L6590
FULLY INTEGRATED POWER SUPPLY
■
■
■
■
■
■
■
■
■
WIDE-RANGE MAINS OPERATION
"ON-CHIP" 700V V(BR)DSS POWER MOS
65 kHz INTERNAL OSCILLATOR
2.5V ± 2% INTERNAL REFERENCE
STANDBY MODE FOR HIGH EFFICIENCY AT
LIGHT LOAD
OVERCURRENT AND LATCHED
OVERVOLTAGE PROTECTION
NON DISSIPATIVE BUILT-IN START-UP CIRCUIT
THERMAL SHUTDOWN WITH HYSTERESIS
BROWNOUT PROTECTION (SMD PACKAGE
ONLY)
MAIN APPLICATIONS
■ WALL PLUG POWER SUPPLIES UP TO 15 W
■ AC-DC ADAPTERS
■ AUXILIARY POWER SUPPLIES FOR:
- CRT AND LCD MONITOR (BLUE ANGEL)
- DESKTOP PC/SERVER
- FAX, TV, LASER PRINTER
)
s
(
ct
TYPICAL APPLICATION CIRCUIT
u
d
o
r
P
e
AC line
88 to 264 Vac
t
e
l
o
s
b
O
SO16W
ORDERING NUMBERS:
L6590N
■
c
u
d
- HOME APPLIANCES/LIGHTING
LINE CARD, DC-DC CONVERTERS
DESCRIPTION
e
t
le
o
r
P
The L6590 is a monolithic switching regulator designed in BCD OFF-LINE technology, able to operate
with wide range input voltage and to deliver up to
15W output power. The internal power switch is a lateral power MOSFET with a typical RDS(on) of 13Ω
and a V(BR)DSS of 700V minimum.
o
s
b
O
-
Pout
up to 15W
AC line
88 to 264 Vac
Pout
up to 15W
DRAIN
1
1
L6590
L6590
Vcc
Vcc
3
3
6, 7, 8
GND
4
)
s
t(
L6590D
DRAIN
6, 7, 8
5
COMP
Primary Feedback
October 2000
MINIDIP
VFB
GND
VFB
5
4
COMP
Secondary Feedback
1/23
L6590
efficiency (Pin < 1W @ Pout = 0.5W with wide range
mains).
DESCRIPTION (continued)
The MOSFET is source-grounded, thus it is possible
to build flyback, boost and forward converters.
Internal protections like cycle-by-cycle current limiting,
latched output overvoltage protection, mains undervoltage protection (SMD version only) and thermal shutdown generate a 'robust' design solution.
The device can work with secondary feedback and a
2.5V±2% internal reference, in addition to a high gain
error amplifier, makes possible also the use in applications either with primary feedback or not isolated.
The IC uses a special leadframe with the ground pins
(6, 7 and 8 in minidip, 9 to16 in SO16W package) internally connected in order for heat to be easily removed from the silicon die. An heatsink can then be
realized by simply making provision of few cm2 of
copper on the PCB. Furthermore, the pin(s) close to
the high-voltage one are not connected to ease compliance with safety distances on the PCB.
The internal fixed oscillator frequency and the integrated
non dissipative start-up generator minimize the external
component count and power consumption.
The device is equipped with a standby function that
automatically reduces the oscillator frequency from
65 to 22 kHz under light load conditions to enhance
BLOCK DIAGRAM
DRAIN
(1) [1]
[x] : L6590D (SO16W)
START-UP
VREF
SUPPLY
& UVLO
THERMAL
SHUTDOWN
+
-
OVP
VREF
e
t
le
BROWNOUT
+
+
-
GND
(6,7,8)
PGND
[9, ..., 16]
OCP
c
u
d
VCC
(3) [4]
o
s
b
O
-
-
2.5V
o
r
P
SGND
[5]
BOK
[6]
PWM
STANDBY
OSC
65/22 kHz
)
s
(
ct
VFB
(5) [8]
+
2.5V
COMP
(4) [7]
u
d
o
PIN CONNECTIONS (Top view)
r
P
e
t
e
l
o
s
b
O
DRAIN
GND
DRAIN
PGND
N.C.
PGND
N.C.
PGND
N.C.
GND
Vcc
PGND
Vcc
GND
SGND
PGND
COMP
VFB
BOK
PGND
COMP
PGND
VFB
PGND
MINIDIP
L6590
SO16W
L6590D
2/23
)
s
t(
L6590
PIN FUNCTIONS
Pin#
Name
Description
L6590
L6590D
1
1
DRAIN
2
2, 3
N.C.
Not internally connected. Provision for clearance on the PCB.
3
4
VCC
Supply pin of the IC. An electrolytic capacitor is connected between this pin and ground.
The internal start-up generator charges the capacitor until the voltage reaches the startup threshold. The PWM is stopped if the voltage at the pin exceeds a certain value.
4
7
COMP
Output of the Error Amplifier. Used for control loop compensation or to directly control
PWM with an optocoupler.
5
8
VFB
Inverting input of the Error Amplifier. The non-inverting one is internally connected to a
2.5V± 2% reference. This pin can be grounded in some feedback schemes.
6 to 8
-
GND
Connection of both the source of the internal MOSFET and the return of the bias current
of the IC. Pins connected to the metal frame to facilitate heat dissipation.
-
6
BOK
Brownout Protection. If the voltage applied to this pin is lower than 2.5V the PWM is
disabled. This pin is typically used for sensing the input voltage of the converter through
a resistor divider. If not used, the pin can be either left floating or connected to Vcc
through a 15 kΩ resistor.
Drain connection of the internal power MOSFET. The internal high voltage start-up
generator sinks current from this pin.
c
u
d
)
s
t(
-
5
SGND
Current return for the bias current of the IC.
-
9 to 16
PGND
Connection of the source of the internal MOSFET. Pins connected to the metal frame to
facilitate heat dissipation.
THERMAL DATA
Symbol
Parameter
o
s
b
O
-
Rthj-amb
Thermal Resistance Junction to ambient (*)
Rthj-pins
Thermal Resistance Junction to pins
)
s
(
ct
(*) Value depending on PCB copper area and thickness.
u
d
o
ABSOLUTE MAXIMUM RATINGS
Symbol
Vds
bs
Iclamp
O
Ptot
SO16W
Unit
35 to 60
40 to 65
°C/W
15
20
°C/W
Unit
-0.3 to 700
V
Drain Current
0.7
A
IC Supply Voltage
18
V
Vcc Zener Current
20
mA
Error Amplifier Ouput Sink Current
3
mA
Voltage on Feedback Input
5
V
BOK pin Sink Current
1
mA
1.5
W
Operating Junction Temperature
-40 to 150
°C
Storage Temperature
-40 to 150
°C
t
e
l
o
Vcc
Minidip
Value
r
P
e
Parameter
Drain Source Voltage
Id
e
t
le
o
r
P
Power Dissipation at Tamb < 50°C (Minidip and SO16W)
3 cm2, 2 oz copper dissipating area on PCB
Tj
Tstg
3/23
L6590
ELECTRICAL CHARACTERISTCS (Tj = -25 to 125°C, Vcc = 10V; unless otherwise specified)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
POWER SECTION
V(BR)DSS Drain Source Voltage
Idss
RDS(on)
Id < 200 µA; Tj = 25 °C
Off state drain current
Vds = 560V; Tj = 125 °C
Drain-to-Source on resistance
RDS(on) vs. Tj: see fig. 20
Id = 120mA; Tj = 25 °C
Id = 120mA; Tj = 125 °C
700
V
200
µA
13
16
Ω
23
28
ERROR AMP SECTION
Input Voltage
VFB
Ib
Avol
B
Tj = 25 °C
2.45
2.5
2.55
Tj = 125°C
2.4
2.5
2.6
0.3
5
E/A Input Bias Current
VFB = 0 to 2.5 V
DC Gain
open loop
Unity Gain Bandwidth
SVR
Supply voltage Rejection
f = 120 Hz
Isink
Output Sink Current
VCOMP = 1V
Output Source Current
VCOMP = 3.5V; VFB = 2V
VCOMPH
Vout High
Isource = -0.5mA; VFB=2V
VCOMPL
Vout Low
Isink = 1mA ; VFB=3V
Isource
Oscillator Frequency
Dmin
Min. Duty Cycle
Dmax
Max. Duty Cycle
)
s
(
ct
c
u
d
ro
)
s
t(
1
P
e
let
-0.5
3.8
-1
b
O
-
-2.5
4.50
MHz
dB
mA
mA
V
1
V
kHz
58
65
72
52
65
74
%
70
73
%
fsw = Fosc
4.5
7
mA
Quiescent Current
MOS disabled
3.5
6
mA
VCC charge Current
Vcc = 0V to Vccon - 0.5V;
Vds = 100 to 400V; Tj = 25°C
-3
-4.5
-7
mA
Vcc = 0V to Vccon - 0.5V;
Vds = 100 to 400V
-2.5
-4.5
-7.5
mA
Iclamp = 10mA (*)
16.5
17
17.5
V
o
r
P
e
VCOMP = 1V
du
t
e
l
o
Icharge
1
dB
70
Tj = 25 °C
Operating Supply Current
IQ
0.7
µA
0
DEVICE OPERATION SECTION
Iop
70
so
OSCILLATOR SECTION
Fosc
60
V
s
b
O
VCCclamp VCC clamp Voltage
VCOMP = 4V
67
Vccon
Start Threshold
voltage
(*)
14
14.5
15
V
Vccoff
Min operating voltage after Turn
on
(*)
6
6.5
7
V
Vdsmin
Drain start voltage
40
V
4/23
L6590
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
CIRCUIT PROTECTIONS
Ipklim
Pulse-by-pulse Current Limit
di/dt = 120 mA/ µs
550
625
700
mA
OVP
Overvoltage Protection
Icc = 10 mA (*)
16
16.5
17
V
LEB
Masking Time
After MOSFET turn-on (**)
120
ns
STANDBY SECTION
FSB
Oscillator Frequency
Ipksb
Peak switch current for Standby
Operation
Transition from Fosc to FSB
80
mA
Ipkno
Peak switch current for Normal
Operation
Transition from FSB to Fosc
190
mA
19
22
25
BROWNOUT PROTECTION (L6590D only)
kHz
)
s
t(
Vth
Threshold Voltage
Voltage either rising or falling
2.4
2.5
2.6
V
IHys
Current Hysteresis
Vpin = 3V
-30
-50
-70
µA
VCL
Clamp Voltage
Ipin = 0.5 mA
5.6
7.2
V
c
u
d
ro
6.4
P
e
let
THERMAL SHUTDOWN (***)
Threshold
150
°C
40
°C
so
Hysteresis
(*) Parameters tracking one the other
(**) Parameter guaranteed by design, not tested in production
(***) Parameters guaranteed by design, functionality tested in production
)
s
(
ct
165
b
O
-
Figure 1. Start-up & UVLO Thresholds
Figure 2. Start-up Current Generator
Vcc [V]
Icc [mA]
u
d
o
r
P
e
16
14
12
t
e
l
o
5.5
Vdrain = 40 V
5
Start-up
Tj = -25 °C
4.5
s
b
O
10
Tj = 25 °C
4
UVLO
8
3.5
Tj = 125 °C
6
-50
0
50
Tj [°C]
100
150
3
0
2
4
6
8
10
12
Vcc [V]
5/23
L6590
Figure 3. Start-up Current Generator
Figure 6. IC Operating Current
Icc [mA]
Icc [mA]
5.5
5
Vdrain = 60 V
VFB = 2.3 V
fsw = 65 kHz
Tj = -25 °C
5
Tj = 125 °C
4.5
Tj = 25 °C
Tj = 25 °C
4.5
4
Tj = -25 °C
4
Tj = 125 °C
3.5
3.5
3
0
2
4
6
8
10
3
12
7
8
9
10
11
12
Figure 4. IC Consumption Before Start-up
Figure 7. IC Operating Current
Icc [µA]
Icc [mA]
700
4.4
Tj = -25 °C
600
4
3.6
Tj = 125 °C
o
s
b
O
3.4
200
14
15
o
r
P
)
s
t(
Tj = 125 °C
Tj = 25 °C
Tj = -25 °C
3.2
7
8
9
10
11
12
Figure 5. IC Quiescent Current
4
VFB = 2.7 V
14
15
t
c
u
d
o
r
P
e
Icc [mA]
(s)
13
Vcc [V]
8
9
10
11
12
13
14
15
Vcc [V]
80
Normal operation
70
60
50
3.4 Tj = 125 °C
40
Tj = -25 °C
3.2
7
fsw [kHz]
Tj = 25 °C
s
b
O
3.6
3
Figure 8. Switching Frequency vs.
Temperature
t
e
l
o
3.8
3
e
t
le
3.8
Tj = 25 °C
400
100
c
u
d
VFB = 2.3 V
fsw = 22 kHz
4.2
500
300
13
Vcc [V]
Vcc [V]
Standby
30
20
6
8
10
12
Vcc [V]
14
16
18
10
-50
0
50
Tj [°C]
6/23
100
150
L6590
Figure 9. Vcc clamp vs. Temperature
Figure 12. OCP threshold vs. Temperature
VCCclamp [V]
Ipklim / (Ipklim @ Tj = 25°C)
1.1
18
di/dt = 120 mA/µs
1.08
17.8
1.06
17.6
Iclamp = 20 mA
1.04
17.4
1.02
Iclamp = 10 mA
17.2
17
-50
1
0
50
100
150
0.98
-50
0
50
100
150
Tj [°C]
Tj [°C]
)
s
t(
Figure 10. OVP Threshold vs. Temperature
Figure 13. Internal E/A Reference Voltage
Vth [V]
Vref [V]
16
2.6
15.8
c
u
d
2.55
e
t
le
15.6
2.5
15.4
o
s
b
O
-
o
r
P
2.45
15.2
15
-50
0
50
(s)
100
t
c
u
Tj [°C]
2.4
-50
150
0
50
100
Figure 11. OCP Threshold vs. Current Slope
Figure 14. Error Amplifier Slew Rate
Ipklim / (Ipklim @ di/dt = 120 mA/µs)
VCOMP [V]
1.06
5
d
o
r
P
e
t
e
l
o
1.04
Tj = 25 °C
4
bs
1.02
O
2
0.98
1
0
100
RL = 10 kΩ
CL = 100 pF
open loop
VCOMP
3 V
FB
1
0.96
50
150
Tj [°C]
150
dI/dt [mA/µs]
200
250
0
2
4
6
8
10
12
14
16
t [µs]
7/23
L6590
Figure 15. COMP pin Characteristic
Figure 18. Breakdown Voltage vs. Temperature
VCOMP [V]
BVDSS / (BVDSS @ Tj = 25°C)
6
1.08
VFB = 0
Tj = 25 °C
5
1.06
Idrain = 200 µA
1.04
4
1.02
3
1
0.98
2
0.96
1
0
0.94
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0.92
-50
0
50
ICOMP [mA]
100
150
Tj [°C]
)
s
t(
Figure 16. COMP pin Dynamic Resistance vs.
Temperature
Figure 19. Drain Leakage vs. Drain Voltage
RCOMP [kOhm]
50
Idrain [µA]
c
u
d
Tj = 125 °C
10.5
40
VFB = 0
10
9.5
e
t
le
30
9
o
s
b
O
-
o
r
P
Tj = 25 °C
Tj = -25 °C
20
8.5
8
-50
0
(s)
t
c
u
50
100
Tj [°C]
d
o
r
P
e
10
100
200
300
400
500
600
700
Vdrain [V]
150
Figure 20. Rds(ON) vs. Temperature
Figure 17. Error Amplifier Gain and Phase
dB
1.8
°
0
t
e
l
o
Phase
1.6
Idrain = 120 mA
1.4
s
b
O
100
Rds(ON) / (Rds(ON) @ Tj=25°C)
Gain
90
1.2
50
mφ
0
1
180
0.8
1
10
100
1k
1M
f [Hz]
8/23
10k
100k
0.6
-50
0
50
Tj [°C]
100
150
L6590
Figure 21. Rds(ON) vs. Idrain
Figure 22. Coss vs. Drain Voltage
Rds(ON) / (Rds(ON) @ Idrain=120 mA)
Coss [pF]
1.3
250
Tj = 25 °C
Tj = 25 °C
200
1.2
150
1.1
100
1
0.9
50
0
100
200
300
400
500
600
0
0
100
200
Idrain [mA]
300
400
500
Figure 23. Standby Function Thresholds
Drain Peak Current [mA]
c
u
d
220
22 kHz → 65 kHz
200
180
160
e
t
le
140
120
65 kHz → 22 kHz
100
80
60
-50
0
600
700
Vdrain [V]
100
t
c
u
(s)
50
Tj [°C]
)
s
t(
o
r
P
o
s
b
O
-
150
d
o
r
P
e
t
e
l
o
s
b
O
9/23
L6590
Figure 24. Test Board (1) with Primary Feedback: Electrical Schematic
F1
2A/250V
BD1
DF06M
Vin
88 to 264 Vac
T1
C1
22 µF
400 V
D4 BYW100-100
L1
4.7 µH
Vo =12 V ± 10%
Po= 1 to 10 W
D1
BZW06-154
C9
100 µF
16 V
C7, C8
330 µF
16 V
D2
STTA106
R1 68 Ω
IC1
1
3
C4
100 nF
C5
R3
680 nF 1.1 kΩ
L6590
6, 7, 8
D3
C2
22 µF 1N4148
25 V
R2
5.6 kΩ
C7
2.2 nF
Y
4
R5
110 Ω
C6
10 nF
5
c
u
d
R4
1.5 kΩ
e
t
le
Figure 25. Test Board (1) Evaluation Data
Load & Line regulation
Output Voltage [V]
(s)
13.5
1W
12.5
2.5 W
Pout =
10 W
t
e
l
o
11.5
50
s
b
O
10/23
o
r
P
e
5W
12
o
s
b
O
-
100
150
du
200
Input Voltage [Vac]
o
r
P
Efficiency
Efficiency [%]
86
ct
13
)
s
t(
T1 specification
Core E20/10/6, ferrite 3C85 or N67 or equivalent
≈0.5 mm gap for a primary inductance of 2.9 mH
Lleakage
很抱歉,暂时无法提供与“L6590ED013TR”相匹配的价格&库存,您可以联系我们找货
免费人工找货