L6562AT
Transition-mode PFC controller
Features
■
Guaranteed for extreme temperature range
(outdoor)
■
Proprietary multiplier design for minimum THD
■
Very accurate adjustable output overvoltage
protection
DIP-8
■
SO-8
DIP-8/SO-8 packages
■
Ultra-low (30 μA) start-up current
■
Low (2.5 mA) quiescent current
Applications
■
Digital leading-edge blanking on current sense
PFC pre-regulators for:
■
Disable function on E/A input
■
Street lighting
■
1% (@ TJ = 25 °C) internal reference voltage
■
■
-600/+800 mA totem pole gate driver with
active pull-down during UVLO and voltage
clamp
IEC61000-3-2 compliant SMPS (Flat TV,
monitors, desktop PC, games)
■
Electronic ballast
Figure 1.
Block diagram
Table 1.
Device summary
Order codes
Package
Packaging
L6562ATN
DIP-8
Tube
L6562ATD
L6562ATDTR
March 2009
SO-8
Rev 2
Tube
Tape and reel
1/25
www.st.com
25
Contents
L6562AT
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6
Typical electrical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.1
Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.2
Disable function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3
THD optimizer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.4
Operating with no auxiliary winding on the boost inductor . . . . . . . . . . . . 15
7.5
Comparison between the L6562AT and the L6562 . . . . . . . . . . . . . . . . . 16
8
Application examples and ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
Description
1
L6562AT
Description
The L6562AT is a current-mode PFC controller operating in transition mode (TM). Coming
with the same pin-out as its predecessors L6561 and L6562, it offers improved performance.
The highly linear multiplier includes a special circuit, able to reduce AC input current
distortion, that allows wide-range-mains operation with an extremely low THD, even over a
large load range.
The output voltage is controlled by means of a voltage-mode error amplifier and an accurate
(1% @TJ = 25 °C) internal voltage reference.
The device features extremely low consumption (60 µA max. before start-up and < 5.5 mA
operating) and includes a disable function suitable for IC remote ON/OFF, which makes it
easier to comply with energy saving requirements (Blue Angel, EnergyStar, Energy2000,
etc.).
An effective two-step OVP enables to safely handle over-voltages either occurring at startup or resulting from load disconnection.
The totem-pole output stage, capable of 600 mA source and 800 mA sink current, is suitable
to drive high current MOSFETs or IGBTs. This, combined with the other features and the
possibility to operate with the proprietary fixed-off-time control, makes the device an
excellent low-cost solution for EN61000-3-2 compliant SMPS in excess of 350 W.
3/25
Pin settings
L6562AT
2
Pin settings
2.1
Pin connection
Figure 2.
2.2
INV
1
8
Vcc
COMP
2
7
GD
MULT
3
6
GND
CS
4
5
ZCD
Pin description
Table 2.
4/25
Pin connection (top view)
Pin description
Pin N°
Name
Description
1
INV
Inverting input of the error amplifier. The information on the output voltage of
the PFC pre-regulator is fed into this pin through a resistor divider. The pin
doubles as an ON/OFF control input.
2
COMP
Output of the error amplifier. A compensation network is placed between this
pin and INV to achieve stability of the voltage control loop and ensure high
power factor and low THD.
3
MULT
Main input to the multiplier. This pin is connected to the rectified mains
voltage via a resistor divider and provides the sinusoidal reference to the
current loop.
Input to the PWM comparator. The current flowing in the MOSFET is sensed
through a resistor, the resulting voltage is applied to this pin and compared
with an internal sinusoidal-shaped reference, generated by the multiplier, to
determine MOSFET’s turn-off. The pin is equipped with 200 ns leading-edge
blanking for improved noise immunity.
4
CS
5
ZCD
Boost inductor’s demagnetization sensing input for transition-mode
operation. A negative-going edge triggers MOSFET’s turn-on.
6
GND
Ground. Current return for both the signal part of the IC and the gate driver.
7
GD
Gate driver output. The totem pole output stage is able to drive power
MOSFET’s and IGBT’s with a peak current of 600 mA source and 800 mA
sink. The high-level voltage of this pin is clamped at about 12 V to avoid
excessive gate voltages in case the pin is supplied with a high Vcc.
8
Vcc
Supply voltage of both the signal part of the IC and the gate driver. The
supply voltage upper limit is extended to 22 V min. to provide more
headroom for supply voltage changes.
Maximum ratings
3
Maximum ratings
Table 3.
4
L6562AT
Absolute maximum ratings
Symbol
Pin
VCC
8
IGD
7
---
1 to 4
IZCD
5
Parameter
Value
Unit
IC supply voltage (ICC ≤ 20 mA)
Self-limited
V
Output totem pole peak current
Self-limited
A
-0.3 to 8
V
±10
mA
Analog inputs and outputs
Zero current detector max. current
Thermal data
Table 4.
Thermal data
Value
Symbol
Unit
SO8
DIP8
RthJA
Max. thermal resistance, junction-toambient
150
100
°C/W
PTOT
Power dissipation @TA = 50 °C
0.65
1
W
TJ
TSTG
5/25
Parameter
Junction temperature operating range
-40 to 150
°C
Storage temperature
-55 to 150
°C
Electrical characteristics
5
L6562AT
Electrical characteristics
-40 °C < TJ < +125 °C, VCC = 12 V, CO = 1 nF; unless otherwise specified
Table 5.
Electrical characteristics
Symbol
Parameter
Test condition
Min
Typ
Max
Unit
22.5
V
Supply voltage
VCC
VccOn
VccOff
Operating range
After turn-on
10.5
Turn-on threshold
(1)
11.7
12.5
13.3
V
Turn-off threshold
(1)
9.5
10
10.5
V
2.8
V
25
28
V
Hys
Hysteresis
VZ
Zener voltage
2.2
ICC = 20 mA
22.5
Supply current
Istart-up
Iq
ICC
Iq
Start-up current
Before turn-on, VCC = 11 V
30
60
µA
Quiescent current
After turn-on
2.5
3.9
mA
3.5
5.5
mA
1.7
2.2
mA
-1
µA
Operating supply current @ 70 kHz
Quiescent current
During OVP (either static or dynamic)
or VINV ≤ 150 mV
Multiplier input
IMULT
Input bias current
VMULT
Linear operation range
ΔV cs
-------------------ΔV MULT
K
VMULT = 0 to 4 V
0 to 3
Output max. slope
VMULT = 0 to 1 V,
VCOMP = Upper clamp
Gain (2)
V
1
1.1
V/V
VMULT = 1 V, VCOMP = 4 V,
0.32
0.38
0.47
TJ = 25 °C
2.475
2.5
2.525
V
Error amplifier
VINV
Voltage feedback input
threshold
10.5 V < VCC < 22.5 V
Line regulation
VCC = 10.5 V to 22.5 V
IINV
Input bias current
VINV = 0 to 3 V
Gv
Voltage gain
Open loop
GB
Gain-bandwidth product
ICOMP
VCOMP
(1)
V
2.44
2.545
2
60
5
mV
-1
µA
80
dB
1
MHz
Source current
VCOMP = 4 V, VINV = 2.4 V
-2
-3.5
Sink current
VCOMP = 4 V, VINV = 2.6 V
2.5
4.5
Upper clamp voltage
ISOURCE = 0.5 mA
5.1
5.7
6
V
2.1
2.25
2.4
V
Lower clamp voltage
ISINK = 0.5 mA
(1)
-5
mA
mA
VINVdis
Disable threshold
150
200
250
mV
VINVen
Restart threshold
380
450
520
mV
6/25
Electrical characteristics
Table 5.
Symbol
L6562AT
Electrical characteristics (continued)
Parameter
Test condition
Min
Typ
Max
Unit
19.5
27
30.5
µA
Output overvoltage
IOVP
Dynamic OVP triggering
current
Hys
Hysteresis
(3)
Static OVP threshold
(1)
20
2.1
2.25
µA
2.4
V
-1
µA
300
ns
Current sense comparator
ICS
Input bias current
tLEB
Leading edge blanking
td(H-L)
VCS = 0
100
Delay to output
200
175
VCS
Current sense clamp
Vcsoffset
Current sense offset
VCOMP = Upper clamp, Vmult = 1.5 V
1.0
1.08
VMULT = 0
25
VMULT = 2.5 V
5
ns
1.16
V
mV
Zero current detector
VZCDH
Upper clamp voltage
IZCD = 2.5 mA
5.0
5.7
6.5
V
VZCDL
Lower clamp voltage
IZCD = - 2.5 mA
-0.5
0
0.5
V
VZCDA
Arming voltage
(positive-going edge)
(3)
1.4
V
VZCDT
Triggering voltage
(negative-going edge)
(3)
0.7
V
IZCDb
Input bias current
VZCD = 1 to 4.5 V
2
µA
IZCDsrc
Source current capability
-1.5
mA
IZCDsnk
Sink current capability
1.5
mA
Start timer period
75
Starter
tSTART
190
300
µs
0.6
1.2
V
Gate driver
VOL
Output low voltage
Isink = 100 mA
VOH
Output high voltage
Isource = 5 mA
Isrcpk
Peak source current
-0.6
A
Isnkpk
Peak sink current
0.8
A
10.3
V
tf
Voltage fall time
30
70
ns
tr
Voltage rise time
60
130
ns
12
15
V
1.1
V
VOclamp
Output clamp voltage
Isource = 5 mA; Vcc = 20 V
UVLO saturation
Vcc = 0 to VCCon, Isink = 2 mA
1. All the parameters are in tracking
2. The multiplier output is given by:
Vcs = K ⋅ VMULT ⋅ (VCOMP − 2.5 )
3. Parameters guaranteed by design, functionality tested in production.
7/25
9.5
10
Typical electrical characteristic
6
L6562AT
Typical electrical characteristic
Figure 3.
Supply current vs supply
voltage
Figure 4.
Start-up and UVLO vs TJ
p
10.00
j
13
Vcc-ON
12
0.10
(V)
Icc (mA)
1.00
11
10
0.01
Co = 1 nF
f = 70 kHz
Tj = 25°C
0.00
0.00
Vcc-OFF
9
5.00
10.00
15.00
20.00
-50
25.00
0
Vcc (V)
Figure 5.
IC consumption vs TJ
p
50
100
150
Tj (°C)
Figure 6.
j
Vcc Zener voltage vs TJ
28
10
Operating
27
Quiescent
Disabled or during OVP
26
Icc (mA)
VccZ (V)
1
24
Vcc = 12 V
Co= 1 nF
f = 70 kHz
0.1
25
23
Before start-up
-50
0
50
Tj (°C)
8/25
22
-50
0.01
100
150
0
50
Tj (°C)
100
150
Typical electrical characteristic
Figure 7.
L6562AT
Feedback reference vs TJ
Figure 8.
OVP current vs TJ
j
35
2.6
34
Vcc = 12V
Vcc = 12V
33
32
2.55
Iovp (uA)
VREF (V)
31
2.5
30
29
28
27
26
2.45
25
24
2.4
23
-50
0
50
100
150
-50
0
Tj (°C)
Figure 9.
50
Tj (°C)
100
150
E/A output clamp levels vs TJ Figure 10. Delay-to-output vs TJ
300
6
Upper clamp
5
tD (H-L) (ns)
V COMP pin2 (V)
200
4
Vcc = 12V
3
Vcc = 12V
100
Lower clamp
2
0
1
-50
-50
0
50
Tj (°C)
9/25
100
150
0
50
Tj (°C)
100
150
Typical electrical characteristic
L6562AT
Figure 11. Multiplier characteristic
Figure 12. Vcs clamp vs TJ
p
1.3
1.2
V COMP (pin2) (V)
Upper Volt. Clamp
1.1
Vcc = 12V
5.75 V
1.0
VCOMP = Upper clamp
4V
0.9
3.5V
5V
1.2
4.5V
0.7
Vcsx (V)
Vcs (pin4) (V)
0.8
0.6
0.5
3V
0.4
1.1
0.3
0.2
0.1
2.5 V
0.0
1
-0.1
0
0.2 0.4 0.6 0.8
1
1.2 1.4 1.6 1.8 2
VMULT (pin3) (V)
2.2 2.4 2.6 2.8
0
50
100
150
Tj (°C)
Figure 13. ZCD clamp levels vs TJ
p
-50
3
Figure 14. Start-up timer vs TJ
p
j
j
200
7
Upper clamp
6
190
5
Vzcd (V)
Tstart (us)
Vcc = 12V
4
IZCD = ±2.5 mA
3
2
180
170
Vcc = 12V
1
160
Lower clamp
0
-1
-50
10/25
0
50
Tj (°C)
100
150
150
-50
0
50
Tj (°C)
100
150
Typical electrical characteristic
L6562AT
Figure 15. Gate-driver output low
saturation
Figure 16. Gate-drive output high
saturation
5.00
12.00
Tj = 25 °C
11.00
4.00
Vcc = 12V
SOURCE
10.00
Vpin7 (V)
Vpin7 (V)
3.00
2.00
9.00
8.00
Tj = 25 °C
1.00
7.00
Vcc = 12V
SINK
0.00
6.00
0
200
400
600
800
1000
0
200
400
600
I GD (mA)
I GD (m A)
Figure 17. Gate-drive clamp vs TJ
Figure 18. Output gate drive low
saturation vs TJ during UVLO
13.5
1.1
Vcc = 20V
Isink = 2 mA
1
Vcc = 11V
0.9
Vpin7 (V)
Vpin7 clamp (V)
13.25
13
Vcc = 0V
0.8
0.7
12.75
0.6
0.5
12.5
-50
11/25
0
50
Tj (°C)
100
150
-50
0
50
Tj (°C)
100
150
Application information
L6562AT
7
Application information
7.1
Overvoltage protection
Under steady-state conditions, the voltage control loop keeps the output voltage Vo of a
PFC pre-regulator close to its nominal value, set by the resistors R1 and R2 of the output
divider. Neglecting ripple components, the current through R1, IR1, equals that through R2,
IR2. Considering that the non-inverting input of the error amplifier is internally referenced at
2.5 V, also the voltage at pin INV will be 2.5 V, then:
Equation 1
V O – 2.5
I R2 = I R1 = 2.5
-------- = --------------------R1
R2
If the output voltage experiences an abrupt change ΔVo > 0 due to a load drop, the voltage
at pin INV will be kept at 2.5 V by the local feedback of the error amplifier, a network
connected between pins INV and COMP that introduces a long time constant to achieve
high PF (this is why ΔVo can be large). As a result, the current through R2 will remain equal
to 2.5/R2 but that through R1 will become:
Equation 2
V O – 2.5 + ΔV O
I' R1 = --------------------------------------R1
The difference current ΔIR1=I'R1-IR2=I'R1-IR1= ΔVo/R1 will flow through the compensation
network and enter the error amplifier output (pin COMP). This current is monitored inside
the device and if it reaches about 24 µA the output voltage of the multiplier is forced to
decrease, thus smoothly reducing the energy delivered to the output. As the current
exceeds 27 µA, the OVP is triggered (Dynamic OVP): the gate-drive is forced low to switch
off the external power transistor and the IC put in an idle state. This condition is maintained
until the current falls below approximately 7 µA, which re-enables the internal starter and
allows switching to restart. The output ΔVo that is able to trigger the Dynamic OVP function
is then:
Equation 3
ΔVO = R1 · 20 · 10 - 6
An important advantage of this technique is that the OV level can be set independently of
the regulated output voltage: the latter depends on the ratio of R1 to R2, the former on the
individual value of R1. Another advantage is the precision: the tolerance of the detection
current is 13%, i.e. 13% tolerance on ΔVo. Since ΔVo