L6981
Datasheet
38 V, 1.5 A synchronous step-down converter with low quiescent current
Features
SO 8L
•
•
3.5 V to 38 V operating input voltage
Output voltage from 0.85 V to VIN
•
•
•
1.5 A DC output current
Internal compensation network
Two different versions: LCM for high efficiency at light-loads and LNM for noise
sensitive applications
2 μA shutdown current
Internal soft-start
Enable
Overvoltage protection
Output voltage sequencing
Thermal protection
Synchronization to external clock for LNM devices
SO8 package
•
•
•
•
•
•
•
•
Applications
Maturity status link
L6981
•
•
•
•
•
Designed for 24 V buses industrial power systems
24 V battery powered equipment
Decentralized intelligent nodes
Sensors and always-on applications
Low noise applications
Description
The L6981 is an easy to use synchronous monolithic step-down regulator capable
of delivering up to 1.5 A DC to the load. The wide input voltage range makes the
device suitable for a broad range of applications. The L6981 is based on a peak
current mode architecture and is packaged in an SO8 with internal compensation,
thus minimizing design complexity and size.
The L6981 is available both in low consumption mode (LCM) and low noise mode
(LNM) versions. LCM maximizes the efficiency at light-load with controlled output
voltage ripple so the device is suitable for battery-powered applications. LNM makes
the switching frequency constant and minimizes the output voltage ripple for lightload operations, meeting the specification for low noise sensitive applications.
The EN pin provides enable/disable functionality. The typical shutdown current is
2 µA when disabled. As soon as the EN pin is pulled up the device is enabled
and the internal 1.3 ms soft-start takes place. Pulse-by-pulse current sensing on
both power elements implements an effective constant current protection and thermal
shutdown prevents thermal run-away.
DS13554 - Rev 1 - January 2021
For further information contact your local STMicroelectronics sales office.
www.st.com
L6981
Diagram
1
Diagram
Figure 1. Block diagram
(*) Synchronization is allowed for LNM versions only.
DS13554 - Rev 1
page 2/49
L6981
Pin configuration
2
Pin configuration
Figure 2. Pin connection (top view)
SW
1
8
PGND
BOOT
2
7
VIN
VCC
3
6
AGND
FB/VOUT
4
5
EN/CLKIN(*)
(*) Synchronization is allowed for LNM versions only.
Table 1. Pin description
DS13554 - Rev 1
Pin #
Symbol
1
SW
2
BOOT
3
VCC
4
FB/VOUT
5
EN/CLKIN
6
AGND
7
VIN
8
PGND
Function
Switching node
Connect an external capacitor (100 nF typ.) between BOOT and SW pins. The
gate charge required to drive the internal NMOS is refreshed during the low side
switch conduction time.
This pin supplies the embedded analog circuitry. Connect a ceramic capacitor
(≥ 1 µF) to filter internal voltage reference.
FB is output voltage sensing with eternal voltage divider
Enable pin with internal voltage divider. Pull down/up to disable/enable the
device.
In LNM versions, this pin is also used to provide an external clock signal, which
synchronizes the device.
Analog ground
DC input voltage
Power ground
page 3/49
L6981
Typical application circuit
3
Typical application circuit
Figure 3. Basic application (adjustable version)
(*) Synchronization is allowed for LNM versions only.
Table 2. Typical application components
DS13554 - Rev 1
Symbol
Value
Description
CIN
10 µF
Input capacitor
CVCC
1 µF
VCC bypass capacitor
CBOOT
100 nF
Bootstrap capacitor
COUT
22 µF
Output capacitor
R1
400 kΩ
VOUT divider upper resistor
R2
82 kΩ
VOUT divider lower resistor
L
33 µH
Output inductor
page 4/49
L6981
Absolute maximum ratings
4
Absolute maximum ratings
Stressing the device above the ratings listed in the table below may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or any other conditions above those indicated
in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions may
affect device reliability.
Table 3. Absolute maximum ratings
Symbol
Min.
Max.
Unit
VIN
Maximum pin voltage
-0.3
42
V
PGND to AGND
Maximum pin voltage
-0.3
0.3
V
BOOT
Maximum pin voltage
SW – 0.3
SW + 4
V
VCC
Maximum pin voltage
-0.3
Min. (VIN + 0.3 V; 4 V)
V
VOUT/FB
Maximum pin voltage
-0.3
8
V
EN
Maximum pin voltage
-0.3
VIN + 0.3
V
SW
Maximum pin voltage
-0.85
VIN + 0.3
V
-3.9 for 0.5 ns
VIN + 0.3
V
1.5
A
IHS, ILS
TJ
Note:
Parameter
High-side / Low-side RMS switch current
Operating temperature range
-40
150
°C
TSTG
Storage temperature range
-65
150
°C
TLEAD
Lead temperature (soldering 10 sec.)
260
°C
All values are referred to AGND unless otherwise specified.
Table 4. ESD performance
Symbol
Parameter
ESD
ESD Protection voltage
Test conditions
Value
Unit
HBM
2
kV
CDM pins
500
V
Table 5. Thermal data
Symbol
RthJA
DS13554 - Rev 1
Parameter
Thermal resistance junction ambient (device soldered
on the STMicroelectronics demonstration board)
Value
Unit
65
°C/W
page 5/49
L6981
Electrical characteristics
5
Electrical characteristics
Table 6. Electrical characteristics TJ = 25 °C, VIN = 24 V unless otherwise specified.
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
VIN
Operating input voltage range
3.5
38
V
VINH
VCC rising threshold
2.3
3.3
V
VINL
VCC UVLO falling threshold
2.15
3.15
V
IPK (1)
Peak current limit
IVY
Valley current limit
ISKIP (1)(2)
IVY_SINK
(1)
No slope contribution
2
2.3
A
Full slope contribution
1.55
1.8
A
1.7
2
Skip current limit
Reverse current limit
2.3
0.35
LNM or VOUT overvoltage
1.25
1.5
A
A
1.75
A
RDSON_HS
High-side RDSON
0.175
Ω
RDSON_LS
Low-side RDSON
0.125
Ω
FSW
Switching frequency
TOFF_MIN
Minimum OFF time
185
ns
TON_MIN
Minimum ON time
85
ns
360
400
440
KHz
Enable
VWAKE_UP
Wakeup threshold
VEN
Enable threshold
Rising
0.7
Falling
0.2
Rising
1.08
Hysteresis
V
V
1.2
1.32
0.2
V
V
VCC regulator
VCC
LDO output voltage
3.0
3.3
3.6
V
2
3
μA
Power consumption
ISHTDWN
Shutdown current from VIN
EN = GND
LCM Device
IQ_OPVIN
Quiescent current from VIN
20
35
60
μA
Quiescent current from VIN
1.6
2.3
3
mA
1
1.3
1.6
ms
0.845
0.85
0.855
V
0.842
0.85
0.858
V
115
120
125
%
1
2
6
%
LNM Device
IQ_OPVIN
Soft start
TSS
Internal soft-start
Error amplifier
Adjustable version TJ = 25 °C
VFB
Voltage feedback
Adjustable version
TJ = -40 °C ≤ TJ ≤ 125 °C (3)
Overvoltage protection
VOVP
VOVP_HYST
DS13554 - Rev 1
Overvoltage trip (VOVP/VREF)
Overvoltage Hysteresis
page 6/49
L6981
Electrical characteristics
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
500
KHz
Synchronization (LNM versions only)
fCLKIN (4)
VCLKIN_TH
(4)
VCLKIN_T (4)
Synchronization range
200
Amplitude of synchronization clock
2.3
V
Synchronization pulse ON and OFF time
2.3 ≤ VCLKIN_TH ≤ 2.5 V
60
ns
Synchronization pulse ON and OFF time
VCLKIN_TH > 2.5 V
20
ns
Thermal Shutdown
TSHDWN (5)
THYS (5)
Thermal shutdown temperature
165
°C
Thermal shutdown hysteresis
30
°C
1. Parameter tested in the static condition during testing phase. The parameter value may change over a
dynamic application condition.
2. LCM version.
3. Specifications in the - 40 to 125 °C temperature range are assured by characterization and statistical
correlation.
4. LNM version.
5. Not tested in production.
DS13554 - Rev 1
page 7/49
L6981
Functional description
6
Functional description
The L6981 device is based on a “peak current mode”, constant frequency control. Therefore, the intersection
between the error amplifier output and the sensed inductor current generates the PWM control signal to drive the
power switch.
The device features LNM (low noise mode) that implements a forced PWM control, or LCM (low consumption
mode) to increase the efficiency at light-load.
The main internal blocks shown in the block diagram in Figure 1 are:
•
Embedded power elements
•
The ramp for the slope compensation to avoid subharmonic instability
•
A transconductance error amplifier with integrated compensation network
•
The high-side current sense amplifier to sense the inductor current
•
A “Pulse Width Modulator” (PWM) comparator and the driving circuitry of the embedded power elements
•
The soft-start block ramps up the reference voltage on error amplifier, thus decreasing the inrush current at
power-up. The EN pin inhibits the device when driven low
•
The EN/CLK pin section, which for LNM versions, allows synchronizing the device to an external clock
generator
•
The pulse-by-pulse high-side / low-side switch current sensing to implement the constant current protection
•
A circuit to implement the thermal protection function
•
The OVP circuitry to discharge the output capacitor in case of overvoltage event.
6.1
Enable
The EN pin is a digital input that turns the device on or off.
In order to maximize both the EN threshold accuracy and the current consumption, the device implements two
different thresholds:
1.
The Wake-Up threshold, VWAKE_UP = 0.5 V (see Table 6)
2.
The Start-Up threshold, VEN = 1.2 V (see Table 6)
The following image shows the device behavior.
Figure 4. Power up/down behavior
DS13554 - Rev 1
page 8/49
L6981
Soft-start
When the voltage applied on the EN pin rises over VWAKEUP, RISING, the device powers up the internal circuit
increasing the current consumption.
As soon as the voltage rises over the VEN, RISING, the device starts the switching activities as described in
Section 6.2 Soft-start.
Once the voltage becomes lower than VEN,FALLING, the device interrupts the switching activities.
As soon as the voltage becomes lower than VWAKEUP,FALLING, the device powers down the internal circuit
reducing the current consumption.
The pin is VIN compatible.
Please refer to Table 6 for the reported thresholds.
6.2
Soft-start
The soft-start (SS) limits the inrush current surge and makes the output voltage increase monotonically.
The device implements the soft-start phase ramping the internal reference with very small steps. Once the SS
ends, the Error Amplifier reference is switched to the internal value of 0.85 V coming directly from the band gap
cell.
Figure 5. Soft-start procedure
During normal operation, a new soft-start cycle takes place in case of:
1.
Thermal shutdown event
2.
UVLO event
3.
EN pin rising over VEN threshold. Please refer to Table 6.
DS13554 - Rev 1
page 9/49
L6981
Undervoltage lockout
Figure 6. Soft-start phase with IOUT = 1.25 A
6.3
Undervoltage lockout
The device implements the undervoltage lockout (UVLO) continuously sensing the voltage on the VCC pin, if the
UVLO lasts more than 10 μs, the internal logic resets the device by turning off both LS and HS.
After the reset, if the EN pin is still high, the device repeats the soft-start procedure.
6.4
Light-load operation
The L6981 implements two different light-load strategies:
1.
Low consumption mode (LCM).
2.
Low noise mode (LNM).
Please refer to Table 11 to select the part number with the preferred light-load strategy.
6.4.1
Low consumption mode (LCM)
The LCM maximizes the efficiency at light-load.
When the switch peak current request is lower than the ISKIP threshold (please refer to Electrical characteristics
table), the device regulates VOUT by the skip threshold. The minimum voltage is given by:
R
+ RPL
VOUT, LCM = VFB, LCM ∙ PH
RPL
(1)
Where VFB, LCM is 1.8% (typ.) higher than VFB.
The device interrupts the switching activities when two conditions happen together:
1.
The peak inductor current required is lower than ISKIP.
2.
DS13554 - Rev 1
The voltage on the FB pin is higher than VFB, LCM.
page 10/49
L6981
Light-load operation
Figure 7. Light-load operation
A new switching cycle takes place once the voltage on the FB pins becomes lower than VFB,LCM.
The HS switch is kept on until the inductor current reaches ISKIP.
Once the current on the HS reaches the defined value, the device turns the HS off and turns the LS on. The LS is
kept enabled until one of the following conditions occurs:
1.
The inductor current sensed by the LS becomes equal to zero.
2.
The switching period ends.
If, at the end of the switching cycle, the voltage on the FB pin rises over the VFB,LCM threshold, the LS is kept
enabled until the inductor current becomes equal to zero. Otherwise, the device turns on the HS again and starts
a new switching pulse.
During the burst pulse, if the energy transferred to COUT increases the VFB level over the threshold defined in
Equation 1, the device interrupts the switching activities. The new cycle takes place only when VFB becomes
lower than the defined threshold. Otherwise, as soon as the LS is turned off, the HS is turned on.
Given the energy stored in the inductor during a burst, the voltage ripple depends on the capacitor value:
T
∫ BURST IL t dt
∆Q
VOUT RIPPLE = C IL = 0
COUT
OUT
(2)
Figure 8. LCM operation with ISKIP = 350 mA typ. at zero load. L = 33 μH; COUT = 32 μF
DS13554 - Rev 1
page 11/49
L6981
Light-load operation
Figure 9. LCM operation over loading condition (part 1-pulse skipping)
Figure 10. LCM operation over loading condition (part 2-pulse skipping)
DS13554 - Rev 1
page 12/49
L6981
Light-load operation
Figure 11. LCM operation over loading condition (part 3-pulse skipping)
Figure 12. LCM operation over loading condition (part 4-CCM)
DS13554 - Rev 1
page 13/49
L6981
Light-load operation
6.4.2
Low noise mode (LNM)
The low noise mode implements a forced PWM operation over the different loading conditions. The LNM features
a constant switching frequency to minimize the noise in the final application and a constant voltage ripple at fixed
VIN.
The regulator in steady loading condition operates in continuous conduction mode (CCM) over the different
loading conditions.
The triangular shape current ripple (with zero average value) flowing into the output capacitor gives the output
voltage ripple, that depends on the capacitor value and the equivalent resistive component (ESR). Consequently,
the output capacitor has to be selected in order to have a voltage ripple compliant with the application
requirements.
∆ ILMAX
VOUT RIPPLE = ESR ∙ ∆ ILMAX +
8 ∙ COUT ∙ fSW
(3)
Usually the resistive component of the ripple can be neglected if the selected output capacitor is a multi-layer
ceramic capacitor (MLCC).
Figure 13. Low noise mode operation at zero load
DS13554 - Rev 1
page 14/49
L6981
Light-load operation
6.4.3
Efficiency for Low consumption mode and Low noise mode part number
Figure 14 and Figure 15 report the efficiency measurements to highlight the gap at the light-load between LNM
and LCM part numbers. The graph reports also the same efficiency at the medium / high load.
Figure 14. Light-load efficiency for low consumption mode and low noise mode - linear scale
VIN = 24 [V]; V OUT = 5 [V]; FSW = 400 [ KHz ]
100
90
Efficiency [%]
80
70
60
50
40
30
LCM
20
LNM
10
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
I OUT [A]
Figure 15. Light-load efficiency for low consumption mode and low noise mode - log scale
Efficiency [%]
V IN = 24 [V]; V OUT = 5 [V]; FSW = 400 [KHz]
100
90
80
70
60
50
40
30
20
10
0
0.0001
LCM
LNM
0.001
0.01
0.1
1
IOUT [A]
DS13554 - Rev 1
page 15/49
L6981
Overvoltage protection
6.4.4
Load regulation for low consumption mode and low noise mode part number
Figure 16 and Figure 17 report the load regulation to highlight the gap, given by the different regulation strategy,
at the light-load between LNM and LCM part numbers. When the required IOUT is higher than the threshold
defined in the Low consumption mode (LCM) paragraph, the behavior of the different part numbers is the same.
Figure 16. Load regulation for LCM and LNM. VIN = 24 V; VOUT = 5 V; FSW = 400 KHz - linear scale
V IN = 24 [V]; VOUT = 5 [V]; FSW = 400 [KHz]
Load regulation [%]
2.5
LCM
2
LNM
1.5
1
0.5
0
-0.5
0
0.2
0.4
0.6
0.8
1
1.2
1.4
IOUT [A]
Figure 17. Load regulation for low noise mode. VIN = 24 V; VOUT = 5 V; FSW = 400 KHz - log scale
VIN = 24 [V]; VOUT = 5 [V]; FSW = 400 [KHz]
Load regulation [%]
2.5
2
LCM
1.5
LNM
1
0.5
0
-0.5
0.0001
0.001
0.01
0.1
1
IOUT [A]
6.5
Overvoltage protection
The overvoltage is a second level protection, and it should never be triggered in normal operating conditions if the
system is properly dimensioned. In other words, the selection of the external power components and the dynamic
performance determined by the compensation network should guarantee an output voltage regulation within the
overvoltage threshold even during the worst-case scenario in terms of load transitions. The protection is reliable
and able to operate even during normal load transitions for a system whose dynamic performance is not in line
with the load dynamic request. Consequently, the output voltage regulation would be affected.
DS13554 - Rev 1
page 16/49
L6981
Overvoltage protection
6.5.1
Low consumption mode part number
The overvoltage protection continuously compares the FB pin with 120% nominal output voltage and enables
the low-side MOSFET at the beginning of the switching cycle keeping it active until 1.5 A typ. negative current
limitation is reached, in order to discharge the output capacitor.
The following graph shows the LCM part number behavior during an OVP event.
Figure 18. OVP event low consumption mode part number
VOUT (t)
VOVP
VOVP_HYST
VOUT, LCM
t
Isw(t)
ISKIP
t
ISKIP_LNM
IVY_SINK
SW(t)
VIN
VOUT
t
Body Diode HS
TON,min LS
As soon as the output voltage goes out of the OVP hysteresis (typ. 2%) the L6981 device sets the switching node
on high impedance. It restarts the switching activity accordingly with the main loop regulation of the peak current
mode architecture.
DS13554 - Rev 1
page 17/49
L6981
Overcurrent protection
6.5.2
Low noise mode part number
The following graph shows the LNM part number behavior during an OVP event.
Figure 19. OVP event low noise mode part number
The LNM device regulates the output voltage with valley sinking capability down to the negative current limitation
(IVY_SINK in Figure OVP Event Low Noise Mode part number). This hysteretic operating mode between peak
current mode threshold (ISKIP_LNM) and modulated low side switch conduction time for VOUT regulation
persists until the valley current level triggers the negative current limitation (IVY_SINK), that is the maximum
sinking capability of the device (highlighted in green in Figure 19).
If the source injection further increases, the output voltage is a partitioning between source impedance and
maximum sinking capability above described (highlighted in blue in Figure 19).
6.6
Overcurrent protection
The current protection circuitry features a constant current protection, so the device limits the maximum peak
current (please refer to Table 6) in an overcurrent condition.
The L6981 device implements a pulse-by-pulse current sensing on both power elements (high-side and low-side
switches) for effective current protection over the duty cycle range. The high-side current sensing is called “peak”,
the low-side sensing “valley”.
The internal noise generated during the switching activity makes the current sensing circuitry ineffective for a
minimum conduction time of the power element. This time is called “masking time” because the information from
the analog circuitry is masked by the logic to prevent an erroneous detection of the overcurrent event. Therefore,
the peak current protection is disabled for a masking time after the high-side switch is turned on. The masking
time for the valley sensing is activated after the low-side switch is turned on. In other words, the peak current
protection can be ineffective at extremely low duty cycles, the valley current protection at extremely high duty
cycles.
The L6981 device assures an effective overcurrent protection sensing the current flowing in both power elements.
In case one of the two current sensing circuitries is ineffective because of the masking time, the device is
protected, sensing the current on the opposite switch. Thus, the combination of the “peak” and “valley” current
limits assure the effectiveness of the overcurrent protection even in extreme duty cycle conditions.
DS13554 - Rev 1
page 18/49
L6981
Overcurrent protection
In case the current diverges because of the high-side masking time, the low-side power element is turned on until
the switch current level drops below the valley current sense threshold. The low-side operation is able to prevent
the high-side turn-on, so the device can skip pulses decreasing the switching frequency.
Figure 20. Overcurrent protection behavior
In a worst case scenario, reported in Figure 20 of the overcurrent protection, the switch current is limited to:
V −V
IMAX = IVY + IN L OUT ∙ TMASKHS
(4)
Where IVY is the current threshold of the valley sensing circuitry (please refer to Electrical characteristics table)
and TMASKHS is the masking time of the high-side switch.
In most of the overcurrent conditions, the conduction time of the high-side switch is higher than the masking time
and so the peak current protection limits the switch current.
IMAX = IPEAKTH
(5)
The DC current flowing in the load in overcurrent condition is:
I
V
VIN − VOUT
IDCOUT = IMAX − RIPPLE2 OUT = IMAX −
∙ TON
2∙L
DS13554 - Rev 1
(6)
page 19/49
L6981
Thermal shutdown
Figure 21 shows the L6981 soft-start procedure with VOUT shorted to GND.
Figure 21. Soft-start procedure with VOUT shorted to GND
Figure 22 shows the L6981 over current protection with a persistent short-circuit between VOUT and GND.
Figure 22. Over current procedure with persistent short circuit between VOUT and GND
6.7
Thermal shutdown
The shutdown block disables the switching activity if the junction temperature is higher than a fixed internal
threshold (TSHDWN refer to Table 6). The thermal sensing element is close to the power elements, ensuring fast
and accurate temperature detection. A hysteresis of approximately 30 °C prevents the device from turning ON
and OFF too fast. After a thermal protection event has expired, the L6981 restarts with a new soft-start.
DS13554 - Rev 1
page 20/49
L6981
Closing the loop
7
Closing the loop
The following image shows the typical compensation network required to stabilize the system.
Figure 23. Block diagram of the loop
7.1
GCO(s) control to output transfer function
The accurate control to output transfer function for a buck peak current mode converter can be written as:
GCO s = RLOAD ∙ gCS ∙
1
R
∙T
1 + LOADL SW ∙ mC ∙ 1 − D − 0.5
∙
1 + ωs
Z ∙F s
H
s
1+ ω
P
(7)
Where RLOAD represents the load resistance, gCS the equivalent sensing trans-conductance of the current sense
circuitry, ωP the single pole introduced by the power stage and ωZ the zero given by the ESR of the output
capacitor. FH (s) accounts the sampling effect performed by the PWM comparator on the output of the error
amplifier that introduces a double pole at one half of the switching frequency.
ωZ = ESR ∙1C
OUT
Where:
1
ωP = R
+
LOAD ∙ COUT
mC ∙ 1 − D − 0.5
L ∙ COUT ∙ fSW
S
mC = 1 + Se
n
Se = ISLOPE ∙ fSW
Where ISLOPE is equal to 1 A.
(8)
(9)
(10)
VIN − VOUT
Sn =
L
Sn represents the ON time slope of the sensed inductor current, Se the ON time slope of the external ramp that
implements the slope compensation to avoid sub-harmonic oscillations at duty cycle over 50 %.
The sampling effect contribution FH (s) is:
DS13554 - Rev 1
page 21/49
L6981
Error amplifier compensation network
FH s =
Where:
1
2
1 + ω s∙ Q + s 2
n P ωn
1
QP =
π ∙ mC ∙ 1 − D − 0.5
7.2
(11)
(12)
Error amplifier compensation network
The following figure shows the typical compensation network required to stabilize the system.
Figure 24. Trans-conductance embedded error amplifier
RC and CC introduce a pole and a zero in the open loop gain. The transfer function of the error amplifier and its
compensation network is:
Where:
AVO ∙ 1 + s ∙ RC ∙ CC
AO s = 2
s ∙ RO ∙ CO ∙ RC ∙ CC + s ∙ RO ∙ CC + RO ∙ CO + RC ∙ CC + 1
AVO = Gm ∙ RO
(13)
(14)
The poles of this transfer function are (if CC » CO):
DS13554 - Rev 1
page 22/49
L6981
Voltage divider
1
fPLF = 2 ∙ π ∙ R
O ∙ CC
1
fPHF = 2 ∙ π ∙ R
O ∙ CO
Whereas the zero is defined as:
1
fZ = 2 ∙ π ∙ R
C ∙ CC
7.3
(15)
(16)
(17)
Voltage divider
The contribution of a simple voltage divider is:
R2
GDIV s =
R1 + R2
(18)
A small signal capacitor in parallel to the upper resistor (only for the adjustable part number) of the voltage divider
implements a leading network (fZERO < fPOLE), sometimes necessary to improve the system phase margin:
Figure 25. Leading network example
(*) Synchronization is allowed for LNM versions only.
Laplace transformer of the leading network:
R
1 + s ∙ R1 ∙ CR1
GDIV s = R +2R ∙
1
2 1 + s ∙ R1 ∙ R2 ∙ C
R1 + R2 R1
fZ = 2 ∙ π ∙ R1 ∙ C
1 R1
fP =
So closing the loop, the loop gain is:
DS13554 - Rev 1
1
R ∙R
2 ∙ π ∙ R 1+ R2 ∙ CR1
1
2
(19)
(20)
(21)
fZ < fP
(22)
G s = GDIV s ∙ GCO s ∙ AO s
(23)
page 23/49
L6981
Design of the power components
8
Design of the power components
8.1
Programmable power up threshold
The Enable rising threshold is equal to 1.2 V typical (refer to Table 6). The power up threshold is adjusted
accordingly with the following equation:
R
VPower Up = 1.2 ∙ 1 + EN H
REN L
(24)
Figure 26. Leading network example
(*) Synchronization is allowed only for LNM versions.
The Enable falling threshold is equal to 1.0 V typical (refer to Electrical characteristics table). The turn off
threshold is obtained accordingly with the following equation:
R
VPower Down = 1.0 ∙ 1 + EN H
REN L
8.2
(25)
External synchronization (only available for Low Noise Mode)
The device allows a direct connection between a clock source and the EN/CLKIN pin.
Figure 27. External synchronization. Direct connection
(*) Synchronization is allowed only for LNM versions.
DS13554 - Rev 1
page 24/49
L6981
Output voltage adjustment
The device internally implements a low pass filter connected to EN/CLKIN pin that is able to acquire the average
value of the applied signal.
The device turns on when the average of the signal applied is higher than VEN rising (refer to Table 6). The device
turns off when the average of the signal should be lower than VEN falling (refer to Table 6).
Considering, for example, a clock source with VPP = 5.0 V, the minimum duty cycle to guarantee the power-up is
given by:
Dutymin =
VEN, TH Rising
= 0.24
VPP
(26)
The maximum duty cycle to guarantee the turn off is given by:
DutyMAX, =
VEN, TH Falling
= 0.2
VPP
(27)
The device allows also the AC coupling.
Figure 28. External synchronization. AC coupling
(*) Synchronization is allowed only for LNM versions.
The AC-coupling allows the device to keep the power-up and down thresholds defined by the partition connected
to the EN/CLKIN pin and described in the "Programmable power up threshold" section.
The following table resumes the minimum pulse duration and maximum duty cycle that allow the synchronization,
keeping the selected power-up and down thresholds.
Table 7. External synchronization AC coupling suggested operation range
VPP [V]
TON,MIN [ns]
DMAX [%]
2.3
70
45
3.3
20
30
5
20
20
The minimum amplitude for the external clock signal is, for both configurations, equal to 2.3 V.
The network given by CEN and RENL sets a high pass filter. Considering a resistor in the order of 220 KΩ, a
capacitor equal to 1 nF is a correct choice.
8.3
Output voltage adjustment
The error amplifier reference voltage is 0.85 V typical (refer to Table 6). The output voltage is adjusted accordingly
with the following equation:
DS13554 - Rev 1
page 25/49
L6981
Design of the power components
R
VOUT = 0.85 ∙ 1 + 1
R2
(28)
CR1 capacitor is sometimes useful to increase the small signal phase margin (please refer to Section 7 Closing
the loop)
Figure 29. Application circuit
(*) Synchronization is allowed only for LNM versions.
8.4
8.4.1
Design of the power components
Input capacitor selection
The input capacitor voltage rating must be higher than the maximum input operating voltage of the application.
During the switching activity a pulsed current flows into the input capacitor and so, its RMS current capability must
be selected accordingly with the application conditions. Internal losses of the input filter depend on the ESR value,
so usually low ESR capacitors (like multilayer ceramic capacitors) have higher RMS current capability. On the
other hand, given the RMS current value, lower ESR input filter has lower losses and so contributes to higher
conversion efficiency.
The maximum RMS input current flowing through the capacitor can be calculated as:
IRMS = IOUT ∙
D
1− D
η ∙ η
(29)
Where IOUT is the maximum DC output current, D is the duty cycles, η is the efficiency. This function has a
maximum at D = 0.5 and, considering η = 1, it is equal to IOUT/2. In a specific application, the range of possible
duty cycles has to be considered in order to find out the maximum RMS input current. The maximum and
minimum duty cycles can be calculated as:
VOUT + ∆ VLOWSIDE
DMAX =
VINmin + ∆ VLOWSIDE − ∆ VHIGHSIDE
VOUT + ∆ VLOWSIDE
Dmin =
VINMAX + ∆ VLOWSIDE − ∆ VHIGHSIDE
(30)
(31)
Where ΔVHIGHSIDE and ΔVLOWSIDE are the voltage drops across the embedded switches. The peak-to-peak
voltage across the input filter can be calculated as:
IOUT
D
VPP =
1− D
η ∙ η + ESR ∙ IOUT + ∆ IL
CIN ∙ FSW ∙
(32)
In case of negligible ESR (MLCC capacitor), the equation of CIN as a function of the target VPP can be written as
follows:
IOUT
D
CIN =
1− D
η ∙ η
VPP ∙ FSW ∙
DS13554 - Rev 1
(33)
page 26/49
L6981
Design of the power components
Considering η = 1 this function has its maximum in D = 0.5:
IOUT
CINmin =
4 ∙ VPPMAX ∙ FSW
(34)
Typically, CIN is dimensioned to keep the maximum peak-to-peak voltage across the input filter in the order of 5 %
VINMAX.
In the following table, some suitable capacitor part numbers are listed.
Table 8. Input capacitors
Manufacturer
Series
Size
Cap value (µF)
Rated voltage (V)
TDK
CGA5L3X5R1H106K160AB
1206
10
50
C3216X5R1H106K160AB
1206
10
50
GRT31CR61H106KE01
1206
10
50
Murata
8.4.2
Inductor selection
The inductor current ripple flowing into the output capacitor determines the output voltage ripple. Usually the
inductor value is selected in order to keep the current ripple lower than 20% - 40% of the output current over the
input voltage range. The inductance value can be calculated by the following equation:
∆ IL =
VIN − VOUT
V
∙ TON = OUT
L
L ∙ TOFF
(35)
Where TON and TOFF are the ON and OFF time of the internal power switch. The maximum current ripple, at fixed
VOUT, is obtained at maximum TOFF that is at minimum duty cycle. So fixing ΔIL = 20% to 40% of the maximum
output current, the minimum inductance value can be calculated:
VOUT
1 − Dmin
Lmin =
∆ ILMAX ∙ FSW
(36)
For those applications requiring higher inductor value for minimized current ripple, pay attention as the
maximum value must prevent the sub-harmonic instability given the designed internal slope compensation. As
a consequence the inductor value must satisfy the quality factor range:
0.4 ≤ QP ≤ 1.33
(37)
Where QP has been defined in Section 7.1 GCO(s) control to output transfer function. The peak current through
the inductor is given by:
∆I
IL, PK = IOUT + 2L
(38)
So if the inductor value decreases, the peak current (that has to be lower than the current limit of the device)
increases. The higher the inductor value, the higher the average output current that can be delivered, without
reaching the current limit.
8.4.3
Output capacitor selection
The triangular shaped current ripple (with zero average value) flowing into the output capacitor gives the
output voltage ripple, which depends on the capacitor value and the equivalent resistive component (ESR).
Therefore, the output capacitor has to be selected in order to have a voltage ripple compliant with the application
requirements.
The voltage ripple equation can be calculated as:
∆ IL, MAX
∆ VOUT = ESR ∙ ∆ IL, MAX +
8 ∙ COUT ∙ FSW
(39)
For a ceramic (MLCC) capacitor, the capacitive component of the ripple dominates the resistive one. While for
an electrolytic capacitor the opposite is true. Neglecting the ESR contribution, the minimum value of the output
capacitor is given by:
DS13554 - Rev 1
page 27/49
L6981
Design of the power components
∆ IL, MAX
COUT, min, RIPPLE =
8 ∙ ∆ VOUT ∙ FSW
(40)
As the compensation network is internal, the output capacitor should be selected in order to have a proper phase
margin and then a stable control loop. A good rule to obtain a proper dimensioning for the minimum amount of the
output capacitor is to set the target system bandwidth equal to FSW/10. The following equation takes into account
the precedent consideration:
COUT, BW, min = F 8.04
SW
10 ∙ VOUT
(41)
The maximum amount of the output capacitor is given by:
∙ 10−4
COUT, BW, min = 1.38
VOUT
DS13554 - Rev 1
(42)
page 28/49
L6981
Application board
9
Application board
The figure below shows the reference evaluation board schematic:
Figure 30. Evaluation board schematic
L1 MSS1038T-333M
L
L2
n.m.
L1 33mH
TP6
R6
C13
n.m.
n.m.
U1
EN
TP1
TP2
CLK_IN
EN
1
C7
C9
100nF
n.m.
R1
2
0 Ohm
3
4
C3
J1
VIN
TP3
L3
MPZ2012S221A
GND
J2
1mF 10V
R3
L4
VIN _L6981
4.7mH
C11
C12
4.7mF
4.7mF
C14
4.7mF
+
C10
n.m.
SW
PGND
BOOT
VIN
VCC
FB
AGND
EN/ SY NC
C4
22mF
C5
10mF
C6
VOUT
n.m.
8
7
VIN _L6981
6
C2
1mF
5
C1
10mF
R4
10k
EN
L6981CDR
R2
402K
R5
n.m.
82.5K
C8
10pF
TP5
TP4
GND
EMI FIlters. Optional Component
s
The additional input filter (C11, L3, C12, L4, C14 and C10) limits the conducted emission on the power supply.
DS13554 - Rev 1
page 29/49
L6981
Application board
Table 9. Bill of material
Reference
Part number
Description
C1
C3216X7R1H106K160AC
10 µF
TDK
C2
CGA4J3X7R1H105K125AB
1 µF
TDK
C3
C4
1 µF
GRJ32EC71E226KE11
C6
C5
C3216X7R1H106K160AC
10 µF
100 nF
C8
10 pF
C9
n.m.
C10
n.m.
L1
Murata
n.m.
GRM31CR71H475KA12
C13
4.7 µF
TDK
Murata
n.m.
MSS1038T-333ML
L2
33 µH
Coilcraft
n.m.
L3
MPZ2012S221AT000
220 Ω, 100 MHz
TDK
L4
XAL4030-472ME
4.7 µH
Coilcraft
R1
0Ω
R2
402 kΩ
R3
82.5 kΩ
R4
10 kΩ
R5
n.m.
R6
n.m.
U1
DS13554 - Rev 1
22 µF
C7
C11, C12, C14
Manufacturer
L6981
STMicroelectronics
page 30/49
L6981
Application board
Figure 31. Top layer
Figure 32. Bottom layer
DS13554 - Rev 1
page 31/49
L6981
Efficiency curves
10
Efficiency curves
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the
device, selecting the following output filter:
•
COUT:
–
1 x GRJ32EC71E226KE11 22 µF 16 V (Murata)
–
1 x C3216X7R1H106K160AC 10 µF 50 V (TDK)
•
Inductor:
–
MSS1038T-333ML (Coilcraft)
•
C8:
–
10 pF
Figure 33. Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz
Efficiency [%]
VIN = 24 [V]; V OUT = 5 [V]; FSW = 400 [KHz]
100
90
80
70
60
50
40
30
20
10
0
LCM
LNM
0
0.2
0.4
0.6
0.8
1
1.2
1.4
IOUT [A]
Figure 34. Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz (log scale)
Efficiency [%]
V IN = 24 [V]; V OUT = 5 [V]; FSW = 400 [KHz]
100
90
80
70
60
50
40
30
20
10
0
0.0001
LCM
LNM
0.001
0.01
0.1
1
IOUT [A]
DS13554 - Rev 1
page 32/49
L6981
Efficiency curves
Figure 35. Power losses VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz
Load regulation [%]
VIN = 24 [V]; V OUT = 5 [V]; FSW = 400 [KHz]
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
LCM
LNM
POUT
0
0.2
0.4
0.6
0.8
1
1.2
1.4
9
8
7
6
5
4
3
2
1
0
IOUT [A]
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the
device, selecting the following output filter:
•
COUT:
–
1 x GRJ32EC71E226KE11 22 µF 16 V (Murata)
–
1 x C3216X7R1H106K160AC 10 µF 50 V (TDK)
•
Inductor:
–
MSS1038T-333ML (Coilcraft)
•
C8:
–
10 pF
Figure 36. Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz
Efficiency [%]
V IN = 12 [V]; V OUT = 5 [V]; F SW = 400 [KHz]
100
90
80
70
60
50
40
30
20
10
0
LCM
LNM
0
0.2
0.4
0.6
0.8
1
1.2
1.4
IOUT [A]
DS13554 - Rev 1
page 33/49
L6981
Efficiency curves
Figure 37. Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz (log scale)
Efficiency [%]
VIN = 12 [V]; V OUT = 5 [V]; FSW = 400 [KHz]
100
90
80
70
60
50
40
30
20
10
0
0.0001
LCM
LNM
0.001
0.01
0.1
1
IOUT [A]
Figure 38. Power losses VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz
V IN = 24 [V]; V OUT = 5 [V]; F SW = 400 [KHz]
0.8
9
8
LCM
0.6
0.5
0.4
7
LNM
6
POUT
5
4
0.3
3
0.2
2
0.1
1
0
POUT [W]
Powre losses[W]
0.7
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
IOUT [A]
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the
device, selecting the following output filter:
•
COUT:
–
1 x GRJ32EC71E226KE11 22 µF 16 V (Murata)
–
1 x C3216X7R1H106K160AC 10 µF 50 V (TDK)
DS13554 - Rev 1
•
Inductor:
–
MSS1038T-223ML (Coilcraft)
•
C8:
–
10 pF
page 34/49
L6981
Efficiency curves
Figure 39. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz
Efficiency [%]
VIN = 24 [V]; V OUT = 3.3 [V]; FSW = 0.4 [MHz]
100
90
80
70
60
50
40
30
20
10
0
LCM
LNM
0
0.2
0.4
0.6
0.8
1
1.2
1.4
IOUT [A]
Figure 40. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz (log scale)
Efficiency [%]
VIN = 24 [V]; V OUT = 3.3 [V]; FSW = 0.4 [MHz]
100
90
80
70
60
50
40
30
20
10
0
0.0001
LCM
LNM
0.001
0.01
0.1
1
IOUT [A]
DS13554 - Rev 1
page 35/49
L6981
Efficiency curves
Figure 41. Power losses VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz
V IN = 24 [V]; VOUT = 3.3 [V]; FSW = 0.4 [MHz]
0.9
6
5
0.6
4
0.5
3
0.4
LCM
0.3
LNM
0.2
POUT
0.1
0
0
0.5
2
POUT [W]
Powre losses[W]
0.8
0.7
1
0
1.5
1
IOUT [A]
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the
device, selecting the following output filter:
•
COUT:
–
1 x GRJ32EC71E226KE11 22 µF 16 V (Murata)
–
1 x C3216X7R1H106K160AC 10 µF 50 V (TDK)
•
Inductor:
–
MSS1038T-223ML (Coilcraft)
•
C8:
–
10 pF
Figure 42. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz
V IN = 12 [V]; VOUT = 3.3[V]; FSW = 0.4[MHz]
100
90
Efficiency [%]
80
70
60
50
40
30
LCM
20
LNM
10
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
IOUT [A]
DS13554 - Rev 1
page 36/49
L6981
Efficiency curves
Figure 43. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz (log scale)
Efficiency [%]
V IN = 12 [V]; V OUT = 3.3 [V]; F SW = 0.4 [MHz]
100
90
80
70
60
50
40
30
20
10
0
0.0001
LCM
LNM
0.001
0.01
0.1
1
IOUT [A]
Figure 44. Power losses VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz
V IN = 12 [V]; V OUT = 3.3 [V]; FSW = 0.4 [MHz]
0.8
6
5
0.6
4
0.5
0.4
3
0.3
LCM
0.2
LNM
0.1
POUT
2
POUT [W]
Powre losses [W]
0.7
1
0
0
0
0.5
1
1.5
IOUT [A]
DS13554 - Rev 1
page 37/49
L6981
Thermal dissipation
11
Thermal dissipation
The thermal design is important in order to prevent thermal shutdown of the device if junction temperature goes
above 165°C. The three different sources of losses within the device are:
•
Conduction losses due to the ON resistance of the high-side switch (RDSON_HS) and low-side switch
(RDSON_LS); these are equal to:
2
PCOND = RDSON_HS ∙ I2
OUT ∙ D + RDSON_LS ∙ IOUT ∙ 1 − D
(43)
Where D is the duty cycle of the selected application and is given by:
D=
VOUT + RDSON_LS + DCRl ∙ IOUT
VIN − RDSON − RDSON_LS ∙ IOUT
HS
(44)
In order to obtain a more accurate estimation it is necessary to keep in mind that the amount of resistance of the
internal power MOSFET increases with the temperature. For this reason, the value of RDSONHS and RDSONLS,
should be increased from the typical of a factor equal to 20%.
•
Switching losses due to high-side Power MOSFET turn ON and OFF; these can be calculated as:
PSW = VIN ∙ IOUT ∙
TRISE + TFALL
FSW = VIN ∙ IOUT ∙ TSW ∙ FSW
2
(45)
Where TRISE and TFALL are the overlap times of the voltage across the high-side power switch (VDS) and
the current flowing into it during turn ON and turn OFF phases, as shown in Figure 45. TSW is the equivalent
switching time. For this device the typical value for the equivalent switching time is 30 ns.
•
Quiescent current losses, calculated as:
PQ = VIN ∙ IQ, MAX
(46)
PLOSS = PCOND + PSW + PQ
(47)
T J = TA + RtℎJA ∙ PLOSS
(48)
The quiescent current for constant current operation is equal to 3 [mA]:
The power losses are given by:
The junction temperature TJ can be calculated as:
Where TA is the ambient temperature. RthJA is the equivalent thermal resistance junction to ambient of the device;
it can be calculated as the parallel of many paths of heat conduction from the junction to the ambient. For this
device the path through the exposed pad is the one conducting the largest amount of heat. The RthJA measured
on the demonstration board described in the following section is about 65 °C/W.
DS13554 - Rev 1
page 38/49
L6981
Thermal dissipation
Figure 45. Switching losses
It is also possible to estimate the junction temperature directly from the efficiency measurements acquired on a
stationary application condition.
Considering that the power losses are given by:
PLOSS = PIN − POUT
(49)
Neglecting the AC losses of the selected inductor, the power losses related to the L6981 are given by:
2
PLOSS L6981 = VIN ∙ IIN − VOUT ∙ IOUT − DCRl ∙ IOUT
(50)
Consequently, the junction temperature TJ can be calculated as:
T J = TA + RtℎJA ∙ PLOSS, L6981
DS13554 - Rev 1
(51)
page 39/49
L6981
Package information
12
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
DS13554 - Rev 1
page 40/49
L6981
SO 8L package information
12.1
SO 8L package information
Figure 46. SO 8L package outline
SIDE VIEW
SIDE VIEW
TOP VIEW
DS13554 - Rev 1
page 41/49
L6981
SO 8L package information
Table 10. SO 8L mechanical data
Sym.
mm
Min.
Typ.
Max.
A
-
-
1.75
A1
0.10
-
0.225
A2
1.30
1.40
1.50
A3
0.60
0.65
0.70
b
0.39
-
0.47
b1
0.38
0.41
0.44
c
0.20
-
0.24
c1
0.19
0.20
0.21
D
4.80
4.90
5.00
E
5.80
6.00
6.20
E1
3.80
3.90
4.00
e
1.27BSC
L1
1.05REF
h
0.25
-
0.50
L
0.50
-
0.80
ϴ
0
-
8°
Figure 47. SO 8L recommended footprint
DS13554 - Rev 1
page 42/49
L6981
Ordering information
13
Ordering information
Table 11. Order codes
DS13554 - Rev 1
Part numbers
Light-load behavior
Package
Packaging
L6981CDR
LCM (Low Consumption Mode)
SO 8L
Tape and reel
L6981NDR
LNM (Low Noise Mode)
SO 8L
Tape and reel
page 43/49
L6981
Revision history
Table 12. Document revision history
DS13554 - Rev 1
Date
Version
Changes
15-Jan-2020
1
First release.
page 44/49
L6981
Contents
Contents
1
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3
Typical application circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.1
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2
Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.3
Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4
Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.5
7
8
6.4.1
Low consumption mode (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4.2
Low noise mode (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4.3
Efficiency for Low consumption mode and Low noise mode part number . . . . . . . . . . . . . 15
6.4.4
Load regulation for low consumption mode and low noise mode part number. . . . . . . . . . 16
Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.5.1
Low consumption mode part number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.5.2
Low noise mode part number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.6
Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.7
Thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
7.1
GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2
Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3
Voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8.1
Programmable power up threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2
External synchronization (only available for Low Noise Mode) . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3
Output voltage adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4
Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.4.1
DS13554 - Rev 1
Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
page 45/49
L6981
Contents
8.4.2
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.4.3
Output capacitor selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9
Application board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
10
Efficiency curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
11
Thermal dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
12
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
12.1
13
SO 8L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
DS13554 - Rev 1
page 46/49
L6981
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical application components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics TJ = 25 °C, VIN = 24 V unless otherwise specified.
External synchronization AC coupling suggested operation range . . . . . . .
Input capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO 8L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS13554 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 4
. 5
. 5
. 5
. 6
25
27
30
42
43
44
page 47/49
L6981
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
DS13554 - Rev 1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basic application (adjustable version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power up/down behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soft-start procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soft-start phase with IOUT = 1.25 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LCM operation with ISKIP = 350 mA typ. at zero load. L = 33 μH; COUT = 32 μF. . . . . . . .
LCM operation over loading condition (part 1-pulse skipping) . . . . . . . . . . . . . . . . . . . .
LCM operation over loading condition (part 2-pulse skipping) . . . . . . . . . . . . . . . . . . . .
LCM operation over loading condition (part 3-pulse skipping) . . . . . . . . . . . . . . . . . . . .
LCM operation over loading condition (part 4-CCM) . . . . . . . . . . . . . . . . . . . . . . . . . .
Low noise mode operation at zero load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Light-load efficiency for low consumption mode and low noise mode - linear scale. . . . . .
Light-load efficiency for low consumption mode and low noise mode - log scale . . . . . . .
Load regulation for LCM and LNM. VIN = 24 V; VOUT = 5 V; FSW = 400 KHz - linear scale
Load regulation for low noise mode. VIN = 24 V; VOUT = 5 V; FSW = 400 KHz - log scale .
OVP event low consumption mode part number . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OVP event low noise mode part number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overcurrent protection behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soft-start procedure with VOUT shorted to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Over current procedure with persistent short circuit between VOUT and GND . . . . . . . . .
Block diagram of the loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trans-conductance embedded error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leading network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leading network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External synchronization. Direct connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External synchronization. AC coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Evaluation board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bottom layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz (log scale) . . . . . . . . . . . . . . . . . . . .
Power losses VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz (log scale) . . . . . . . . . . . . . . . . . . . .
Power losses VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz . . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz (log scale) . . . . . . . . . . . . . . . . . .
Power losses VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz. . . . . . . . . . . . . . . . . . . . . . . .
Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz . . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz (log scale) . . . . . . . . . . . . . . . . . .
Power losses VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz. . . . . . . . . . . . . . . . . . . . . . . .
Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO 8L package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO 8L recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 3
. 4
. 8
. 9
10
11
11
12
12
13
13
14
15
15
16
16
17
18
19
20
20
21
22
23
24
24
25
26
29
31
31
32
32
33
33
34
34
35
35
36
36
37
37
39
41
42
page 48/49
L6981
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS13554 - Rev 1
page 49/49