0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6590

L6590

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    L6590 - FULLY INTEGRATED POWER SUPPLY FIPS - STMicroelectronics

  • 数据手册
  • 价格&库存
L6590 数据手册
L6590 FULLY INTEGRATED POWER SUPPLY s s s s s s s s s WIDE-RANGE MAINS OPERATION "ON-CHIP" 700V V(BR)DSS POWER MOS 65 kHz INTERNAL OSCILLATOR 2.5V ± 2% INTERNAL REFERENCE STANDBY MODE FOR HIGH EFFICIENCY AT LIGHT LOAD OVERCURRENT AND LATCHED OVERVOLTAGE PROTECTION NON DISSIPATIVE BUILT-IN START-UP CIRCUIT THERMAL SHUTDOWN WITH HYSTERESIS BROWNOUT PROTECTION (SMD PACKAGE ONLY) MINIDIP SO16W ORDERING NUMBERS: L6590N L6590D s - HOME APPLIANCES/LIGHTING LINE CARD, DC-DC CONVERTERS MAIN APPLICATIONS s WALL PLUG POWER SUPPLIES UP TO 15 W s AC-DC ADAPTERS s AUXILIARY POWER SUPPLIES FOR: - CRT AND LCD MONITOR (BLUE ANGEL) - DESKTOP PC/SERVER - FAX, TV, LASER PRINTER TYPICAL APPLICATION CIRCUIT DESCRIPTION The L6590 is a monolithic switching regulator designed in BCD OFF-LINE technology, able to operate with wide range input voltage and to deliver up to 15W output power. The internal power switch is a lateral power MOSFET with a typical RDS(on) of 13Ω and a V(BR)DSS of 700V minimum. AC line 88 to 264 Vac Pout up to 15W AC line 88 to 264 Vac Pout up to 15W DRAIN DRAIN 1 1 L6590 3 Vcc L6590 3 6, 7, 8 5 COMP Vcc 6, 7, 8 GND COMP 4 5 VFB 4 GND VFB Primary Feedback Secondary Feedback October 2000 1/23 L6590 DESCRIPTION (continued) The MOSFET is source-grounded, thus it is possible to build flyback, boost and forward converters. The device can work with secondary feedback and a 2.5V±2% internal reference, in addition to a high gain error amplifier, makes possible also the use in applications either with primary feedback or not isolated. The internal fixed oscillator frequency and the integrated non dissipative start-up generator minimize the external component count and power consumption. The device is equipped with a standby function that automatically reduces the oscillator frequency from 65 to 22 kHz under light load conditions to enhance BLOCK DIAGRAM DRAIN (1) [1] START-UP efficiency (Pin < 1W @ Pout = 0.5W with wide range mains). Internal protections like cycle-by-cycle current limiting, latched output overvoltage protection, mains undervoltage protection (SMD version only) and thermal shutdown generate a 'robust' design solution. The IC uses a special leadframe with the ground pins (6, 7 and 8 in minidip, 9 to16 in SO16W package) internally connected in order for heat to be easily removed from the silicon die. An heatsink can then be realized by simply making provision of few cm2 of copper on the PCB. Furthermore, the pin(s) close to the high-voltage one are not connected to ease compliance with safety distances on the PCB. [x] : L6590D (SO16W) THERMAL SHUTDOWN SUPPLY & UVLO VREF + - VCC (3) [4] OVP VREF SGND [5] BOK [6] VFB (5) [8] BROWNOUT + + - GND (6,7,8) PGND [9, ..., 16] OCP PWM 2.5V STANDBY - OSC 65/22 kHz + 2.5V COMP (4) [7] PIN CONNECTIONS (Top view) DRAIN DRAIN N.C. Vcc COMP GND GND GND VFB N.C. N.C. Vcc SGND BOK COMP MINIDIP L6590 VFB SO16W L6590D PGND PGND PGND PGND PGND PGND PGND PGND 2/23 L6590 PIN FUNCTIONS Pin# Name L6590 1 2 3 L6590D 1 2, 3 4 DRAIN N.C. VCC Drain connection of the internal power MOSFET. The internal high voltage start-up generator sinks current from this pin. Not internally connected. Provision for clearance on the PCB. Supply pin of the IC. An electrolytic capacitor is connected between this pin and ground. The internal start-up generator charges the capacitor until the voltage reaches the startup threshold. The PWM is stopped if the voltage at the pin exceeds a certain value. Output of the Error Amplifier. Used for control loop compensation or to directly control PWM with an optocoupler. Inverting input of the Error Amplifier. The non-inverting one is internally connected to a 2.5V± 2% reference. This pin can be grounded in some feedback schemes. Connection of both the source of the internal MOSFET and the return of the bias current of the IC. Pins connected to the metal frame to facilitate heat dissipation. Brownout Protection. If the voltage applied to this pin is lower than 2.5V the PWM is disabled. This pin is typically used for sensing the input voltage of the converter through a resistor divider. If not used, the pin can be either left floating or connected to Vcc through a 15 kΩ resistor. Current return for the bias current of the IC. Connection of the source of the internal MOSFET. Pins connected to the metal frame to facilitate heat dissipation. Description 4 5 6 to 8 - 7 8 6 COMP VFB GND BOK - 5 9 to 16 SGND PGND THERMAL DATA Symbol Rthj-amb Rthj-pins Parameter Thermal Resistance Junction to ambient (*) Thermal Resistance Junction to pins Minidip 35 to 60 15 SO16W 40 to 65 20 Unit °C/W °C/W (*) Value depending on PCB copper area and thickness. ABSOLUTE MAXIMUM RATINGS Symbol Vds Id Vcc Iclamp Drain Source Voltage Drain Current IC Supply Voltage Vcc Zener Current Error Amplifier Ouput Sink Current Voltage on Feedback Input BOK pin Sink Current Ptot Tj Tstg Power Dissipation at Tamb < 50°C (Minidip and SO16W) 3 cm2, 2 oz copper dissipating area on PCB Operating Junction Temperature Storage Temperature -40 to 150 -40 to 150 °C °C Parameter Value -0.3 to 700 0.7 18 20 3 5 1 1.5 Unit V A V mA mA V mA W 3/23 L6590 ELECTRICAL CHARACTERISTCS (Tj = -25 to 125°C, Vcc = 10V; unless otherwise specified) Symbol POWER SECTION V(BR)DSS Drain Source Voltage Idss RDS(on) Off state drain current Drain-to-Source on resistance RDS(on) vs. Tj: see fig. 20 Id < 200 µA; Tj = 25 °C Vds = 560V; Tj = 125 °C Id = 120mA; Tj = 25 °C Id = 120mA; Tj = 125 °C 13 23 700 200 16 28 V µA Ω Parameter Test Condition Min. Typ. Max. Unit ERROR AMP SECTION VFB Input Voltage Tj = 25 °C Tj = 125°C Ib Avol B SVR Isink Isource VCOMPH VCOMPL E/A Input Bias Current DC Gain Unity Gain Bandwidth Supply voltage Rejection Output Sink Current Output Source Current Vout High Vout Low f = 120 Hz VCOMP = 1V VCOMP = 3.5V; VFB = 2V Isource = -0.5mA; VFB=2V Isink = 1mA ; VFB=3V -0.5 3.8 VFB = 0 to 2.5 V open loop 60 0.7 2.45 2.4 2.5 2.5 0.3 70 1 70 1 -1 4.50 1 -2.5 2.55 2.6 5 µA dB MHz dB mA mA V V V OSCILLATOR SECTION Fosc Oscillator Frequency Tj = 25 °C 58 52 Dmin Dmax Min. Duty Cycle Max. Duty Cycle VCOMP = 1V VCOMP = 4V 67 70 65 65 72 74 0 73 % % kHz DEVICE OPERATION SECTION Iop IQ Icharge Operating Supply Current Quiescent Current VCC charge Current fsw = Fosc MOS disabled Vcc = 0V to Vccon - 0.5V; Vds = 100 to 400V; Tj = 25°C Vcc = 0V to Vccon - 0.5V; Vds = 100 to 400V VCCclamp VCC clamp Voltage Vccon Vccoff Vdsmin Start Threshold voltage Min operating voltage after Turn on Drain start voltage Iclamp = 10mA (*) (*) (*) -3 -2.5 16.5 14 6 4.5 3.5 -4.5 -4.5 17 14.5 6.5 7 6 -7 -7.5 17.5 15 7 40 mA mA mA mA V V V V 4/23 L6590 ELECTRICAL CHARACTERISTICS (continued) Symbol Parameter Test Condition Min. Typ. Max. Unit CIRCUIT PROTECTIONS Ipklim OVP LEB Pulse-by-pulse Current Limit Overvoltage Protection Masking Time di/dt = 120 mA/ µs Icc = 10 mA (*) After MOSFET turn-on (**) 550 16 625 16.5 120 700 17 mA V ns STANDBY SECTION FSB Ipksb Ipkno Oscillator Frequency Peak switch current for Standby Operation Peak switch current for Normal Operation Transition from Fosc to FSB Transition from FSB to Fosc 19 22 80 190 25 kHz mA mA BROWNOUT PROTECTION (L6590D only) Vth IHys VCL Threshold Voltage Current Hysteresis Clamp Voltage Voltage either rising or falling Vpin = 3V Ipin = 0.5 mA 2.4 -30 5.6 2.5 -50 6.4 2.6 -70 7.2 V µA V THERMAL SHUTDOWN (***) Threshold Hysteresis (*) Parameters tracking one the other (**) Parameter guaranteed by design, not tested in production (***) Parameters guaranteed by design, functionality tested in production 150 165 40 °C °C Figure 1. Start-up & UVLO Thresholds Vcc [V] Figure 2. Start-up Current Generator Icc [mA] 16 14 12 10 8 6 -50 UVLO Start-up 5.5 Vdrain = 40 V 5 4.5 4 3.5 Tj = -25 °C Tj = 25 °C Tj = 125 °C 0 50 Tj [°C] 100 150 3 0 2 4 6 Vcc [V] 8 10 12 5/23 L6590 Figure 3. Start-up Current Generator Icc [mA] Figure 6. IC Operating Current Icc [mA] 5.5 Vdrain = 60 V Tj = -25 °C 5 VFB = 2.3 V fsw = 65 kHz Tj = 125 °C Tj = 25 °C 5 Tj = 25 °C 4.5 4.5 4 4 Tj = 125 °C Tj = -25 °C 3.5 3 3.5 0 2 4 6 Vcc [V] 8 10 12 3 7 8 9 10 11 Vcc [V] 12 13 14 15 Figure 4. IC Consumption Before Start-up Icc [µA] Figure 7. IC Operating Current Icc [mA] 700 600 500 400 300 200 100 7 8 9 10 11 Vcc [V] 4.4 Tj = -25 °C 4.2 4 VFB = 2.3 V fsw = 22 kHz Tj = 125 °C Tj = 25 °C Tj = 25 °C Tj = 125 °C 3.8 3.6 3.4 3.2 Tj = -25 °C 12 13 14 15 3 7 8 9 10 11 Vcc [V] 12 13 14 15 Figure 5. IC Quiescent Current Icc [mA] Figure 8. Switching Frequency vs. Temperature fsw [kHz] 4 VFB = 2.7 V Tj = 25 °C 80 70 60 50 Normal operation 3.8 3.6 3.4 Tj = 125 °C 3.2 3 Tj = -25 °C 40 30 20 Standby 6 8 10 12 Vcc [V] 14 16 18 10 -50 0 50 Tj [°C] 100 150 6/23 L6590 Figure 9. Vcc clamp vs. Temperature VCCclamp [V] Figure 12. OCP threshold vs. Temperature Ipklim / (Ipklim @ Tj = 25°C) 18 17.8 17.6 17.4 Iclamp = 10 mA Iclamp = 20 mA 1.1 1.08 1.06 1.04 1.02 1 0 50 Tj [°C] di/dt = 120 mA/µs 17.2 17 -50 100 150 0.98 -50 0 50 Tj [°C] 100 150 Figure 10. OVP Threshold vs. Temperature Vth [V] Figure 13. Internal E/A Reference Voltage Vref [V] 16 15.8 15.6 2.6 2.55 2.5 15.4 15.2 15 -50 2.45 0 50 Tj [°C] 100 150 2.4 -50 0 50 Tj [°C] 100 150 Figure 11. OCP Threshold vs. Current Slope Ipklim / (Ipklim @ di/dt = 120 mA/µs) Figure 14. Error Amplifier Slew Rate VCOMP [V] 1.06 1.04 1.02 1 0.98 0.96 50 Tj = 25 °C 5 4 3V FB 2 1 0 100 150 dI/dt [mA/µs] VCOMP RL = 10 kΩ CL = 100 pF open loop 200 250 0 2 4 6 8 t [µs] 10 12 14 16 7/23 L6590 Figure 15. COMP pin Characteristic VCOMP [V] Figure 18. Breakdown Voltage vs. Temperature BVDSS / (BVDSS @ Tj = 25°C) 6 5 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 VFB = 0 Tj = 25 °C 1.08 1.06 1.04 1.02 1 0.98 0.96 0.94 0.92 -50 0 50 Tj [°C] Idrain = 200 µA 100 150 ICOMP [mA] Figure 16. COMP pin Dynamic Resistance vs. Temperature RCOMP [kOhm] Figure 19. Drain Leakage vs. Drain Voltage Idrain [µA] 50 10.5 10 9.5 9 8.5 8 -50 10 100 0 50 Tj [°C] Tj = 125 °C Tj = 25 °C VFB = 0 40 30 Tj = -25 °C 20 200 300 400 Vdrain [V] 500 600 700 100 150 Figure 20. Rds(ON) vs. Temperature Figure 17. Error Amplifier Gain and Phase Rds(ON) / (Rds(ON) @ Tj=25°C) 1.8 dB Phase ° 0 1.6 1.4 Idrain = 120 mA 100 50 0 Gain 90 mφ 1.2 1 180 0.8 1 10 100 1M f [Hz] 1k 10k 100k 0.6 -50 0 50 Tj [°C] 100 150 8/23 L6590 Figure 21. Rds(ON) vs. Idrain Rds(ON) / (Rds(ON) @ Idrain=120 mA) Figure 22. Coss vs. Drain Voltage Coss [pF] 1.3 Tj = 25 °C 250 Tj = 25 °C 1.2 200 150 1.1 100 1 50 0 0.9 0 100 200 300 Idrain [mA] 400 500 600 0 100 200 300 400 500 600 700 Vdrain [V] Figure 23. Standby Function Thresholds Drain Peak Current [mA] 220 200 180 160 140 120 100 80 60 -50 0 50 Tj [°C] 22 kHz → 65 kHz 65 kHz → 22 kHz 100 150 9/23 L6590 Figure 24. Test Board (1) with Primary Feedback: Electrical Schematic F1 2A/250V BD1 DF06M T1 D1 BZW06-154 D2 STTA106 R1 68 Ω Vin 88 to 264 Vac D4 BYW100-100 L1 4.7 µH Vo =12 V ± 10% Po= 1 to 10 W C1 22 µF 400 V C7, C8 330 µF 16 V C9 100 µF 16 V IC1 1 3 R2 5.6 kΩ D3 C2 22 µF 1N4148 25 V C4 100 nF C7 2.2 nF Y L6590 6, 7, 8 5 C5 R3 680 nF 1.1 kΩ 4 C6 10 nF R5 110 Ω R4 1.5 kΩ T1 specification Core E20/10/6, ferrite 3C85 or N67 or equivalent ≈0.5 mm gap for a primary inductance of 2.9 mH Lleakage
L6590 价格&库存

很抱歉,暂时无法提供与“L6590”相匹配的价格&库存,您可以联系我们找货

免费人工找货