0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6494LD

L6494LD

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC14

  • 描述:

    IC GATE DRVR HALF-BRIDGE 14SO

  • 数据手册
  • 价格&库存
L6494LD 数据手册
L6494 High voltage high and low-side 2 A gate driver Datasheet - production data Description The L6494 is a high-voltage device manufactured with the BCD6 “offline” technology. It is a single chip half-bridge gate driver for N-channel power MOSFETs or IGBTs. SO-14 Features  Transient withstand voltage 600 V  dV/dt immunity ± 50 V/ns in full temperature range The high-side (floating) section is designed to stand a DC voltage rail up to 500 V, with 600 V transient withstand voltage. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy interfacing control units such as microcontrollers or DSP.  Driver current capability: – 2 A source typ. at 25 °C – 2.5 A sink typ. at 25 °C The device is a single input gate driver with programmable deadtime, and also features an active-low shutdown pin.  Short propagation delay: 85 ns Both device outputs can sink 2.5 A and source 2 A, making the L6494 particularly suited for medium and high capacity power MOSFETs\IGBTs.  Switching times 25 ns rise/fall with 1 nF load  Integrated bootstrap diode  Single input and shutdown pin  Adjustable deadtime  3.3 V, 5 V TTL/CMOS inputs with hysteresis  UVLO on both high-side and low-side sections  Compact and simplified layout The independent UVLO protection circuits present on both the lower and upper driving sections prevent the power switches from being operated in low efficiency or dangerous conditions. The integrated bootstrap diode as well as all of the integrated features of this driver make the application PCB design simpler and more compact, and help reducing the overall bill of material.  Bill of material reduction  Flexible, easy and fast design Applications  Motor driver for home appliances, factory automation, industrial drives and fans  HID ballasts  Induction heating  Welding  Industrial inverters  UPS  Power supply units  DC-DC converters November 2017 This is information on a product in full production. DocID030317 Rev 2 1/18 www.st.com Contents L6494 Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Pin description and connection diagram . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 8.1 SO-14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2/18 DocID030317 Rev 2 L6494 1 Block diagram Block diagram Figure 1. Block diagram SO-14 #005453"1%*0%& 7$$ 67 %&5&$5*0/ #005 67 %&5&$5*0/ 7 -&7&4)*'5&3 )7( 3 4 -0(*$ )7( %3*7&3 4% '-0"5*/(4536$563& 065 */ -7( %3*7&3 7$$ -7( %5 %&"%5*.& 1(/% 4(/% ". DocID030317 Rev 2 3/18 18 Pin description and connection diagram 2 L6494 Pin description and connection diagram Figure 2. Pin connection SO-14 (top view)   /$ 4%   #005 4(/%   )7( */ %5   065 1(/%   /$ -7(   /$   /$ 7$$ ". Table 1. Pin description Pin no. Pin name Type Function 1 IN I Output drivers logic input (is in phase with HVG and in opposition of phase with LVG) 2 SD - Shutdown logic input (active-low) 4 DT I Deadtime setting 6 LVG(1) O Low-side driver output 7 VCC P Low-side section supply voltage 11 OUT P High-side (floating) section common voltage 12 (1) HVG O High-side driver output 13 BOOT P High-side (bootstrapped) section supply voltage 3 SGND P Signal ground 5 PGND P Power ground 8, 9, 10, 14 NC - Not connected 1. The circuit guarantees less than 1 V on the LVG and HVG pins (at Isink = 10 mA), with VCC > 3 V. This allows omitting the “bleeder” resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low. 4/18 DocID030317 Rev 2 L6494 Electrical data 3 Electrical data 3.1 Absolute maximum ratings Table 2. Absolute maximum ratings(1) Value Symbol VCC VPGND VOUT VBOOT Parameter Supply voltage Low-side driver ground Output voltage Boot DC voltage Boot transient withstand voltage (Tpulse < 1 ms) Unit Min. Max. -0.3 21 V VCC - 21 VCC + 0.3 V VBOOT - 21 VBOOT + 0.3 V -0.3 500 V - 620 V Vhvg High-side gate output voltage VOUT - 0.3 VBOOT + 0.3 V Vlvg Low-side gate output voltage PGND - 0.3 VCC + 0.3 V -0.3 15 V - 50 V/ns Total power dissipation (TA = 25 °C) SO-14 - 1 W TJ Junction temperature - 150 °C Tstg Storage temperature -50 150 °C ESD Human body model 2 kV - Package Value Unit SO-14 120 °C/W Vi Logic input pins voltage dVOUT/dt Allowed output slew rate PTOT 1. Each voltage referred to SGND unless otherwise specified. 3.2 Thermal data Table 3. Thermal data Symbol Rth(JA) Parameter Thermal resistance junction to ambient DocID030317 Rev 2 5/18 18 Electrical data 3.3 L6494 Recommended operating conditions Table 4. Recommended operating conditions Symbol Pin VCC VCC VPS(1) VBO(2) Min. Max. Unit - 10 20 V SGND - PGND Low-side driver ground - -5 +5 V 9.3 20 V -9 480 V BOOT - OUT Parameter Supply voltage Test condition Floating supply voltage OUT DC voltage - OUT transient withstand voltage Tpulse < 1 ms - 600 V - 800 kHz VOUT OUT fSW - Maximum switching frequency HVG, LVG load CL = 1 nF TJ - Junction temperature - -40 125 °C TA - Ambient temperature(4) - -40 125 °C 1. VPS = VPGND - SGND. 2. VBO = VBOOT - VOUT. 3. LVG off. VCC = 12.5 V. Logic is operational if VBOOT > 5 V. 4. Maximum ambient temperature is actually limited by TJ. 6/18 (3) DocID030317 Rev 2 L6494 Electrical characteristics 4 Electrical characteristics Table 5. Electrical characteristics (VCC = 15 V; TJ = +25 °C; PGND = SGND) Symbol Pin Parameter Test condition Min. Typ. Max. Unit Low-side section supply VCC_hys VCC _thON VCC _thOFF VCC vs. SGND IQCCU IQCC VCC UV hysteresis - 0.5 0.6 0.72 V VCC UV turn ON threshold - 8.7 9.3 9.8 V VCC UV turn OFF threshold - 8.2 8.7 9.2 V Undervoltage quiescent supply current VCC = SD = 7 V IN = SGND - 135 200 A Quiescent current VCC = 15 V SD = 5 V; IN = SGND - 490 700 A High-side floating section supply(1) VBO_hys VBO UV hysteresis - 0.48 0.6 0.7 V VBO_thON VBO UV turn ON threshold - 8.0 8.6 9.1 V VBO_thOFF VBO UV turn OFF threshold - 7.5 8.0 8.5 V VBO = SD = 7 V IN = SGND - 20 30 A VBO quiescent current VBO = 15 V SD = IN = 5 V - 90 120 A High-voltage leakage current Vhvg = Vout = Vboot = 600 V - - 8 A Bootstrap diode on-resistance(2) - - 175 -  LVG/HVG ON TJ = 25 °C 1.6 2 - A Full temperature range(3) 1.25 - - A 2 2.5 - A Full temperature range(3) 1.55 - - A - 0.95 - 1.45 V - 2 - 2.5 V IQBOU Undervoltage VBO quiescent BOOT vs. current OUT IQBO ILK RDS(on) Output driving buffers High/low-side source short-circuit current ISO LVG, HVG High/low-side sink short-circuit current ISI LVG/HVG ON TJ = 25 °C Logic inputs Vil Vih IINh IINl ISDh ISDl IN, SD vs. Low level logic threshold voltage SGND High level logic threshold voltage IN vs. SGND IN logic “1” input bias current IN = 15 V 120 200 260 A IN logic “0” input bias current IN = 0 V - - 1 A SD vs. SGND SD logic “1” input bias current SD = 15 V - - 1 A SD logic “0” input bias current SD = 0 V 14 17 23 A DocID030317 Rev 2 7/18 18 Electrical characteristics L6494 Table 5. Electrical characteristics (VCC = 15 V; TJ = +25 °C; PGND = SGND) (continued) Symbol Pin Parameter Test condition Min. Typ. Max. Unit RPU_SD SD vs. SGND SD pull-up resistor - 185 250 310 k RPD_IN IN vs. SGND IN pull-down resistor - 58 75 125 k - 85 120 ns - 85 120 ns Dynamic characteristics (see Figure 3 and Figure 4) ton SD vs. High/low-side driver turn-on LVG/HVG propagation delay toff SD vs. LVG/HVG; High/low-side driver turn-off IN vs. propagation delay LVG/HVG MT tr tf DT MDT LVG, HVG Delay matching, HS and LS turnon/off(4) - - - 30 ns Rise time CL = 1 nF - 25 - ns Fall time CL = 1 nF - 25 - ns Deadtime setting range(5) - Matching deadtime(5) - VOUT = 0 V; VBOOT = VCC; CL = 1 nF; Vi = 0 to 3.3 V RDT = 0 , CL = 1 nF, 0.26 0.40 0.54 s RDT = 100 k, CL = 1 nF, CDT = 100 nF 2.10 2.70 3.30 s RDT = 200 k, CL = 1 nF, CDT = 100 nF 4.00 5.00 6.00 s RDT = 0 , CL = 1 nF, - - 85 ns RDT = 100 k, CL = 1 nF, CDT = 100 nF - - 350 ns RDT = 200 k, CL = 1 nF, CDT = 100 nF - - 700 ns 1. VBO = VBOOT - VOUT. 2. RDSON is tested in the following way: RDSON = [(VCC - VBOOT1) - (VCC - VBOOT2)] / [I1 (VCC, VBOOT1) - I2 (VCC, VBOOT2)] where I1 is the BOOT pin current when VBOOT = VBOOT1, I2 when VBOOT = VBOOT2. 3. Characterized, not tested in production. 4. MT = max. (|ton (LVG) - toff (LVG)|, |ton (HVG) - toff (HVG)|, |toff (LVG) - ton (HVG)|, |toff (HVG) - ton (LVG)|). 5. MDT = | DTLH - DTHL | see Figure 4. 8/18 DocID030317 Rev 2 L6494 Electrical characteristics Figure 3. SD timings 4%     */ US UG  )7(    U PO U PGG US UG  -7(    U PO U PGG ". Figure 4. IN timings and deadtime 4% */   US UG  )7(    U PGG UG  -7(  U PGG  %5 -) %5 )". DocID030317 Rev 2 9/18 18 Electrical characteristics L6494 Figure 5. Typical deadtime vs. DT resistor value  "QQSPYJNBUFEGPSNVMBGPS 3  EU   3 %5 > %5      %5                3 %5 ". 10/18 DocID030317 Rev 2 L6494 5 Truth table Truth table Table 6. Truth table Input Output SD IN LVG HVG L X(1) L L H L H L H H L H 1. X = don't care. DocID030317 Rev 2 11/18 18 Typical application diagram 6 L6494 Typical application diagram Figure 6. Typical application diagram 7$$ #005453"1%*0%& 7$$ $7$$ 67 %&5&$5*0/ 67 %&5&$5*0/ 7 7%% -&7&4)*'5&3 316 -0(*$ '30.$0/530--&3 $CPPU )7( 3 4 3H 0/ 065 '-0"5*/(4536$563& */ )7 )7( %3*7&3 4% '30.$0/530--&3 #005 -7( %3*7&3 50-0"% 7$$ -7( 3H 0/ 7$$ $7$$ %5 %&"%5*.& 3%5 $%5 4ZTUFNQPXFSHSPVOE 1(/% 4(/% ". Figure 7. Suggested PCB layout (SO-14) IN CBOOT SD SIGNAL GROUND VCC CVCC2 RDT CDT CVCC1 RPU SIGNAL GROUND BOTTOM layer TOP layer Rg POWER GROUND AM040071 12/18 DocID030317 Rev 2 L6494 7 Bootstrap driver Bootstrap driver A bootstrap circuitry is needed to supply the high voltage section. This function is usually accomplished by a high voltage fast recovery diode (Figure 8). In the L6494 an integrated structure replaces the external diode. CBOOT selection and charging To choose the proper CBOOT value the external MOS can be seen as an equivalent capacitor. This capacitor CEXT is related to the MOS total gate charge: Equation 1 Q gate C EXT = -------------V gate The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss. It has to be: Equation 2 C BOOT >>>C EXT if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop is 300 mV. If HVG has to be supplied for a long time, the CBOOT selection has also to take into account the leakage and quiescent losses. HVG steady-state consumption is lower than 120 A, so if HVG TON is 5 ms, CBOOT has to supply 0.6 C. This charge on a 1 F capacitor means a voltage drop of 0.6 V. The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has great leakage current). This structure can work only if VOUT is close to SGND (or lower) and in the meanwhile the LVG is on. The charging time (Tcharge) of the CBOOT is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor. The bootstrap driver introduces a voltage drop due to the DMOS RDS(on) (typical value: 175 ). At low frequency this drop can be neglected. Anyway, the rise of frequency has to take into account. The following equation is useful to compute the drop on the bootstrap DMOS: Equation 3 Q gate V drop = I ch arg e R DS  on   V drop = ------------------R DS  on  T ch arg e where Qgate is the gate charge of the external power MOS, RDS(on) is the on resistance of the bootstrap DMOS and Tcharge is the charging time of the bootstrap capacitor. DocID030317 Rev 2 13/18 18 Bootstrap driver L6494 For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the Tcharge is 5 s. In fact: Equation 4 30nC V drop = ---------------  175  1V 5s Vdrop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode can be used. Figure 8. Bootstrap driver with external high voltage fast recovery diode DBOOT VCC BOOT H.V. HVG CBOOT OUT TO LOAD LVG 14/18 DocID030317 Rev 2 L6494 8 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 8.1 SO-14 package information Figure 9. SO-14 package outline 40 DocID030317 Rev 2 15/18 18 Package information L6494 Table 7. SO-14 package mechanical data Dimensions (mm) Symbol Min. Typ. Max. A 1.35 - 1.75 A1 0.10 - 0.25 A2 1.10 - 1.65 B 0.33 - 0.51 C 0.19 - 0.25 D 8.55 - 8.75 E 3.80 - 4.00 e - 1.27 - H 5.80 - 6.20 h 0 - - 25 - 0.50 - L 0.40 - 1.27 k 0 - 8 ddd - - 0.10 Figure 10. SO-14 package suggested land pattern     ". 16/18 DocID030317 Rev 2 L6494 9 Ordering information Ordering information Table 8. Device summary 10 Order code Package Packaging L6494LD SO-14 Tube L6494LDTR SO-14 Tape and reel Revision history Table 9. Document revision history Date Revision Changes 08-Feb-2017 1 Initial release. 14-Nov-2017 2 Updated Section : Description on page 1, Table 4 on page 6 and Table 5 on page 7. DocID030317 Rev 2 17/18 18 L6494 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 18/18 DocID030317 Rev 2
L6494LD 价格&库存

很抱歉,暂时无法提供与“L6494LD”相匹配的价格&库存,您可以联系我们找货

免费人工找货