0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L7983PU33R

L7983PU33R

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    WFDFN10

  • 描述:

    60 V 300 MA SYNCHRONOUS STEP-DOW

  • 数据手册
  • 价格&库存
L7983PU33R 数据手册
L7983 Datasheet 60 V, 300 mA synchronous step-down switching regulator with 10 µA quiescent current Features • • 3.5 V to 60 V operating input voltage Fixed output voltage (3.3 V and 5 V) or adjustable from 0.85 V to VIN • • • 300 mA DC output current Dynamic low consumption mode to low noise mode selection 10 µA operating quiescent current (L7983PU33R, VIN > 24 V, LCM) • • • • • • • • • • • 2.3 µA shutdown current 200 kHz to 2.2 MHz programmable switching frequency Optional spread spectrum (dithering) Internal soft-start Enable / adjustable UVLO threshold Synchronization to external clock Internal compensation network Internal current limiting Overvoltage protection Output voltage sequencing Thermal shutdown Applications Maturity status link L7983 • • • • • Designed for 12 V, 24 V and 48 V buses Battery powered applications Decentralized intelligent nodes Fail safe system Sensors and low noise applications (LNM) Description The L7983 device is a step-down monolithic switching regulator able to deliver up to 300 mA DC based on peak current mode architecture. The output voltage adjustability ranges from 0.85 V to VIN. The wide input voltage range and adjustable UVLO threshold meet the specification for the 12 V, 24 V and 48 V industrial bus standards. The “Low Consumption Mode” (LCM) is designed for applications active during idle mode, so it maximizes the efficiency at light load with controlled output voltage ripple. The “Low Noise Mode” (LNM) makes the switching frequency constant overload current range, meeting the low noise application specification. The L7983 supports dynamic LCM to LNM transition. The soft-start time is internally fixed and the output voltage supervisor manages the reset phase for any digital load (microcontroller, FPGA, etc.). The internal compensation network features high noise immunity, simple design and saves on the component cost. The RST open collector output can also implement output voltage sequencing during the power-up phase. DS13354 - Rev 1 - October 2020 For further information contact your local STMicroelectronics sales office. www.st.com L7983 The synchronous rectification, designed for high efficiency at medium - heavy load, and the high switching frequency capability make the size of the application compact. Pulse-by-pulse current sensing on both power elements implements an effective constant current protection. DS13354 - Rev 1 page 2/43 L7983 Application schematic and block diagram 1 Application schematic and block diagram 1.1 Application circuit Figure 1. Typical application circuit RESET L7983 VIN RST VIN EN/UVLO GND VOUT LX VCC VOUT(FB) FSW VBIAS LNM/LCM EP GND GND Figure 2. Block diagram VBIAS EN/UVLO + - VCC VCC VIN MONITOR UVLO LDO OTP MONITOR BIAS and REFERENCE + ENABLE - CLOCK VIN SLOPE VIN + + ENABLE HS MOS CLOCK + IPK PWM END SS LOGIC and CONTROL - END SS VMAX VREF VOUT(FB) + + SOFT-START CONTROL - SENSE SENSE LX DRIVER and ANTI XC COMP gm LX LX VMIN LX + ZCD - + FSW SET FSW DS13354 - Rev 1 GND IVY + + OVP - LS MOS CLOCK - RST SYNCH LX VCC LNM/LCM page 3/43 L7983 Pin settings 2 Pin settings Figure 3. Pin connection (top view) VOUT/FB 1 10 VBIAS 2 9 LX VCC 3 8 VIN FSW 4 7 EN/UVLO LNM/LCM 5 6 RST EXPOSED PAD TO GND GND Table 1. Pin description N° 1 DS13354 - Rev 1 Pin VOUT/FB Description Output voltage sensing. This pin operates as VOUT or FB accordingly with selected part number: • VOUT is output voltage sensing with selected internal voltage divider. • FB is output voltage sensing with external resistor divider. Input supply of the integrated LDO. Typically connected to the regulated output voltage or an auxiliary rail to increase the efficiency at light load. Connect to GND if not used or bypass with a 100 nF ceramic capacitor if supplied by the output voltage or by an auxiliary rail. 2 VBIAS 3 VCC 4 FSW Switching frequency programming pin. Connect an external resistor to VCC or GND. 5 LNM/LCM Dynamic pin selection between Low Consumption Mode (LCM, active low) and Low Noise Mode operation (LNM, active high). This pin can also be used for synchronization with an external clock (clock-in function). 6 RST Active low open collector output for output monitoring and power-up reset sequencing. RST is driven in low impedance when the output voltage is out of regulation and released once the output voltage becomes valid. 7 EN/UVLO 8 VIN DC input voltage 9 LX Switching node 10 GND Ground -- E.P. Exposed pad must be connected to GND Output of the integrated LDO that supplies the embedded analog circuitry. Connect a ceramic capacitor (470 nF typ.) to filter internal voltage reference. Active high enable pin, VIN compatible. It can be exploited with an external resistor divider to adjust the input undervoltage lockout (UVLO). page 4/43 L7983 Absolute maximum ratings 3 Absolute maximum ratings Stressing the device above the ratings listed in Table 2 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 2. Absolute maximum ratings Symbol Min. Max. Unit -0.3 63 V -0.3 VIN + 0.3 or max. 3.6 V -0.3 VIN + 0.3 LX -0.3 VIN + 0.3 V VBIAS -0.3 VIN + 0.3 or max. 14 V -0.3 5.5 -0.3 VCC + 0.3 V 0.3 A VIN Description See Table 1 VCC EN/UVLO RST VOUT/FB LNM/LCM FSW IHS, ILS TJ 3.1 High-side / low-side RMS switch current Operating temperature range -40 150 TSTG Storage temperature range -65 150 TLEAD Lead temperature (soldering 10 sec.) V V V V °C 260 Thermal characteristics Table 3. Thermal data 3.2 Symbol Parameter Value Unit RthJA Thermal resistance junction to ambient (device soldered on a standard demonstration board) 50 °C/W ESD protection Table 4. ESD performance Symbol ESD DS13354 - Rev 1 Test conditions Value Unit HBM 2 kV CDM 500 V page 5/43 L7983 Operating conditions 3.3 Operating conditions Table 5. Recommended operating conditions Symbol VIN VBIAS DS13354 - Rev 1 Parameter Power supply voltage Value Min. Typ. Max. Unit 3.5 60 V 0 14 V page 6/43 L7983 Electrical characteristics 4 Electrical characteristics TJ = 25 °C, VIN = 24 V, VEN/UVLO = VIN, LNM selected, fSW = 1 MHz unless otherwise specified. Table 6. Electrical characteristics Symbol Parameter Test Condition Min. Typ. Max. VIN rising 2.6 2.8 3.0 VIN falling 2.5 2.7 2.9 Unit Turn on and power section characteristics VINH VIN turn-on VINL VIN turn-off Hysteresis 0.1 VWAKEUPH Wake-up ON threshold VEN rising VWAKEUPL Wake-up OFF threshold VEN falling 0.2 VENH Enable ON threshold VEN rising 1.1 1.2 1.3 VENL Enable OFF threshold VEN falling 0.9 1.0 1.1 0.7 Hysteresis 0.42 0.47 0.52 Duty cycle = 100%, closed loop operation (1) 0.35 0.39 0.43 Valley current limit (1) 0.43 0.52 0.61 ISKIP Skip current limit (1) INEG Reverse current limit LNM selected, VFB = 0.9 V (1) HS RDSON HS MOS ON resistance ILX = 0.2 A 1.9 2.5 LS RDSON LS MOS ON resistance ILX = 0.2 A 0.85 1.2 IVY fSW D tON MIN tSS Peak current limit Selected switching frequency - 0.15 450 500 550 RFSW = 0 Ω 900 1000 1100 RFSW = 56 kΩ 1980 2200 2420 0 Minimum HS MOS on-time 100 60 Internal soft-start time A 0.08 RFSW = 5.6 kΩ Duty cycle V 0.2 Duty cycle < 20% (1) IPK V Ω kHz % ns 1.3 2 2.7 VBIAS = GND 2.9 3.3 3.6 VBIAS = 5 V 2.9 3.3 3.6 ms VCC and VBIAS VCC LDO output voltage SWO Switchover threshold VBIAS increasing Hysteresis V 3.2 V 0.075 V Power consumption ISHTDWN IQVIN Shutdown current from VIN VEN/UVLO = GND Quiescent current from VIN, LCM (refer to Section 5.5 VCC and switchover) Quiescent current from VIN, LNM DS13354 - Rev 1 2.3 3.2 VBIAS = 5 V, VOUT = 1.05 * VREF(2) 3 6 VBIAS = GND, VOUT = 1.05 * VREF(2) 35 50 VBIAS = 5 V, VOUT = 1.05 * VREF 170 205 VBIAS = GND, VOUT = 1.05 * VREF 1300 1500 µA page 7/43 L7983 Electrical characteristics Symbol IQVBIAS Parameter Quiescent current from VBIAS Test Condition Min. LCM, VBIAS = 5 V, VOUT = 1.05 * VREF(2) LNM, VBIAS = 5 V, VOUT = 1.05 * VREF Typ. Max. 37 50 1200 1400 Unit µA Voltage reference and OVP Voltage feedback, L7983PUR VREF Voltage feedback, L7983PU33R Voltage feedback, L7983PU50R VOVP VOVP,HYST TJ = 25 °C 0.844 0.850 0.856 -40 °C ≤ TJ ≤ 125 °C (3) 0.840 0.850 0.860 TJ = 25 °C 3.267 3.300 3.333 3.250 3.300 3.350 4.950 5.000 5.050 4.925 5.000 5.075 115 120 125 -40 °C ≤ TJ ≤ 125 °C (3) TJ = 25 °C -40 °C ≤ TJ ≤ 125 °C (3) Overvoltage trip (VOUT/VREF) Overvoltage hysteresis 2 V % % Synchronization (clock-in) and LNM/LCM fCLKIN Synchronization range 180 2400 kHz VCLKINH CLKIN allowed high level 2 5 V VCLKINL CLKIN allowed low level 0 1.3 V VLNM LNM selection level 2 5 V VLCM LCM selection level 0 1.3 V TLNM/LCM Minimum allowed delay between LNM to LCM or LCM to LNM dynamic selection 14 µs Reset VRSTTHR VRSTHYST RST release threshold TJ = 25 °C 90 (VOUT/VREF) -40 °C ≤ TJ ≤ 125 °C (3) 88 RST hysteresis TRSTDLY Delay from VRSTTHR threshold detection and RST pin release VRSTLOW RST open collector output IRSTLKG RST leakage current 92 94 96 % 2 2.0 ms VOUT/VREF = 80%, 4 mA sinking current 0.3 0.4 2 < VIN < VINH, 4 mA sinking current 0.5 0.8 VIN = 60 V, VOUT/VREF = 110% 0.2 V µA Thermal shutdown TSHDWN THYS Thermal shutdown threshold (4) 165 Thermal shutdown hysteresis (4) 30 °C 1. Parameter tested in static condition during testing phase. Parameter value may change over dynamic application condition. 2. LCM enables SLEEP mode at light load. 3. Specifications in the -40 to +125 °C temperature range are assured by characterization and statistical correlation. 4. Not tested in production. DS13354 - Rev 1 page 8/43 L7983 Functional description 5 Functional description The L7983 device is a monolithic step-down (“buck”) DC-DC voltage regulator based on a peak current mode, constant frequency architecture, with integrated control loop compensation network. The main internal blocks are shown in Figure 2 and can be summarized as follows: • Power section, including high-side and low-side power MOSFETs, gate driver and current sensing • Control loop blocks, including the trans-conductor (gm), the PWM comparator and the slope generator • The control logic for low noise mode (LNM) or low consumption mode (LCM) operation selection and synchronization to external clock • The frequency programming circuitry for device configuration • Input voltage monitor and enable circuit with soft-start management and RST output signal for sequencing programming • The low drop-out linear regulator (LDO) and switchover block to improve the power conversion efficiency. The fault management, including the overcurrent (OCP), the overvoltage (OVP) and overtemperature (OTP) protection 5.1 Power section The L7983 integrates both power MOSFETs for synchronous operation; one P-channel (high-side, HS) and one N-channel (low-side, LS), optimized for fast switching transition and high efficiency over the entire load range. The power stage is designed to deliver a continuous output current up to 0.3 A. The HS MOSFET source is connected to the VIN pin, the LS MOSFET source is connected to the GND pin (power ground). The HS MOSFET drain and LS MOSFET drain are connected together and to the LX pin (see Figure 2). The L7983 embodies an anti-shoot-through and adaptive deadtime control to minimize low-side body diode conduction time and consequently reduce power losses. This feature is implemented by comparing LX with HS and LS gate driving voltage. • Following the HS turn-off, the LS MOSFET is suddenly switched on as soon as the voltage at the LX pin drops • Following the LS turn-off, the HS MOSFET is suddenly switched on as soon as the gate driving voltage of LS drops If the current flowing in the inductor is negative (i.e. from VOUT to VIN), the voltage on the LX pin can’t drop after HS MOS turn-off. A watchdog controller is implemented to allow the LS MOSFET to turn on even in this case, allowing the negative current of the inductor to flow to ground. This mechanism allows the system to regulate even if the current is negative (if LNM mode is enabled). 5.2 Control loop and voltage programming The L7983 is based on a constant frequency peak current mode architecture. Thanks to integrated compensation network and slope generation, no additional external components are necessary for loop stabilization. DS13354 - Rev 1 page 9/43 L7983 Control loop and voltage programming Figure 4. Control loop block diagram Vin HS Power Switches LS + + gcs Vout L Ru Cu Reso Slope compensation Current sense Ro Rd Integrated compensation PWM Comparator Cp Co E/A FB Rc Cc VREF Refer to Section 5.7 for further details on power components design. For the adjustable version (L7983PUR), the output voltage can be programmed through an external resistor divider, from 0.85 V up to VIN. The design equation is: RU VOUT = 0.85 ∙ 1 + RD (1) For the fixed version (L7983PU33R or L7983PU50R), the output voltage programming is achieved by simply shorting the VOUT(FB) pin to the output capacitor. DS13354 - Rev 1 page 10/43 L7983 Control loop and voltage programming Figure 5. Output voltage programming - adjustable version RST VIN EN/UVLO LX VCC VOUT(FB) FSW VBIAS LNM/LCM EP RU GND RD Figure 6. Output voltage programming - fixed version RST VIN EN/UVLO VCC VOUT(FB) FSW VBIAS LNM/LCM DS13354 - Rev 1 LX EP GND page 11/43 L7983 Control loop and voltage programming 5.2.1 LNM/LCM selection and synchronization Depending on the low-side power MOSFET management, the inductor current can be allowed to reverse or not. The choice can be performed during device operation by acting on the LNM/LCM pin. When the low-noise mode (LNM) operation is selected, by forcing high pin LNM/LCM, the inductor current can reverse. In this way a constant switching frequency is achieved, so limiting the output voltage ripple and providing a prompt transient response. Figure 7. LNM selected, no load If the LNM/LCM pin is forced low, the low-consumption mode (LCM) is activated, with the aim of maximizing the light load efficiency. When LCM is selected, the high-side MOSFET is turned on as soon as the FB pin is sensed lower than VREFLCM, i.e. VREF reference voltage increased by 2% typ.: VREFLCM = VREF ∙ 1,02 typ. (2) In LCM mode the HS MOS is turned on until ISKIP current is reached, then it is turned-off. The low-side MOSFET is then turned on until one of the following conditions occurs: • The sensed inductor current drops to zero • The switching period (programmed through the FSW pin) has expired and the FB pin is still lower than the voltage reference. In this case a new switching cycle is performed. In LCM working mode the regulator switching frequency is load-dependent (i.e. LX pulses can be skipped) with greater advantage to power conversion efficiency at light load. The following waveforms are showing the switching activity in LCM working mode and different load. DS13354 - Rev 1 page 12/43 L7983 Control loop and voltage programming Figure 8. LCM selected, no load Figure 9. LCM selected, 10 mA load DS13354 - Rev 1 page 13/43 L7983 Control loop and voltage programming Figure 10. LCM selected, 50 mA load If an external clock is applied on the LNM/LCM pin, the L7983 switching activity is synchronized to the applied clock and the LNM operation is enabled. The external clock must meet the electrical requirements summarized in Table 7. In case no external clock is detected on LNM/LCM for TLNM/LCM (14 µs typ.), the free running clock programmed on pin FSW through RFSW resistor is restored as switching frequency. Refer to Section 5.3 Switching frequency programming and dithering. TLNM/LCM is also the typical delay between LNM to LCM and the opposite transition. Figure 11. LCM to LNM transition, no load DS13354 - Rev 1 page 14/43 L7983 Switching frequency programming and dithering 5.3 Switching frequency programming and dithering The L7983 has one programming pin, FSW (pin 4), which is used to set the regulator free running switching frequency. The switching frequency programming feature is performed by selecting the proper 1% accuracy resistor, to be mounted between pin 4 and ground or VCC, as summarized in the following table. The pinstrapping is active only before the soft-start phase to minimize the IC consumption. Refer also to Figure 1 for reference schematic. Table 7. FSW pin programming resistor Dithering enabled Dithering disabled # RVCC [kΩ] RGND [kΩ] Fsw [kHz] (1) # RVCC [kΩ] RGND [kΩ] Fsw [kHz] (1) 1 0 -- 1000 1 -- 0 1000 2 1,8 -- 200 2 -- 1,8 200 3 3,3 -- 400 3 -- 3,3 400 4 5,6 -- 500 4 -- 5,6 500 5 10 -- 700 5 -- 10 700 6 18 -- 1500 6 -- 18 1500 7 33 -- 2000 7 -- 33 2000 8 56 -- 2200 8 -- 56 2200 1. Typical value. Refer to Table 6 for details. DS13354 - Rev 1 page 15/43 L7983 Switching frequency programming and dithering The dithering function, enabled by connecting the proper RFSW resistor to VCC, is intended to reduce the DC-DC electromagnetic emissions, with small impact on output voltage ripple. Figure 12. RVCC = 0 Ω, dithering enabled, no load Figure 13. RVCC = 0 Ω, dithering enabled, no load. Detail The internal dithering circuitry changes the switching frequency in the range of ± 5% of the nominal value. The device updates the frequency every clock period by fixed steps: • Ramps up in 63 steps from minimum to maximum switching frequency • Ramps down in 63 steps from maximum to minimum switching frequency The resulting frequency modulation is almost triangular, with a frequency of: FSW FDitℎ = 126 DS13354 - Rev 1 (3) page 16/43 L7983 Enable and Reset 5.4 Enable and Reset In order to maximize both the EN threshold accuracy and the current consumption, the device implements two different enable thresholds: • The wake-up threshold, VWAKEUPH = 0.5 V typ. • The start-up threshold, VENH = 1.2 V typ. As soon as the EN pin is detected above VWAKEUPH and VIN voltage is higher than VINH, the regulator turns on the internal circuitry and waits for the VENH before starting the switching activity. When this occurs, the internal voltage reference is increased by about 2 ms (typ.) in order to limit the inrush current and perform a smooth output capacitor charge. Figure 14. Turn-on example DS13354 - Rev 1 page 17/43 L7983 Enable and Reset If the EN pin is forced lower than VENL the switching activity is stopped. The L7983 can further reduce the input current as soon as EN is forced lower than the VWAKEUPL threshold. When this occurs the input current is reduced to ISHTDWN = 2.3 µA (typ.). Figure 15. Turn-off example A divider from VIN can be used to program the input voltage threshold for controlled power-up, as shown in Figure 16. The EN pin is VIN compatible. Figure 16. Input voltage turn-on threshold programming RST VIN EN/UVLO LX VCC VOUT(FB) FSW VBIAS LNM/LCM EP GND During the soft-start, the L7983 is not allowed to sink current from the output, also if LNM operation is selected. This feature is intended to guarantee the proper power-up also in case of output voltage pre-bias condition. Following the L7983 turn-on, if the output voltage (sensed through the VOUT(FB) pin) is detected higher than the VRSTTHR threshold, the RST pin is left floating. During the operation, the RST pin is asserted low if the output voltage is found lower than the VRSTTHR VRSTHYST threshold, i.e. a typical 2% hysteresis is implemented. DS13354 - Rev 1 page 18/43 L7983 VCC and switchover In case of overvoltage detection (OVP), the RST pin is asserted low. A 2% hysteresis (typ.) is required before releasing RST. Figure 17. Output voltage and RST behavior VOUT VTHR VTHR-HYST RST Td A built-in 2 ms typ. delay is always implemented before releasing RST. 5.5 VCC and switchover The internal LDO (low drop-out) linear regulator is turned on when VIN is higher than the VINH threshold and EN pin is detected above VWAKEUPH. The output voltage is available on pin VCC, which must be properly bypassed to GND by 470 nF ceramic capacitor. No external load is expected on VCC pin. The switchover function is enabled in case VBIAS is detected higher than the SWO threshold (refer to Table 7). When this occurs, the internal LDO power supply is switched from VIN to VBIAS, so increasing the power conversion efficiency. This is the typical case when VBIAS is connected to the regulator output. If the programmed output voltage is lower than the SWO threshold and no auxiliary rail lower than VIN is available, VBIAS must be connected to GND (refer to Figure 29, Figure 35 and Figure 41 for no load input current in typical application conditions). 5.6 Fault management The L7983 fault management is continuously monitoring the inductor current, the output voltage and the device junction temperature. Furthermore, thanks to the input UVLO (undervoltage lock-out) circuitry, the switching activity is guaranteed only with the proper VIN level. All the protections are auto-recovery. DS13354 - Rev 1 page 19/43 L7983 Fault management 5.6.1 Overcurrent protection (OCP) In normal operation the HS MOS is turned off when the sensed current is equal to programmed current (refer to Figure 2). The maximum available current is limited by the internal OCP (overcurrent protection) comparator, cycle by cycle. The IPK threshold is gradually reduced during the switching period by slope contribution, as shown in Figure 18. Figure 18. Peak current limit IPK ILX TON_min The inductor current is also monitored during LS MOS on-time. This feature, also known as “valley current limitation”, is effective in case of current runaway due to HS MOS minimum on-time limitation and very low VOUT / VIN ratio. This protection can avoid the HS MOS turn-on if the inductor current, sensed during LS MOS on-time, is higher than the IVY threshold (Figure 19). Figure 19. Valley current limit IPK ILX IVY TON_min DS13354 - Rev 1 page 20/43 L7983 Fault management In LNM mode, the L7983 can sink current from the output. However, to protect the power components, a negative current limit is implemented. If the sensed current is found lower than the INEG threshold, the low-side MOS is promptly turned off and the high-side one is turned on until the inductor is discharged. When this occurs, the LS MOS is allowed to turn on again. Figure 20. Negative current limit example DS13354 - Rev 1 page 21/43 L7983 Fault management 5.6.2 Overvoltage protection (OVP) In case the VOUT(FB) pin is detected above the VOVP threshold, the output overvoltage protection is triggered. When this occurs, the RST pin is forced low and the L7983 actively discharges the output voltage by sinking current (refer to Section 5.6.1 Overcurrent protection (OCP)). Figure 21. Overvoltage protection VOUT VOVP VOVP-HYST RST INEG ILX As soon as the OVP cause is removed, the proper switching activity is restored and RST output is released, with the delay and threshold described in Section 5.4 . 5.6.3 Overtemperature protection (OTP) If the device junction temperature increases above TSHDWN (165 °C typ.) the switching activity is inhibited until a temperature drop of THYS (30 °C typ.) is detected. When the switching activity is resumed, a soft-start is implemented. The OTP protection is always active. DS13354 - Rev 1 page 22/43 L7983 Application design guidelines 5.7 5.7.1 Application design guidelines Input capacitor selection The input capacitor must be rated for the maximum input operating voltage and the maximum expected RMS input current. Since the step-down converters' input current is a sequence of pulses from 0A to IOUT, the input capacitor must absorb the equivalent RMS current which can be up to the load current divided by two (worst case, with duty cycle of 50%). For this reason, the quality of these capacitors must be very high to minimize the power dissipation generated by the internal ESR, thereby improving system reliability and efficiency. The RMS input current (flowing through the input capacitor) is roughly estimated by: ICIN, RMS ≅ IOUT ⋅ D ⋅ 1 − D (4) Considering D = VOUT / VIN the theoretical DC-DC conversion ratio, the above equation provides a maximum value equal to IOUT / 2 when D = 0.5. The amount of the input voltage ripple can be roughly estimated by Eq. (5). VIN, PP = D ⋅ 1 − D ⋅ IOUT + RES, IN ⋅ IOUT CIN ⋅ FSW (5) In case of MLCC ceramic input capacitors, the equivalent series resistance (RES,IN) is almost negligible. The suggested component is a ceramic MLCC capacitor with value 1 µF or higher, with adequate voltage rating (100 V typ.), placed as close as possible to the VIN and GND pins. Very fast VIN transitions must be avoided to guarantee the proper operation. Additional input voltage filtering must be implemented in case of expected VIN transitions faster than 0.1 V/μs. 5.7.2 Inductor selection In low consumption mode (LCM) the light load operation is implemented with constant current pulses (ISKIP = 80 mA typ., as described in Section 5.2.1 ). In LCM, to achieve a smooth transition from discontinuous to continuous operation, i.e. from pulse skipping to constant frequency working mode, the inductor should be selected assuming a target current ripple close to ISKIP. VOUT VOUT ⋅ 1 − VIN L= ISKIP ⋅ FSW (6) In low noise mode (LNM) the inductance value is typically selected in order to keep the current ripple in the range 20% - 40% of the maximum DC output current. However, in order to prevent the sub-harmonic instability in the peak current mode control loop, a fixed slope compensation mechanism is implemented in L7983 by adding a current ramp to the sensed current (see Figure 4). This approach is effective if the inductor current ripple, in the expected input voltage range, is comparable with the above-mentioned added slope. In conclusion, Eq. (6) is the reference design equation for inductor selection, independent of selected working mode (LNM or LCM). 5.7.3 Output capacitor selection In LNM working mode, the current in the output capacitor has a triangular waveform which generates a voltage ripple across it. This ripple is due to the capacitive component (charge and discharge of the output capacitor) and the resistive component (due to the voltage drop across its ESR). The output capacitor must be selected in order to have a voltage ripple compliant with the application requirements. The amount of the voltage ripple can be estimated starting from the current ripple obtained by the inductor selection. Assuming ∆IL is the inductor current ripple, the output voltage ripple is roughly estimated by Eq. (7). ΔIL ΔVOUT, PP, LNM ≈ ΔIL ⋅ RES, OUT + 8 ⋅ FSW ⋅ COUT (7) The ESR contribution is usually negligible in case of multi-layer ceramic capacitor (MLCC), which is the most common choice for the L7983 typical solution. Neglecting the ESR contribution, the minimum value of the output capacitor to guarantee the target output voltage ripple specification in LNM is estimated by: DS13354 - Rev 1 page 23/43 L7983 Application design guidelines ΔIL COUT, LNM ≥ 8 ⋅ FSW ⋅ ΔVOUT, PP, LNM (8) In case of light load and LCM working mode, the theoretical output voltage ripple is estimated by: 2 L ∙ ISKIP VIN ΔVOUT, PP, LCM = ∙ 2 ⋅ COUT VOUT ∙ VIN − VOUT (9) The output capacitor selection is important also to guarantee the control loop stability. A minimum capacitance value is necessary to limit the system bandwidth, FBW. A reasonable limit for FBW is the minimum between FSW/8 and 150 kHz, which provides the following design equation: 0.8 A COUT, BW ≥ FBW, MAX ⋅ VOUT (10) In the peak current mode architecture, working in LNM, there is a close relationship between the programmed inductor peak current and the error amplifier input error (i.e. the difference between the output voltage sensed on the FB pin and the internal reference voltage, VREF). During a load transient, ΔIOUT, the theoretical loop response depends on output capacitor and designed system bandwidth: ∆ VOUT, LTR ≈ ∆ IOUT 2π ∙ FBW ⋅ COUT (11) The L7983 implements a fixed integrated compensation network so the output capacitor selection, as highlighted by Eq. (10), directly impacts the system bandwidth and, at the end, also the expected load transient performance as described by Eq. (11). The above listed design suggestions are summarized in Table 8 below which considers the most common voltage conversions. Table 8. Reference applications – VIN = 24 V, CIN = 1 µF, CVCC = 470 nF VOUT [V] 1.5 3.3 5 12 5.7.4 FSW [kHz] L [µH] COUT [µF] RFSW [kΩ] 200 100 22 1.8 500 33 10 5.6 1000 22 4.7 0 200 220 10 1.8 500 68 4.7 5.6 1000 47 2.2 0 1500 22 2.2 18 200 330 6.8 1.8 500 100 3.3 5.6 1000 47 2.2 0 2200 22 2.2 56 200 330 3.3 1.8 500 150 2.2 5.6 1000 68 1 0 2200 33 1 56 RU [kΩ] RD [kΩ] 43 56 VBIAS = GND 180 62 L7983PU33R to avoid RU and RD. VBIAS = VOUT 300 62 L7983PU50R to avoid RU and RD. VBIAS = VOUT 510 39 VBIAS = VOUT Note Layout considerations The PCB layout of the switching DC-DC regulators minimizes the noise injected in high impedance nodes and interference generated by the high current switching loops. DS13354 - Rev 1 page 24/43 L7983 Application design guidelines In a step-down converter, the input loop (including the input capacitor, the DC-DC regulator and ground connection) is the most critical one due to high value pulsed currents flowing through it. In order to minimize the EMI, this loop must be as short as possible with an adequate input capacitor placed very close to L7983 VIN and GND (pin 8 and 10 respectively). The feedback pin (FB) connection to the external resistor divider is a high impedance node, so the interference can be minimized by placing the routing of the feedback node as far as possible from the high current paths. To reduce the pick-up noise, the resistor divider must be placed very close to the device. Thanks to the exposed pad of the device, the ground plane helps to reduce the junction to ambient thermal resistance, so a wide ground plane enhances the thermal performance of the converter, allowing the high-power conversion. Refer to Section 6 Evaluation board for an example of the PCB layout. 5.7.5 Thermal considerations The thermal design prevents the thermal shutdown of the device if junction temperature goes above 165 °C (typ.). The three different sources of losses within the device are: • Conduction losses due to the non-negligible RDS(on) of the integrated power switches; these are equal to 2 2 PCOND = RHS, ON ∙ D ∙ IOUT + RLS, ON ∙ 1 − D ∙ IOUT (12) where D is the duty cycle of the application and RHS,ON and RLS,ON are the maximum resistance overtemperature of the power switches. Note that the duty cycle is theoretically given by the ratio between VOUT and VIN but actually it is higher in order to compensate the losses of the regulator, so the conduction losses increase compared with the ideal case; • Switching losses due to power MOSFETs turn-ON and OFF; these can be calculated as: PSW = VIN ∙ IOUT ∙ TRISE + TFALL ∙ FSW = VIN ∙ IOUT ∙ TTR ∙ FSW 2 (13) where TRISE and TFALL are the overlap times of the voltage across the high-side power switch (VDS) and the current flowing into it during turn-ON and turn-OFF phases. TTR is the equivalent switching time. For this device the typical value for the equivalent switching time is 10 ns. • Quiescent current losses, calculated as follows: PQ = VIN ∙ IQVIN + VBIAS ∙ IQVBIAS (14) where IQVIN and IQVBIAS are the L7983 quiescent currents in case of separate bias supply. If VBIAS = VOUT the L7983 power conversion efficiency ηL7983 must be included in the previous equation: VBIAS 1 PQ VBIAS = VOUT = VIN ∙ IQVIN, VBIAS = 3.3V +   ∙ ηL7983 VIN (15) ∙ IQVBIAS,  VBIAS = 3.3V If the switch-over feature is not used the total quiescent current losses are represented by: PQ VBIAS = GND = VIN ∙ IQVIN, VBIAS = GND (16) PLOSS = PCOND + PSW + PQ (17) T J = TA + PLOSS ∙ RTH, JA (18) The L7983 total power losses are given by: The junction temperature TJ can be estimated with the following equation: where TA is the ambient temperature. RTH,JA is the equivalent thermal resistance junction to ambient of the device; it can be calculated as the parallel of many paths of heat conduction from the junctions to the ambient. For this device the path through the exposed pad is the one conducting the largest amount of heat. The RTH.JA measured on the demonstration board described in the following section is about 50 °C/W. DS13354 - Rev 1 page 25/43 L7983 Evaluation board 6 Evaluation board 6.1 Schematic and PCB layout Figure 22. Evaluation board schematic TP5 LX R9 1 1 VOUT TP4 GND R10 3 VCC R3 C3 2 470nF FSW 4 LNM-LCM 5 VOUT/FB VBIAS LX VCC VIN FSW LNM/LCM R8 R4 GND EN/UVLO EP RESET C4 10 L1 9 8 VOUT VIN 7 C1 1uF 6 TP2 VIN C2 VIN VIN 11 100k TP3 VOUT R1 1 1 VBIAS 100nF R2 L7983 1 U1 C6 R5 100k ENABLE + C10 1 LNM-LCM C5 NM DS13354 - Rev 1 100k ENABLE 1 VBIAS R6 R7 TP8 GND TP9 RESET 1 TP7 LNM-LCM TP12 VBIAS 1 VCC 1 TP11 VCC VIN 1 TP6 ENABLE 1 TP1 GND RESET N.M. page 26/43 L7983 Schematic and PCB layout Figure 23. PCB layout (Top) DS13354 - Rev 1 Figure 24. PCB layout (Bottom) page 27/43 L7983 L7983PUR - Evaluation board 6.2 L7983PUR - Evaluation board In this section the L7983PUR (adjustable VOUT) evaluation board is described. The board schematic is shown in Figure 22 and the PCB layout is depicted in Figure 23 and Figure 24. The main features are: • Programmed VOUT = 12 V • Max. IOUT = 300 mA • Selected FSW = 1 MHz • VBIAS = VOUT (switch-over enabled) Table 9. L7983PUR evaluation board component list (BOM) Reference Part Package Details Manufacturer P/N C1 1 μF 1206 X7R/100V/10% TDK C3216X7R2A105K C2 1 μF 1206 X7R/100V/10% TDK C3216X7R2A105K 0603 X7R/16V/10% C3 470 nF C4, C5, C10 N.M. C6 100 nF 0603 X7R/16V/10% L1 68 μH 4x4 mm 0.46 A sat/ 950 mΩ R1 510 kΩ 0603 1% tolerance R2 39 kΩ 0603 1% tolerance R3, R7 N.M. R4, R9, R10 0 0603 R5, R6, R8 100 kΩ 0603 U1 L7983 DFN10_3x3 COILCRAFT LPS4018-683M 1% tolerance STM L7983PUR Figure 25. 12 V efficiency (LCM) Figure 26. 12 V load regulation (LCM) 100 12.1 90 18V 70 60 18V 50 40 24V 30 36V 20 48V 10 60V 0 0.0001 0.001 0.01 Output current [A] DS13354 - Rev 1 0.1 Output voltage [V] Efficiency % 80 12.05 24V 36V 12 48V 60V 11.95 11.9 11.85 0 0.05 0.1 0.15 0.2 0.25 0.3 Output current [A] page 28/43 L7983 L7983PUR - Evaluation board Figure 27. 12 V efficiency (LNM) Figure 28. 12 V load regulation (LNM) 100 11.92 90 11.91 Output voltage [V] 70 60 18V 50 24V 40 36V 30 48V 20 60V 10 11.9 11.89 11.88 18V 11.87 24V 11.86 36V 11.85 48V 11.84 60V 11.83 0 0 0.05 0.1 0.15 0.2 0.25 0 0.3 0.05 0.1 Figure 29. 12 V input current - LCM 7 Input current [mA] Shutdown 40 30 20 10 IIN 6 1030 FSW 5.5 1020 5 4.5 1010 4 1000 3.5 3 990 2.5 2 25 30 35 40 45 Input voltage [V] 0.3 1040 6.5 Quiescent 50 Input current [uA] 0.25 Figure 30. 12 V input current and FSW - LNM 60 DS13354 - Rev 1 0.2 Output current [A] Output current [A] 0 20 0.15 50 55 60 Switching frequency [kHz] Efficiency % 80 980 20 25 30 35 40 45 50 55 60 Input voltage [V] page 29/43 L7983 L7983PU33R - Evaluation board 6.3 L7983PU33R - Evaluation board In this section the L7983PU33R (VOUT=3.3 V fixed) evaluation board is described. The board schematic is shown in Figure 22 and the PCB layout is depicted in Figure 23 and Figure 24. The main features are: • Programmed VOUT = 3.3 V (fixed) • Max. IOUT = 300 mA • Selected FSW = 1 MHz • VBIAS = VOUT (switch-over enabled) Table 10. L7983PU33R evaluation board component list (BOM) Reference Part Package Details Manufacturer P/N C1 1 μF 1206 X7R/100V/10% TDK C3216X7R2A105K C2 2.2 μF 0805 X7R/16V/10% TDK C2012X7R1C225K 0603 X7R/16V/10% C3 470 nF C4, C5, C10 N.M. C6 100 nF 0603 X7R/16V/10% L1 47 μH 4x4 mm 0.56 A sat/ 650 mΩ R1, R4, R9 0Ω 0603 R2, R3, R7, R10 N.M. R5, R6, R8 100 kΩ 0603 U1 L7983 DFN10_3x3 1% tolerance STM L7983PU33R Figure 31. 3.3 V fix efficiency (LCM) Figure 32. 3.3 V fix load regulation (LCM) 3.37 90 3.36 80 Efficiency % 70 60 50 12 V 40 24 V 30 36 V 20 48 V 10 60 V 3.35 12V 3.34 24V 3.33 36V 0.001 0.01 0.1 48V 3.32 60V 3.31 3.3 3.29 Output current [A] DS13354 - Rev 1 Output voltage [V] 100 0 0.0001 COILCRAFT LPS4018-473M 0 0.05 0.1 0.15 0.2 0.25 0.3 Output current [A] page 30/43 L7983 L7983PU33R - Evaluation board Figure 33. 3.3 V fix efficiency (LNM) Figure 34. 3.3 V fix load regulation (LNM) 100 3.35 90 3.34 Output voltage [V] 70 60 12V 50 40 24V 30 36V 20 48V 10 60V 0 12V 3.33 24V 36V 3.32 48V 3.31 60V 3.3 3.29 0 0.05 0.1 0.15 0.2 0.25 0 0.3 0.05 0.1 0.15 0.2 Figure 35. 3.3 V fix input current, no load (LCM) Figure 36. 3.3 V fix input current, no load (LNM) 20 4 1200 18 IIN 16 Quiescent 14 Shutdown 3.5 Input current [mA] Input current [µA] 0.3 Output current [A] Output current [A] 12 10 8 6 4 2 1000 FSW 3 800 2.5 600 2 400 1.5 200 1 0 0 10 10 15 20 25 30 35 40 Input voltage [V] DS13354 - Rev 1 0.25 45 50 55 Switching frequency [kHz] Efficiency % 80 15 20 25 30 35 40 45 50 55 60 60 Input voltage [V] page 31/43 L7983 L7983PU50R - Evaluation board 6.4 L7983PU50R - Evaluation board In this section the L7983PU50R (VOUT = 5 V fixed) evaluation board is described. The board schematic is shown in Figure 22 and the PCB layout is depicted in Figure 23 and Figure 24. The main features are: • Programmed VOUT = 5 V (fixed) • Max. IOUT = 300 mA • Selected FSW = 1 MHz • VBIAS = VOUT (switch-over enabled) Table 11. L7983PU50R evaluation board component list (BOM) Reference Part Package Details Manufacturer P/N C1 1 μF 1206 X7R/100V/10% TDK C3216X7R2A105K C2 2.2 μF 0805 X7R/16V/10% TDK C2012X7R1C225K 0603 X7R/16V/10% C3 470 nF C4, C5, C10 N.M. C6 100 nF 0603 X7R/16V/10% L1 47 μH 4x4 mm 0.56 A sat/ 650 mΩ R1, R4, R9 0Ω 0603 R2, R3, R7, R10 N.M. R5, R6, R8 100 kΩ 0603 U1 L7983 DFN10_3x3 1% tolerance STM L7983PU50R Figure 37. 5 V fix efficiency (LCM) Figure 38. 5 V fix load regulation (LCM) 100 5.1 90 60 12 V 50 40 24 V 30 36 V 20 48 V 10 60 V Output voltage [V] Efficiency % 70 24V 5.06 36V 48V 5.04 60V 5.02 5 4.98 0 0.001 0.01 Output current [A] DS13354 - Rev 1 12V 5.08 80 0 0.0001 COILCRAFT LPS4018-473M 0.05 0.1 0.15 0.2 0.25 0.3 0.1 Output current [A] page 32/43 L7983 L7983PU50R - Evaluation board Figure 40. 5 V fix load regulation (LNM) 100 5.07 90 5.06 80 5.05 70 60 12V 50 24V 40 36V 30 48V 20 60V Output voltage [V] 12V 24V 5.04 36V 5.03 48V 5.02 60V 5.01 5 4.99 10 4.98 0 0 0.05 0.1 0.15 0.2 0.25 0 0.3 0.05 0.1 0.2 0.25 0.3 Output current [A] Output current [A] Figure 41. 5 V fix input current, no load (LCM) Figure 42. 5 V fix input current, no load (LNM) 35 30 Quiescent 25 Input current [mA] Input current [µA] 0.15 Shutdown 20 15 10 4 1200 3.5 1000 3 800 2.5 600 2 1.5 IIN 400 FSW 200 5 0 10 1 15 20 25 30 35 40 Input voltage [V] DS13354 - Rev 1 45 50 55 60 Switching frequency [kHz] Efficiency % Figure 39. 5 V fix efficiency (LNM) 0 10 15 20 25 30 35 40 45 50 55 60 Input voltage [V] page 33/43 L7983 Package information 7 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS13354 - Rev 1 page 34/43 L7983 DFN10 (3 x 3 x 0.8 mm) package information 7.1 DFN10 (3 x 3 x 0.8 mm) package information Figure 43. DFN10 (3 x 3 x 0.8 mm) package outline BOTTOM VIEW SIDE VIEW TOP VIEW DS13354 - Rev 1 page 35/43 L7983 DFN10 (3 x 3 x 0.8 mm) package information Table 12. DFN10 (3 x 3 x 0.8 mm) mechanical data SYMBOL Dimensions (mm) Min. Typ. Max. A 0.70 0.75 0.80 A1 0.0 0.02 0.05 A3 b 0.20 Ref. 0.16 D D2 0.23 0.28 3.00 BSC 0.27 0.42 e 0.50 BSC E 3.0 BSC 0.52 E2 0.63 0.78 0.88 L 0.30 0.40 0.50 K 0.20 N 10 NE 5 Figure 44. DFN10 (3 x 3 x 0.8 mm) recommended footprint DS13354 - Rev 1 page 36/43 L7983 Ordering information 8 Ordering information Table 13. Order codes DS13354 - Rev 1 Part numbers Output voltage L7983PUR Adjustable L7983PU33R Fixed 3.3 V L7983PU50R Fixed 5.0 V Package Packaging DFN10 Tape and reel page 37/43 L7983 Revision history Table 14. Document revision history DS13354 - Rev 1 Date Revision 01-Oct-2020 1 Changes Initial release. page 38/43 L7983 Contents Contents 1 Application schematic and block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Pin settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.1 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.2 Control loop and voltage programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.2.1 5.3 Switching frequency programming and dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.4 Enable and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.5 VCC and switchover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.6 Fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.7 6 LNM/LCM selection and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.6.1 Overcurrent protection (OCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.6.2 Overvoltage protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.6.3 Overtemperature protection (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Application design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.7.1 Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.7.2 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.7.3 Output capacitor selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.7.4 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.7.5 Thermal considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 6.1 Schematic and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.2 L7983PUR - Evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.3 L7983PU33R - Evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DS13354 - Rev 1 page 39/43 L7983 Contents 6.4 7 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 7.1 8 L7983PU50R - Evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DFN10 (3x3) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 DS13354 - Rev 1 page 40/43 L7983 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended operating conditions. . . . . . . . . . . . . . . . . . . . . Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FSW pin programming resistor . . . . . . . . . . . . . . . . . . . . . . . . Reference applications – VIN = 24 V, CIN = 1 µF, CVCC = 470 nF. L7983PUR evaluation board component list (BOM) . . . . . . . . . . L7983PU33R evaluation board component list (BOM) . . . . . . . . L7983PU50R evaluation board component list (BOM) . . . . . . . . DFN10 (3 x 3 x 0.8 mm) mechanical data . . . . . . . . . . . . . . . . . Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS13354 - Rev 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 5 . 5 . 5 . 6 . 7 15 24 28 30 32 36 37 38 page 41/43 L7983 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. DS13354 - Rev 1 Typical application circuit . . . . . . . . . . . . . . . . . Block diagram . . . . . . . . . . . . . . . . . . . . . . . . Pin connection (top view) . . . . . . . . . . . . . . . . . Control loop block diagram. . . . . . . . . . . . . . . . Output voltage programming - adjustable version Output voltage programming - fixed version . . . . LNM selected, no load . . . . . . . . . . . . . . . . . . . LCM selected, no load . . . . . . . . . . . . . . . . . . . LCM selected, 10 mA load . . . . . . . . . . . . . . . . LCM selected, 50 mA load . . . . . . . . . . . . . . . . LCM to LNM transition, no load. . . . . . . . . . . . . RVCC = 0 Ω, dithering enabled, no load. . . . . . . RVCC = 0 Ω, dithering enabled, no load. Detail. . Turn-on example. . . . . . . . . . . . . . . . . . . . . . . Turn-off example. . . . . . . . . . . . . . . . . . . . . . . Input voltage turn-on threshold programming . . . Output voltage and RST behavior . . . . . . . . . . . Peak current limit . . . . . . . . . . . . . . . . . . . . . . Valley current limit. . . . . . . . . . . . . . . . . . . . . . Negative current limit example . . . . . . . . . . . . . Overvoltage protection. . . . . . . . . . . . . . . . . . . Evaluation board schematic . . . . . . . . . . . . . . . PCB layout (Top). . . . . . . . . . . . . . . . . . . . . . . PCB layout (Bottom) . . . . . . . . . . . . . . . . . . . . 12 V efficiency (LCM) . . . . . . . . . . . . . . . . . . . 12 V load regulation (LCM). . . . . . . . . . . . . . . . 12 V efficiency (LNM) . . . . . . . . . . . . . . . . . . . 12 V load regulation (LNM). . . . . . . . . . . . . . . . 12 V input current - LCM . . . . . . . . . . . . . . . . . 12 V input current and FSW - LNM . . . . . . . . . . 3.3 V fix efficiency (LCM) . . . . . . . . . . . . . . . . . 3.3 V fix load regulation (LCM) . . . . . . . . . . . . . 3.3 V fix efficiency (LNM) . . . . . . . . . . . . . . . . . 3.3 V fix load regulation (LNM) . . . . . . . . . . . . . 3.3 V fix input current, no load (LCM). . . . . . . . . 3.3 V fix input current, no load (LNM). . . . . . . . . 5 V fix efficiency (LCM) . . . . . . . . . . . . . . . . . . 5 V fix load regulation (LCM) . . . . . . . . . . . . . . 5 V fix efficiency (LNM) . . . . . . . . . . . . . . . . . . 5 V fix load regulation (LNM) . . . . . . . . . . . . . . 5 V fix input current, no load (LCM) . . . . . . . . . . 5 V fix input current, no load (LNM) . . . . . . . . . . DFN10 (3 x 3 x 0.8 mm) package outline . . . . . . DFN10 (3 x 3 x 0.8 mm) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 3 . 4 10 11 11 12 13 13 14 14 16 16 17 18 18 19 20 20 21 22 26 27 27 28 28 29 29 29 29 30 30 31 31 31 31 32 32 33 33 33 33 35 36 page 42/43 L7983 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DS13354 - Rev 1 page 43/43
L7983PU33R 价格&库存

很抱歉,暂时无法提供与“L7983PU33R”相匹配的价格&库存,您可以联系我们找货

免费人工找货
L7983PU33R
  •  国内价格 香港价格
  • 1+24.078581+2.98694
  • 10+21.6272210+2.68285
  • 25+20.4465725+2.53639
  • 100+17.72158100+2.19836
  • 250+16.81294250+2.08564
  • 500+15.08609500+1.87143
  • 1000+12.723191000+1.57831

库存:7903