L6482
Microstepping motor controller with motion engine and SPI
Datasheet - production data
Applications
Bipolar stepper motor
Description
The L6482 device, realized in analog mixed
signal technology, is an advanced fully integrated
solution suitable for driving two-phase bipolar
stepper motors with microstepping.
HTSSOP38
Features
Operating voltage: 7.5 V - 85 V
Dual full bridge gate driver for N-channel
MOSFETs
Fully programmable gate driving
Embedded Miller clamp function
Programmable speed profile
Up to 1/16 microstepping
Advanced current control with auto-adaptive
decay mode
Integrated voltage regulators
SPI interface
Low quiescent standby currents
Programmable non dissipative overcurrent
protection
It integrates a dual full bridge gate driver for
N-channel MOSFET power stages with
embedded non dissipative overcurrent protection.
Thanks to a new current control, a 1/16
microstepping is achieved through an adaptive
decay mode which outperforms traditional
implementations. The digital control core can
generate user defined motion profiles with
acceleration, deceleration, speed or target
position easily programmed through a dedicated
register set. All application commands and data
registers, including those used to set analog
values (i.e. current protection trip point, deadtime,
PWM frequency, etc.) are sent through a standard
5-Mbit/s SPI. A very rich set of protections
(thermal, low bus voltage, overcurrent and motor
stall) makes the L6482 device “bullet proof”, as
required by the most demanding motor control
applications.
Overtemperature protection
Table 1. Device summary
Order code
Package
Packaging
L6482H
HTSSOP38
Tube
L6482HTR
HTSSOP38
Tape and reel
March 2015
This is information on a product in full production.
DocID023768 Rev 6
1/73
www.st.com
Contents
L6482
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1
Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2
Logic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4
Microstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Automatic Full-step and Boost modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5
Absolute position counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.6
Programmable speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.7
Motor control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.8
6.9
2/73
6.7.1
Constant speed commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.7.2
Positioning commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.7.3
Motion commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.7.4
Stop commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.7.5
Step-clock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.7.6
GoUntil and ReleaseSW commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Internal oscillator and oscillator driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.8.1
Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.8.2
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DocID023768 Rev 6
L6482
7
Contents
6.10
Undervoltage lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.11
VS undervoltage lockout (UVLO_ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.12
Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.13
Reset and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.14
External switch (SW pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.15
Programmable gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.16
Deadtime and blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.17
Integrated analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.18
Supply management and internal voltage regulators . . . . . . . . . . . . . . . . 33
6.19
BUSY/SYNC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.20
FLAG pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Phase current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1
Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2
Auto-adjusted decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3
Auto-adjusted fast decay during the falling steps . . . . . . . . . . . . . . . . . . . 38
7.4
Torque regulation (output current amplitude regulation) . . . . . . . . . . . . . . 39
8
Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9
Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1
Register and flag description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.1
ABS_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.1.2
EL_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.1.3
MARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.4
SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.5
ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.6
DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.7
MAX_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.8
MIN_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.1.9
FS_SPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1.10
TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC . . . . . . . . . . . . 47
9.1.11
T_FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.1.12
TON_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.1.13
TOFF_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.1.14
ADC_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DocID023768 Rev 6
3/73
73
Contents
L6482
9.2
10
9.1.15
OCD_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.1.16
STEP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.1.17
ALARM_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.1.18
GATECFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.1.19
GATECFG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.1.20
CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.1.21
STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2.1
Command management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2.2
Nop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.3
SetParam (PARAM, VALUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.4
GetParam (PARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.5
Run (DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2.6
StepClock (DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2.7
Move (DIR, N_STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.2.8
GoTo (ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.2.9
GoTo_DIR (DIR, ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2.10
GoUntil (ACT, DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2.11
ReleaseSW (ACT, DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.2.12
GoHome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.2.13
GoMark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.2.14
ResetPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2.15
ResetDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2.16
SoftStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.2.17
HardStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.2.18
SoftHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.2.19
HardHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.2.20
GetStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
HTSSOP38 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11
4/73
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
DocID023768 Rev 6
L6482
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CL values according to external oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
UVLO thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Thermal protection summarizing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
EL_POS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
MIN_SPEED register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FS_SPD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN
registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
FS_SPD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Maximum fast decay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Minimum on-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Minimum off-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
ADC_OUT value and torque regulation feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Overcurrent detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
STEP_MODE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Step mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
SYNC output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
SYNC signal source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ALARM_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
GATECFG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
IGATE parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
TCC parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
TBOOST parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
GATECFG2 register (voltage mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TDT parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TBLANK parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Oscillator management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
External switch HardStop interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Overcurrent event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Programmable VCC regulator output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Programmable UVLO thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
External torque regulation enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Switching period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Motor supply voltage compensation enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
STATUS register TH_STATUS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
STATUS register DIR bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
STATUS register MOT_STATUS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
DocID023768 Rev 6
5/73
73
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
6/73
L6482
Nop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
SetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
GetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Run command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
StepClock command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Move command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
GoTo command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
GoTo_DIR command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
GoUntil command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ReleaseSW command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
GoHome command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
GoMark command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ResetPos command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ResetDevice command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
SoftStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HardStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
SoftHiZ command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HardHiZ command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
GetStatus command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
HTSSOP38 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
DocID023768 Rev 6
L6482
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Charge pump circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Normal mode and microstepping (16 microsteps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Automatic Full-step switching in Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Automatic Full-step switching in Boost mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Constant speed command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Positioning command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Motion command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
OSCIN and OSCOUT pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Overcurrent detection - principle scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
External switch connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Gate driving currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Device supply pin management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Non-predictive current control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Adaptive decay - fast decay tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Adaptive decay - switch from normal to slow + fast decay mode and vice versa . . . . . . . . 38
Fast decay tuning during the falling steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Current sensing and reference voltage generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
SPI timings diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Daisy chain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Command with 3-byte argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Command with 3-byte response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Command response aborted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
HTSSOP38 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
HTSSOP38 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DocID023768 Rev 6
7/73
73
Block diagram
1
L6482
Block diagram
Figure 1. Block diagram
VSREG
Voltage reg.
ADC
ADCIN
VCC
VCC REG
VCC
Voltage reg.
VREG
VREG
CP
VBOOT
Charge
pump
VS
Vboot
HVGA1
VCC
Temperature
sensing
OUTA1
LVGA1
Vboot
Vdd
VDD
HVGA2
VCC
CS
SDO
SPI
CK
OUTA2
LVGA2
CORE
LOGIC
VSENSEA
SDI
Vboot
STBY/RESET
HVB1
VCC
Current
sensing
FLAG
OUTB1
LVGB1
Vboot
BUSY/SYNC
16 MHz
Oscillator
HVGB2
VCC
OUTB2
STCK
LVGB2
Ext. Osc. driver
&
Clock gen.
SW
DGND
AGND
OSCIN
OSCOUT
VSENSEB
PGND
AM15031v1
8/73
DocID023768 Rev 6
L6482
Electrical data
2
Electrical data
2.1
Absolute maximum ratings
Table 2. Absolute maximum ratings
Symbol
Test
condition
Value
Unit
V
VDD
Logic interface supply voltage
5.5
VREG
Logic supply voltage
3.6
VS
Motor supply voltage
95
V
Low-side gate driver supply voltage
18
V
Boot voltage
100
V
0 to 20
V
VCC
VBOOT
VBOOT
High-side gate driver supply voltage (VBOOT - VS)
VSREG
Internal VCC regulator supply voltage
95
V
VCCREG
Internal VREG regulator supply voltage
18
V
DC
-5 to VBOOT
V
AC
-15 to VBOOT
VOUT1A
VOUT2A
VOUT1B
VOUT2B
SRout
VHVG1A
VHVG2A
VHVG1B
VHVG2B
VHVG1A
VHVG2A
VHVG1B
VHVG2B
VLVG1A
VLVG2A
VLVG1B
VLVG2B
IGATE-CLAMP
Full bridge output voltage
Full bridge output slew rate (10% - 90%)
High-side output driver voltage
High-side output driver to respective bridge output
voltage(VHVG - VOUT)
Low-side output driver voltage
High-side gate voltage clamp current capability
VADCIN
Integrated ADC input voltage range (ADCIN pin)
Vout_diff
Differential voltage between VBOOT, VS, OUT1A, OUT2A,
PGND and VBOOT, VS, OUT1B, OUT2B, PGND pins
Vin
Ts TOP
Ptot
1.
Parameter
Logic inputs voltage range
Storage and operating junction temperature
Total power dissipation (Tamb = 25 ºC)
(1)
10
V/ns
VOUT to VBOOT
V
15
V
VCC + 0.3
V
100
mA
-0.3 to 3.6
V
100
V
-0.3 to 5.5
V
-40 to 150
°C
4
W
HTSSOP38 mounted on a four-layer FR4 PCB with a dissipating copper surface of about 30 cm2.
DocID023768 Rev 6
9/73
73
Electrical data
2.2
L6482
Recommended operating conditions
Table 3. Recommended operating conditions
Symbol
Parameter
VDD
Logic interface supply voltage
VREG
Logic supply voltage
VS
Motor supply voltage
VSREG
VCC
VCCREG
VADC
2.3
Test condition
Min.
3.3 V logic outputs
Typ.
Max.
3.3
5 V logic outputs
Unit
V
5
3.3
V
VSREG
85
V
Internal VCC voltage regulator
VCC voltage internally generated
VCC +3
Vs
V
Gate driver supply voltage
VCC voltage imposed by external
source (VSREG = VCC)
7.5
15
V
Internal VREG voltage regulator
supply voltage
VREG voltage internally generated
6.3
VCC
V
0
VREG
V
Integrated ADC input voltage (ADCIN
pin)
Thermal data
Table 4. Thermal data
Symbol
Rthj-a
Parameter
Package
Thermal resistance junction to ambient
HTSSOP38(1)
1. HTSSOP38 mounted on a four-layer FR4 PCB with a dissipating copper surface of about 30
10/73
DocID023768 Rev 6
cm2.
Typ.
Unit
31
°C/W
L6482
3
Electrical characteristics
Electrical characteristics
VS = 48 V; VCC = 7.5 V; Tj = 25 °C, unless otherwise specified.
Table 5. Electrical characteristics
Symbol
Parameter
Test condition
Min.
Typ.
Max. Unit
9.9
10.4
10.9
V
6.5
6.9
7.3
V
9.5
10
10.5
V
UVLO_VAL set low
5.9
6.3
6.7
V
UVLO_VAL set high(1)
General
VCCthOn
VCCthOff
UVLO_VAL set high(1)
VCC UVLO turn-on threshold
(1)
UVLO_VAL set low
UVLO_VAL set
VCC UVLO turn-off threshold
(1)
VBOOTthOn VBOOT - VS UVLO turn-on threshold
VBOOTthOff VBOOT - VS UVLO turn-off threshold
VREGthOn
VREGthOff
high(1)
8.6
9.2
9.8
V
UVLO_VAL set
low(1)
5.7
6
6.3
V
UVLO_VAL set
high(1)
8.2
8.8
9.5
V
UVLO_VAL set
low(1)
5.3
5.5
5.8
V
VREG turn-on threshold
(1)
2.8
3
3.18
V
VREG turn-off threshold
(1)
2.2
2.4
2.5
V
IVREGqu
Undervoltage VREG quiescent supply
current
VCCREG = VREG < 2.2 V
40
A
IVREGq
Quiescent VSREG supply current
VCCREG = VREG = 3.3 V,
internal oscillator
selected(1)
3.8
mA
IVSREGq
Quiescent VSREG supply current
VCCREG = VREG = 15 V
6.5
mA
Thermal protection
Tj(WRN)Set
Thermal warning temperature
135
°C
Tj(WRN)Rec
Thermal warning recovery temperature
125
°C
Tj(OFF)Set
Thermal bridge shutdown temperature
155
°C
Tj(OFF)Rec
Thermal bridge shutdown recovery
temperature
145
°C
Tj(SD)Set
Thermal device shutdown temperature
170
°C
Tj(SD)Rec
Thermal device shutdown recovery
temperature
130
°C
Voltage swing for charge pump oscillator
VCC
V
fpump,min
Minimum charge pump oscillator
frequency(2)
660
kHz
fpump,max
Maximum charge pump oscillator
frequency(2)
800
kHz
Charge pump
Vpump
DocID023768 Rev 6
11/73
73
Electrical characteristics
L6482
Table 5. Electrical characteristics (continued)
Symbol
Parameter
RpumpHS
Charge pump high-side RDS(on) resistance
10
RpumpLS
Charge pump low-side RDS(ON) resistance
10
Average boot current
2.6
mA
Iboot
Test condition
Min.
Typ.
Max. Unit
Gate driver outputs
IGATE,Sink
Programmable high-side and low-side
gate sink current
Programmable high-side and low-side
IGATE,Source
gate source current
IOB
VS = 38 V
VHVGX - VOUTX > 3 V
VLVGX > 3 V
VS = 38 V
VBOOTX - VHVGX > 3.5 V
VCC-VLVGX > 3.5 V
High-side and low-side turn-off overboost
gate current
2.4
4
5.6
5.4
8
10.6
11.3
16
20.7
17.3
24
30.7
23.2
32
40.8
50.2
64
77.8
81
96
113
2.8
4
5.2
5.8
8
10.2
12
16
20
18
24
30
24
32
40
51
64
77
82
96
112
85
103
117
mA
mA
mA
RCLAMP(LS)
Low-side gate driver Miller clamp
resistance
6.5
10
RCLAMP(HS)
High-side gate driver Miller clamp
resistance
3
10
VGATE-CLAMP High-side gate voltage clamp
tcc
Programmable constant gate current
time(2)
tOB
Programmable. Turn-off overboost; gate
current time(2)
IDSS
tr
12/73
Leakage current
Rise time
IGATE-CLAMP = 100 mA
16.7
TCC = ’00000’
125
TCC = 11111
3750
TBOOST = ’001’, internal
oscillator
62.5
TBOOST =’111’
1000
OUT = VS
OUT = GND
IGATE = 96 mA
VCC = 15 V
CGATE = 15 nF
DocID023768 Rev 6
v
ns
ns
100
A
A
-100
2.5
s
L6482
Electrical characteristics
Table 5. Electrical characteristics (continued)
Symbol
tf
SRgate
Parameter
Test condition
Min.
Typ.
Max. Unit
Fall time
IGATE = 96 mA
VCC = 15 V
CGATE = 15 nF
2.5
s
Gate driver output slew rate
IGATE = 96 mA
VCC = 15 V
CGATE = 15 nF
6
V/s
TDT = '00000'
125
TDT = ’11111’
4000
TBLANK = '000'
125
TBLANK = ’111’
1000
Deadtime and blanking
tDT
tblank
Programmable deadtime(2)
Programmable blanking time(2)
ns
ns
Logic
VIL
Low level logic input voltage
VIH
High level logic input voltage
IIH
High level logic input current
VIN = 5 V, VDDIO = 5 V
IIL
Low level logic input current
VIN = 0 V, VDDIO = 5 V
VOL
Low level logic output voltage(3)
VOH
High level logic output voltage
0.8
2
V
1
-1
0.3
VDD = 5 V, IOL = 4 mA
0.3
2.4
VDD = 5 V, IOH = 4 mA
4.7
µA
µA
VDD = 3.3 V, IOL = 4 mA
VDD = 3.3 V, IOH = 4 mA
V
V
V
RPUCS
CS pull-up resistor
430
RPDRST
STBY/RESET pull-down resistor
450
RPUSW
SW pull-up resistor
80
k
thigh,STCK
Step-clock input high time
300
ns
tlow,STCK
Step-clock input low time
300
ns
Internal oscillator and external oscillator driver
fosc,int
Internal oscillator frequency
fosc,ext
Programmable external oscillator
frequency
Tj = 25 °C
-5%
16
8
+5% MHz
32
MHz
VOSCOUTH
OSCOUT clock source high level voltage
Internal oscillator
VOSCOUTL
OSCOUT clock source low level voltage
Internal oscillator
0.3
V
trOSCOUT
tfOSCOUT
OSCOUT clock source rise and fall time
Internal oscillator
10
ns
thigh
OSCOUT clock source high time
Internal oscillator
DocID023768 Rev 6
2.4
V
31.25
ns
13/73
73
Electrical characteristics
L6482
Table 5. Electrical characteristics (continued)
Symbol
Parameter
Test condition
textosc
Internal to external oscillator switching
delay
tintosc
External to internal oscillator switching
delay
Min.
Typ.
Max. Unit
3
ms
100
µs
SPI
fCK,MAX
Maximum SPI clock frequency(4)
5
MHz
trCK
tfCK
SPI clock rise and fall time(4)
thCK
tlCK
SPI clock high and low time(4)
90
ns
Chip select setup time(4)
30
ns
30
ns
625
ns
20
ns
30
ns
tsetCS
tholCS
Chip select hold time
(4)
time(4)
tdisCS
Deselect
tsetSDI
Data input setup time(4)
tholSDI
tenSDO
tdisSDO
tvSDO
tholSDO
1
Data input hold
time(4)
µs
Data output enable
time(4)
95
ns
Data output disable
time(4)
95
ns
35
ns
Data output valid time(4)
Data output hold
time(4)
0
ns
Current control
VREF, max
Maximum reference voltage
1000
mV
VREF, min
Minimum reference voltage
7.8
mV
Overcurrent protection
VOCD
Programmable overcurrent detection
voltage VDS threshold
OCD_TH = ‘11111’
800
1000
1100
mV
OCD_TH = ‘00000’
27
31
35
mV
OCD_TH = ‘01001’
270
312.5
344
mV
OCD_TH = ‘10011’
500
625
688
mV
tOCD,Comp
OCD comparator delay
100
200
ns
tOCD,Flag
OCD to flag signal delay time
230
530
ns
tOCD,SD
OCD to shutdown delay time
400
630
ns
14/73
OCD_TH = '11111'
OCD event to 90% of gate
voltage
DocID023768 Rev 6
L6482
Electrical characteristics
Table 5. Electrical characteristics (continued)
Symbol
Parameter
Test condition
Min.
Typ.
Max. Unit
Standby
ISTBY
Standby mode supply current (VSREG
pin)
ISTBY,vreg
Standby mode supply current (VREG pin)
tSTBY,min
tlogicwu
tcpwu
VCC = VCCREG = 7.5 V
VSREG = 48 V
42
VCC = VCCREG = 7.5 V
VSREG = 18 V
37.5
µA
6
µA
Minimum standby time
0.5
ms
Logic power-on and wake-up time
500
µs
1
ms
7.3
7.5
V
4
15
Power bridges disabled,
Charge pump power-on and wake-up time Cp = 10 nF, Cboot = 220 nF,
VCC= 15 V
Internal voltage regulators
VCCOUT
Internal VCC voltage regulator output
voltage
VCCREG, drop VSREG to VCC dropout voltage
PCC
Low (default), ICC = 10 mA
High, ICC = 10 mA
ICC = 50 mA
Internal VCC voltage regulator power
dissipation
3
V
2.5
W
Internal VREG voltage regulator output
voltage
IREG = 10 mA
VCCREG to VREG dropout voltage
IREG = 50 mA
Internal VREG voltage regulator output
current
VREG pin shorted to
ground
125
mA
IREGOUT,STB Internal VREG voltage regulator output
standby current
Y
VREG pin shorted to
ground
55
mA
VREGOUT
VSREG, drop
IREGOUT
PREG
3.13
5
3.3
V
3
Internal VREG voltage regulator power
dissipation
0.5
V
W
Integrated analog-to-digital converter
NADC
Analog-to-digital converter resolution
5
bit
VADC,ref
Analog-to-digital converter reference
voltage
3.3
V
fS
Analog-to-digital converter sampling
frequency
fOSC/512
kHz
VADC,UVLO
(2)
ADCIN UVLO threshold
1.05
1.16
1.35
V
1. Guaranteed in the temperature range -25 to 125 °C.
2. The value accuracy is dependent on oscillator frequency accuracy (Section 6.8 on page 26).
3. FLAG and BUSY open drain outputs included.
4.
See Figure 22 on page 41.
DocID023768 Rev 6
15/73
73
Pin connection
4
L6482
Pin connection
Figure 2. Pin connection (top view)
LVGA1 1
38 LVGA2
OUTA1 2
37 OUTA2
HVGA1 3
NC 4
EPAD
ADCIN 5
36 HVGA2
35 SENSEA
34 STBY/RESET
33 SW
VS 6
VBOOT 7
32 STCK
PGND 8
31 FLAG
30 BUSY/SYNC
CP 9
VCC 10
29 DGND
VCCREG 11
28 SDO
VSREG 12
27 VDDIO
VREG 13
26 SDI
OSCIN 14
25 CK
OSCOUT 15
24 CS
AGND 16
23 SENSEB
HVGB1 17
22 HVGB2
OUTB1 18
21 OUTB2
LVGB1 19
20 LVGB2
AM15032v1
Pin list
Table 6. Pin description
No.
Name
11
VCCREG
Power supply
Internal VREG voltage regulator supply voltage
13
VREG
Power supply
Logic supply voltage
27
VDD
Power supply
Logic interface supply voltage
12
VSREG
Power supply
Internal VCC voltage regulator supply voltage
10
VCC
Power supply
Gate driver supply voltage
14
OSCIN
Analog input
Oscillator pin1. To connect an external oscillator or clock source.
15
OSCOUT
Analog output
Oscillator pin2. To connect an external oscillator. When the internal
oscillator is used, this pin can supply a 2/4/8/16 MHz clock.
9
CP
Output
Charge pump oscillator output
7
VBOOT
Power supply
Bootstrap voltage needed for driving the high-side power DMOS of
both bridges (A and B).
5
ADCIN
Analog input
Internal analog-to-digital converter input
6
VS
Power supply
Motor voltage
16/73
Type
Function
DocID023768 Rev 6
L6482
Pin connection
Table 6. Pin description (continued)
No.
Name
Type
Function
3
HVGA1
Power output
High-side half-bridge A1 gate driver output
36
HVGA2
Power output
High-side half-bridge A2 gate driver output
17
HVGB1
Power output
High-side half-bridge B1 gate driver output
22
HVGB2
Power output
High-side half-bridge B2 gate driver output
1
LVGA1
Power output
Low-side half-bridge A1 gate driver output
38
LVGA2
Power output
Low-side half-bridge A2 gate driver output
19
LVGB1
Power output
Low-side half-bridge B1 gate driver output
20
LVGB2
Power output
Low-side half-bridge B2 gate driver output
8
PGND
Ground
Power ground pins. They must be connected to other ground pins
35
SENSEA
Analog input
Phase A current sensing input
23
SENSEB
Analog input
Phase B current sensing input
2
OUTA1
Power input
Full bridge A output 1
37
OUTA2
Power input
Full bridge A output 2
18
OUTB1
Power input
Full bridge B output 1
21
OUTB2
Power input
Full bridge B output 2
16
AGND
Ground
Analog ground. It must be connected to other ground pins
33
SW
Logical input
External switch input pin
29
DGND
Ground
Digital ground. It must be connected to other ground pins
28
SDO
Logical output
Data output pin for serial interface
26
SDI
Logical input
Data input pin for serial interface
25
CK
Logical input
Serial interface clock
24
CS
Logical input
Chip select input pin for serial interface
30
By default, the BUSY / SYNC pin is forced low when the device is
performing a command.
BUSY/SYNC Open drain output
The pin can be programmed in order to generate a synchronization
signal.
31
FLAG
Status flag pin. An internal open drain transistor can pull the pin to
GND when a programmed alarm condition occurs (step loss, OCD,
Open drain output
thermal pre-warning or shutdown, UVLO, wrong command, nonperformable command).
34
STBY
RESET
Logical input
Standby and reset pin. LOW logic level puts the device in Standby
mode and reset logic.
If not used, it should be connected to VREG.
32
STCK
Logical input
Step-clock input
EPAD
Exposed pad Ground
Exposed pad. It must be connected to other ground pins.
DocID023768 Rev 6
17/73
73
Typical applications
5
L6482
Typical applications
Table 7. Typical application values
Name
Value
CVSPOL
220 µF
CVS
220 nF
CBOOT
470 nF
CFLY
47 nF
CVSREG
100 nF
CVCC
470 nF
CVCCREG
100 nF
CVREG
100 nF
CVREGPOL
22 µF
CVDD
100 nF
D1
Charge pump diodes
Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8
STD25N10F7
RPU
39 k
RSENSE
0.2 (maximum phase current 5 A)
Figure 3. Typical application schematic
V S (10.5V - 85V )
CBOO T
C VREG
CVDD
R PU
VREG VDD
R PU
C
C
VS
VSPOL
D1
CVREGPOL
C
VCCREG
CVSREG
CVCC
VCCREG
VCC VSREG
VS
Analog signal
CFLY
CP VBOOT
ADCIN
FLAG
HVGA1
OUTA1
L VGA1
BUSY/SYNC
STBY/RESET
STCK
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
RSENSE
LVGA2
OUTA2
HVGA2
HOST
CS
SENSEA
CK
SDO
Motor
L6482
SDI
SW
HV GB1
OUTB1
LVGB1
OSCIN
LVGB2
OUTB2
OSCOUT
HVGB2
R SENSE
SENSEB
DGND AGND PGND
AM15033v1
18/73
DocID023768 Rev 6
L6482
Functional description
6
Functional description
6.1
Device power-up
During power-up, the device is under reset (all logic IOs disabled and power bridges in high
impedance state) until the following conditions are satisfied:
VREG is greater than VREGthOn
Internal oscillator is operative
STBY/RESET input is forced high.
After power-up, the device state is the following:
Parameters are set to default
Internal logic is driven by internal oscillator and a 2-MHz clock is provided by the
OSCOUT pin
Bridges are disabled (high impedance).
FLAG output is forced low (UVLO failure indication).
After power-up, a period of tlogicwu must pass before applying a command to allow proper
oscillator and logic startup.
Any movement command makes the device exit from High Z state (HardStop and SoftStop
included).
6.2
Logic I/O
Pins CS, CK, SDI, STCK, SW and STBY/RESET are TTL/CMOS 3.3 V -5 V compatible
logic inputs.
Pin SDO is a TTL/CMOS compatible logic output. VDD pin voltage imposes a logical output
voltage range.
Pins FLAG and BUSY/SYNC are open drain outputs.
SW and CS inputs are internally pulled up to VDD and STBY/RESET input is internally pulled
down to ground.
6.3
Charge pump
To ensure the correct driving of the high-side gate drivers, a voltage higher than the motor
power supply voltage needs to be applied to the VBOOT pin. The high-side gate driver
supply voltage VBOOT is obtained through an oscillator and a few external components
realizing a charge pump (see Figure 4).
DocID023768 Rev 6
19/73
73
Functional description
L6482
Figure 4. Charge pump circuitry
VS + VCP
VD1
CBOOT
VS
D2
CFLY
VS + VCP VD1 VD2
VBOOT
D1
CP
VCP
to high-side
gate drivers
VDD
fPUMP
Charge pump oscillator
AM15034v1
6.4
Microstepping
The driver is able to divide the single step into up to 16 microsteps. Stepping mode can be
programmed by the STEP_SEL parameter in the STEP_MODE register (Table 22 on
page 50).
Step mode can only be changed when bridges are disabled. Every time the step mode is
changed, the electrical position (i.e. the point of microstepping sine wave that is generated)
is reset to zero and the absolute position counter value (Section 6.5) becomes meaningless.
Figure 5. Normal mode and microstepping (16 microsteps)
Reset
position
Normal driving
PHASE A current
PHASE B current
Reset
position
Microstepping
PHASE A current
PHASE B current
microsteps
step 1 step 2 step 3 step 4 step 1
step 1 step 2 step 3 step 4 step 1
16
16
16
16
microsteps microsteps microsteps microsteps
AM15035v1
20/73
DocID023768 Rev 6
L6482
Functional description
Automatic Full-step and Boost modes
When motor speed is greater than a programmable full-step speed threshold, the L6482
device switches automatically to Full-step mode; the driving mode returns to microstepping
when motor speed decreases below the full-step speed threshold.
The switching between the microstepping and Full-step mode and vice versa is always
performed at an electrical position multiple of /4 (Figure 6 and Figure 7).
Full-step speed threshold is set through the related parameter in the FS_SPD register
(Section 9.1.9 on page 47).
When the BOOST_MODE bit of the FS_SPD register is low (default), the amplitude of the
voltage squarewave in Full-step mode is equal to the peak of the voltage sine wave
multiplied by sine(/4) (Figure 6). This avoids the current drop between the two driving
modes.
When the BOOST_MODE bit of the FS_SPD register is high, the amplitude of the voltage
squarewave in Full-step mode is equal to the peak of the voltage sine wave (Figure 7). That
improves the output current increasing the maximum motor torque.
Figure 6. Automatic Full-step switching in Normal mode
Vpeak
sin(π /4)x Vpeak
Phase A
Phase B
Full-Step
Microstepping
(2N+1) x π /4
Microstepping
(2N+1) x π /4
AM15036v1
DocID023768 Rev 6
21/73
73
Functional description
L6482
Figure 7. Automatic Full-step switching in Boost mode
Vpeak
Phase A
Vpeak
Phase B
Full-Step
Microstepping
(2N+1) x π /4
Microstepping
(2N+1) x π/4
AM15037v1
6.5
Absolute position counter
An internal 22-bit register (ABS_POS) records all the motor motions according to the
selected step mode; the stored value unit is equal to the selected step mode (full, half,
quarter, etc.). The position range is from -221 to +221-1 steps (see Section 9.1.1 on page
44).
6.6
Programmable speed profiles
The user can easily program a customized speed profile defining independently
acceleration, deceleration, and maximum and minimum speed values by ACC, DEC,
MAX_SPEED and MIN_SPEED registers respectively (see Section 9.1.5 on page 45, 9.1.6
on page 45, 9.1.7 on page 46 and 9.1.8 on page 46).
When a command is sent to the device, the integrated logic generates the microstep
frequency profile that performs a motor motion compliant to speed profile boundaries.
All acceleration parameters are expressed in step/tick2 and all speed parameters are
expressed in step/tick; the unit of measurement does not depend on the selected step
mode. Acceleration and deceleration parameters range from 2-40 to (212-2) 2-40 step/tick2
(equivalent to 14.55 to 59590 step/s2).
Minimum speed parameter ranges from 0 to (212-1) 2-24 step/tick (equivalent to 0 to 976.3
step/s).
Maximum speed parameter ranges from 2-18 to (210-1) 2-18 step/tick (equivalent to 15.25 to
15610 step/s).
22/73
DocID023768 Rev 6
L6482
6.7
Functional description
Motor control commands
The L6482 can accept different types of commands:
constant speed commands (Run, GoUntil, ReleaseSW)
absolute positioning commands (GoTo, GoTo_DIR, GoHome, GoMark)
motion commands (Move)
stop commands (SoftStop, HardStop, SoftHiz, HardHiz).
For detailed command descriptions refer to Section 9.2 on page 60.
6.7.1
Constant speed commands
A constant speed command produces a motion in order to reach and maintain a userdefined target speed starting from the programmed minimum speed (set in the MIN_SPEED
register) and with the programmed acceleration/deceleration value (set in the ACC and DEC
registers). A new constant speed command can be requested anytime.
Figure 8. Constant speed command examples
Speed
(step frequency)
SPD3
Run(SPD4,BW)
SPD1
SPD2
Run(SPD2,FW)
Run(SPD3,FW)
Minimum
speed
Minimum
speed
time
Run(SPD1,FW)
SPD4
AM15039v1
6.7.2
Positioning commands
An absolute positioning command produces a motion in order to reach a user-defined
position that is sent to the device together with the command. The position can be reached
performing the minimum path (minimum physical distance) or forcing a direction (see
Figure 9).
Performed motor motion is compliant to programmed speed profile boundaries
(acceleration, deceleration, minimum and maximum speed).
Note that with some speed profiles or positioning commands, the deceleration phase can
start before the maximum speed is reached.
DocID023768 Rev 6
23/73
73
Functional description
L6482
Figure 9. Positioning command examples
Forward
direction
0
0
Present
position
Present
position
Target
position
Target
position
-2 21 +2 21-1
-2 21 +2 21-1
GoTo_DIR(Target pos,FW)
GoTo(Target pos)
AM15040v1
6.7.3
Motion commands
Motion commands produce a motion in order to perform a user-defined number of
microsteps in a user-defined direction that are sent to the device together with the command
(see Figure 10).
Performed motor motion is compliant to programmed speed profile boundaries
(acceleration, deceleration, minimum and maximum speed).
Note that with some speed profiles or motion commands, the deceleration phase can start
before the maximum speed is reached.
Figure 10. Motion command examples
SPEED
SPEED
programmed number of microsteps
programmed number of microsteps
programmed
maximum
speed
programmed
maximum
speed
programmed
ACCELERATION
programmed
minimum
speed
programmed
ACCELERATION
programmed
DECELERATION
programmed
minimum
speed
Note: with some
Acceleration/Decelaration profiles
the programmed maximum speed
is never reached
programmed
DECELERATION
time
time
AM15041v1
24/73
DocID023768 Rev 6
L6482
6.7.4
Functional description
Stop commands
A stop command forces the motor to stop. Stop commands can be sent anytime.
The SoftStop command causes the motor to decelerate with a programmed deceleration
value until the MIN_SPEED value is reached and then stops the motor keeping the rotor
position (a holding torque is applied).
The HardStop command stops the motor instantly, ignoring deceleration constraints and
keeping the rotor position (a holding torque is applied).
The SoftHiZ command causes the motor to decelerate with a programmed deceleration
value until the MIN_SPEED value is reached and then forces the bridges into high
impedance state (no holding torque is present).
The HardHiZ command instantly forces the bridges into high impedance state (no holding
torque is present).
6.7.5
Step-clock mode
In Step-clock mode the motor motion is defined by the step-clock signal applied to the STCK
pin. At each step-clock rising edge, the motor is moved one microstep in the programmed
direction and the absolute position is consequently updated.
When the system is in Step-clock mode, the SCK_MOD flag in the STATUS register is
raised, the SPEED register is set to zero and the motor status is considered stopped
regardless of the STCK signal frequency (the MOT_STATUS parameter in the STATUS
register equal to “00”).
6.7.6
GoUntil and ReleaseSW commands
In most applications the power-up position of the stepper motor is undefined, so an
initialization algorithm driving the motor to a known position is necessary.
The GoUntil and ReleaseSW commands can be used in combination with external switch
input (see Section 6.14 on page 30) to easily initialize the motor position.
The GoUntil command makes the motor run at target constant speed until the SW input is
forced low (falling edge). When this event occurs, one of the following actions can be
performed:
ABS_POS register is set to zero (home position) and the motor decelerates to zero
speed (as a SoftStop command)
ABS_POS register value is stored in the MARK register and the motor decelerates to
zero speed (as a SoftStop command).
If the SW_MODE bit of the CONFIG register is set to ‘0’, the motor does not decelerate but
it immediately stops (as a HardStop command).
The ReleaseSW command makes the motor run at a programmed minimum speed until the
SW input is forced high (rising edge). When this event occurs, one of the following actions
can be performed:
ABS_POS register is set to zero (home position) and the motor immediately stops
(as a HardStop command)
ABS_POS register value is stored in the MARK register and the motor immediately
stops (as a HardStop command).
If the programmed minimum speed is less than 5 step/s, the motor is driven at 5 step/s.
DocID023768 Rev 6
25/73
73
Functional description
6.8
L6482
Internal oscillator and oscillator driver
The control logic clock can be supplied by the internal 16-MHz oscillator, an external
oscillator (crystal or ceramic resonator) or a direct clock signal.
These working modes can be selected by EXT_CLK and OSC_SEL parameters in the
CONFIG register (see Table 35 on page 56).
At power-up the device starts using the internal oscillator and provides a 2-MHz clock signal
on the OSCOUT pin.
Attention: In any case, before changing clock source configuration,
a hardware reset is mandatory. Switching to different clock
configurations during operation may cause unexpected
behavior.
6.8.1
Internal oscillator
In this mode the internal oscillator is activated and OSCIN is unused. If the OSCOUT clock
source is enabled, the OSCOUT pin provides a 2, 4, 8 or 16-MHz clock signal (according to
OSC_SEL value); otherwise it is unused (see Figure 11).
6.8.2
External clock source
Two types of external clock source can be selected: crystal/ceramic resonator or direct clock
source. Four programmable clock frequencies are available for each external clock source:
8, 16, 24 and 32-MHz.
When an external crystal/resonator is selected, the OSCIN and OSCOUT pins are used to
drive the crystal/resonator (see Figure 11). The crystal/resonator and load capacitors (CL)
must be placed as close as possible to the pins. Refer to Table 8 for the choice of the load
capacitor value according to the external oscillator frequency.
Table 8. CL values according to external oscillator frequency
Crystal/resonator frequency (1)
CL(2)
8 MHz
25 pF (ESRmax = 80 )
16 MHz
18 pF (ESRmax = 50 )
24 MHz
15 pF (ESRmax = 40 )
32 MHz
10 pF (ESRmax = 40 )
1. First harmonic resonance frequency.
2. Lower ESR value allows greater load capacitors to be driven.
If a direct clock source is used, it must be connected to the OSCIN pin and the OSCOUT pin
supplies the inverted OSCIN signal (see Figure 11).
The L6482 integrates a clock detection system that resets the device in the case of a failure
of the external clock source (direct or crystal/resonator). The monitoring of the clock source
is disabled by default, it can be enabled setting high the WD_EN bit in the GATECFG1
26/73
DocID023768 Rev 6
L6482
Functional description
register (Section 9.1.18 on page 52). When the external clock source is selected, the device
continues to work with the integrated oscillator for textosc milliseconds and then the clock
management system switches to the OSCIN input.
Figure 11. OSCIN and OSCOUT pin configuration
EXT_CLK = "0"
EXT_CLK = "1"
8/16/24/32 MHz
CL
CL
8/16/24/32 MHz
OSC_SEL = "1xx"
OSCIN
OSCOUT
OSCIN
External oscillator
configuration
OSCOUT
External clock source
configuration
2/4/8/16 MHz
OSC_SEL = "0xx"
UNUSED
UNUSED
UNUSED
OSCIN
OSCOUT
OSCIN
Internal oscillator
configuration
without clock source
OSCOUT
Internal oscillator
configuration
with clock generation
AM15042v1
Note:
When OSCIN is UNUSED, it should be left floating.
When OSCOUT is UNUSED, it should be left floating.
6.9
Overcurrent detection
The L6482 measures the load current of each half-bridge sensing the VDS voltage of all the
Power MOSFETs (Figure 12). When any of the VDS voltages rise above the programmed
threshold, the OCD flag in the STATUS register is forced low until the event expires and
a GetStatus command is sent to the device (Section 9.1.21 on page 58 and Section 9.2.20
on page 69). The overcurrent event expires when all the Power MOSFET VDS voltages fall
below the programmed threshold.
The overcurrent threshold can be programmed by the OCD_TH register in one of 32
available values ranging from 31.25 mV to 1 V with steps of 31.25 mV (Table 21 on page 50
and Section 9.1.17 on page 52).
DocID023768 Rev 6
27/73
73
Functional description
L6482
Figure 12. Overcurrent detection - principle scheme
Vs
LOGIC CORE
OCD_HSxx
Vs
+
-
HVGxx
Voltage
Comparator
BLANKING
OUTxx
Voltage
Comparator
OCD_LSxx
OC
THRESHOLD
CURRENT
DAC
LVGxx
+
GNDx
-
GND
GND
AM15043v1
The overcurrent detection comparators are disabled, in order to avoid wrong voltage
measurements, in the following cases:
The respective half-bridge is in high impedance state (both MOSFETs forced off)
The respective half-bridge is commutating
The respective half-bridge is commutated and the programmed blanking time has not
yet elapsed
The respective gate is turned off.
It is possible to set, if an overcurrent event causes the bridge turn-off or not, through the
OC_SD bit in the CONFIG register.
When the power bridges are turned off by an overcurrent event, they cannot be turned on
until the OCD flag is released by a GetStatus command.
6.10
Undervoltage lockout (UVLO)
The L6482 provides a programmable gate driver supply voltage UVLO protection. When
one of the supply voltages of the gate driver (VCC for the low sides and VBOOT - VS for the
high sides) falls below the respective turn-off threshold, an undervoltage event occurs. In
this case, all MOSFETs are immediately turned off and the UVLO flag in the STATUS
register is forced low.
The UVLO flag is forced low and the MOSFETs are kept off until the gate driver supply
voltages return to above the respective turn-on threshold; in this case the undervoltage
event expires and the UVLO flag can be released through a GetStatus command.
The UVLO thresholds can be selected between two sets according to the UVLOVAL bit
value in the CONFIG register.
28/73
DocID023768 Rev 6
L6482
Functional description
Table 9. UVLO thresholds
UVLOVAL
Parameter
0
1
Low-side gate driver supply turn-off threshold (VCCthOff)
6.3 V
10 V
Low-side gate driver supply turn-on threshold (VCCthOn)
6.9 V
10.4 V
High-side gate driver supply turn-off threshold (VBOOTthOff)
5.5 V
8.8 V
High-side gate driver supply turn-on threshold (VBOOTthOff)
6V
9.2 V
6.11
VS undervoltage lockout (UVLO_ADC)
The device provides an undervoltage signal of the integrated ADC input voltage (the
UVLO_ADC flag in the STATUS register). When VADCIN falls below the VADC,UVLO value, the
UVLO_ADC flag is forced low and it is kept in this state until the ADCIN voltage is greater
than VADC,UVLO and a GetStatus command is sent to the device.
The ADCIN undervoltage event does not turn off the MOSFETs of the power bridges.
The motor supply voltage undervoltage detection can be performed by means of this
feature, connecting the ADCIN pin to VS through a voltage divider.
6.12
Thermal warning and thermal shutdown
An integrated sensor allows detection of the internal temperature and implementation of
a 3-level protection.
When the Tj(WRN)Set threshold is reached, a warning signal is generated. This is the thermal
warning condition and it expires when the temperature falls below the Tj(WRN)Rel threshold.
When the Tj(OFF)Set threshold is reached, all the MOSFETs are turned off and the gate
driving circuitry is disabled (Miller clamps are still operative). This condition expires when
the temperature falls below the Tj(OFF)Rel threshold.
When the Tj(SD)OFF threshold is reached, all the MOSFETs are turned off using Miller
clamps, the internal VCC voltage regulator is disabled and the current capability of the
internal VREG voltage regulator is reduced (thermal shutdown). In this condition, logic is still
active (if supplied). The thermal shutdown condition only expires when the temperature
goes below Tj(SD)ON.
The thermal condition of the device is shown by TH_STATUS bits in the STATUS register
(Table 10).
DocID023768 Rev 6
29/73
73
Functional description
L6482
Table 10. Thermal protection summarizing table
State
Set condition
Release condition
Normal
Description
TH_STATUS
Normal operation state
00
Warning
Tj > Tj(WRN)Set
Tj > Tj(WRN)Rel
Temperature warning: operation is
not limited
01
Bridge shutdown
Tj > Tj(OFF)Set
Tj > Tj(OFF)Rel
High temperature protection: the
MOSFETs are turned off and the
gate drivers are disabled
10
Tj > Tj(SD)Rel
Overtemperature protection: the
MOSFETs are turned off, the gate
drivers are disabled, the internal
VCC voltage regulator is disabled,
the current capability of the
internal VREG voltage regulator is
limited, and the charge pump is
disabled
11
Device shutdown
6.13
Tj > Tj(SD)Set
Reset and standby
The device can be reset and put into Standby mode through the STBY/RESET pin. When it
is forced low, all the MOSFETs are turned off (High Z state), the charge pump is stopped,
the SPI interface and control logic are disabled and the internal VREG voltage regulator
maximum output current is limited; as a result, the L6482 device heavily reduces the power
consumption. At the same time the register values are reset to their default and all the
protection functions are disabled. The STBY/RESET input must be forced low at least for
tSTBY,min in order to ensure the complete switch to Standby mode.
On exiting Standby mode, as well as for IC power-up, a delay must be given before applying
a new command to allow proper oscillator and charge pump startup. Actual delay could vary
according to the values of the charge pump external components.
On exiting Standby mode all the MOSFETs are off and the HiZ flag is high.
The registers can be reset to the default values without putting the device into Standby
mode through the ResetDevice command (Section 9.2.15 on page 67).
6.14
External switch (SW pin)
The SW input is internally pulled up to VDD and detects if the pin is open or connected to
ground (see Figure 13).
The SW_F bit of the STATUS register indicates if the switch is open (‘0’) or closed (‘1’)
(Section 9.1.21 on page 58); the bit value is refreshed at every system clock cycle (125 ns).
The SW_EVN flag of the STATUS register is raised when a switch turn-on event (SW input
falling edge) is detected (Section 9.1.21). A GetStatus command releases the SW_EVN flag
(Section 9.2.20 on page 69).
By default, a switch turn-on event causes a HardStop interrupt (SW_MODE bit of the
CONFIG register set to ‘0’). Otherwise (SW_MODE bit of the CONFIG register set to ‘1’),
switch input events do not cause interrupts and the switch status information is at the user’s
disposal (Table 36 on page 56 and Section 9.1.20 on page 55).
30/73
DocID023768 Rev 6
L6482
Functional description
The switch input can be used by GoUntil and ReleaseSW commands as described in
Section 9.2.10 on page 65 and Section 9.2.11 on page 66.
If the SW input is not used, it should be connected to VDD.
Figure 13. External switch connection
VDD
External
Switch
SW
AM15044v1
6.15
Programmable gate drivers
The L6482 integrates eight programmable gate drivers that allow the fitting of a wide range
of applications.
The following parameters can be adjusted:
gate sink/source current (IGATE)
controlled current time (tCC)
turn-off overboost time (tOB).
During turn-on, the gate driver charges the gate forcing an IGATE current for all the controlled
current time period. At the end of the controlled current phase the gate of the external
MOSFET should be completely charged, otherwise the gate driving circuitry continues to
charge it using a holding current.
This current is equal to IGATE for the low-side gate drivers and 1 mA for the high-side ones.
During turn-off, the gate driver discharges the gate sinking an IGATE current for all the
controlled current time period. At the beginning of turn-off an overboost phase can be
added: in this case the gate driver sinks an IOB current for the programmed tOB period in
order to rapidly reach the plateau region. At the end of the controlled current time the gate of
the external MOSFET should be completely charged, otherwise the gate driving circuitry
discharges it using the integrated Miller clamp.
DocID023768 Rev 6
31/73
73
Functional description
L6482
Figure 14. Gate driving currents
tOB
t CC
Gate charged
tCC
Gate discharged
IOB
Igate
Igate
Gate Current
Gate turn-on
Gate turn-off
AM15045v1
The gate current can be set to one of the following values: 4, 8, 16, 24, 32, 64 and 96 mA
through the IGATE parameter in the GATECFG1 register (see Section 9.1.18 on page 52).
Controlled current time can be programmed within range from 125 ns to 3.75 s with
a resolution of 125 ns (TCC parameter in the GATECFG1 register) (see Section 9.1.18).
Turn-off overboost time can be set to one of the following values: 0, 62.5, 125, 250 ns
(TBOOST parameter in the GATECFG1 register). The 62.5 ns value is only available when
clock frequency is 16 MHz or 32 MHz; when clock frequency is 8 MHz it is changed to 125
ns and when a 24-MHz clock is used it is changed to 83.3 ns. (see Section 9.1.18).
6.16
Deadtime and blanking time
During the bridge commutation, a deadtime is added in order to avoid cross conductions.
The deadtime can be programmed within a range from 125 ns to 4 s with a resolution of
125 ns (TDT parameter in the GATECFG2 register) (see Section 9.1.19 on page 54).
At the end of each commutation the overcurrent and stall detection comparators are
disabled (blanking) in order to avoid the respective systems detecting body diode turn-off
current peaks.
The duration of blanking time is programmable through the TBLANK parameter in the
GATECFG2 register at one of the following values: 125, 250, 375, 500, 625, 750, 875, 1000
ns (see Section 9.1.19).
6.17
Integrated analog-to-digital converter
The L6482 integrates an NADC bit ramp-compare analog-to-digital converter with
a reference voltage equal to VREG. The analog-to-digital converter input is available through
the ADCIN pin and the conversion result is available in the ADC_OUT register
(Section 9.1.14 on page 50).
The ADC_OUT value can be used for torque regulation or can be at the user’s disposal.
32/73
DocID023768 Rev 6
L6482
6.18
Functional description
Supply management and internal voltage regulators
The L6482 integrates two linear voltage regulators: the first one can be used to obtain gate
driver supply starting from a higher voltage (e.g. the motor supply one). Its output voltage
can be set to 7.5 V or 15 V according to the VCCVAL bit value (CONFIG register). The
second linear voltage regulator can be used to obtain the 3.3 V logic supply voltage.
The regulators are designed to supply the internal circuitry of the IC and should not be used
to supply external components.
The input and output voltages of both regulators are connected to external pins and the
regulators are totally independent: in this way a very flexible supply management can be
performed using external components or external supply voltages (Figure 15).
Figure 15. Device supply pin management
All voltages are internally generated
All voltages are externally supplied
VBOOT
VBOOT
CP
CP
VBUS
VBUS
VS
VS
VSREG
VSREG
VCC
7V5 - 15V
VCC
Using external components
(zener diodes, resistors, ...) it
is possible to reduce internal
power dissipation constrains.
7V5 - 15V
3.3 V
VCCREG
3V3
VCC
VCCREG
3V3
VREG
VREG
AM15046v1
If VCC is externally supplied, the VSREG and VCC pins must be shorted (VSREG must be
compliant with VCC range).
If VREG is externally supplied, the VCCREG and VREG pins must be shorted and equal to
3.3 V.
VSREG must be always less than VBOOT in order to avoid related ESD protection diode turnon. The device can be protected from this event by adding an external low drop diode
between the VSREG and VS pins, charge pump diodes should be low drop too.
VCCREG must be always less than VCC in order to avoid ESD protection diode turn-on. The
device can be protected from this event by adding an external low drop diode between the
VCCREG and VSREG pins.
Both regulators provide a short-circuit protection limiting the load current within the
respective maximum ratings.
DocID023768 Rev 6
33/73
73
Functional description
6.19
L6482
BUSY/SYNC pin
This pin is an open drain output which can be used as busy flag or synchronization signal
according to the SYNC_EN bit value (STEP_MODE register) (see Section 9.1.17 on page
52).
6.20
FLAG pin
By default, an internal open drain transistor pulls the FLAG pin to ground when at least one
of the following conditions occurs:
Power-up or standby/reset exit
Overcurrent detection
Thermal warning
Thermal shutdown
UVLO
UVLO on ADC input
Switch turn-on event
Command error.
It is possible to mask one or more alarm conditions by programming the ALARM_EN
register (see Section 9.1.17 and Table 26 on page 52). If the corresponding bit of the
ALARM_EN register is low, the alarm condition is masked and it does not cause a FLAG pin
transition; all other actions imposed by alarm conditions are performed anyway. In case of
daisy chain configuration, FLAG pins of different ICs can be OR-wired to save host
controller GPIOs.
34/73
DocID023768 Rev 6
L6482
Phase current control
7
Phase current control
The L6482 performs a new current control technique, named predictive current control,
allowing the device to obtain the target average phase current. This method is described in
detail in Section 7.1. Furthermore, the L6482 automatically selects the better decay mode in
order to follow the current profile.
Current control algorithm parameters can be programmed by T_FAST, TON_MIN,
TOFF_MIN and CONFIG registers (see Section 9.1.11 on page 48, 9.1.12 on page 48,
9.1.13 on page 49 and 9.1.20 on page 55 for details).
Different current amplitude can be set for acceleration, deceleration and constant speed
phases and when the motor is stopped through TVAL_ACC, TVAL_DEC, TVAL_RUN and
TVAL_HOLD registers (see Section 9.1.10 on page 47). The output current amplitude can
also be regulated by the ADCIN voltage value (see Section 7.4 on page 39).
Each bridge is driven by an independent control system that shares with the other bridge the
control parameters only.
7.1
Predictive current control
Unlike classical peak current control systems, that make the phase current decay when the
target value is reached, this new method keeps the power bridge ON for an extra time after
reaching the current threshold.
At each cycle the system measures the time required to reach the target current (tSENSE).
After that the power stage is kept in a “predictive” ON state (tPRED) for a time equal to the
mean value of tSENSE in the last two control cycles (actual one and previous one), as shown
in Figure 16.
Figure 16. Predictive current control
Iout
predictive ON
state
t
tPRED (n) = SENSE
OFF
state
(n-1) + tSENSE(n)
2
Iref
t SENSE (n-1)
tPRED(n-1)
tPRED (n)
tOFF
tSENSE (n)
tOFF
AM15048v1
At the end of the predictive ON state the power stage is set in OFF state for a fixed time, as
in a constant tOFF current control. During the OFF state both slow and fast decay can be
DocID023768 Rev 6
35/73
73
Phase current control
L6482
performed; the better decay combination is automatically selected by the L6482 device, as
described in Section 7.2.
As shown in Figure 16, the system is able to center the triangular wave on the desired
reference value, improving dramatically the accuracy of the current control system: in fact
the average value of a triangular wave is exactly equal to the middle point of each of its
segment and at steady-state the predictive current control tends to equalize the duration of
the tSENSE and the tPRED time.
Furthermore, the tOFF value is recalculated each time a new current value is requested
(microstep change) in order to keep the PWM frequency as near as possible to the
programmed one (TSW parameter in the CONFIG register).
The device can be forced to work using classic peak current control setting low the
PRED_EN bit in the CONFIG register (default condition). In this case, after the sense phase
(tSENSE) the power stage is set in OFF state, as shown in Figure 17.
Figure 17. Non-predictive current control
Iout
sense ON
state
OFF
state
Iref
tOFF
7.2
tOFF
AM15049v1
Auto-adjusted decay mode
During the current control, the device automatically selects the better decay mode in order
to follow the current profile reducing the current ripple.
At reset, the off-time is performed turning on both the low-side MOS of the power stage and
the current recirculates in the lower half of the bridge (slow decay).
If, during a PWM cycle, the target current threshold is reached in a time shorter than the
TON_MIN value, a fast decay of TOFF_FAST/8 (T_FAST register) is immediately performed
turning on the opposite MOS of both half-bridges and the current recirculates back to the
supply bus.
After this time, the bridge returns to ON state: if the time needed to reach the target current
value is still less than TON_MIN, a new fast decay is performed with a period twice the
previous one. Otherwise, the normal control sequence is followed as described in
Section 7.1. The maximum fast decay duration is set by the TOFF_FAST value.
36/73
DocID023768 Rev 6
L6482
Phase current control
Figure 18. Adaptive decay - fast decay tuning
VWIDVWGHFD\
W)$67 72))B)$67
UGIDVWGHFD\
W)$67 72))B)$67
7RQ!721B0,1
W)$67 72))B)$67
QGIDVWGHFD\
W)$67 72))B)$67
UHIHUHQFHFXUUHQW
1RWH
VWDU WLQJIURPQG IDVWGHFD\WKHV\VWHPFRPELQHV
IDVWDQGVORZGHFD\GXULQJWKH2))SKDVH
$0Y
When two or more fast decays are performed with the present target current, the control
system adds a fast decay at the end of every off-time keeping the OFF state duration
constant (tOFF is split into tOFF,SLOW and tOFF,FAST). When the current threshold is increased
by a microstep change (rising step), the system returns to normal decay mode (slow decay
only) and the tFAST value is halved.
Stopping the motor or reaching the current sine wave zero crossing causes the current
control system to return to the reset state.
DocID023768 Rev 6
37/73
73
Phase current control
L6482
Figure 19. Adaptive decay - switch from normal to slow + fast decay mode and vice versa
2 nd fast decay
switch to fast + slow decay mode
1st fast decay
reference current
Time
tOFF
tOFF
tOFF,SLOW
t FAST
tOFF,FAST
Target current is increased (raising step)
system returns to slow decay mode and tFAST vaule is halved
reference current
Time
AM15051v1
7.3
Auto-adjusted fast decay during the falling steps
When the target current is decreased by a microstep change (falling step), the device
performs a fast decay in order to reach the new value as fast as possible. However,
exceeding the fast duration could cause a strong ripple on the step change. The L6482
device automatically adjusts these fast decays reducing the current ripple.
At reset the fast decay value (tFALL) is set to FALL_STEP/4 (T_FAST register). The tFALL
value is doubled every time, within the same falling step, an extra fast decay is necessary to
obtain an on-time greater than TON_MIN (see Section 9.1.12 on page 48). The maximum
tFALL value is equal to FALL_STEP.
At the next falling step, the system uses the last tFALL value of the previous falling step.
Stopping the motor or reaching the current sine wave zero crossing causes the current
control system to return to the reset state.
38/73
DocID023768 Rev 6
L6482
Phase current control
Figure 20. Fast decay tuning during the falling steps
Falling step
1st fast decay:
t FALL = FALL_STEP/4
Falling step
1st fast decay:
tFALL= FALL_STEP/2
reference current
2 nd fast decay:
tFALL = FALL_STEP/2
Time
AM15052v1
7.4
Torque regulation (output current amplitude regulation)
The phase currents are monitored through two shunt resistors (one for each power bridge)
connected to the respective sense pin (see Figure 21). The integrated comparator
compares the sense resistor voltage with the internal reference generated using the peak
value, which is proportional to the output current amplitude, and the microstepping code.
The comparison result is provided to the logic in order to implement the current control
algorithm as described in previous sections.
The peak reference voltage can be regulated in two ways: writing TVAL_ACC, TVAL_DEC,
TVAL_RUN and TVAL_HOLD registers or varying the ADCIN voltage value.
The EN_TQREG bit (CONFIG register) sets the torque regulation method. If this bit is high,
ADC_OUT prevalue is used to regulate output current amplitude (see Table 20 on page 50
and Section 9.1.14 on page 50). Otherwise the internal analog-to-digital converter is at the
user’s disposal and the output current amplitude is managed by TVAL_HOLD, TVAL_RUN,
TVAL_ACC and TVAL_DEC registers (see Table 14 on page 47 and Section 9.1.10 on page
47).
The voltage applied to the ADCIN pin is sampled at fS frequency and converted in an NADC
bit digital signal. The analog-to-digital conversion result is available in the ADC_OUT
register.
DocID023768 Rev 6
39/73
73
Phase current control
L6482
Figure 21. Current sensing and reference voltage generation
Peak reference DAC
To gate
drivers
To gate
drivers
TVAL_X or ADCIN
Load
Microstepping DAC
Microstep
To gate
drivers
To current
control logic
To gate
drivers
Vref
SENSEX
Rsense
AM15047v1
40/73
DocID023768 Rev 6
L6482
Serial interface
8
Serial interface
The integrated 8-bit serial peripheral interface (SPI) is used for a synchronous serial
communication between the host microprocessor (always master) and the L6482 (always
slave).
The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial data
output (SDO) pins. When CS is high the device is unselected and the SDO line is inactive
(high impedance).
The communication starts when CS is forced low. The CK line is used for synchronization of
data communication.
All commands and data bytes are shifted into the device through the SDI input, most
significant bit first. The SDI is sampled on the rising edges of the CK.
All output data bytes are shifted out of the device through the SDO output, most significant
bit first. The SDO is latched on the falling edges of the CK. When a return value from the
device is not available, an all zero byte is sent.
After each byte transmission the CS input must be raised and be kept high for at least tdisCS
in order to allow the device to decode the received command and put the return value into
the shift register.
All timing requirements are shown in Figure 22 (see Section 3 on page 11 for values).
Multiple devices can be connected in daisy chain configuration, as shown in Figure 23.
Figure 22. SPI timings diagram
CS
t disCS
t setCS
t rCK t hCK t fCK t lCK
CK
t enSDO
t setSDI
t holCS
MSB
SDI
N-1
HiZ
MSB
N-2
LSB
t vSDO
t holSDO
SDO
t disSDO
t holSDI
N-1
N-2
LSB
MSB
AM15053v1
DocID023768 Rev 6
41/73
73
Serial interface
L6482
Figure 23. Daisy chain configuration
42/73
DocID023768 Rev 6
L6482
Programming manual
9
Programming manual
9.1
Register and flag description
Table 11 shows the user registers available (a detailed description can be found in the
respective paragraphs from Section 9.1.1 on page 44 to Section 9.1.21 on page 58):
Table 11. Register map
Register function
Len.
[bit]
Reset
Reset
[Hex]
Register
name
[Hex]
value
h01
ABS_POS
Current position
22
000000
0
R, WS
h02
EL_POS
Electrical position
9
000
0
R, WS
h03
MARK
Mark position
22
000000
0
R, WR
h04
SPEED
Current speed
20
00000
0 step/tick (0 step/s)
R
h05
ACC
Acceleration
12
08A
125.5e-12 step/tick2 (2008 step/s2)
Address
125.5e-12
step/tick2
Remarks(1)
2
R, WS
h06
DEC
Deceleration
12
08A
h07
MAX_SPEED
Maximum speed
10
041
248e-6 step/tick (991.8 step/s)
R, WR
h08
MIN_SPEED
Minimum speed
12
000
0 step/tick (0 step/s)
R, WS
h15
FS_SPD
Full-step speed
11
027
150.7e-6 step/tick (602.7 step/s)
R, WR
h09
TVAL_HOLD
Holding reference
voltage
7
29
328 mV
R, WR
h0A
TVAL_RUN
Constant speed
reference voltage
7
29
328 mV
R, WR
h0B
TVAL_ACC
Acceleration starting
reference voltage
7
29
328 mV
R, WR
h0C
TVAL_DEC
Deceleration starting
reference voltage
7
29
328 mV
R, WR
h0D
RESERVED
-
16
-
-
-
h0E
T_FAST
Fast decay settings
8
19
1 µs / 5 µs
R, WH
h0F
TON_MIN
Minimum on-time
8
29
20.5 µs
R, WH
h10
TOFF_MIN
Minimum off-time
8
29
20.5 µs
R, WH
h11
RESERVED
-
8
-
-
-
0
R
(2)
(2008 step/s )
R, WS
h12
ADC_OUT
ADC output
5
XX
h13
OCD_TH
OCD threshold
5
8
281.25 mV
R, WR
h14
RESERVED
-
8
-
-
-
h16
STEP_MODE
Step mode
8
7
16 steps, SYNC mode disabled
R, WH
h17
ALARM_EN
Alarms enabled
8
FF
All alarms enabled
R, WS
h18
GATECFG1
Gate driver
configuration
11
0
Igate = 4 mA, tCC = 125 ns, no
boost
R, WH
DocID023768 Rev 6
43/73
73
Programming manual
L6482
Table 11. Register map (continued)
Register
name
Register function
Len.
[bit]
Reset
Reset
[Hex]
[Hex]
value
h19
GATECFG2
Gate driver
configuration
8
0
tBLANK = 125 ns, tDT = 125 ns
R, WH
2C88
Internal 16 MHz oscillator
(OSCOUT at 2 MHz),
SW event causes HardStop,
motor supply voltage
compensation disabled,
overcurrent shutdown,
VCC = 7.5 V, UVLO threshold low,
tSW = 44 µs
R, WH
Address
h1A
h1B
CONFIG
IC configuration
STATUS
Status
16
16
Remarks(1)
High impedance state,
motor
stopped, reverse direction,
XXXX(2)
all fault flags released UVLO/Reset
flag set
R
1. R: readable, WH: writable, only when outputs are in high impedance, WS: writable only when motor is stopped, WR: always
writable.
2. According to startup conditions.
9.1.1
ABS_POS
The ABS_POS register contains the current motor absolute position in agreement with the
selected step mode; the stored value unit is equal to the selected step mode (full, half,
quarter, etc.). The value is in 2's complement format and it ranges from -221 to +221-1.
At power-on the register is initialized to “0” (HOME position).
Any attempt to write the register when the motor is running causes the command to be
ignored and the CMD_ERROR flag to rise (Section 9.1.21 on page 58).
9.1.2
EL_POS
The EL_POS register contains the current electrical position of the motor. The two MSbits
indicate the current step and the other bits indicate the current microstep (expressed in
step/16) within the step.
Table 12. EL_POS register
Bit 8
Bit 7
STEP
Bit 6
Bit 5
Bit 4
MICROSTEP
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
When the EL_POS register is written by the user, the new electrical position is instantly
imposed. When the EL_POS register is written, its value must be masked in order to match
with the step mode selected in the STEP_MODE register in order to avoid a wrong
microstep value generation (Section 9.1.17 on page 52); otherwise the resulting microstep
sequence is incorrect.
Any attempt to write the register when the motor is running causes the command to be
ignored and the CMD_ERROR flag to rise (Section 9.1.21).
44/73
DocID023768 Rev 6
L6482
9.1.3
Programming manual
MARK
The MARK register contains an absolute position called MARK, according to the selected
step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.).
It is in 2's complement format and it ranges from -221 to +221-1.
9.1.4
SPEED
The SPEED register contains the current motor speed, expressed in step/tick (format
unsigned fixed point 0.28).
In order to convert the SPEED value in step/s, the following formula can be used:
Equation 1
– 28
SPEED 2
step/s = ------------------------------------tick
where SPEED is the integer number stored in the register and tick is 250 ns.
The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.
Note:
The range effectively available to the user is limited by the MAX_SPEED parameter.
Any attempt to write the register causes the command to be ignored and the CMD_ERROR
flag to rise (Section 9.1.21 on page 58).
9.1.5
ACC
The ACC register contains the speed profile acceleration expressed in step/tick2 (format
unsigned fixed point 0.40).
In order to convert the ACC value in step/s2, the following formula can be used:
Equation 2
– 40
2
ACC 2
step/s = ---------------------------2
tick
where ACC is the integer number stored in the register and tick is 250 ns.
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.
The 0xFFF value of the register is reserved and it should never be used.
Any attempt to write to the register when the motor is running causes the command to be
ignored and the CMD_ERROR flag to rise (Section 9.1.21).
9.1.6
DEC
The DEC register contains the speed profile deceleration expressed in step/tick2 (format
unsigned fixed point 0.40).
DocID023768 Rev 6
45/73
73
Programming manual
L6482
In order to convert the DEC value in step/s2, the following formula can be used:
Equation 3
– 40
DEC 2
2
step/s = ---------------------------2
tick
where DEC is the integer number stored in the register and tick is 250 ns.
The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.
Any attempt to write the register when the motor is running causes the command to be
ignored and the CMD_ERROR flag to rise (Section 9.1.21 on page 58).
9.1.7
MAX_SPEED
The MAX_SPEED register contains the speed profile maximum speed expressed in
step/tick (format unsigned fixed point 0.18).
In order to convert it in step/s, the following formula can be used:
Equation 4
– 18
MAX_SPEED 2
step/s = ----------------------------------------------------tick
where MAX_SPEED is the integer number stored in the register and tick is 250 ns.
The available range is from 15.25 to 15610 step/s with a resolution of 15.25 step/s.
9.1.8
MIN_SPEED
The MIN_SPEED register contains the following parameters:
Table 13. MIN_SPEED register
Bit 12
0
Bit 11
Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MIN_SPEED
The MIN_SPEED parameter contains the speed profile minimum speed. Its value is
expressed in step/tick and to convert it in step/s the following formula can be used:
Equation 5
– 24
MIN_SPEED 2
step/s = --------------------------------------------------tick
where MIN_SPEED is the integer number stored in the register and tick is the ramp 250 ns.
The available range is from 0 to 976.3 step/s with a resolution of 0.238 step/s.
Any attempt to write the register when the motor is running causes the CMD_ERROR flag to
rise.
46/73
DocID023768 Rev 6
L6482
9.1.9
Programming manual
FS_SPD
The FS_SPD register contains the following parameters:
Table 14. FS_SPD register
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
BOOST_MODE
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
FS_SPD
The FS_SPD threshold speed value over which the step mode is automatically switched to
full-step two-phase on. Its value is expressed in step/tick (format unsigned fixed point 0.18)
and to convert it in step/s the following formula can be used:
Equation 6
– 18
FS_SPD + 0.5 2
step/s = ----------------------------------------------------------tick
If FS_SPD value is set to hFF (max.) the system always works in Microstepping mode
(SPEED must go over the threshold to switch to Full-step mode). Setting FS_SPD to zero
does not have the same effect as setting the step mode to full-step two-phase on: the zero
FS_SPD value is equivalent to a speed threshold of about 7.63 step/s.
The available range is from 7.63 to 15625 step/s with a resolution of 15.25 step/s.
The BOOST_MODE bit sets the amplitude of the voltage squarewave during the full-step
operation (see Section : Automatic Full-step and Boost modes on page 21).
9.1.10
TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC
The TVAL_HOLD register contains the reference voltage that is assigned to the torque
regulation DAC when the motor is stopped.
The TVAL_RUN register contains the reference voltage that is assigned to the torque
regulation DAC when the motor is running at constant speed.
The TVAL_ACC register contains the reference voltage that is assigned to the torque
regulation DAC during acceleration.
The TVAL_DEC register contains the reference voltage that is assigned to the torque
regulation DAC during deceleration.
The available range is from 7.8 mV to 1 V with a resolution of 7.8 mV, as shown in Table 15.
DocID023768 Rev 6
47/73
73
Programming manual
L6482
Table 15. Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN
registers
TVAL_X [6…0]
9.1.11
Peak reference voltage
0
0
0
0
0
0
1
15.6 mV
…
7.8 mV
…
0
…
0
…
0
…
0
…
0
…
0
…
0
1
1
1
1
1
1
0
992.2 mV
1
1
1
1
1
1
1
1V
T_FAST
The T_FAST register contains the maximum fast decay time (TOFF_FAST) and the
maximum fall step time (FALL_STEP) used by the current control system (Section 7.2 on
page 36 and Section 7.3 on page 38 for details):
Table 16. FS_SPD register
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
TOFF_FAST
Bit 2
Bit 1
Bit 0
FAST_STEP
The available range for both parameters is from 2 µs to 32 µs.
Table 17. Maximum fast decay times
TOFF_FAST [3…0] FAST_STEP [3…0]
Fast decay time
0
0
0
0
2 µs
0
0
0
1
4 µs
…
…
…
…
…
1
1
1
0
28 µs
1
1
1
1
32 µs
Any attempt to write to the register when the motor is running causes the command to be
ignored and CMD_ERROR to rise (Section 9.1.21 on page 58).
9.1.12
TON_MIN
This parameter is used by the current control system when current mode operation is
selected.
The TON_MIN register contains the minimum on-time value used by the current control
system (see Section 7.2).
The available range for both parameters is from 0.5 µs to 64 µs.
48/73
DocID023768 Rev 6
L6482
Programming manual
Table 18. Minimum on-time
TON MIN [6…0]
Time
0
0
0
0
0
0
0
0.5 µs
0
0
0
0
0
0
1
1 µs
…
…
…
…
…
…
…
…
1
1
1
1
1
1
0
63.5 µs
1
1
1
1
1
1
1
64 µs
Any attempt to write to the register when the motor is running causes the command to be
ignored and the CMD_ERROR to rise (see Section 9.1.21 on page 58).
9.1.13
TOFF_MIN
This parameter is used by the current control system when current mode operation is
selected.
The TOFF_MIN register contains the minimum off-time value used by the current control
system (see Section 7.1 on page 35 for details).
The available range for both parameters is from 0.5 µs to 64 µs.
Table 19. Minimum off-time
TOFF MIN [6…0]
Time
0
0
0
0
0
0
0
0.5 µs
0
0
0
0
0
0
1
1 µs
…
…
…
…
…
…
…
…
1
1
1
1
1
1
0
63.5 µs
1
1
1
1
1
1
1
64 µs
Any attempt to write to the register when the motor is running causes the command to be
ignored and CMD_ERROR to rise (see Section 9.1.21).
DocID023768 Rev 6
49/73
73
Programming manual
9.1.14
L6482
ADC_OUT
The ADC_OUT register contains the result of the analog-to-digital conversion of the ADCIN
pin voltage.
Any attempt to write to the register causes the command to be ignored and the
CMD_ERROR flag to rise (see Section 9.1.21 on page 58).
Table 20. ADC_OUT value and torque regulation feature
VADCIN/ VREG
Reference voltage
0
0
0
0
0
0
31.25 mV
1/32
0
0
0
0
1
62.5 mV
…
…
…
…
…
…
…
9.1.15
ADC_OUT [4…0]
30/32
1
1
1
1
0
968.8 mV
31/32
1
1
1
1
1
1V
OCD_TH
The OCD_TH register contains the overcurrent threshold value (see Section 6.9 on page 27
for details). The available range is from 31.25 mV to 1 V, steps of 31.25 mV, as shown in
Table 21.
Table 21. Overcurrent detection threshold
OCD_TH [4…0]
0
0
0
0
0
31.25 mV
0
0
0
0
1
62.5 mV
…
…
…
…
…
…
9.1.16
Overcurrent detection threshold
1
1
1
1
0
968.8 mV
1
1
1
1
1
1V
STEP_MODE
The STEP_MODE register has the following structure:
Table 22. STEP_MODE register
Bit 7
SYNC_EN
Bit 6
Bit 5
Bit 4
SYNC_SEL
1. When the register is written this bit must be set to 1.
50/73
DocID023768 Rev 6
Bit 3
1(1)
Bit 2
Bit 1
STEP_SEL
Bit 0
L6482
Programming manual
The STEP_SEL parameter selects one of five possible stepping modes:
Table 23. Step mode selection
STEP_SEL[2…0]
Step mode
0
0
0
Full-step
0
0
1
Half-step
0
1
0
1/4 microstep
0
1
1
1/8 microstep
1
X
X
1/16 microstep
Every time the step mode is changed, the electrical position (i.e. the point of microstepping
sine wave that is generated) is reset to the first microstep.
Warning:
Every time STEP_SEL is changed, the value in the ABS_POS
register loses meaning and should be reset.
Any attempt to write the register when the motor is running causes the command to be
ignored and the CMD_ERROR flag to rise (see Section 9.1.21 on page 58).
When the SYNC_EN bit is set low, the BUSY/SYNC output is forced low during the
command execution, otherwise, when the SYNC_EN bit is set high, the BUSY/SYNC output
provides a clock signal according to the SYNC_SEL parameter.
Table 24. SYNC output frequency
SYNC_SEL
STEP_SEL (fFS is the full-step frequency)
000
001
010
011
100
101
110
111
000
fFS/2
fFS/2
fFS/2
fFS/2
fFS/2
fFS/2
fFS/2
fFS/2
001
NA
fFS
fFS
fFS
fFS
fFS
fFS
fFS
010
NA
NA
2 · fFS
2 · fFS
2 · fFS
2 · fFS
2 · fFS
2 · fFS
011
NA
NA
NA
4 · fFS
4 · fFS
4 · fFS
4 · fFS
4 · fFS
100
NA
NA
NA
NA
8 · fFS
8 · fFS
8 · fFS
8 · fFS
101
NA
NA
NA
NA
NA
NA
NA
NA
110
NA
NA
NA
NA
NA
NA
NA
NA
111
NA
NA
NA
NA
NA
NA
NA
NA
DocID023768 Rev 6
51/73
73
Programming manual
L6482
The synchronization signal is obtained starting from the electrical position information
(EL_POS register), according to Table 25:
Table 25. SYNC signal source
SYNC_SEL[2…0]
Source
0
0
0
EL_POS[7]
0
0
1
EL_POS[6]
0
1
0
EL_POS[5]
0
1
1
EL_POS[4]
1
0
0
EL_POS[3]
1
0
1
UNUSED(1)
1
1
0
UNUSED(1)
1
1
1
UNUSED(1)
1. When this value is selected, the BUSY output is forced low.
9.1.17
ALARM_EN
The ALARM_EN register allows the selection of which alarm signals are used to generate
the FLAG output. If the respective bit of the ALARM_EN register is set high, the alarm
condition forces the FLAG pin output down.
Table 26. ALARM_EN register
9.1.18
ALARM_EN bit
Alarm condition
0 (LSB)
Overcurrent
1
Thermal shutdown
2
Thermal warning
3
UVLO
4
ADC UVLO
5
Unused
6
Switch turn-on event
7 (MSB)
Command error
GATECFG1
The GATECFG1 register has the following structure:
Table 27. GATECFG1 register
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
WD_EN
Bit 7
Bit 6
Bit 5
Bit 4
IGATE
52/73
Bit 3
Bit 8
TBOOST
Bit 2
TCC
DocID023768 Rev 6
Bit 9
Bit 1
Bit 0
L6482
Programming manual
The IGATE parameter selects the sink/source current used by gate driving circuitry to
charge/discharge the respective gate during commutations. Seven possible values ranging
from 4 mA to 96 mA are available, as shown in Table 28.
Table 28. IGATE parameter
IGATE [2…0}
Gate current [mA}
0
0
0
4
0
0
1
4
0
1
0
8
0
1
1
16
1
0
0
24
1
0
1
32
1
1
0
64
1
1
1
96
The TCC parameter defines the duration of constant current phase during gate turn-on and
turn-off sequences (Section 6.15 on page 31).
Table 29. TCC parameter
TCC [4…0]
Constant current time [ns]
0
0
0
0
0
125
0
0
0
0
1
250
1
1
1
0
0
3625
1
1
1
0
1
3750
1
1
1
1
0
3750
1
1
1
1
1
3750
The TBOOST parameter defines the duration of the overboost phase during gate turn-off
(Section 6.15).
DocID023768 Rev 6
53/73
73
Programming manual
L6482
Table 30. TBOOST parameter
TBOOST
Turn-off boost time [ns]
[2…0]
0
0
0
0
(1)
62.5
/ 83.3(2) / 125(3)
0
0
1
0
1
0
125
0
1
1
250
1
0
0
375
1
0
1
500
1
1
0
750
1
1
1
1000
1. Clock frequency equal to 16 MHz or 32 MHz.
2. Clock frequency equal to 24 MHz.
3. Clock frequency equal to 8 MHz.
The WD_EN bit enables the clock source monitoring (Section 6.8.2 on page 26).
9.1.19
GATECFG2
The GATECFG2 register has the following structure:
Table 31. GATECFG2 register (voltage mode)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
TBLANK
Bit 1
Bit 0
TDT
The TDT parameter defines the deadtime duration between the gate turn-off and the
opposite gate turn-on sequences (Section 6.16 on page 32).
Table 32. TDT parameter
TDT [4…0]
Deadtime [ns]
0
0
0
0
0
125
0
0
0
0
1
250
1
1
1
1
0
3875
1
1
1
1
1
4000
The TBLANK parameter defines the duration of the blanking of the current sensing
comparators (stall detection and overcurrent) after each commutation (Section 6.16).
54/73
DocID023768 Rev 6
L6482
Programming manual
Table 33. TBLANK parameters
TBLANK [2…0]
9.1.20
Blanking time [ns]
0
0
0
125
0
0
1
250
1
1
0
875
1
1
1
1000
CONFIG
The CONFIG register has the following structure:
Table 34. CONFIG register
Bit 15
Bit 14
Bit 13
PRED_EN
Bit 12
Bit 11
Bit 10
TSW
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
OC_SD
RESERVED
EN_TQREG
SW_MODE
EXT_CLK
DocID023768 Rev 6
Bit 2
Bit 9
Bit 8
VCCVAL
UVLOVAL
Bit 1
Bit 0
OSC_SEL
55/73
73
Programming manual
L6482
The OSC_SEL and EXT_CLK bits set the system clock source:
Table 35. Oscillator management
EXT_CLK
OSC_SEL [2…0]
Clock source
OSCIN
OSCOUT
Internal oscillator: 16 MHz
Unused
Unused
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
1
0
0
0
Internal oscillator: 16 MHz
Unused
Supplies a 2-MHz
clock
1
0
0
1
Internal oscillator: 16 MHz
Unused
Supplies a 4-MHz
clock
1
0
1
0
Internal oscillator: 16 MHz
Unused
Supplies an 8-MHz
clock
1
0
1
1
Internal oscillator: 16 MHz
Unused
Supplies a 16-MHz
clock
0
1
0
0
External crystal or resonator: 8 MHz
Crystal/resonator
driving
Crystal/resonator
driving
0
1
0
1
External crystal or resonator: 16 MHz
Crystal/resonator
driving
Crystal/resonator
driving
0
1
1
0
External crystal or resonator: 24 MHz
Crystal/resonator
driving
Crystal/resonator
driving
0
1
1
1
External crystal or resonator: 32 MHz
Crystal/resonator
driving
Crystal/resonator
driving
1
1
0
0
Ext. clock source: 8 MHz
(crystal/resonator driver disabled)
Clock source
Supplies inverted
OSCIN signal
1
1
0
1
Ext. clock source: 16 MHz
(crystal/resonator driver disabled)
Clock source
Supplies inverted
OSCIN signal
1
1
1
0
Ext. clock source: 24 MHz
(crystal/resonator driver disabled)
Clock source
Supplies inverted
OSCIN signal
1
1
1
1
Ext. clock source: 32 MHz
(crystal/resonator driver disabled)
Clock source
Supplies inverted
OSCIN signal
The SW_MODE bit sets the external switch to act as HardStop interrupt or not:
Table 36. External switch HardStop interrupt mode
56/73
SW_MODE
Switch mode
0
HardStop interrupt
1
User disposal
DocID023768 Rev 6
L6482
Programming manual
The OC_SD bit sets if an overcurrent event causes or not the bridges to turn off; the OCD
flag in the status register is forced low anyway:
Table 37. Overcurrent event
OC_SD
Overcurrent event
1
Bridges shutdown
0
Bridges do not shutdown
The VCCVAL bit sets the internal VCC regulator output voltage.
Table 38. Programmable VCC regulator output voltage
VCCVAL
VCC voltage
0
7.5 V
1
15 V
The UVLOVAL bit sets the UVLO protection thresholds.
Table 39. Programmable UVLO thresholds
UVLOVAL
VCCthOn
VCCthOff
VBOOTthOn
VBOOTthOff
0
6.9 V
6.3 V
6V
5.5 V
1
10.4 V
10 V
9.2 V
8.8 V
The EN_TQREG bit sets if the torque regulation is performed through ADCIN voltage
(external) or the TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN registers (internal).
Table 40. External torque regulation enable
EN_TQREG
External torque regulation
0
Disabled
1
Enabled
The TSW parameter is used by the current control system and it sets the target switching
period.
Table 41. Switching period
TSW [4…0]
Switching period
0
0
0
0
0
4 µs (250 kHz)
0
0
0
0
1
4 µs (250 kHz)
0
0
0
1
0
8 µs (125 kHz)
…
…
…
…
…
…
1
1
1
1
1
124 µs (8 kHz)
DocID023768 Rev 6
57/73
73
Programming manual
L6482
Any attempt to write the CONFIG register when the motor is running causes the command
to be ignored and the CMD_ERROR flag to rise (see Section 9.1.21 on page 58).
The PRED_EN bit sets if the predictive current control method is enabled or not.
.
Table 42. Motor supply voltage compensation enable
PRED_EN
Predictive current control
0
Disabled
1
Enabled
Any attempt to write the CONFIG register when the motor is running causes the command
to be ignored and the CMD_ERROR flag to rise (Section 9.1.20 on page 55).
9.1.21
STATUS
The STATUS register has the following structure:
Table 43. STATUS register
Bit 15
Bit 14
Bit 13
Unused
Unused
OCD
Bit 7
Bit 6
Bit 5
CMD_ERROR
MOT_STATUS
Bit 12
Bit 11
TH_STATUS
Bit 10
Bit 9
Bit 8
UVLO_ADC
UVLO
STCK_MOD
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
DIR
SW_EVN
SW_F
BUSY
HiZ
When the HiZ flag is high it indicates that the bridges are in high impedance state. Any
motion command causes the device to exit from High Z state (HardStop and SoftStop
included), unless error flags forcing a High Z state are active.
The UVLO flag is active low and is set by an undervoltage lockout or reset events (power-up
included).
The UVLO_ADC flag is active low and indicates an ADC undervoltage event.
The OCD flag is active low and indicates an overcurrent detection event.
The CMD_ERROR flag is active high and indicates that the command received by SPI can't
be performed or does not exist at all.
The SW_F reports the SW input status (low for open and high for closed).
The SW_EVN flag is active high and indicates a switch turn-on event (SW input falling
edge).
58/73
DocID023768 Rev 6
L6482
Programming manual
TH_STATUS bits indicate the current device thermal status (Section 6.12 on page 29):
Table 44. STATUS register TH_STATUS bits
TH_STATUS
Status
0
0
Normal
0
1
Warning
1
0
Bridge shutdown
1
1
Device shutdown
UVLO, UVLO_ADC, OCD, CMD_ERROR, SW_EVN and TH_STATUS bits are latched:
when the respective conditions make them active (low or high) they remain in that state until
a GetStatus command is sent to the IC.
The BUSY bit reflects the BUSY pin status. The BUSY flag is low when a constant speed,
positioning or motion command is under execution and is released (high) after the
command has been completed.
The STCK_MOD bit is an active high flag indicating that the device is working in Step-clock
mode. In this case the step-clock signal should be provided through the STCK input pin.
The DIR bit indicates the current motor direction:
Table 45. STATUS register DIR bit
DIR
Motor direction
1
Forward
0
Reverse
MOT_STATUS indicates the current motor status:
Table 46. STATUS register MOT_STATUS bits
MOT_STATUS
Motor status
0
0
Stopped
0
1
Acceleration
1
0
Deceleration
1
1
Constant speed
Any attempt to write to the register causes the command to be ignored and the
CMD_ERROR to rise.
DocID023768 Rev 6
59/73
73
Programming manual
9.2
L6482
Application commands
The command summary is given in Table 47.
Table 47. Application commands
Command Mnemonic
Command binary code
[7…5] [4]
[3]
[2…1]
[0]
0
00
0
NOP
000
SetParam (PARAM, VALUE)
000
[PARAM]
Writes VALUE in PARAM register
GetParam (PARAM)
001
[PARAM]
Returns the stored value in PARAM register
Run (DIR, SPD)
010
1
0
00
DIR Sets the target speed and the motor direction
StepClock (DIR)
010
1
1
00
DIR
Puts the device in Step-clock mode and imposes
DIR direction
Move (DIR,N_STEP)
010
0
0
00
DIR
Makes N_STEP (micro)steps in DIR direction
(not performable when motor is running)
GoTo (ABS_POS)
011
0
0
00
0
GoTo_DIR (DIR, ABS_POS)
011
0
1
00
DIR
GoUntil (ACT, DIR, SPD)
100
0 ACT
01
Performs a motion in DIR direction with speed
DIR SPD until SW is closed, the ACT action is
executed then a SoftStop takes place
ReleaseSW (ACT, DIR)
100
1 ACT
01
Performs a motion in DIR direction at minimum
DIR speed until the SW is released (open), the ACT
action is executed then a HardStop takes place
GoHome
011
1
0
00
0
Brings the motor in HOME position
GoMark
011
1
1
00
0
Brings the motor in MARK position
ResetPos
110
1
1
00
0
Resets the ABS_POS register (sets HOME
position)
ResetDevice
110
0
0
00
0
Device is reset to power-up conditions
SoftStop
101
1
0
00
0
Stops motor with a deceleration phase
HardStop
101
1
1
00
0
Stops motor immediately
SoftHiZ
101
0
0
00
0
Puts the bridges in high impedance status after
a deceleration phase
HardHiZ
101
0
1
00
0
Puts the bridges in high impedance status
immediately
GetStatus
110
1
0
00
0
Returns the status register value
RESERVED
111
0
1
01
1
RESERVED COMMAND
RESERVED
111
1
1
00
0
RESERVED COMMAND
60/73
0
Action
Nothing
Brings motor in ABS_POS position (minimum path)
Brings motor in ABS_POS position forcing DIR
direction
DocID023768 Rev 6
L6482
9.2.1
Programming manual
Command management
The host microcontroller can control motor motion and configure the L6482 device through
a complete set of commands.
All commands are composed by a single byte. After the command byte, some bytes of
arguments should be needed (see Figure 24). Argument length can vary from 1 to 3 bytes.
Figure 24. Command with 3-byte argument
SDI
(from host)
Command byte
Argument byte 2
(MSB)
Argument byte 1
Argument byte 0
(LSB)
0x00
0x00
0x00
0x00
SDO
(to host)
AM15055v1
By default, the device returns an all zero response for any received byte, the only
exceptions are GetParam and GetStatus commands. When one of these commands is
received, the following response bytes represent the related register value (see Figure 25).
Response length can vary from 1 to 3 bytes.
Figure 25. Command with 3-byte response
SDI
(from host)
Command byte
NOP
NOP
NOP
0x00
Response byte 2
(MSB)
Response byte 1
Response byte 0
(LSB)
SDO
(to host)
AM15056v1
During response transmission, new commands can be sent. If a command requiring
a response is sent before the previous response is completed, the response transmission is
aborted and the new response is loaded into the output communication buffer (see
Figure 26).
Figure 26. Command response aborted
SDI
(from host)
SDO
(to host)
Command 1
(3 byte resp expected)
Command 2
(no resp. expected)
Command 3
(2 byte resp expected)
Command 4
(no resp. expected)
Command 5
(no resp. expected)
0x00
Response byte 2
(MSB)
Response byte 1
Response byte 1
(MSB)
Response byte 0
(LSB)
Command 1 response
is aborted
AM15057v1
When a byte that does not correspond to a command is sent to the IC it is ignored and the
CMD_ERROR flag in the STATUS register is raised (see Section 9.1.21 on page 58).
DocID023768 Rev 6
61/73
73
Programming manual
9.2.2
L6482
Nop
Table 48. Nop command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
From host
Nothing is performed.
9.2.3
SetParam (PARAM, VALUE)
Table 49. SetParam command structure
Bit 7
Bit 6
Bit 5
0
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PARAM
VALUE Byte 2 (if needed)
From host
VALUE Byte 1 (if needed)
VALUE Byte 0
The SetParam command sets the PARAM register value equal to VALUE; PARAM is the
respective register address listed in Table 11 on page 43.
The command should be followed by the new register VALUE (most significant byte first).
The number of bytes composing the VALUE argument depends on the length of the target
register (see Table 11).
Some registers cannot be written (see Table 11); any attempt to write one of those registers
causes the command to be ignored and the CMD_ERROR flag to rise at the end of the
command byte, as if an unknown command code were sent (see Section 9.1.21 on page
58).
Some registers can only be written in particular conditions (see Table 11); any attempt to
write one of those registers when the conditions are not satisfied causes the command to be
ignored and the CMD_ERROR flag to rise at the end of the last argument byte (see
Section 9.1.21).
Any attempt to set an inexistent register (wrong address value) causes the command to be
ignored and the CMD_ERROR flag to rise at the end of the command byte as if an unknown
command code were sent.
9.2.4
GetParam (PARAM)
Table 50. GetParam command structure
62/73
Bit 7
Bit 6
Bit 5
0
0
1
Bit 4
Bit 3
Bit 2
PARAM
Bit 1
Bit 0
From host
ANS Byte 2 (if needed)
To host
ANS Byte 1 (if needed)
To host
ANS Byte 0
To host
DocID023768 Rev 6
L6482
Programming manual
This command reads the current PARAM register value; PARAM is the respective register
address listed in Table 11 on page 43.
The command response is the current value of the register (most significant byte first). The
number of bytes composing the command response depends on the length of the target
register (see Table 11).
The returned value is the register one at the moment of GetParam command decoding. If
register values change after this moment, the response is not updated accordingly.
All registers can be read anytime.
Any attempt to read an inexistent register (wrong address value) causes the command to be
ignored and the CMD_ERROR flag to rise at the end of the command byte as if an unknown
command code were sent.
9.2.5
Run (DIR, SPD)
Table 51. Run command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
0
1
0
0
0
DIR
X
X
X
X
SPD (Byte 2)
From host
From host
SPD (Byte 1)
From host
SPD (Byte 0)
From host
The Run command produces a motion at SPD speed; the direction is selected by the DIR
bit: '1' forward or '0' reverse. The SPD value is expressed in step/tick (format unsigned fixed
point 0.28) that is the same format as the SPEED register (Section 9.1.4 on page 45).
Note:
The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED,
otherwise the Run command is executed at MAX_SPEED or MIN_SPEED respectively.
This command keeps the BUSY flag low until the target speed is reached.
This command can be given anytime and is immediately executed.
9.2.6
StepClock (DIR)
Table 52. StepClock command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
0
1
1
0
0
DIR
From host
The StepClock command switches the device in Step-clock mode (Section 6.7.5 on page
25) and imposes the forward (DIR = '1') or reverse (DIR = '0') direction.
When the device is in Step-clock mode, the SCK_MOD flag in the STATUS register is raised
and the motor is always considered stopped (Section 6.7.5 and 9.1.21 on page 58).
The device exits Step-clock mode when a constant speed, absolute positioning or motion
command is sent through SPI. Motion direction is imposed by the respective StepClock
command argument and can by changed by a new StepClock command without exiting
Step-clock mode.
DocID023768 Rev 6
63/73
73
Programming manual
L6482
Events that cause bridges to be forced into high impedance state (overtemperature,
overcurrent, etc.) do not cause the device to leave Step-clock mode.
The StepClock command does not force the BUSY flag low. This command can only be
given when the motor is stopped. If a motion is in progress, the motor should be stopped
and it is then possible to send a StepClock command.
Any attempt to perform a StepClock command when the motor is running causes the
command to be ignored and the CMD_ERROR flag to rise (Section 9.1.21 on page 58).
9.2.7
Move (DIR, N_STEP)
Table 53. Move command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
0
0
0
0
0
DIR
X
X
N_STEP (Byte 2)
From host
From host
N_STEP (Byte 1)
From host
N_STEP (Byte 0)
From host
The move command produces a motion of N_STEP microsteps; the direction is selected by
the DIR bit ('1' forward or '0' reverse).
The N_STEP value is always in agreement with the selected step mode; the parameter
value unit is equal to the selected step mode (full, half, quarter, etc.).
This command keeps the BUSY flag low until the target number of steps is performed. This
command can only be performed when the motor is stopped. If a motion is in progress the
motor must be stopped and it is then possible to perform a move command.
Any attempt to perform a move command when the motor is running causes the command
to be ignored and the CMD_ERROR flag to rise (Section 9.1.21).
9.2.8
GoTo (ABS_POS)
Table 54. GoTo command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
1
0
0
0
0
0
X
X
ABS_POS (Byte 2)
From host
From host
ABS_POS (Byte 1)
From host
ABS_POS (Byte 0)
From host
The GoTo command produces a motion to the ABS_POS absolute position through the
shortest path. The ABS_POS value is always in agreement with the selected step mode; the
parameter value unit is equal to the selected step mode (full, half, quarter, etc.).
The GoTo command keeps the BUSY flag low until the target position is reached.
This command can be given only when the previous motion command has been completed
(BUSY flag released).
64/73
DocID023768 Rev 6
L6482
Programming manual
Any attempt to perform a GoTo command when a previous command is under execution
(BUSY low) causes the command to be ignored and the CMD_ERROR flag to rise
(Section 9.1.21 on page 58).
9.2.9
GoTo_DIR (DIR, ABS_POS)
Table 55. GoTo_DIR command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
1
0
1
0
0
DIR
X
X
ABS_POS (Byte 2)
From host
From host
ABS_POS (Byte 1)
From host
ABS_POS (Byte 0)
From host
The GoTo_DIR command produces a motion to the ABS_POS absolute position imposing
a forward (DIR = '1') or a reverse (DIR = '0') rotation. The ABS_POS value is always in
agreement with the selected step mode; the parameter value unit is equal to the selected
step mode (full, half, quarter, etc.).
The GoTo_DIR command keeps the BUSY flag low until the target speed is reached. This
command can be given only when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoTo_DIR command when a previous command is under
execution (BUSY low) causes the command to be ignored and the CMD_ERROR flag to
rise (Section 9.1.21).
9.2.10
GoUntil (ACT, DIR, SPD)
Table 56. GoUntil command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
0
0
ACT
0
1
DIR
X
X
X
X
SPD (Byte 2)
From host
From host
SPD (Byte 1)
From host
SPD (Byte 0)
From host
The GoUntil command produces a motion at SPD speed imposing a forward (DIR = '1') or
a reverse (DIR = '0') direction. When an external switch turn-on event occurs (Section 6.14
on page 30), the ABS_POS register is reset (if ACT = '0') or the ABS_POS register value is
copied into the MARK register (if ACT = '1'); the system then performs a SoftStop command.
The SPD value is expressed in step/tick (format unsigned fixed point 0.28) that is the same
format as the SPEED register (Section 9.1.4 on page 45).
The SPD value should be lower than MAX_SPEED and greater than MIN_SPEED,
otherwise the target speed is imposed at MAX_SPEED or MIN_SPEED respectively.
If the SW_MODE bit of the CONFIG register is set low, the external switch turn-on event
causes a HardStop interrupt instead of the SoftStop one (Section 6.14 on page 30 and
DocID023768 Rev 6
65/73
73
Programming manual
L6482
Section 9.1.20 on page 55).
This command keeps the BUSY flag low until the switch turn-on event occurs and the motor
is stopped. This command can be given anytime and is immediately executed.
9.2.11
ReleaseSW (ACT, DIR)
Table 57. ReleaseSW command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
0
1
ACT
0
1
DIR
From host
The ReleaseSW command produces a motion at minimum speed imposing a forward
(DIR = '1') or reverse (DIR = '0') rotation. When SW is released (opened) the ABS_POS
register is reset (ACT = '0') or the ABS_POS register value is copied into the MARK register
(ACT = '1'); the system then performs a HardStop command.
Note that, resetting the ABS_POS register is equivalent to setting the HOME position.
If the minimum speed value is less than 5 step/s or low speed optimization is enabled, the
motion is performed at 5 step/s.
The ReleaseSW command keeps the BUSY flag low until the switch input is released and
the motor is stopped.
9.2.12
GoHome
Table 58. GoHome command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
1
1
0
0
0
0
From host
The GoHome command produces a motion to the HOME position (zero position) via the
shortest path.
Note that, this command is equivalent to the “GoTo(0…0)” command. If a motor direction is
mandatory, the GoTo_DIR command must be used (Section 9.2.9).
The GoHome command keeps the BUSY flag low until the home position is reached. This
command can be given only when the previous motion command has been completed. Any
attempt to perform a GoHome command when a previous command is under execution
(BUSY low) causes the command to be ignored and the CMD_ERROR to rise
(Section 9.1.21 on page 58).
9.2.13
GoMark
Table 59. GoMark command structure
66/73
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
1
1
1
1
0
0
0
DocID023768 Rev 6
From host
L6482
Programming manual
The GoMark command produces a motion to the MARK position performing the minimum
path.
Note that, this command is equivalent to the “GoTo (MARK)” command. If a motor direction
is mandatory, the GoTo_DIR command must be used.
The GoMark command keeps the BUSY flag low until the MARK position is reached. This
command can be given only when the previous motion command has been completed
(BUSY flag released).
Any attempt to perform a GoMark command when a previous command is under execution
(BUSY low) causes the command to be ignored and the CMD_ERROR flag to rise
(Section 9.1.21 on page 58).
9.2.14
ResetPos
Table 60. ResetPos command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
1
0
1
1
0
0
0
From host
The ResetPos command resets the ABS_POS register to zero. The zero position is also
defined as the HOME position (Section 6.5 on page 22).
9.2.15
ResetDevice
Table 61. ResetDevice command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
1
0
0
0
0
0
0
From host
The ResetDevice command resets the device to power-up conditions (Section 6.1 on page
19). The command can be performed only when the device is in high impedance state.
Note:
At power-up the power bridges are disabled.
9.2.16
SoftStop
Table 62. SoftStop command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
1
1
0
0
0
0
From host
The SoftStop command causes an immediate deceleration to zero speed and a consequent
motor stop; the deceleration value used is the one stored in the DEC register (Section 9.1.6
on page 45).
When the motor is in high impedance state, a SoftStop command forces the bridges to exit
from high impedance state; no motion is performed.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
DocID023768 Rev 6
67/73
73
Programming manual
9.2.17
L6482
HardStop
Table 63. HardStop command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
1
1
1
0
0
0
From host
The HardStop command causes an immediate motor stop with infinite deceleration.
When the motor is in high impedance state, a HardStop command forces the bridges to exit
high impedance state; no motion is performed.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
9.2.18
SoftHiZ
Table 64. SoftHiZ command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
1
0
0
0
0
0
From host
The SoftHiZ command disables the power bridges (high impedance state) after
a deceleration to zero; the deceleration value used is the one stored in the DEC register
(Section 9.1.6 on page 45). When bridges are disabled, the HiZ flag is raised.
When the motor is stopped, a SoftHiZ command forces the bridges to enter high impedance
state.
This command can be given anytime and is immediately executed. This command keeps
the BUSY flag low until the motor is stopped.
9.2.19
HardHiZ
Table 65. HardHiZ command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
0
1
0
1
0
0
0
From host
The HardHiZ command immediately disables the power bridges (high impedance state) and
raises the HiZ flag.
When the motor is stopped, a HardHiZ command forces the bridges to enter high
impedance state.
This command can be given anytime and is immediately executed.
This command keeps the BUSY flag low until the motor is stopped.
68/73
DocID023768 Rev 6
L6482
9.2.20
Programming manual
GetStatus
Table 66. GetStatus command structure
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
1
0
1
0
0
0
0
From host
STATUS MSByte
To host
STATUS LSByte
To host
The GetStatus command returns the Status register value.
The GetStatus command resets the STATUS register warning flags. The command forces
the system to exit from any error state. The GetStatus command DOES NOT reset the HiZ
flag.
DocID023768 Rev 6
69/73
73
Package information
10
L6482
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
HTSSOP38 package information
Figure 27. HTSSOP38 package outline
( (
F
H
'
PP
$
$
3
E
$
/
3
70/73
DocID023768 Rev 6
L6482
Package information
Table 67. HTSSOP38 package mechanical data
Dimensions (mm)
Symbol
Min.
A
Typ.
Max.
-
1.1
A1
0.05
-
0.15
A2
0.85
0.9
0.95
b
0.17
-
0.27
c
0.09
-
0.20
D
9.60
9.70
9.80
E1
4.30
4.40
4.50
e
-
0.50
-
E
-
6.40
-
L
0.50
0.60
0.70
P
6.40
6.50
6.60
P1
3.10
3.20
3.30
0°
-
8°
Figure 28. HTSSOP38 footprint
DocID023768 Rev 6
71/73
73
Revision history
11
L6482
Revision history
Table 68. Document revision history
Date
Revision
08-Oct-2012
1
Initial release.
2
Changed the title.
Inserted footnote in Table 2 and Table 4
Removed Tj parameter in Table 3.
Updated Section 9.1.10 and Section 9.1.15.
Updated Table 17.
Minor text changes.
3
Updated Section 6.3 (replaced “integrated MOSFETs” by “gate drivers”).
Updated Section 6.9 to Section 6.13 (replaced “gates” by “MOSFETs”).
Added cross-references to Section 9.
Updated Section 9.1.19 (replaced “TCC parameter” by “TDT parameter”).
Updated Section 9.2.15 (Added “The command can be performed only when the device
is in high impedance state.”).
Updated Section 10 (updated titles, reversed order of Figure 27 and Table 67).
Minor modifications throughout document.
19-May-2014
4
Updated Table 2 on page 9 [added (VBOOT - VS) to VBOOT].
Updated Table 5 on page 11 (updated IVREGqu and IVREGq symbols, values of thigh,STCK,
tlow,STCK, and thigh symbols).
Updated Table 7 on page 18 (replaced STD25NF10 by STD25N10F7).
Updated Section 6.1 on page 19 (removed VCC and VBOOT, added FLAG output...).
Updated Section 6.4 on page 20 (replaced “the first microstep” by “zero”).
Removed Section “Infinite acceleration/deceleration mode” from page 23.
Replaced NOTPERF_CMD and WRONG_CMD flag by CMD_ERROR flag throughout
document.
Updated Section 9.1.5 on page 45 (replaced sentence: “When the ACC value is set to
0xFFF, the device works in infinite acceleration mode.” by “The 0xFFF value of the
register is reserved and it should never be used.”).
Updated Section 9.1.6 on page 45 (removed sentence: “When the device is working in
infinite acceleration mode this value is ignored.”).
Updated Section 9.1.20 on page 55 (replaced PRED_E and EN_PRED by PRED_EN).
Updated Table 43 on page 58 (replaced TH_SD by TH_STATUS).
Updated title of Table 46 on page 59 (replaced MOT_STATE by MOT_STATUS).
Updated cross-references throughout document.
05-Mar-2015
5
Updated main title on page 1 (removed cSPIN™).
Updated Table 11 on page 43 (h15 - Len. [bit]: replaced 10 by 11).
23-Mar-2015
6
Updated Table 14 on page 47 (“Bit 11” removed).
Minor modifications throughout document.
19-Dec-2012
13-Dec-2013
72/73
Changes
DocID023768 Rev 6
L6482
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID023768 Rev 6
73/73
73