dissipation (TA = 25 °C) 800 mW TJ Junction temperature 150 °C Tstg Storage temperature 150 °C ESD Human body model -50 2 kV Thermal data Table 4. Thermal data Symbol Rth(JA) 4.3 Parameter Thermal resistance junction to ambient SO-8 Unit 150 °C/W Recommended operating conditions Table 5. Recommended operating conditions Symbol Pin Vcc 3 VBO(1) 8-6 VOUT 6 Parameter Min. Max. Unit Supply voltage 10 20 V Floating supply voltage 9.8 20 V Output voltage 11(2) 580 V 800 kHz 125 °C fsw Switching frequency TJ Junction temperature Test condition HVG, LVG load CL = 1 nF 1. VBO = VBOOT - VOUT. 2. LVG off. VCC = 10 V Logic is operational if VBOOT > 5 V. 6/16 DocID18199 Rev 4 -40 L6398 Electrical characteristics 5 Electrical characteristics 5.1 AC operation Table 6. AC operation electrical characteristics (VCC = 15 V; TJ = +25 °C) Symbol ton toff Pin 1, 2 vs. 5, 7 DT tr tf 5, 7 Parameter Test condition Min. Typ. Max. Unit High/low-side driver turn-on VOUT = 0 V propagation delay VBOOT = Vcc CL = 1 nF High/low side driver turn-off VIN = 0 to 3.3 V propagation delay See Figure 3 50 125 200 ns 50 125 200 ns 225 320 415 ns Deadtime(1) CL = 1 nF Rise time CL = 1 nF 75 120 ns Fall time CL = 1 nF 35 70 ns 1. See Figure 4. Figure 3. Timing LIN 50% 50% tr tf 90% LVG 10% 10% ton HIN 90% toff 50% 50% tr tf 90% HVG 90% 10% 10% ton toff DocID18199 Rev 4 7/16 16 Electrical characteristics 5.2 L6398 DC operation Table 7. DC operation electrical characteristics (VCC = 15 V; TJ = + 25 °C) Symbol Pin Vcc_hys Parameter Test condition Min. Typ. Max. Unit 1.2 1.5 1.8 V Vcc UV turn-ON threshold 9 9.5 10 V Vcc UV turn-OFF threshold 7.6 8 8.4 V Vcc UV hysteresis Vcc_thON Vcc_thOFF 3 Iqccu Undervoltage quiescent supply current Vcc = 7 V LIN = 5 V; HIN = GND; 90 150 A Iqcc Quiescent current Vcc = 15 V LIN = 5 V; HIN = GND; 380 440 A Bootstrapped supply voltage section(1) VBO_hys VBO_thON VBO_thOFF 8 VBO UV hysteresis 0.8 1 1.2 V VBO UV turn-ON threshold 8.2 9 9.8 V VBO UV turn-OFF threshold 7.3 8 8.7 V IQBOU Undervoltage VBO quiescent current VBO = 7 V, LIN = HIN = 5V 30 60 A IQBO VBO quiescent current VBO = 15 V, LIN = HIN = 5V 190 240 A High voltage leakage current Vhvg = VOUT = VBOOT = 600 V 10 A Bootstrap driver on resistance(2) LVG ON ILK RDS(on) 120  Driving buffers section Iso 5, 7 Isi High/low-side source short-circuit current VIN = Vih (tp < 10 s) 200 290 mA High/low side sink short-circuit current VIN = Vil (tp < 10 s) 250 430 mA Logic inputs Vil Vih Vil_S IHINh IHINl ILINl ILINh 1, 2 Low level logic threshold voltage 0.8 1.1 V High level logic threshold voltage 1.9 2.25 V 0.8 V 260 A 1 A 20 A 1 A LIN and HIN connected together and floating 1, 2 Single input voltage 2 1 HIN logic “1” input bias current HIN = 15 V HIN logic “0” input bias current HIN = 0 V LIN logic “0” input bias current LIN = 0 V LIN logic “1” input bias current LIN = 15 V 110 3 175 6 1. VBO = VBOOT - VOUT. 2. RDSON is tested in the following way: RDSON = [(VCC - VBOOT1) - (VCC - VBOOT2)] / [I1(VCC, VBOOT1) - I2(VCC, VBOOT2)] where I1 is the pin 8 current when VBOOT = VBOOT1, I2 when VBOOT = VBOOT2. 8/16 DocID18199 Rev 4 L6398 Waveforms definitions Figure 4. Deadtime and interlocking waveforms definitions G HIN INTE RLO CKIN CONTROL SIGNAL EDGES OVERLAPPED: INTERLOCKING + DEAD TIME RLO CKIN G LIN INTE 6 Waveforms definitions LVG DTHL DTLH HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES SYNCHRONOUS (*): DEAD TIME HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES NOT OVERLAPPED, BUT INSIDE THE DEAD TIME: DEAD TIME HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES NOT OVERLAPPED, OUTSIDE THE DEAD TIME: DIRECT DRIVING HIN LVG DTLH DTHL HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) (*) HIN and LIN can be connected togheter and driven by just one control signal DocID18199 Rev 4 9/16 16 Typical application diagram 7 L6398 Typical application diagram Figure 5. Application diagram 7$$ #005453"1%3*7&3  67 %&5&$5*0/ 7 '-0"5*/(4536$563& GSPN-7( -*/  #005 67 %&5&$5*0/ )7 )7( %3*7&3 -0(*$ -&7&4)*'5&3 '30.$0/530--&3  4 $CPPU  )7(  065 3 4)005 5)306() 13&7&/5*0/ 50-0"% '30.$0/530--&3 )*/  (/%  7$$ %&"%5*.& -7( %3*7&3 -7(  $0Y 10/16 DocID18199 Rev 4 L6398 8 Bootstrap driver Bootstrap driver A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (Figure 6). In the L6398 device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in Figure 7. An internal charge pump (Figure 7) provides the DMOS driving voltage. CBOOT selection and charging To choose the proper CBOOT value the external MOS can be seen as an equivalent capacitor. This capacitor CEXT is related to the MOS total gate charge: Equation 1 Q gate C EXT = -------------V gate The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss. It has to be: Equation 2 CBOOT >>> CEXT E.g.: if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop would be 300 mV. If HVG has to be supplied for a long time, the CBOOT selection has to take into account also the leakage and quiescent losses. E.g.: HVG steady state consumption is lower than 190 A, so if HVG TON is 5 ms, CBOOT has to supply 1 C to CEXT. This charge on a 1 F capacitor means a voltage drop of 1 V. The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has great leakage current). This structure can work only if VOUT is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (Tcharge) of the CBOOT is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor. The bootstrap driver introduces a voltage drop due to the DMOS RDSon (typical value: 120 ). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account. The following equation is useful to compute the drop on the bootstrap DMOS: Equation 3 Q gate V drop = I ch arg e R dson  V drop = ------------------R dson T ch arg e where Qgate is the gate charge of the external power MOS, Rdson is the on resistance of the bootstrap DMOS and Tcharge is the charging time of the bootstrap capacitor. DocID18199 Rev 4 11/16 16 Bootstrap driver L6398 For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the Tcharge is 5 s. In fact: Equation 4 30nC V drop = ---------------  120  0.7V 5s Vdrop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode can be used. Figure 6. Bootstrap driver with high voltage fast recovery diode DBOOT VCC BOOT H.V. HVG CBOOT OUT TO LOAD LVG Figure 7. Bootstrap driver with internal charge pump BOOT VCC H.V. HVG CBOOT OUT TO LOAD LVG 12/16 DocID18199 Rev 4 L6398 9 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. SO-8 package information Figure 8. SO-8 package outline DocID18199 Rev 4 13/16 16 Package information L6398 Table 8. SO-8 package mechanical data Dimensions Symbol mm Min. Typ. inch Max. Min. Typ. Max. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D (1) 4.80 5.00 0.189 0.197 E 3.80 4.00 0.15 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 0° (min.), 8° (max.) 0.10 0.004 1. Dimensions D do not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm (0.006 inch) in total (both sides). Figure 9. SO-8 footprint Footprint_0016023_G_FU 14/16 DocID18199 Rev 4 L6398 10 Order codes Order codes Table 9. Order codes 11 Order codes Package Packaging L6398D SO-8 Tube L6398DTR SO-8 Tape and reel Revision history Table 10. Document revision history Date Revision 14-Dec-2010 1 First release. 16-Feb-2011 2 Updated Table 7. 01-Apr-2011 3 Typo in coverpage 4 Removed DIP-8 package from the entire document. Updated Table 3 on page 6 (added ESD parameter and value, removed note below Table 3). Updated Vil and Vih parameters and values in Table 7 on page 8 and note 2. below Table 7 (replaced VCBOOTx by VBOOTx ). Updated Section 9 on page 13 (added Figure 9 on page 14, minor modifications). Moved Table 9 on page 15 (moved from page 1 to page 15, updated/added titles). Minor modifications throughout document. 11-Sep-2015 Changes DocID18199 Rev 4 15/16 16 L6398 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved 16/16 DocID18199 Rev 4
L6398DTR 价格&库存

很抱歉,暂时无法提供与“L6398DTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货