0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6590ED013TR

L6590ED013TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    DIP8

  • 描述:

    IC SWIT OVP OCP 8MINIDIP

  • 数据手册
  • 价格&库存
L6590ED013TR 数据手册
L6590 FULLY INTEGRATED POWER SUPPLY ■ ■ ■ ■ ■ ■ ■ ■ ■ WIDE-RANGE MAINS OPERATION "ON-CHIP" 700V V(BR)DSS POWER MOS 65 kHz INTERNAL OSCILLATOR 2.5V ± 2% INTERNAL REFERENCE STANDBY MODE FOR HIGH EFFICIENCY AT LIGHT LOAD OVERCURRENT AND LATCHED OVERVOLTAGE PROTECTION NON DISSIPATIVE BUILT-IN START-UP CIRCUIT THERMAL SHUTDOWN WITH HYSTERESIS BROWNOUT PROTECTION (SMD PACKAGE ONLY) MAIN APPLICATIONS ■ WALL PLUG POWER SUPPLIES UP TO 15 W ■ AC-DC ADAPTERS ■ AUXILIARY POWER SUPPLIES FOR: - CRT AND LCD MONITOR (BLUE ANGEL) - DESKTOP PC/SERVER - FAX, TV, LASER PRINTER ) s ( ct TYPICAL APPLICATION CIRCUIT u d o r P e AC line 88 to 264 Vac t e l o s b O SO16W ORDERING NUMBERS: L6590N ■ c u d - HOME APPLIANCES/LIGHTING LINE CARD, DC-DC CONVERTERS DESCRIPTION e t le o r P The L6590 is a monolithic switching regulator designed in BCD OFF-LINE technology, able to operate with wide range input voltage and to deliver up to 15W output power. The internal power switch is a lateral power MOSFET with a typical RDS(on) of 13Ω and a V(BR)DSS of 700V minimum. o s b O - Pout up to 15W AC line 88 to 264 Vac Pout up to 15W DRAIN 1 1 L6590 L6590 Vcc Vcc 3 3 6, 7, 8 GND 4 ) s t( L6590D DRAIN 6, 7, 8 5 COMP Primary Feedback October 2000 MINIDIP VFB GND VFB 5 4 COMP Secondary Feedback 1/23 L6590 efficiency (Pin < 1W @ Pout = 0.5W with wide range mains). DESCRIPTION (continued) The MOSFET is source-grounded, thus it is possible to build flyback, boost and forward converters. Internal protections like cycle-by-cycle current limiting, latched output overvoltage protection, mains undervoltage protection (SMD version only) and thermal shutdown generate a 'robust' design solution. The device can work with secondary feedback and a 2.5V±2% internal reference, in addition to a high gain error amplifier, makes possible also the use in applications either with primary feedback or not isolated. The IC uses a special leadframe with the ground pins (6, 7 and 8 in minidip, 9 to16 in SO16W package) internally connected in order for heat to be easily removed from the silicon die. An heatsink can then be realized by simply making provision of few cm2 of copper on the PCB. Furthermore, the pin(s) close to the high-voltage one are not connected to ease compliance with safety distances on the PCB. The internal fixed oscillator frequency and the integrated non dissipative start-up generator minimize the external component count and power consumption. The device is equipped with a standby function that automatically reduces the oscillator frequency from 65 to 22 kHz under light load conditions to enhance BLOCK DIAGRAM DRAIN (1) [1] [x] : L6590D (SO16W) START-UP VREF SUPPLY & UVLO THERMAL SHUTDOWN + - OVP VREF e t le BROWNOUT + + - GND (6,7,8) PGND [9, ..., 16] OCP c u d VCC (3) [4] o s b O - - 2.5V o r P SGND [5] BOK [6] PWM STANDBY OSC 65/22 kHz ) s ( ct VFB (5) [8] + 2.5V COMP (4) [7] u d o PIN CONNECTIONS (Top view) r P e t e l o s b O DRAIN GND DRAIN PGND N.C. PGND N.C. PGND N.C. GND Vcc PGND Vcc GND SGND PGND COMP VFB BOK PGND COMP PGND VFB PGND MINIDIP L6590 SO16W L6590D 2/23 ) s t( L6590 PIN FUNCTIONS Pin# Name Description L6590 L6590D 1 1 DRAIN 2 2, 3 N.C. Not internally connected. Provision for clearance on the PCB. 3 4 VCC Supply pin of the IC. An electrolytic capacitor is connected between this pin and ground. The internal start-up generator charges the capacitor until the voltage reaches the startup threshold. The PWM is stopped if the voltage at the pin exceeds a certain value. 4 7 COMP Output of the Error Amplifier. Used for control loop compensation or to directly control PWM with an optocoupler. 5 8 VFB Inverting input of the Error Amplifier. The non-inverting one is internally connected to a 2.5V± 2% reference. This pin can be grounded in some feedback schemes. 6 to 8 - GND Connection of both the source of the internal MOSFET and the return of the bias current of the IC. Pins connected to the metal frame to facilitate heat dissipation. - 6 BOK Brownout Protection. If the voltage applied to this pin is lower than 2.5V the PWM is disabled. This pin is typically used for sensing the input voltage of the converter through a resistor divider. If not used, the pin can be either left floating or connected to Vcc through a 15 kΩ resistor. Drain connection of the internal power MOSFET. The internal high voltage start-up generator sinks current from this pin. c u d ) s t( - 5 SGND Current return for the bias current of the IC. - 9 to 16 PGND Connection of the source of the internal MOSFET. Pins connected to the metal frame to facilitate heat dissipation. THERMAL DATA Symbol Parameter o s b O - Rthj-amb Thermal Resistance Junction to ambient (*) Rthj-pins Thermal Resistance Junction to pins ) s ( ct (*) Value depending on PCB copper area and thickness. u d o ABSOLUTE MAXIMUM RATINGS Symbol Vds bs Iclamp O Ptot SO16W Unit 35 to 60 40 to 65 °C/W 15 20 °C/W Unit -0.3 to 700 V Drain Current 0.7 A IC Supply Voltage 18 V Vcc Zener Current 20 mA Error Amplifier Ouput Sink Current 3 mA Voltage on Feedback Input 5 V BOK pin Sink Current 1 mA 1.5 W Operating Junction Temperature -40 to 150 °C Storage Temperature -40 to 150 °C t e l o Vcc Minidip Value r P e Parameter Drain Source Voltage Id e t le o r P Power Dissipation at Tamb < 50°C (Minidip and SO16W) 3 cm2, 2 oz copper dissipating area on PCB Tj Tstg 3/23 L6590 ELECTRICAL CHARACTERISTCS (Tj = -25 to 125°C, Vcc = 10V; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit POWER SECTION V(BR)DSS Drain Source Voltage Idss RDS(on) Id < 200 µA; Tj = 25 °C Off state drain current Vds = 560V; Tj = 125 °C Drain-to-Source on resistance RDS(on) vs. Tj: see fig. 20 Id = 120mA; Tj = 25 °C Id = 120mA; Tj = 125 °C 700 V 200 µA 13 16 Ω 23 28 ERROR AMP SECTION Input Voltage VFB Ib Avol B Tj = 25 °C 2.45 2.5 2.55 Tj = 125°C 2.4 2.5 2.6 0.3 5 E/A Input Bias Current VFB = 0 to 2.5 V DC Gain open loop Unity Gain Bandwidth SVR Supply voltage Rejection f = 120 Hz Isink Output Sink Current VCOMP = 1V Output Source Current VCOMP = 3.5V; VFB = 2V VCOMPH Vout High Isource = -0.5mA; VFB=2V VCOMPL Vout Low Isink = 1mA ; VFB=3V Isource Oscillator Frequency Dmin Min. Duty Cycle Dmax Max. Duty Cycle ) s ( ct c u d ro ) s t( 1 P e let -0.5 3.8 -1 b O - -2.5 4.50 MHz dB mA mA V 1 V kHz 58 65 72 52 65 74 % 70 73 % fsw = Fosc 4.5 7 mA Quiescent Current MOS disabled 3.5 6 mA VCC charge Current Vcc = 0V to Vccon - 0.5V; Vds = 100 to 400V; Tj = 25°C -3 -4.5 -7 mA Vcc = 0V to Vccon - 0.5V; Vds = 100 to 400V -2.5 -4.5 -7.5 mA Iclamp = 10mA (*) 16.5 17 17.5 V o r P e VCOMP = 1V du t e l o Icharge 1 dB 70 Tj = 25 °C Operating Supply Current IQ 0.7 µA 0 DEVICE OPERATION SECTION Iop 70 so OSCILLATOR SECTION Fosc 60 V s b O VCCclamp VCC clamp Voltage VCOMP = 4V 67 Vccon Start Threshold voltage (*) 14 14.5 15 V Vccoff Min operating voltage after Turn on (*) 6 6.5 7 V Vdsmin Drain start voltage 40 V 4/23 L6590 ELECTRICAL CHARACTERISTICS (continued) Symbol Parameter Test Condition Min. Typ. Max. Unit CIRCUIT PROTECTIONS Ipklim Pulse-by-pulse Current Limit di/dt = 120 mA/ µs 550 625 700 mA OVP Overvoltage Protection Icc = 10 mA (*) 16 16.5 17 V LEB Masking Time After MOSFET turn-on (**) 120 ns STANDBY SECTION FSB Oscillator Frequency Ipksb Peak switch current for Standby Operation Transition from Fosc to FSB 80 mA Ipkno Peak switch current for Normal Operation Transition from FSB to Fosc 190 mA 19 22 25 BROWNOUT PROTECTION (L6590D only) kHz ) s t( Vth Threshold Voltage Voltage either rising or falling 2.4 2.5 2.6 V IHys Current Hysteresis Vpin = 3V -30 -50 -70 µA VCL Clamp Voltage Ipin = 0.5 mA 5.6 7.2 V c u d ro 6.4 P e let THERMAL SHUTDOWN (***) Threshold 150 °C 40 °C so Hysteresis (*) Parameters tracking one the other (**) Parameter guaranteed by design, not tested in production (***) Parameters guaranteed by design, functionality tested in production ) s ( ct 165 b O - Figure 1. Start-up & UVLO Thresholds Figure 2. Start-up Current Generator Vcc [V] Icc [mA] u d o r P e 16 14 12 t e l o 5.5 Vdrain = 40 V 5 Start-up Tj = -25 °C 4.5 s b O 10 Tj = 25 °C 4 UVLO 8 3.5 Tj = 125 °C 6 -50 0 50 Tj [°C] 100 150 3 0 2 4 6 8 10 12 Vcc [V] 5/23 L6590 Figure 3. Start-up Current Generator Figure 6. IC Operating Current Icc [mA] Icc [mA] 5.5 5 Vdrain = 60 V VFB = 2.3 V fsw = 65 kHz Tj = -25 °C 5 Tj = 125 °C 4.5 Tj = 25 °C Tj = 25 °C 4.5 4 Tj = -25 °C 4 Tj = 125 °C 3.5 3.5 3 0 2 4 6 8 10 3 12 7 8 9 10 11 12 Figure 4. IC Consumption Before Start-up Figure 7. IC Operating Current Icc [µA] Icc [mA] 700 4.4 Tj = -25 °C 600 4 3.6 Tj = 125 °C o s b O 3.4 200 14 15 o r P ) s t( Tj = 125 °C Tj = 25 °C Tj = -25 °C 3.2 7 8 9 10 11 12 Figure 5. IC Quiescent Current 4 VFB = 2.7 V 14 15 t c u d o r P e Icc [mA] (s) 13 Vcc [V] 8 9 10 11 12 13 14 15 Vcc [V] 80 Normal operation 70 60 50 3.4 Tj = 125 °C 40 Tj = -25 °C 3.2 7 fsw [kHz] Tj = 25 °C s b O 3.6 3 Figure 8. Switching Frequency vs. Temperature t e l o 3.8 3 e t le 3.8 Tj = 25 °C 400 100 c u d VFB = 2.3 V fsw = 22 kHz 4.2 500 300 13 Vcc [V] Vcc [V] Standby 30 20 6 8 10 12 Vcc [V] 14 16 18 10 -50 0 50 Tj [°C] 6/23 100 150 L6590 Figure 9. Vcc clamp vs. Temperature Figure 12. OCP threshold vs. Temperature VCCclamp [V] Ipklim / (Ipklim @ Tj = 25°C) 1.1 18 di/dt = 120 mA/µs 1.08 17.8 1.06 17.6 Iclamp = 20 mA 1.04 17.4 1.02 Iclamp = 10 mA 17.2 17 -50 1 0 50 100 150 0.98 -50 0 50 100 150 Tj [°C] Tj [°C] ) s t( Figure 10. OVP Threshold vs. Temperature Figure 13. Internal E/A Reference Voltage Vth [V] Vref [V] 16 2.6 15.8 c u d 2.55 e t le 15.6 2.5 15.4 o s b O - o r P 2.45 15.2 15 -50 0 50 (s) 100 t c u Tj [°C] 2.4 -50 150 0 50 100 Figure 11. OCP Threshold vs. Current Slope Figure 14. Error Amplifier Slew Rate Ipklim / (Ipklim @ di/dt = 120 mA/µs) VCOMP [V] 1.06 5 d o r P e t e l o 1.04 Tj = 25 °C 4 bs 1.02 O 2 0.98 1 0 100 RL = 10 kΩ CL = 100 pF open loop VCOMP 3 V FB 1 0.96 50 150 Tj [°C] 150 dI/dt [mA/µs] 200 250 0 2 4 6 8 10 12 14 16 t [µs] 7/23 L6590 Figure 15. COMP pin Characteristic Figure 18. Breakdown Voltage vs. Temperature VCOMP [V] BVDSS / (BVDSS @ Tj = 25°C) 6 1.08 VFB = 0 Tj = 25 °C 5 1.06 Idrain = 200 µA 1.04 4 1.02 3 1 0.98 2 0.96 1 0 0.94 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.92 -50 0 50 ICOMP [mA] 100 150 Tj [°C] ) s t( Figure 16. COMP pin Dynamic Resistance vs. Temperature Figure 19. Drain Leakage vs. Drain Voltage RCOMP [kOhm] 50 Idrain [µA] c u d Tj = 125 °C 10.5 40 VFB = 0 10 9.5 e t le 30 9 o s b O - o r P Tj = 25 °C Tj = -25 °C 20 8.5 8 -50 0 (s) t c u 50 100 Tj [°C] d o r P e 10 100 200 300 400 500 600 700 Vdrain [V] 150 Figure 20. Rds(ON) vs. Temperature Figure 17. Error Amplifier Gain and Phase dB 1.8 ° 0 t e l o Phase 1.6 Idrain = 120 mA 1.4 s b O 100 Rds(ON) / (Rds(ON) @ Tj=25°C) Gain 90 1.2 50 mφ 0 1 180 0.8 1 10 100 1k 1M f [Hz] 8/23 10k 100k 0.6 -50 0 50 Tj [°C] 100 150 L6590 Figure 21. Rds(ON) vs. Idrain Figure 22. Coss vs. Drain Voltage Rds(ON) / (Rds(ON) @ Idrain=120 mA) Coss [pF] 1.3 250 Tj = 25 °C Tj = 25 °C 200 1.2 150 1.1 100 1 0.9 50 0 100 200 300 400 500 600 0 0 100 200 Idrain [mA] 300 400 500 Figure 23. Standby Function Thresholds Drain Peak Current [mA] c u d 220 22 kHz → 65 kHz 200 180 160 e t le 140 120 65 kHz → 22 kHz 100 80 60 -50 0 600 700 Vdrain [V] 100 t c u (s) 50 Tj [°C] ) s t( o r P o s b O - 150 d o r P e t e l o s b O 9/23 L6590 Figure 24. Test Board (1) with Primary Feedback: Electrical Schematic F1 2A/250V BD1 DF06M Vin 88 to 264 Vac T1 C1 22 µF 400 V D4 BYW100-100 L1 4.7 µH Vo =12 V ± 10% Po= 1 to 10 W D1 BZW06-154 C9 100 µF 16 V C7, C8 330 µF 16 V D2 STTA106 R1 68 Ω IC1 1 3 C4 100 nF C5 R3 680 nF 1.1 kΩ L6590 6, 7, 8 D3 C2 22 µF 1N4148 25 V R2 5.6 kΩ C7 2.2 nF Y 4 R5 110 Ω C6 10 nF 5 c u d R4 1.5 kΩ e t le Figure 25. Test Board (1) Evaluation Data Load & Line regulation Output Voltage [V] (s) 13.5 1W 12.5 2.5 W Pout = 10 W t e l o 11.5 50 s b O 10/23 o r P e 5W 12 o s b O - 100 150 du 200 Input Voltage [Vac] o r P Efficiency Efficiency [%] 86 ct 13 ) s t( T1 specification Core E20/10/6, ferrite 3C85 or N67 or equivalent ≈0.5 mm gap for a primary inductance of 2.9 mH Lleakage
L6590ED013TR 价格&库存

很抱歉,暂时无法提供与“L6590ED013TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货