0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6986F

L6986F

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP16

  • 描述:

    IC REG BUCK ADJ 2A 16HTSSOP

  • 数据手册
  • 价格&库存
L6986F 数据手册
L6986F 38 V, 1.5 A synchronous step-down switching regulator with 30 µA quiescent current Datasheet - production data Description HTSSOP16 (RTH = 40 °C/W) Features  1.5 A DC output current  4 V to 38 V operating input voltage  Low consumption mode or low noise mode  30 µA IQ at light-load (LCM VOUT = 3.3 V)  8 µA IQ-SHTDWN  Adjustable fSW (250 kHz - 2 MHz)  Output voltage adjustable from 0.85 V to VIN  Embedded output voltage supervisor  Synchronization  Adjustable soft-start time  Internal current limiting  Overvoltage protection The L6986F is a step-down monolithic switching regulator able to deliver up to 1.5 A DC. The output voltage adjustability ranges from 0.85 V to VIN. Thanks to the P-channel MOSFET high-side power element, the device features 100% duty cycle operation. The wide input voltage range meet the 5 V, 12 V and 24 V power supplies. The “Low Consumption Mode” (LCM) is designed for applications active during idle mode, so it maximizes the efficiency at light-load with controlled output voltage ripple. The “Low Noise Mode” (LNM) makes the switching frequency constant and minimizes the output voltage ripple overload current range, meeting the low noise application specification. The output voltage supervisor manages the reset phase for any digital load (µC, FPGA). The RST open collector output can also implement output voltage sequencing during the power-up phase. The synchronous rectification, designed for high efficiency at medium - heavy load, and the high switching frequency capability make the size of the application compact. Pulse by pulse current sensing on both power elements implements an effective constant current protection.  Output voltage sequencing  Peak current mode architecture  RDSON HS = 180 m, RDSON LS = 150 m  Thermal shutdown Applications  Designed for 12 V and 24 V buses  Programmable logic controllers (PLCs)  Decentralized intelligent nodes  Sensors and low noise applications (LNM) February 2016 This is information on a product in full production. DocID027843 Rev 2 1/64 www.st.com Contents L6986F Contents 1 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 Power supply and voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Voltages monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Soft-start and inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3.1 Ratiometric startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3.2 Output voltage sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.5 Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.6 4.7 4.5.1 Low noise mode (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5.2 Low consumption mode (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.6.1 LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.6.2 LNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 OCP and switchover feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2/64 4.8 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.9 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID027843 Rev 2 L6986F 5 6 Contents Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.1 GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3 Voltage divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.4 Total loop gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.5 Compensation network design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1 Output voltage adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.3 MLF pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.4 Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.5 Synchronization (LNM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.6 Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.6.1 Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.6.2 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.6.3 Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7 Application board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8 Efficiency curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.1 HTSSOP16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DocID027843 Rev 2 3/64 64 Application schematic 1 L6986F Application schematic Figure 1. Application schematic 4/64 DocID027843 Rev 2 L6986F Pin settings 2 Pin settings 2.1 Pin connection Figure 2. Pin connection (top view) 2.2 Pin description Table 1. Pin description No. Pin Description 1 RST The RST open collector output is driven low when the output voltage is out of regulation. The RST is released after an adjustable time DELAY once the output voltage is over the active delay threshold. 2 VCC Connect a ceramic capacitor (≥ 470 nF) to filter internal voltage reference. This pin supplies the embedded analog circuitry. 3 SS/INH An open collector stage can disable the device clamping this pin to GND (INH mode). An internal current generator (4 A typ.) charges the external capacitor to implement the soft-start. 4 SYNCH/ ISKP The pin features Master / Slave synchronization in LNM (see Section 4.5.1 on page 23) and skip current level selection in LCM (see Section 4.5.2 on page 23). 5 FSW A pull up resistor (E24 series only) to VCC or pull down to GND selects the switching frequency. Pinstrapping is active only before the soft-start phase to minimize the IC consumption. 6 MLF A pull up resistor (E24 series only) to VCC or pull down to GND selects the low noise mode/low consumption mode and the active RST threshold. Pinstrapping is active only before the soft-start phase to minimize the IC consumption. 7 COMP Output of the error amplifier. The designed compensation network is connected at this pin. 8 DELAY An external capacitor connected at this pin sets the time DELAY to assert the rising edge of the RST o.c. after the output voltage is over the reset threshold. If this pin is left floating, RST is like a Power Good. 9 FB 10 SGND Signal GND 11 PGND Power GND Inverting input of the error amplifier DocID027843 Rev 2 5/64 64 Pin settings L6986F Table 1. Pin description (continued) No. Pin 12 PGND 13 LX Switching node 14 LX Switching node 15 VIN DC input voltage 16 VBIAS Typically connected to the regulated output voltage. An external voltage reference can be used to supply part of the analog circuitry to increase the efficiency at light-load. Connect to GND if not used. - E. p. Exposed pad must be connected to SGND, PGND 2.3 Description Power GND Maximum ratings Stressing the device above the rating listed in Table 2: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 2. Absolute maximum ratings Symbol Description Min. Max. Unit VIN -0.3 40 V DELAY -0.3 VCC + 0.3 V PGND SGND - 0.3 SGND + 0.3 V SGND V VCC -0.3 (VIN + 0.3) or (max. 4) V SS / INH -0.3 VIN + 0.3 V -0.3 VCC + 0.3 V -0.3 VCC + 0.3 V VOUT -0.3 10 V FSW -0.3 VCC + 0.3 V SYNCH -0.3 VIN + 0.3 V VBIAS -0.3 (VIN + 0.3) or (max. 6) V RST -0.3 VIN + 0.3 V LX -0.3 VIN + 0.3 V -40 150 °C MLF COMP See Table 1 TJ Operating temperature range TSTG Storage temperature range -65 to 150 °C TLEAD Lead temperature (soldering 10 sec.) 260 °C IHS, ILS High-side / low-side switch current 2 A 6/64 DocID027843 Rev 2 L6986F 2.4 Pin settings Thermal data Table 3. Thermal data Symbol 2.5 Parameter Value Unit Rth JA Thermal resistance junction ambient (device soldered on the STMicroelectronics® demonstration board) 40 °C/W Rth JC Thermal resistance junction to exposed pad for board design (not suggested to estimate TJ from power losses). 5 °C/W Value Unit HBM 2 kV MM 200 V CDM 500 V ESD protection Table 4. ESD protection Symbol ESD Test condition DocID027843 Rev 2 7/64 64 Electrical characteristics 3 L6986F Electrical characteristics TJ = 25 °C, VIN = 12 V unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter VIN Operating input voltage range VINH VINL IPK IVY ISKIPH ISKIPL IVY_SNK Test condition Note Min. Typ. Max. Unit 4 38 VCC UVLO rising threshold 2.7 3.5 VCC UVLO falling threshold 2.4 3.5 Peak current limit Duty cycle < 20% 2.3 Duty cycle = 100% closed loop operation 1.8 Valley current limit A 2.4 Programmable skip current limit LCM, VSYNCH = GND (1) LCM, VSYNCH = VCC (2) Reverse current limit LNM or VOUT overvoltage 0.2 0.4 0.6 0.2 0.5 1 2 RDSON HS High-side RDSON ISW = 1 A 0.18 0.360 RDSON LS Low-side RDSON ISW = 1 A 0.15 0.300 fSW Selected switching frequency FSW pinstrapping before SS IFSW FSW biasing current Low noise mode / LCM/LNM Low consumption mode selection IMLF D TON MIN MLF biasing current V See Table 6: fSW selection SS ended 0 MLF pinstrapping before SS 500 nA See Table 7 on page 11 SS ended 0 (2) Duty cycle  0 Minimum On time 500 nA 100 % 80 ns VCC regulator VCC LDO output voltage SWO VBIAS threshold (3 V< VBIAS < 5.5 V) 8/64 VBIAS = GND (no switchover) 2.9 3.3 3.6 VBIAS = 5 V (switchover) 2.9 3.3 3.6 Switch internal supply from VIN to VBIAS 2.85 3.2 Switch internal supply from VBIAS to VIN 2.78 3.15 DocID027843 Rev 2 V L6986F Electrical characteristics Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Note Min. Typ. Max. Unit 4 8 15 4 10 15 Power consumption ISHTDWN Shutdown current from VIN VSS/INH = GND LCM - SWO VREF < VFB < VOVP (SLEEP) VBIAS = 3.3 V IQ OPVIN Quiescent current from VIN IQ OPVBIAS Quiescent current from VBIAS LCM - NO SWO VREF < VFB < VOVP (SLEEP) VBIAS = GND (3) A A (3) 35 70 120 LNM - SWO VFB = GND (NO SLEEP) VBIAS = 3.3 V 0.5 1.5 5 LNM - NO SWO VFB = GND (NO SLEEP) VBIAS = GND 2 2.8 6 25 50 115 A LNM - SWO VFB = GND (NO SLEEP) VBIAS = 3.3 V 0.5 1.2 5 mA SS rising 200 460 700 100 140 LCM - SWO VREF < VFB < VOVP (SLEEP) VBIAS = 3.3 V mA (3) Soft-start VINH VSS threshold VINH HYST VSS hysteresis ISS CH CSS charging current VSS < VINH OR t < TSS SETUP OR VEA+ > VFB t > TSS SETUP AND VEA+ < VFB VSS START SSGAIN (2) mV 1 A (2) Start of internal error amplifier ramp 4 0.995 SS/INH to internal error amplifier gain 1.1 1.150 V 0.85 0.859 V 50 500 nA 3 Error amplifier VOUT Voltage feedback IVOUT VOUT biasing current AV ICOMP 0.841 (2) Error amplifier gain 100 ±6 EA output current capability DocID027843 Rev 2 ±12 dB ±25 A 9/64 64 Electrical characteristics L6986F Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Note Min. Typ. Max. Unit 2.5 A/V Inner current loop gCS Current sense transconductance (VCOMP to inductor current gain) Ipk = 1 A (2) (4) V PP  g CS Slope compensation 0.45 0.75 1 1.15 1.2 1.25 0.5 2 5 A Overvoltage protection VOVP Overvoltage trip (VOVP/VREF) VOVP HYST Overvoltage hysteresis % Synchronization (fan out: 6 slave devices typ.) fSYN MIN Synchronization frequency LNM; fSW = VCC 266.5 VSYN TH SYNCH input threshold LNM, SYNCH rising 0.70 SYNCH pull-down current LNM, VSYN = 1.2 V High level output LNM, 5 mA sinking load Low level output LNM, 0.7 mA sourcing load Selected RST threshold MLF pinstrapping before SS ISYN VSYN OUT kHz 1.2 0.7 V mA 1.40 0.6 V Reset VTHR VTHR HYST RST hysteresis VRST RST open collector output see Table 7 (2) 2 % VIN > VINH AND VFB < VTH 4 mA sinking load 0.4 2 < VIN < VINH 4 mA sinking load 0.8 V Delay VTHD RST open collector released as soon as VDELAY > VTHD VFB > VTHR 1.19 ID CH CDELAY charging current VFB > VTHR 1 1.234 1.258 2 3 V A Thermal shutdown TSHDWN Thermal shutdown temperature (2) 165 THYS Thermal shutdown hysteresis (2) 30 °C 1. Parameter tested in static condition during testing phase. Parameter value may change over dynamic application condition. 2. Not tested in production. 3. LCM enables SLEEP mode at light-load. 4. Measured at fsw = 250 kHz. 10/64 DocID027843 Rev 2 L6986F Electrical characteristics TJ = 25 °C, VIN = 12 V unless otherwise specified. Table 6. fSW selection Symbol fSW RVCC (E24 series) RGND (E24 series) Tj fSW min. fSW typ. fSW max. 0 NC 225 250 275 1.8 k NC 3.3 k NC 5.6 k NC 380 10 k NC 435 NC 0 18 k NC 33 k NC 56 k NC 755 NC 1.8 k 870 NC 3.3 k NC 5.6 k NC 10 k NC 18 k NC 33 k 285 330 (1) 450 500 550 575 660 (1) 900 kHz 1000 1100 1150 (1) 1310 1500(2) 56 k NC Unit 1575 1750(2) 1925 1800 2000(2) 2200 1. Not tested in production. 2. No synchronization as slave in LNM. TJ = 25 °C, VIN = 12 V unless otherwise specified. Table 7. LNM / LCM selection Symbol VRST RVCC RGND (E24 1%) (E24 1%) 0 NC 8.2 k NC 18 k NC 39 k Operating VRST/VOUT mode (tgt. value) VRST VRST VRST min. typ. max. 93% 0.779 0.791 0.802 80% 0.670 0.680 0.690 87% 0.728 0.740 0.751 NC 96% 0.804 0.816 0.828 NC 0 93% 0.779 0.791 0.802 NC 8.2 k 80% 0.670 0.680 0.690 NC 18 k 87% 0.728 0.740 0.751 NC 39 k 96% 0.804 0.816 0.828 LCM LNM DocID027843 Rev 2 Unit V 11/64 64 Functional description 4 L6986F Functional description The L6986F device is based on a “peak current mode”, constant frequency control. As a consequence, the intersection between the error amplifier output and the sensed inductor current generates the PWM control signal to drive the power switch. The device features LNM (low noise mode) that is forced PWM control, or LCM (low consumption mode) to increase the efficiency at light-load. The main internal blocks shown in the block diagram in Figure 3 are: 12/64  Embedded power elements. Thanks to the P-channel MOSFET as high-side switch the device features low dropout operation  A fully integrated sawtooth oscillator with adjustable frequency  A transconductance error amplifier  The high-side current sense amplifier to sense the inductor current  A “Pulse Width Modulator” (PWM) comparator and the driving circuitry of the embedded power elements  The soft-start blocks to ramp the error amplifier reference voltage and so decreases the inrush current at power-up. The SS/INH pin inhibits the device when driven low.  The switchover capability of the internal regulator to supply a portion of the quiescent current when the VBIAS pin is connected to an external output voltage  The synchronization circuitry to manage master / slave operation and the synchronization to an external clock  The current limitation circuit to implement the constant current protection, sensing pulse by pulse high-side / low-side switch current. In case of heavy short-circuit the current protection is fold back to decrease the stress of the external components  A circuit to implement the thermal protection function  The OVP circuitry to discharge the output capacitor in case of overvoltage event  MLF pin strapping sets the LNM/LCM mode and the thresholds of the RST comparator  FSW pinstrapping sets the switching frequency  The RST open collector output. DocID027843 Rev 2 L6986F Functional description Figure 3. Internal block diagram 4.1 Power supply and voltage reference The internal regulator block consists of a start-up circuit, the voltage pre-regulator that provides current to all the blocks and the bandgap voltage reference. The starter supplies the startup current when the input voltage goes high and the device is enabled (SS/INH pin over the inhibits threshold). The pre-regulator block supplies the bandgap cell and the rest of the circuitry with a regulated voltage that has a very low supply voltage noise sensitivity. Switchover feature The switchover scheme of the pre-regulator block features to derive the main contribution of the supply current for the internal circuitry from an external voltage (3 V < VBIAS < 5.5 V is typically connected to the regulated output voltage). This helps to decrease the equivalent quiescent current seen at VIN. (Please refer to Section 4.6: Switchover feature on page 29). 4.2 Voltages monitor An internal block continuously senses the VCC, VBIAS and VBG. If the monitored voltages are good, the regulator starts operating. There is also a hysteresis on the VCC (UVLO). DocID027843 Rev 2 13/64 64 Functional description L6986F Figure 4. Internal circuit 9&& 67$57(5 35(5(*8/$725 95(* %$1'*$3 ,&%,$6 95() ',1 4.3 Soft-start and inhibit The soft-start and inhibit features are multiplexed on the same pin. An internal current source charges the external soft-start capacitor to implement a voltage ramp on the SS/INH pin. The device is inhibited as long as the SS/INH pin voltage is lower than the VINH threshold and the soft-start takes place when SS/INH pin crosses VSS START. (See Figure 5: Soft-start phase). The internal current generator sources a 1 A typ. current when the voltage of the VCC pin crosses the UVLO threshold. The current increases to 4 A typ. as soon as the SS/INH voltage is higher than the VINH threshold. This feature helps to decrease the current consumption in inhibit mode. An external open collector can be used to set the inhibit operation clamping the SS/INH voltage below VINH threshold. The startup feature minimizes the inrush current and decreases the stress of the power components during the power-up phase. The ramp implemented on the reference of the error amplifier has a gain three times higher (SSGAIN) than the external ramp present at SS/INH pin. 14/64 DocID027843 Rev 2 L6986F Functional description Figure 5. Soft-start phase The CSS is dimensioned accordingly with Equation 1: Equation 1 I SSCH  T SS 4A  T SS C SS = SS GAIN  -------------------------------- = 3  --------------------------V FB 0.85V where TSS is the soft-start time, ISS CH the charging current and VFB the reference of the error amplifier. The soft-start block supports the precharged output capacitor. DocID027843 Rev 2 15/64 64 Functional description L6986F Figure 6. Soft-start phase with precharged COUT During normal operation a new soft-start cycle takes place in case of:  Thermal shutdown event  UVLO event  The device is driven in INH mode The soft-start capacitor is discharged with a 0.6 mA typ. current capability for 1 msec time max. For complete and proper capacitor discharge in case of fault condition, a maximum CSS = 67 nF value is suggested. The application example in Figure 7 shows how to enable the L6986F and perform the softstart phase driven by an external voltage step. Figure 7. Enable the device with external voltage step 16/64 DocID027843 Rev 2 L6986F Functional description The maximum capacitor value has to be limited to guarantee the device can discharge it in case of thermal shutdown and UVLO events (see Figure 9), so restart the switching activity ramping the error amplifier reference voltage. Equation 2 – 1 msec C SS  ------------------------------------------------------------------------------------------V SS_FINAL – 0.9 V R SS_EQ  ln  1 – ----------------------------------------------  600 A – R SS_EQ where: Equation 3 R UP  R DWN R SS_EQ = --------------------------------R UP + R DWN R DWN V SS_FINAL =  V STEP – V DIODE   ---------------------------------R UP + R DWN The optional diode prevents to disable the device if the external source drops to ground. RUP value is selected in order to make the capacitor charge at first approximation independent from the internal current generator (4 A typ. current capability, see Table 5 on page 8), so: Equation 4 V STEP – V DIODE – V SS END ----------------------------------------------------------------------- » I SS CHARGE  4 A R UP where: Equation 5 V FB V SS END = V SS START + --------------------SS GAIN represents the SS/INH voltage correspondent to the end of the ramp on the error amplifier (see Figure 5); refer to Table 5 for VSS START, VFB and SSGAIN parameters. As a consequence the voltage across the soft-start capacitor can be written as: Equation 6 1 v SS  t  = V SS_FINAL  ----------------------------------------t 1–e – --------------------------------C SS  R SS_EQ RSS_DOWN is selected to guarantee the device stays in inhibit mode when the internal generator sources 1 A typ. out of the SS/INH pin and VSTEP is not present: Equation 7 R DWN  I SS INHIBIT  R DWN  1 A « V INH  200 mV so: Equation 8 R DWN  100 k DocID027843 Rev 2 17/64 64 Functional description L6986F RUP and RDWN are selected to guarantee: Equation 9 V SS_FINAL  2 V  V SS_END The time to ramp the internal voltage reference can be calculated from Equation 10: Equation 10 V SS_FINAL – V SS START T SS = C SS  R SS_EQ  ln  -----------------------------------------------------------  V SS_FINAL – V SS END  that is the equivalent soft-start time to ramp the output voltage. Figure 8 shows the soft-start phase with the following component selection: RUP = 180 k, RDWN = 33 k, CSS = 200 nF, the 1N4148 is a small signal diode and VSTEP = 13 V. Figure 8. External soft-start network VSTEP driven The circuit in Figure 7 introduces a time delay between VSTEP and the switching activity that can be calculated as: Equation 11 V SS_FINAL T SS DELAY = C SS  R SS_EQ  ln  -----------------------------------------------------------  V SS_FINAL – V SS START Figure 9 shows how the device discharges the soft-start capacitor after an UVLO or thermal shutdown event in order to restart the switching activity ramping the error amplifier reference voltage. 18/64 DocID027843 Rev 2 L6986F Functional description Figure 9. External soft-start after UVLO or thermal shutdown DocID027843 Rev 2 19/64 64 Functional description 4.3.1 L6986F Ratiometric startup The ratiometric startup is implemented sharing the same soft-start capacitor for a set of the L6986F devices. Figure 10. Ratiometric startup 9 9287 9287 9287 W $0 As a consequence all the internal current generators charge in parallel the external capacitor. The capacitor value is dimensioned accordingly with Equation 12: Equation 12 I SSCH  T SS 4A  T SS C SS = n L6986F  SS GAIN  -------------------------------- = n L6986F  3  --------------------------0.85V V FB where nL6986F represents the number of devices connected in parallel. For better tracking of the different output voltages the synchronization of the set of regulators is suggested. 20/64 DocID027843 Rev 2 L6986F Functional description Figure 11. Ratiometric startup operation DocID027843 Rev 2 21/64 64 Functional description 4.3.2 L6986F Output voltage sequencing The L6986F device implements sequencing connecting the RST pin of the master device to the SS/INH of the slave. The slave is inhibited as long as the master output voltage is outside regulation so implementing the sequencing (see Figure 12). Figure 12. Output voltage sequencing 9 9287 9287 9287 W W'(/$
L6986F 价格&库存

很抱歉,暂时无法提供与“L6986F”相匹配的价格&库存,您可以联系我们找货

免费人工找货