0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L9663-1

L9663-1

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VQFN28

  • 描述:

    IC INTFACE SPECIALIZED 28VFQFPN

  • 数据手册
  • 价格&库存
L9663-1 数据手册
L9663 Automotive PSI5 Transceiver IC Datasheet - production data  Short to ground tolerant with ±1.5 V ground shift  32-bit SPI interface with address multiplexing  Operating voltage: VB = 4.8 V (5.2 V for sync pulses with 3.5 V step) to 35 V  Ambient temperature range: -40°C to 140 °C  Package: VFQFPN28 or TQFP32EP *$3*36 *$'*36 VFQFPN28 TQFP32 (Exposed pad down) Description The Peripheral Sensor Interface (PSI5) is an interface for automotive sensor applications. PSI5 is an open standard based on existing sensor interfaces for peripheral sensors and offers a universal and flexible solution for multiple sensor applications. Features  AEC-Q100 qualified  2-channel PSI5 transceiver compatible with rev. 1.3 and rev. 2.x The PSI5 interface allows asynchronous or synchronous operations and different bus modes. The device is compatible with both v1.3 and v2.x PSI5 revisions (limitations are specified inside this document). It operates with a wide range of sensor supply current and variable data word length (8 to 28 bit).  Manchester coded digital data transmission  High data transmission speed of 125 kbps (optional 83.3 kbps and 189 kbps)  High EMC robustness and low emission  Bootstrap circuits for sync pulses  Current limitation and voltage clamp on interface pins  Integrated charge pump stage for preregulation with spread spectrum approach  Integrated FLL module for high accuracy timing control  Reverse voltage protection structure The sensors are connected to the ECU using the same line for power supply and data transmission. The transceiver IC provides a preregulated voltage to the sensors and reads in the transmitted sensor data. The PSI5 interface allows either point to point connection or bussed mode. Table 1. Device summary Order code L9663 L9663-TR L9663-1 L9663-TR-1 July 2019 This is information on a product in full production. Package TQFP32 (Exposed pad) VFQFPN28 DS11401 Rev 5 Packing Tray Tape & Reel Tray Tape & Reel 1/105 www.st.com Contents L9663 Contents 1 2 3 2/105 Overall description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Main functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 VQFPN28 pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 TQFP32 pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.5 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Detailed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7 Power up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Internal supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 VAS supply and pre-regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Voltage supply for synchronous pulse generation VSYNCx 2.4 Power supply for PSI5 sensor line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Frequency references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Reset handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 . . . . . . . . . . . . . . . . 19 Satellite interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 Receiver with digital sampling and filtering . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Manchester decoder and error detection . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Receive block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 PSI5 receive register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 Sensor data buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.3 Interrupt generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.4 Automatic storage of sensor initialization data . . . . . . . . . . . . . . . . . . . 33 3.4 Upstream data buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Trigger pulse generator for synchronous pulses . . . . . . . . . . . . . . . . . . . 36 3.6 Synchronous pulse generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 Safety concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7.1 Voltage monitoring check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7.2 Sensor data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7.3 Buffer empty check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DS11401 Rev 5 L9663 4 5 Contents DOUTx path check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7.5 Cross coupling test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1 PSIx output voltage clamping circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 PSIx output under voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 PSIx short circuit detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 PSIx reverse voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 VAS under/over voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.6 Monitoring of Synchronous Pulse amplitude . . . . . . . . . . . . . . . . . . . . . . 45 Communication interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1 Device registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3 6 3.7.4 5.2.1 Physical layer and signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2.2 Clock and data characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2.3 Frame definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.4 Communication frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Direct interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7 Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 9 8.1 TQFP32 (7x7x1.0 mm exp. pad down) package information . . . . . . . . . 100 8.2 VFQFPN-28 (5x5x1.0 mm) package information . . . . . . . . . . . . . . . . . . 102 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 DS11401 Rev 5 3/105 3 List of tables L9663 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. 4/105 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VQFPN28 pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 TQFP32 pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Time (t0-t2) vs SensorData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Error codes in sensor communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Faults priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Time (t0-t7) vs SensorData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Doutx test mode bit value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 VINTx internal supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 VAS supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 VAS external MOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 VAS pre regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 VSYNCx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 PSI5 output supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 PSI5 receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Sync generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 VAS under/over voltage monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Synchronous pulse amplitude monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Time slot monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Frequency references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI communication timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Direct interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 TQFP32 (7x7x1.0 mm exp. pad down) package mechanical data . . . . . . . . . . . . . . . . . . 101 VFQFPN-28 (5x5x1.0 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 DS11401 Rev 5 L9663 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 VQFPN28 pins connection diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 TQFP32 pins connection diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Detailed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Supply line model for PSI5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power-up sequence of transceiver IC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Internal power supply and reset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Input structure of supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 VAS application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Block diagram Transceiver 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Internal oscillator vs external clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 FLL clock error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Block diagram of incoming data buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PSI5 v1.3 frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 PSI5 v2.0 frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Sensor buffer in synchronous mode diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Sensor buffer in asynchronous mode diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Block diagram with interrupt pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ECU to sensor communication diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Short (in case 1 µs < tw < 5 µs) Sync Pulse trigger, compliant to PSI5 standard . . . . . . . . 38 Timing for PSIx under voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Timing for PSIx reverse voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Timing for VAS under voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Timing for sync pulse voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Operation on internal register (with upstream data buffer) . . . . . . . . . . . . . . . . . . . . . . . . . 85 Init data reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Sensor data reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Sync generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 SPI communication timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 TQFP32 (7x7x1.0 mm exp. pad down) package outline. . . . . . . . . . . . . . . . . . . . . . . . . . 100 VFQFPN-28 (5x5x1.0 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 DS11401 Rev 5 5/105 5 Overall description L9663 1 Overall description 1.1 Simplified block diagram Figure 1. Simplified block diagram 6\QFSXOVH VXSSO\ 36,,& 9DVSUH UHJXODWRU ,QWHUQDOVXSSO\ 32:(56833/< 75$16&(,9(5 2XWSXWOLQHYROWDJH PRQLWRULQJ EDFNWR EDFN 6\QFKURQRXV SXOVHJHQHUDWRU 36, FXUUHQW OLPLWDWLRQ JDWH GULYHU 6 5HFHLYHU 75$16&(,9(5 36, 6 6 6 7HVWORJLF 5$0UHJLVWHU IRUVHQVRUGDWD 0DQFKHVWHU 'HFRGHU 'LDJQRVLV 6\QFSXOVH WULJJHU 8SVWUHDP GDWDEXIIHU &RQILJXUDWLRQ UHJLVWHU ',*,7$ /6(&7,21 &20081,&$7,21,17(5)$&(6 63, ,QWHUIDFH 'LUHFW ,QWHUIDFH 5HVHW&RQWURO *$3*36 6/105 DS11401 Rev 5 L9663 1.2 Overall description Main functionality The transceiver IC can be used in two different modes (Mode 1 or Mode 2)(a) . The system configuration called Mode 1 performs the decoding effort of sensor signals in the IC. The system configuration called Mode 2 is a front-end to a PSI5 decoder contained in an external device (typically a µC with a dedicated module). The transceiver IC can monitor all internally generated relevant voltages, such as VSYNCx VAS and V_PSIx. The PSI5 interfaces inside the IC are supplied by a separate input pin VAS. If only asynchronous mode is required, the VAS voltage is sufficient for the sensor power supply. When synchronous mode is required, a higher voltage than VAS is needed in order to generate the synchronous pulses. This voltage VSYNCx is generated by a dedicated bootstrap circuit for each channel. For direct supply from battery, the transceiver IC includes a VAS pre-regulator supplied by VASSUP-pin: the pre-regulator can drive an external FET to regulate the VAS voltage to 7.6 V or 5.3 V. In case of low voltage level at VASSUP, an integrated charge pump is implemented, with supply from VASSUP. The internal analog and digital circuits are supplied by VB. The external voltage on VDD pin is used to supply the digital output pins; VDD pin can be used to switch the digital outputs from 5 V output level (default) to 3.3 V output level. The PSI5 transceiver is functional in the whole VDD, VB, VASSUP and VAS power supply range. The internal voltage supplies (VSYNCx) are automatically activated by the transceiver IC depending on the operating mode whenever they are needed. Each transceiver interface can be activated and deactivated by an SPI command. At startup, the interfaces are off by default. The communication interface block includes two different interfaces. In mode 1, SPI is used for data transfer. In mode 2, the direct interface is used. The data from and to the sensors will be transmitted bit-wise between the transceiver IC and the µC. The data evaluation and error handling for frame errors will be done in the PSI5 controller which is integrated in the µC. Transceiver 1 and 2 supply the sensors and generate the synchronous pulses for synchronous data transfer (if required) from the sensors to the transceiver and for data transfer from the ECU to the sensors. A data transfer from the ECU to the sensors can be performed:  by using sync pulses with different duration (PSI5 2.x standard)  by masking of sync pulses (PSI5 1.3 and 2.x standard) The sync pulse trigger can be generated by an SPI command, by a dedicated pin (for connection to the Synchronous Pulse Output Block included in the microcontroller) or by an integrated automatic timer. a. Mode 1 and Mode 2 are two system architectures which relate on the way L9663 communicates with the microcontroller. Depending on the chosen architecture, the µC must configure the IC with the correct setup. DS11401 Rev 5 7/105 104 Overall description L9663 The Transceivers 1 and 2 limit the current and the PSIx voltage (PSI5-requirement when VAS is too high because of failure in the VAS power supply, less than 11 V in data transmission or less than 16.5 V in sync pulse). The current modulated signal received from sensor is detected and digitally converted. This sensor data will then either be: 8/105  First Manchester decoded by the Manchester Decoder block with mark space error correction and then transferred to the "receive data buffer" module (Mode 1). The data from the new sensor frames will be saved in a buffer and then will be transferred to the µC via SPI.  Transferred directly to the µC (Mode 2). In this case the output of the transceiver is a Manchester-coded signal without error correction that falls under microcontroller responsibility. DS11401 Rev 5 L9663 VQFPN28 pins description 0,62 9'' '*1' 9,17' 70 5(6(71 &6 Figure 2. VQFPN28 pins connection diagram (top view)         026, &/.,1   1& 6N@ & &5&/6% 'DWD06% 'DWD/6% 36,)UDPHS ELW 'DWD5HJLRQ N ELW 6 6 ' '>N@ '>N@ & & &5&RUSDULW\ ELW 6WDUWELWV ELW *$3*36 Figure 15. PSI5 v2.0 frame 6 6 6WDUWELWV ELW 28/105 ' ' ' 0 0 ) 0HVVDJLQJ RSWLRQDO ELW )>T@ )UDPHFRQWURO RSWLRQDO ELW ( (>U@ 6WDWXV RSWLRQDO RUELW % % %>P@ 3D\ORDG'DWD5HJLRQ RSWLRQDO P «ELW ELWJUDQXODULW\ DS11401 Rev 5 $ '>N@ '>N@ '>N@ $>Q@ $>Q@ 3D\ORDG'DWD5HJLRQ Q «ELW ELWJUDQXODULW\ $>Q@ & &5&/6% 'DWD5HJLRQ N ELW &5&06% 'DWD06% 'DWD/6% 36,)UDPHS ELW & & &5&RUSDULW\ ELW *$3*36 L9663 Satellite interface In case of PSI5 v2.x, the length of the data region can vary between k = 10 … 28 bits, with 1-bit granularity. The data region can be split into the following fields and regions:  Signal payload region 1 with data bits A0 … A[n-1] (scalable n = 10…24 with 1-bit granularity)  Signal payload region 2 with data bits B0 … B[m-1] (scalable m = 0…12 with 1-bit granularity)  Sensor status E0.. E[r-1] (optional r = 0, 1 or 2 bit) –  Frame control, type of frame F0, …F[q-1] (optional q = 0, 1, 2, 3 or 4 bit) –  This optional status bit can be used to show that the data of the current frame are faulty. This frame control can be used to number the frames which are sent after a sync pulse. Serial (slow) messaging channel (optional) M0, M1 (optional 0 or 2 bit) Time slot monitoring The time slot monitoring is active only in synchronous mode. The time slot monitoring is required to check if the sensors connected to the transceiver work properly in terms of timing, i.e. if they are sending data frames within their defined time slot. Basic features:  3 configurable modes  Failure bit During a synchronous pulse period (TSYNC), a maximum number of 6 frames can be configured. Each frame has its own time slot, to be configured through dedicated configuration registers. The registers contain the reference time needed to check if the sensor data is transmitted during the defined time slot. The resolution of time slots is 1 µs. The time slot monitoring timings are applied starting from the internal sync pulse trigger. This internal trigger falls td_SPI (or td_SYNC, depending on sync pulse trigger configuration) after the external one (via SPI or SYNC pin). Three different configurations for the time slot monitoring are available:  Standard configuration: monitoring the correct start and end time of a unique frame within a time slot  Simple configuration: monitoring only the end time of a frame within a time slot  No monitoring configuration: monitoring is disabled and data are stored in successive slots. The time slot monitoring can be activated/deactivated separately for each interface (registers CHx_CR1, bits TSMx_SEL). In case of standard configuration, the IC accepts as valid frame in a timeslot only a frame which starts and ends within its timeslot; if more than one valid frame is received within its timeslot, only the last one received is kept. On the other side, in case frames span across slots, the frame is discarded and the error code 1FC (timing violation) is stored in the correspondent buffer; in this case the decoder is reset at every slot start. After this reset if a frame was being decoded, a slot error is set in the previous slot but no slot error is set. Then the Manchester FSM after reset checks again DS11401 Rev 5 29/105 104 Satellite interface L9663 for two valid start bits and so a new incoming frame can be stored without error in the new timeslot. In the simple configuration, the last valid message which ends in a timeslot is stored in the buffer of the slot (so if a frame is currently stored in a timeslot and an incoming frame ends in this timeslot, the old data are overwritten). In this mode slot error is never set. It is also possible to disable the time slot monitoring and in this case, no timing check is done: the first frame is assigned to the first buffer, the second to the second, and so on. This means that the buffer index is incremented every time a frame is received both valid and invalid (Manchester communication error). After reset, the default mode for the time slot monitoring is "monitoring disabled". 3.3.2 Sensor data buffer To avoid loss of data, a data buffer for each PSI5 transceiver is necessary. While the data buffer is being read by SPI, at the beginning of the sensor data transfer the data register is cleared and a new data frame can be accepted. The incoming PSI5 sensor data, together with CRC and SID/GBIT (if selected) are written into a receive buffer, which is large enough to hold the data of one sync pulse cycle (i.e. up to six sensors). In order to avoid data-mixing between different cycle times the data must be fetched by the µC before the next transmission cycle starts. The figure below shows how sensor buffers are updated in synchronous mode. At t0 the buffers contain no data; then a sync pulse is sent and data are received and stored in each register during the cycle time; so at t1/t2 the buffers contain sensors data of the current cycle time. Figure 16. Sensor buffer in synchronous mode diagram 9 36,[ 9 9 VHQVRUGDWD 6 ' 6 ' 6 ' 6 ' 6 ' 6 ' W 6 ' 6 ' 6 ' 6 ' 6 ' 6 ' W W W *$3*36 Table 5. Time (t0-t2) vs SensorData 30/105 Time/Sensor t0 t1 t2 SensorData1 Buffer Empty D11 D12 SensorData2 Buffer Empty D21 D22 SensorData3 Buffer Empty D31 D32 SensorData4 Buffer Empty D41 D42 DS11401 Rev 5 L9663 Satellite interface Table 5. Time (t0-t2) vs SensorData (continued) Time/Sensor t0 t1 t2 SensorData5 Buffer Empty D51 D52 SensorData6 Buffer Empty D61 D62 In case of sensor or channel fault conditions, the following codes are sent in the first 10 bits of the data field. The lower 10 bits are filled with '0'. Table 6. Error codes in sensor communication Error Code Definition 1FC Manchester error (non-valid start bits, incorrect number of bits received, timing violation) 1F8 Parity / CRC error(1) 1F1 Physical layer error (short to ground, leakage to GND, overtemperature, open load) 1F0 Data buffer empty 1F2 Short to battery 1F9 Sync pulse error 1. Used only in case the CRC check computation is assigned to the IC (CRC_CK bit set to 1); otherwise the sensor data will be written in the buffer. If more than one data is present, the faults are handled with this priority scale: Table 7. Faults priority Priority 1 (highest) Data Valid data Fault type Code - - 2 Over Temperature channel 1F1 3 Short To Ground channel 1F1 4 Short To Battery channel 1F2 5 Leakage To Ground channel 1F1 6 Open Load channel 1F1 7 Manchester Error Sensor related 1FC 8 CRC/Parity Error Sensor related 1F8 9 Sync Pulse under voltage (both Slow Vsync detection and sync UV faults) channel 1F9 10 Data Buffer Empty Sensor related 1F0 In synchronous communication mode each sensor (time slot) has its own range in the data buffer. The buffer range content is overwritten if new data arrives before the old data has been read out. DS11401 Rev 5 31/105 104 Satellite interface L9663 If a channel fault occurs, the content of every sensor buffer is affected regardless of the moment inside the timeslots cycle in which the fault occurs. This value will be held until the fault is cleared (reading the appropriate bit in the Status Register) or a fault with higher priority occurs. In asynchronous communication mode a six stages FIFO is implemented: the newest data is always in the data buffer range corresponding to sensor no. 1, the oldest data is in the data buffer range corresponding to sensor no. 6. When the buffer is full, the FIFO shifts the incoming data to keep always the newest data. As soon as the first data is read by SPI, the FIFO will be locked to writing, until it is emptied(e). This situation is reported through SPI bit FIFO_LCK. Figure 17. Sensor buffer in asynchronous mode diagram 36,[ 9 9 VHQVRUGDWD 6 ' W 6 ' W 6 ' W 6 ' W 6 ' W 6 ' W 6 ' W W W *$3*36 Table 8. Time (t0-t7) vs SensorData Time/Sensor t0 t1 t2 t3 t4 t5 t6 t7 SensorData1 Buffer Empty D1 D2 D3 D4 D5 D6 D7 SensorData2 Buffer Empty Buffer Empty D1 D2 D3 D4 D5 D6 SensorData3 Buffer Empty Buffer Empty Buffer Empty D1 D2 D3 D4 D5 SensorData4 Buffer Empty Buffer Empty Buffer Empty Buffer Empty D1 D2 D3 D4 SensorData5 Buffer Empty Buffer Empty Buffer Empty Buffer Empty Buffer Empty D1 D2 D3 SensorData6 Buffer Empty Buffer Empty Buffer Empty Buffer Empty Buffer Empty Buffer Empty D1 D2 If a fault occurs and FIFO is unlocked, the correspondent code is written in the FIFO buffer at the current position; if more than one fault occurs at the same time the fault with the highest priority is written in the FIFO. In both synchronous and asynchronous mode, when a valid data is read, the buffer empty code 1F0 is written in the buffer. e. For the lock of the FIFO see errata n.1526, Section 7: Errata. 32/105 DS11401 Rev 5 L9663 Satellite interface As safety feature, the IC always checks that after a valid data read the code 1F0 is written in the buffer. If this check fails a Buffer Empty Fault is latched (BEx bits in SR2 register) and it's cleared after SPI read. Buffer empty fault asserts also Global Status Bit. In order to allow the µC to test this feature a test of buffer empty check is implemented (see Section 3.7.3 and STSR register for details). 3.3.3 Interrupt generator The microcontroller interrupt module describes the function of the interrupt pins to generate a microcontroller interrupt if the data buffers are filled with sensor data. Basic features:  Configurable interrupt pins  Interrupt generation when data buffer is full The interrupt pins generate an interrupt for the microcontroller if the receive buffer corresponding to a transceiver interface is filled completely: the interrupt pin is then reset when the receive buffer is empty. Asynchronous operation: The interrupt pin is set to high when the number of received data since the last reading of register is as large as the size of the receive buffer. The interrupt pin is set to low when all the buffers are empty. Synchronous operation: The interrupt pin is set to high when all the buffers configured by SPI are full. The interrupt pin is set to low when all the buffers are empty. Figure 18. Block diagram with interrupt pins 5['[ 'RXW[,QWHUUXSW[ PXOWLSOH[HU ,QWHUUXSW[ 63,SURJUDPPLQJ *$3*36 After reset, the output pin is configured as DOUTx. 3.3.4 Automatic storage of sensor initialization data If the sensor uses a data range initialization procedure and the PSI5 payload is 20 bit with 3 frame control bits, 1 status bit, 16 bit data, the device can be configured so that the initialization data is stored in the transceiver IC and can be read via SPI. In case of serial messaging method, the data must be extracted at application layer. DS11401 Rev 5 33/105 104 Satellite interface L9663 Basic features:  Registers for initialization data (up to 8 init data buffer by 16 word available)  Automatic detection of init data  Reading via SPI Figure 19. Timing diagram After the activation of an interface, the transceiver IC can check for incoming sensor initialization data on that interface and store the data for further processing. This behavior is triggered by the configuration bit READ_INIT_DATA on that channel. If the bit is set, an internal FSM checks for IDn and data blocks Dn in the incoming payload data on that interface and stores data in the init buffer id (init_buf_id) of the corresponding frame id at address n-1 in the following format: RegAddr n-1 15 (MSB) 10 additional data from blockid message (6 bits --- 0 bits) 9 6 data block ( 4 bits ) 5 0 (LSB) additional data from data message (6 bits --- 0 bits) The frame control bits allow using up to 8 init data buffers when automatic storage of init data is activated and both interfaces are used (READ_INIT_DATA1 = READ_INIT_DATA2 = 1). In case only one interface is active, the IC can store up to 6 init data on that interface. As specified in PSI5, data nibbles D2 and D3 contain the number of datablock expected for the all init procedure for each particular frame id; when all the init data are received for the engaged sensors (i.e. for the sensors which had sent at least one correct data blocks) on both the interfaces, the init_data_rdy is set and the µC can read all the init data by SPI. During reset, the incoming data buffer is cleared and the counters for each initialization data block are set to "00". 34/105 DS11401 Rev 5 L9663 Satellite interface The interface can be configured both in asynchronous and synchronous mode (in the second case, the number of bits must be the same for all the timeslots). The accepted configuration for init data is based on 20 total bits, as follows: 3.4  16 data bits  1 status bit  3 frame control Upstream data buffer Basic features:  Adapts the signals delivered by Sync Pulse Timer block in order to make possible a bidirectional communication ECU to sensor  Generates the trigger signal necessary for an event triggered sync pulse  Provides the Sync Pulse Trigger signal to the Sync Pulse Generator Figure 20. ECU to sensor communication diagram 'DWDIURPPLFURFRQWUROOHU 6\QFSXOVHWLPHU 7LPHUWULJJHUUHGPRGH 8SVWUHDPGDWDEXIIHU   VKLIWWULJJHU 63,HYHQW WULJJHUHG 6\QFOHQJKW 'LUHFW,)HYHQW WULJJHUHG 6\QFSXOVH JHQ 63,V\QFSXOVH PDVNLQJ *$3*36 The synchronization bits in the ECU to sensor communication must be programmed in the upstream data buffer by the microcontroller. The upstream data buffer has 64 bits. The clock for the register is the output of the Sync Pulse Timer together with the trigger commands via SPI. After each request for a sync pulse, the register is shifted by one and the last bit is fed into the sync pulse trigger generator. Depending on the data length, only a part of the upstream data buffer is used. After the writing of the relevant part of the buffer, the µC writes the upstream data confirm bit in the UDBCR register (bit UDBx_RDY). After this confirmation, the trigger source can start the communication. If these data are sent, the upstream data buffer is ready for new data. This is indicated by the SPI flag UDBx_BUSY='0'. If new data is written to the buffer while UDBx_BUSY is still '1', the write command is ignored and the error flag UDBx_FLT is set. DS11401 Rev 5 35/105 104 Satellite interface L9663 Besides if a new trigger is sent while the buffer is busy, again the command is ignored and the fault bit is set. The buffer register can be reset by writing 0x00FF for channel 1 (respectively 0xFF00 for channel 2) to the SPI register DCR. After such a reset, the module will flag that it is ready for new data. The behaviour of the sync pulse trigger generator then depends on the configuration of the transceiver IC:  In PSI5 1.3 and 2.x mode (tooth gap method), it will mask out (i.e. ignore) the incoming sync pulse trigger if the bit is '0'. The resulting gap is defined to be a '0' in the ECU-tosensor communication.  In PSI5 2.x mode (pulse length method), it will generate a long sync pulse if the bit is '1' and a standard sync pulse otherwise. The transceiver IC provides a transparent interface for ECU-to-sensor communication. This means that any data in the upstream data buffer will directly be transmitted onto the PSIx interface. The CRC calculation and data layer handling are done by the microcontroller. 3.5 Trigger pulse generator for synchronous pulses This module generates the trigger signals for the transceiver interfaces. It has the following sub-modules:  SPI-programmable sync pulse timer  SPI command triggering  2 pins named SYNC1, SYNC2 The module contains the sync pulse trigger generators (one for each transceiver). Basic features:  Generates the sync pulse trigger at the configured time intervals  Generates the sync pulse trigger upon the corresponding command via SPI or discrete SYNCx pins. The trigger pulse generator generates the trigger signal which the sync pulse generator uses as its input. The trigger pulse generator has five different configurations, which can be properly selected via SPI command: 36/105  Triggering via SPI without upstream data buffer. The microcontroller sends the corresponding SPI command for a sync pulse. The sync pulse trigger generator then internally generates the appropriate sync pulses, based on the specific SPI command sent.  Triggering via SPI with upstream data buffer. The microcontroller sends the corresponding SPI command for a sync pulse. Then the sync pulse trigger generator internally generates the appropriate sync pulses, depending on the value in the upstream data buffer.  Triggering via SYNCx pins without upstream data buffer (tooth gap method only). When the SYNCx pin is triggered, the sync pulse trigger generator internally generates the appropriate sync pulses, based on the trigger received on the input pin. DS11401 Rev 5 L9663 Satellite interface  Triggering via SYNCx pins with upstream data buffer. When the SYNCx pin is triggered, the sync pulse trigger generator internally generates the appropriate sync pulses, depending on the value in the upstream data buffer.  Triggering via trigger pulse timer: the transceiver IC automatically generates the sync pulses at fixed time intervals, depending on the value in the upstream data buffer. The default configuration at startup is to use the triggering via SYNCx pins without upstream data buffer. If the triggering with upstream data buffer is used and there aren't data to be sent to the sensor, a short pulse is sent. The switch matrix is configurable by an SPI command. It determines whether the sync pulses are triggered via SPI by the trigger generator (transceiver IC in mode 1) or by the external trigger pins (transceiver IC in mode 2). If the trigger pulse timer is used to generate the sync pulse trigger, the interval between two pulses on interface x is configured by the SPI register SYNC Pulse Timer (SPT). It's possible also to program the delay between interface 1 and interface 2 sync pulses through the SYNC_DELAY_PSI1_PSI2 bits in ADVSET2 register. In case the sync pulse trigger comes from SPI commands or SYNCx pins, the programmed pulse timer still has the functionality of a filtering time with respect to those triggering commands. If full flexibility for the sync pulse interval is required, use direct triggering either via SPI or direct interface. 3.6 Synchronous pulse generator The Synchronous Pulse Generator is designed to generate synchronous pulses conform to PSI5 rev. 1.3 (min Vt2 = 3.5 V) as well PSI5 rev. 2.x (min Vt2 = 2.5 V). The sync pulse is granted according to PSI5 standard with the Ibase current range up to 35 mA. If the pulse trigger generation is configured with an external trigger and without the upstream data buffer, the external source must manage the encoding via SPI CHCNT register (for tooth gap and pulse width methods) or via PIN (tooth gap method only), for what concerns the duration of the sync pulse (i.e. ECU to sensor communication), otherwise the IC manages the encoding (tooth gap or pulse width methods, specified in register GCR1, bit PSIx_TGAP_PW). An automatic hardware based slew rate control (SRC) ensures PSI5 compliant slew rates for the rising and falling edge of the sync pulse for an overall capacitive bus load of 15 to 107 nF. The Sync Pulse is shaped like raised cosine instead of trapezoidal to reduce EMC emission. During the duration of the sync pulse, the corresponding PSI5 receiver is frozen to avoid erroneous data detection. VDD, VAS and VB and other supply voltages are protected against reverse feeding from the sync pulse. The pulse length at PSIx will be generated using the Sync Pulse Trigger Generator. In case of trigger by pin without UDB, the Sync Pulse Generator starts the sync pulse with the positive edge of the trigger signal, after SYNCx pin filter. The duration of the sync pulse DS11401 Rev 5 37/105 104 Satellite interface L9663 is compliant to PSI5 standard (short pulse only) if the duration of the trigger is shorter than 5µs.(f) Figure 21. Short (in case 1 µs < tw < 5 µs) Sync Pulse trigger, compliant to PSI5 standard WZ 60.25) on start bits 0: duty cycle check enabled 1: duty cycle check disabled [9] STBITERR_RST_CNT2: Manchester decoder Bit counter reset upon start bit error 0: start bit error does not reset the counter 1: start bit error resets the counter [8:7] RESERVED [6] BITTIME_H_DET1: Manchester decoder Bit time error detect on PSI1 0: bittime too high error is not detected as error 1: bittime too high error is detected as error [5] PERIOD_M_DIS1: Disable bittime Period measurement for frame decoding on PSI1 0: measurement of start bits period enabled 1: measurement of start bits period disabled 76/105 DS11401 Rev 5 0 L9663 Communication interface [4] STBIT_DC_CK_DIS1: Duty cycle check (DC>0.25) on start bits 0: duty cycle check enabled 1: duty cycle check disabled [3] STBITERR_RST_CNT1: Manchester decoder Bit counter reset upon start bit error 0: start bit error does not reset the counter 1: start bit error resets the counter [2:0] SYNC_DELAY_PSI1_PSI2: SYNC pulse time delay between PSI5 interface 1 and 2 in case of automatic SYNC pulse generation This bit takes effect only in case of automatic generation on both interfaces 000: no delay 001 - 111: 2µs/LSB 0 7 6 5 0 0 0 4 3 0 0 2 1 0 FIXED_THR 1 8 RESERVED 0 9 FREEZE_DIS 0 10 DATA_FILT_SEL 11 BLANKING_SEL 12 TRACKING_SEL 13 FIXED_THR_SEL 14 STG_MASK 15 Advanced Settings 3 RESERVED ADVSET3 (PROG) 0 0 0 Default value: 0 1 0 0 R/W Address: 110000 Type: R/W Description: Advanced settings for interface 3 [15] STG_MASK: Short to ground does not switch off channel 0: short to ground switches off the channel after filter time 1: short to ground does NOT switch off the channel [14:11] FIXED_THR_SEL: Fixed threshold setting for PSI5 channel 2 Ibase + 5.5mA + (15-5.5)/16*bits[14:11]mA (1) [10] RESERVED [9] TRACKING_SEL: 0: Standard threshold tracking algorithm (default, recommended) 1: Fast tracking algorithm [8:7] BLANKING_SEL: Blanking time selector at sensor startup: 00 : 128 µs 11: 128 µs 01: 5 ms 10: 10 ms DS11401 Rev 5 77/105 104 Communication interface L9663 [6:3] DATA_FILT_SEL: Deglitch filter adjust Baud rate = 189K: filter time = (16 + ) * Tosc Baud rate = 125K or 83.3K: filter time = (24 + ) * Tosc Note: Tosc is the period of the 16 MHz oscillator [2] FREEZE_DIS: Freezing of base current tracking after start bits are detected 0: frozen 1: not frozen [1] RESERVED [0] FIXED_THR: Adaptive / fixed threshold 0: adaptive threshold 1: fixed threshold 1. The selectable threshold is in the range: Ibase+5.5 mA to Ibase+14.4 mA. ADVRD1 14 13 12 11 10 9 8 - - - - - 7 6 5 - - - 4 3 2 1 0 - - - - - BASE1 RESERVED 15 Advanced Read 1 Default value: - - - R/W Address: 110010 Type: RO Description: [15:10] RESERVED [9:0] BASE1: Base current level on PSI5 channel 1 78/105 DS11401 Rev 5 L9663 Communication interface ADVRD2 14 13 12 11 10 9 8 - - - - - 7 6 5 - - - 4 3 2 1 0 - - - - - DELTA1 RESERVED 15 Advanced Read 2 Default value: - - - RO Address: 110011 Type: RO Description: [15:10] RESERVED [9:0] DELTA1: Delta current level I(threshold) - I(base) on PSI5 channel 1 ADVRD3 14 13 12 11 10 9 8 - - - - - 7 6 5 - - - 4 3 2 1 0 - - - - - THRESH1 RESERVED 15 Advanced Read 3 Default value: - - - RO Address: 110100 Type: RO Description: [15:10] RESERVED [9:0] THRESH1: Threshold current level on PSI5 channel 1 (absolute value) DS11401 Rev 5 79/105 104 Communication interface L9663 ADVRD4 14 13 12 11 10 9 8 - - - - - 7 6 5 - - - 4 3 2 1 0 - - - - - BASE2 RESERVED 15 Advanced Read 4 Default value: - - - RO Address: 110101 Type: RO Description: [15:10] RESERVED [9:0] BASE2: Base current level on PSI5 channel 2 ADVRD5 14 13 12 11 10 9 8 - - - - - 7 6 5 - - - 4 3 2 1 0 - - - - - DELTA2 RESERVED 15 Advanced Read 5 Default value: - - - RO Address: 110110 Type: RO Description: [15:10] RESERVED [9:0] DELTA2: Delta current level I(threshold) - I(base) on PSI5 channel 2 80/105 DS11401 Rev 5 L9663 Communication interface ADVRD6 14 13 12 11 10 9 8 - - - - - 7 6 5 - - - 4 3 2 1 0 - - - - - THRESH2 RESERVED 15 Advanced Read 6 Default value: - - - RO Address: 110111 Type: RO Description: [15:10] RESERVED [9:0] THRESH2: Threshold current level on PSI5 channel 2 (absolute value) DEVID 14 13 12 11 10 9 8 - - - - - 7 6 5 - - - 4 3 2 1 0 - - - - - VER_ID RESERVED 15 Device Version ID Default value: - - - RO Address: 111000 Type: RO Description: [15:10] RESERVED [9:0] VER_ID: Device Version ID Static value for silicon version. b: ST reserved b: mask set reference "000"=A,"001"=B,… b: mask set revision "000"=A,"001"=B,… DS11401 Rev 5 81/105 104 Communication interface L9663 5.2 SPI interface 5.2.1 Physical layer and signal description Figure 26. SPI interface  &6 6&. —& /  026, 63,0DVWHU 63,6ODYH 0,62 *$3*36 Chip Select (CS) The communication interface is deselected when this input signal is logically high. A falling edge on CS enables and starts the communication, while a rising edge finishes the communication and the command is executed if a valid frame has been sent. During communication start and stop, the Serial Clock (SCLK) has to be logically low. The MISO line is in high impedance when CS is high. In order to considerably reduce the number of CS lines and pins on the system, while still allowing connecting different devices, an address multiplexing approach is implemented in the device with cabled address "00". This means that if CS is low the device is not selected unless the MOSI bits 31 and 30 of the frame matches the device address. This feature can be disabled by SW, writing a dedicated SPI bit. The default state after reset (sw, hw or by internal clock fault) is in the address multiplexing mode. Serial Clock (SCLK) This SCLK provides the clock of the SPI. Data present on the MOSI line is latched on the falling edge of Serial Clock (SCLK) into the internal shift registers, while data from the internal shift registers are shifted out on the MISO line on the rising edge. MOSI This input is used to transfer data serially into the device. Data is latched on the falling edge of Serial Clock (SCLK). 82/105 DS11401 Rev 5 L9663 Communication interface MISO This output signal is used to transfer data serially out of the device. Data is shifted out on the rising edge of Serial Clock (SCLK). MISO is in high impedance under POR condition. 5.2.2 Clock and data characteristics A microcontroller with its SPI peripheral running in the following mode can drive the SPI: CPOL = '0' and CPHA = '1'. The communication frame starts with the falling edge of the CS (Communication Start). SCLK has to be low. The MOSI data are then latched on all following falling SCLK edges into the internal shift registers. After Communication Start, the MISO will leave tri-state and shift the MSB of the output data on MISO. On all following rising SCLK edges data are shifted out through the internal shift registers to MISO. The communication frame is finished with the rising edge of CS. If a valid communication took place (e.g. correct number of SCLK cycles), the operation requested will be performed (Write or Clear operation). DS11401 Rev 5 83/105 104 Communication interface 5.2.3 L9663 Frame definition Global status bits (standard mode) 31 30 29 28 27 26 SPIE FSR1 FSR2 RSTB PROG GSB Global status bits (address multiplexing mode) 31 30 29 28 27 26 - - - RSTB PROG GSB Type: R Bit Description [31] SPIE: SPI error The SPIE bit is a logical OR combination of errors related to wrong SPI communication (wrong SCLK count, wrong CRC, wrong SPI operation). It is also reported as SR1[12] bit and it is automatically cleared when this register is read. [30] FSR1: Fault status register 1 flag The FSR1 bit is set to '1' if at least one of the bits SR1[11:0] is active. [29] FSR2: Fault status register 2 flag The FSR2 bit is set to '1' if at least one of the bits SR2[14:8] or SR2[6:0] is active. [28] RSTB: Reset bit The RSTB bit indicates a device reset (POR, RESETN or SW_RESET). In case this bit is set, all internal Control Registers are set to their default values and kept in that state until the bit is cleared after a read access on SR3 register and the fault is not present anymore. [27] PROG: End of programming The EOP bit indicates the end of the device programming phase (PROG registers). [26] GSB: Global Status Bit The GSB bit is a logical OR combination of Bit 31 to Bit 27 and buffer empty error bit. This stands also for address multiplexing mode. The global status bits are shifted out on the MISO line on every SPI access. They provide information about the current device status. 5.2.4 Communication frames In the following frames, all fields are written with MSB at left side and 'X' represents a "don't care" value. The bit RW is used to select the operation type on the internal register: read (RW=0), write (RW=1). CRC on MOSI is calculated over bits 31:5, with "000" appended after LSB. CRC on MISO instead, depends on the setting of GCR1[1]: 84/105 a) CRC calculated from the sensor. b) CRC calculated over MISO bits 26:3, with "000" appended after LSB. DS11401 Rev 5 L9663 Communication interface CRC generation is based on the same calculation scheme used for PSI5 sensor data (generator polynomial g(x)=1+x+x3, initialization value "111") with MSB passed first. In case the IC receives a not valid register address on MOSI, the address bit are recognized as invalid address; in this case the two last bit on MISO (i.e. CRC[1:0]) are intentionally corrupted, inverting their values (NOT operator). The same action is also performed either in case of access to a not valid register (address > 59) or in case of:  slot error when PSI5 data SPI frame.  write access to read only registers.  Frame L-H wrong sequence. Figure 27. Operation on internal register (with upstream data buffer) Figure 28. Init data reading Sensor data Reading: Timeslot coding: Timeslot1=001, …, timeslot6=110 SID and Gbit are supported only for 10 - 16 bit and enabled by 1 single configuration bit = GCR1(2) Two kinds of transfer are possible: 1. No SID, payload ≤ 20 bit; SID and GBIT, payload ≤ 16 bit: one transfer needed 2. No SID, payload > 20 bit: two transfers are needed. In case 1) the L/H bit must be L (0). In case 2) the device expects a sequence H - L on the L/H bit to transmit first the MSB part of the data and then the LSB. To guarantee a safe communication with two SPI transfers:  if CRC is the one from the sensor (GCR1(1)=0) , CRC is the same on both transfers and it's the one from the sensor;  if CRC is calculated on SPI (GCR1(1)=1), CRC is calculated over bits 26:3 in each frame. DS11401 Rev 5 85/105 104 Communication interface L9663 Figure 29. Sensor data reading In case of sensor fault conditions, error codes are sent in the first 10 bits of the data field (see Table 6 on page 31). The lower 10 bits are filled with '0'. 86/105 DS11401 Rev 5 L9663 Communication interface SPI error handling The SPI message from the external microcontroller is monitored. The following errors are detected:  the CRC on the MOSI line is not correct;  incorrect SPI operation (e.g. an attempt to write a read-only register);  the number of SPI clock cycles is not equal to 32. In case any of the above-mentioned errors is detected, the MOSI message is rejected, the SPI failure bit in the SR1 register is set and the SPIE status bit in the next MISO message is set to '1'. 5.3 Direct interface The direct interface has the following features:  DOUTx output for Manchester-coded sensor data  SYNCx input for synchronous pulse voltage trigger  Deglitch filter for SYNCx input of PSI5 transceiver The reference voltage for the threshold levels of DOUTx pins is VDD. The direct interface is only used in transceiver IC mode 2 (data decoding in the µC). To use direct mode slot monitor should be disabled on the channel. In order to have good device functionality all registers, except the ones listed below, must be configured if default values do not match the application.(j) The registers that do not need a configuration are the following: SIDx, TSMx_ESy, TSMx_END. Optional configuration: SPT (if sync pulse period is smaller than 500 µs), ADVSET1/2/3 if a particular set of tracking is required, UDBCR, UDBx_y to use tooth gap method, DCR, STS, STSR. j. Registers needing a configuration: CHCNT, CHx_CR1, CHx_CR2, CHx_CR3, CHx_CR4, GCR1. DS11401 Rev 5 87/105 104 Electrical characteristics 6 L9663 Electrical characteristics Table 10. Operating conditions Parameter / Condition(1) Symbol VVB VVASSUP VVDD Tj Min Typ Max Unit VB input voltage 4.8 – 35 V VASSUP input voltage (in case VAS pre-regulator is used) 4.8 – 35 V 3 – 6 V -40 – 175 °C VDD input voltage Junction temperature 1. Unless otherwise specified. Table 11. VINTx internal supply Symbol Min Typ Max Unit VDDwu_H VDD voltage level for power up 2.3 2.5 2.7 V VDDwu_L VDD voltage level for power down 1.5 1.8 2.3 V VINTDuv VINTD under voltage threshold 2.7 – 2.9 V VINTDov VINTD over voltage threshold 3.47 – 3.66 V VINTAuv VINTA under voltage threshold 2.97 – 3.13 V VINTAov VINTA over voltage threshold 3.47 – 3.66 V 100 200 300 mV DGNDOPEN 88/105 Parameter / Condition DGND ground loss threshold GND1 = GND2 = 0 TPOR Filter time for power on reset output (vintx ov/uv, dgnd open) 5 – 45 µs TWAKE Start-up time in no fault conditions (from VDD=3V to internal power on reset set to ‘1’) (Design info) – – 250 µs IlimVINTD VINTD current limitation 80 – 150 mA CVINTD VINTD filter capacitance (Test info) 60 100 140 nF DS11401 Rev 5 L9663 Electrical characteristics Table 12. VAS supply Symbol Min Typ Max Unit Supply voltage VAS normal operation (Test info) 4.3 – 16 V Max. voltage ripple on VAS (1) (Test info) -1.5 – 1 V Slew rate of the voltage ripple on VAS (Test info) – – 50 mV/µs I_VAS,eff Effective current for VAS: (Design info) 2 * 60 mA (effective for 45 mA supply current; 30mA data current) + 5mA current for all included Transceiver blocks supplied from VAS. – – 125 mA I_VAS,peak Dynamic current for VAS: (Design info) 1 * 75 mA (45 mA supply current; 30mA data current) + 130 mA (STG on 2nd IF) + 5 mA current for all included Transceiver blocks supplied from VAS. – – 210 mA VAS VAS,rip SR_VAS,rip Parameter / Condition 1. This voltage ripple, that will anyhow not exceed minimum VAS voltage value, does not lead to corrupted data reception. Table 13. VAS external MOS Symbol Parameter / Condition(1) Min Typ Max Unit -20 – 20 V 1 – 2.5 V -10 – 10 µA Drain to Source on state resistance at VGS = 4.5 V, ID = 2.6 A (Test info) – – 150 mΩ Ciss_ext Input Capacitance at VGS=0V, VDS=25V f=1MHz (Test info) – – 1100 pF Coss_ext Output Capacitance at VGS=0V, VDS=25V f=1MHz (Test info) – – 170 pF tdon_ext Turn on delay time at VDS=30V, VGS=4.5V, ID=2.6A, RG=16Ω (Test info) – – 20 ns Vgs_ext Vgsth_ext Vgl_ext Rdson_ext Gate to Source voltage (Test info) Gate threshold voltage, with VDS = VGS, ID = 250 µA (Test info) Gate leakage current at VGS = 20 V, VDS = 0 V (Test info) 1. Main parameters for choice of external component. DS11401 Rev 5 89/105 104 Electrical characteristics L9663 Table 14. VAS pre regulator Symbol Min Typ Max Unit -2.5% 5.3 +2% V VAS5DC Regulated VAS voltage 5.3 V output selection VSUP ≥ 5.8 V (supply of external NFET) VASSUP ≥ 5.3 V Static load condition: 4 mA ≤ Iload ≤ 210 mA VAS7DC Regulated VAS voltage 7.6 V output selection VSUP > 8 V (supply of external NFET) VASSUP ≥ 7.6V Static load condition 4 mA ≤Iload ≤210 mA -4% 7.6 4% V VAS5LS Maximum ripple on VAS output in load step condition 5.3 V output selection VSUPR ≥ 5.8 V (supply of external NFET) VASSUP ≥ 5.3 V Transient load: 0 mA to 210 mA and 210 mA to 0 mA in 0.5 µs -5% VAS5DC +5% V VAS7LS Maximum ripple on VAS output in load step condition 7.6 V output selection VSUP > 8V (supply of external NFET) VASSUP ≥ 7.6 V Transient load: 0 mA to 210 mA and 210 mA to 0 mA in 0.5 µs -5% VAS7DC 5% V VAS Maximum ripple voltage on the transceiver during current modulation (dI/dt = ±60mA/ µs) – – |2| % VGS passive pull-down clamping structure (device off) Test condition: Isink = 100 µA – – 1.5 V VGS active pull-down current (regulator disabled, VAS_EN=0, device on) – 1 1.2 mA VGS to VAS passive clamp (VAS shorted to ground, regulator switched on) 8 12 16 V 1.7 4.7 6.3 µF 0 – 0.2 Ω 11.8 – 13 V – – 1 ms VVGS_RPD IVGS_IPD – C2 ESRC2 VASSUPuv VASton 90/105 Parameter / Condition Decoupling capacitor (Test info) ESR of decoupling capacitor (Test info) VASSUP under voltage threshold for enabling of internal charge pump VAS startup timing after VAS_EN=’1’ (on by default at POR release) DS11401 Rev 5 L9663 Electrical characteristics Table 15. VSYNCx Symbol Min Typ Max Unit Voltage limitation on CB V(BHx)-V(BLx) – – 8 V VCBov VB over voltage threshold for bootstrap disabling 18 – 21 V tch_ini Initial time interval necessary to charge CB = 10µF from 0V to 4V@VB = 4.8V – – 2 ms Recharge time for bootstrap capacitor min. sync pulse amplitude = 2.5 V; all sync pulses are long (for logical 1, pulse width); VB = 5.2 V. – – tch_reset1 Start of CB1 charging after release of internal POR – – 1 µs tch_reset2 Delay between start of CB2 charging with respect to start of CB1 charging (staggered charging) – 2 – ms VCBclamp tch Parameter / Condition 130 µs VB VB voltage for full functionality 5.2 – 35 V VB VB voltage for full functionality (low power mode) 4.8 – 5 V 5 10 15 µF CBx Capacitor value Table 16. PSI5 output supply Symbol Parameter / Condition Min Typ Max Unit IPSIx Interface quiescent current (standard current) -19 – -4 mA IPSIx Interface quiescent current (extended current) -35 – -4 mA IPSIx Interface quiescent current (extended+ current) -45 – -4 mA VPSIx,max Max. output voltage excluding sync. pulse (internal regulation, VAS=16V) – – 11 V VPSIxsync,max Max. output voltage including sync. pulse (internal regulation, VAS=16V) – – 16.5 V Static short to ground current limitation for each transceiver output PSIx -130 – -80 mA Filter time for current limitation detection 128 – – µs tIblank Blanking time on current limitation detection (active at PSIx output startup in addition to the filter time) Selectable by SPI: 128 µs/5ms/10ms 128 – – µs RINT Internal resistance of complete path (from input pin VAS to output pin PSIx, Iload= VAS – – 20 mA IBO Base current Default value of receiver -9% 15 +9% mA Trigger point for signal current threshold (fixed threshold mode, assuming a nominal programming of IBO + 6 mA for low power mode, see ADVSETx(FIXED_THR_SEL)) IBO + 5.14 IBO + 6 IBO + 6.86 Trigger point for signal current threshold (fixed threshold mode, assuming a nominal programming of IBO + 12mA for common mode, see ADVSETx(FIXED_THR_SEL)) IBO + 10.29 IBO + 12 IBO + 13.71 IOL IPSIxTH mA VPSIxU PSIx under voltage monitoring threshold 3.1 3.3 3.5 V tPSIxU PSIx under voltage monitoring filter time 200 – – µs PSIx pull down current for cross coupling test 25 32 39 mA IXCT Table 17. PSI5 receiver Symbol Parameter / Condition 92/105 Typ Max Unit - kbps fslow PSI5 baud rate (slow) - 83.3 fstd PSI5 baud rate (standard) - 125 ffast PSI5 baud rate (fast) - 189 - kbps 8/10 - 28 bit Data frame length (without 1. Min overhead)(1) Also 8 bit compatibility according to PSI5 v1.3. DS11401 Rev 5 kbps L9663 Electrical characteristics Figure 30. Sync generator 3KDVH  V\QF VWDUW 3KDVH  V\QF VORSH 3KDVH  V\QF VXVWDLQ 3KDVH  V\QF GLVFKDUJH 8SSHUERXQGDU\ 9&(PD[ 9W /RZHUERXQGDU\ 7ULJJHUSRLQW 975,* 9W 9&(EDVH W W W 75,* W W W *$3*36 Table 18. Sync generator Symbol Parameter / Condition Min Typ Max Unit 1 - 5 µs tw Trigger signal duration to generate a short Sync Pulse (std PSI5) (1) Vt2 Voltage increase of sync pulse normal operation (Ibase ≤ 35 mA, VB ≥ 4.8 V) 2.5 - - V Vt2 Voltage increase of sync pulse normal operation (Ibase ≤ 35 mA, VB ≥ 5.2 V 2.5/3.5 - - V SRrise Slew rate of rising sync slope 0.43 - 1.5 V/µs SRfall Slew rate of falling sync slope -1.5 - - V/µs - 0 - µs -3.25 - - µs - - 7 µs 16/43 - - µs 10 - 14 µs - - 35/62 µs 44/71 - - µs t0 Reference time (@ 0.5 V on top of VCEbase) t1 Sync signal earliest start Delta current less than 2 mA t2 Sync signal sustain start (@ Vt2) t3 Sync signal sustain time (short/long pulse) tsync_slow t4 tSlot 1 Start Slow Vsync detection time Discharge time limit (short/long pulse) Start of first sensor data word (short/long pulse) DS11401 Rev 5 93/105 104 Electrical characteristics L9663 Table 18. Sync generator (continued) Symbol Parameter / Condition Min Typ Max Unit ILimit Static current limitation for each transceiver output PSIx (only for sync pulse generator) -280 - -110 mA td_SPI Delay between end of SPI trigger command and start of sync pulse (t1) - - 2.2 µs td_SYNC Delay between SYNC pin command filtered (tdeglitch not included) and start of sync pulse (t1) - - 1 µs 1. Only the short sync pulse can be triggered by PIN (tw ≤5 µs), see errata 1822, Section 7. Table 19. Reset Symbol Parameter / Condition Min Typ Max Unit VRESETN_THR_High Input high threshold of RESETN pin - - 2 V VRESETN_THR_Low Input low threshold of RESETN pin 1 - - V Hysteresis of RESETN pin thresholds 100 150 - mV IRESETN Input Pull-Down current source 30 45 60 µA tRESETN Reset detection filter time 1- - 4 µs Min Typ Max Unit VRESETN_HYS Table 20. VAS under/over voltage monitoring Symbol 94/105 Parameter / Condition VVASU_low VAS under voltage monitoring threshold (low voltage mode) 4.5 - 4.85 V VVASU_inc VAS under voltage monitoring threshold (increased voltage mode) 6.5 - 6.95 V VVASO_low VAS over voltage monitoring threshold (low voltage mode) 6.5 - 6.95 V VVASO_inc VAS over voltage monitoring threshold (increased voltage mode) 8.2 - 8.8 V VVASU_off VAS low under voltage monitoring threshold (both increased and low voltage modes) When below this threshold, VAS is switched off 1 - 1.4 V tVASU VAS under/over voltage monitoring filter time 3 - 4 µs tVASblk1 VAS under voltage switch-off blanking time (at VAS activation) - 1 - ms tVASuoff2 VAS automatic switch-off filter time (after VAS activation) 9 - 12 µs DS11401 Rev 5 L9663 Electrical characteristics Table 21. Synchronous pulse amplitude monitoring 1. Symbol Parameter / Condition Min Typ Max Unit VAsync_l Sync pulse amplitude under voltage monitoring threshold (if VT2_SYNCx_SEL bit is set to 0) (1) 2.4 - 2.8 V VAsyncU Sync pulse amplitude under voltage monitoring threshold (if VT2_SYNCx_SEL bit is set to 1) 3.5 - 3.85 V tAsync_V Filter time for insufficient sync pulse amplitude - 2 - µs The sync pulse amplitude and the diagnostic threshold voltage level are referred to the inputs of the difference amplifier, i.e. VAsync = V(PSIx-VAS). Table 22. Time slot monitoring Symbol Parameter / Condition tTSM Min Typ Max Unit Resolution of the time slots - 1 - µs Required register size for each time slot - 12 - bit Table 23. Digital I/O Symbol Parameter / Condition Min Typ Max Unit Vin_High Input high threshold - - 2 V Vin_Low Input low threshold 0.8 - - V Vin_HYS Hysteresis 100 150 - mV Iin_pu Input pull up current (pins CS, MOSI, SCLK) -30 -45 -60 µA Iin_pd Input pull down current (pins SYNC1, SYNC2, CLKIN) 30 45 60 µA VDD-0.4 - VDD V - - 0.4 V Vout_High Output high level (Isource = 2 mA) Vout_Low Output low level (Isink = 2 mA) Table 24. Frequency references Symbol Parameter / Condition Min Typ Max Unit fCLK Internal oscillator frequency (FLL disabled) 15.2 16 16.8 MHz fCLK Internal oscillator frequency (FLL enabled, normal CLKIN frequency) 15.84 16 16.16 MHz fCLKIN-normal Normal CLKIN input frequency (1MHz or 4MHz) (Test info) -0.5% 1/4 +0.5% MHz tT_CKMSK FLL Mask time - - 16 ms tT_CKERD Clock error detection time (if FLL is enabled and CLKIN is stuck) - - 260 µs Clock error reaction time (if bit REACTTIME=1) - 20 - ms treaction DS11401 Rev 5 95/105 104 Electrical characteristics L9663 Table 24. Frequency references (continued) Symbol 6.1 Parameter / Condition Min Typ Max Unit fCLKERR_H High frequency error detection by FLL (clock error, FLL enabled) 17 - 21.7 MHz fCLKERR_L Low frequency error detection by FLL (clock error, FLL enabled) 10.9 - 14 MHz SPI interface Figure 31. SPI communication timing diagram W 63,&6KLJK  9 KLJK &6  9 KLJK W GLVDEOHOHDG W &/.KLJK W OHDG W ODJ W GLVDEOHODJ VKLIW VKLIW OH VDPS OH VDPS OH VDPS &32/   9 KLJK VKLIW  9 KLJK 6&/. W &/.ORZ I 63,&/. W 026,VHW W 026,KROG  9 KLJK 026,  9 KLJK W 0,62DFWLYH W 0,62GHOD\ W 0,62WULVWDWH  9 KLJK 0,62  9 KLJK *$3*36 96/105 DS11401 Rev 5 L9663 Electrical characteristics Table 25. SPI communication timing Symbol Min Typ Max Unit - 10 - MHz SCLK high/low time 30 - - ns tlead CS to SCLK delay 180 - - ns tlag SCLK to CS delay 45 - - ns tdisablelead SCLK disable lead time 10 - - ns tdisablelag SCLK disable lag time 10 - - ns tMOSI-set MOSI to SCLK delay 10 - - ns tMOSI-hold SCLK to MOSI delay 10 - - ns tMISO-delay SCLK to MISO delay, CL≤ 90 pF - - 30 ns tMISO-delay SCLK to MISO delay, CL = 25 pF (Design info) - - 21 ns tMISO-delay SCLK to MISO delay, CL = 200 pF (Design info) - - 75 ns tMISO-active CS to MISO active delay, CL≤ 90 pF - - 30 ns tMISO-tristate CS to MISO tristate delay, CL≤ 90 pF - - 30 ns tSPICS-high CS high time 200 - - ns MISO leakage current -10 - 10 µA fSPICLK Parameter / Condition SCLK frequency tCLK-high/low IMISO_tristate Table 26. Direct interface Symbol Parameter / Condition Min Typ Max Unit VSYNCx-H SYNCx high threshold - - 2 V VSYNCx-L SYNCx low threshold 0.8 - - V ∆VSYNCx SYNCx Hysteresis 100 150 - mV tdeglitch Deglitch filter for SYNCx path - 500 - ns VDout-L DOUTx Low level (Isink=2mA) - - 0.4 V VDout-H DOUTx High level (Isource=2mA) VDD0.45 - - V tDOUTx-delay DOUTx output buffer delay, CL≤ 50pF (Design info) - - 90 ns - DOUTx rising and falling edge delay difference, CL≤ 50pF -50 - +50 ns - - 3.05 µs Latency time between receiving sensor data @ PSIx pin and reaching threshold high level of tLatency_DOUTx_HF_IIR DOUTx pin (trigger point: 80% of PSIx modulated current, @189kBps, deglitch filter with default value). DS11401 Rev 5 97/105 104 Electrical characteristics L9663 Table 26. Direct interface (continued) Symbol 98/105 Parameter / Condition Min Typ Max Unit Latency time between receiving sensor data @ PSIx pin and reaching threshold high level of tLatency_ DOUTx_MF_IIR DOUTx pin (trigger point: 80% of PSIx modulated current, @125kBps or 83.3kBps, deglitch filter with default value. - - 3.6 µs tdeglitch Additional delay on DOUTx for deglitch filter configuration by SPI (DATA_FILT_SEL bits with value from “0000” to “1111”) - - 1 µs tLatency_Jitter_ DOUTx Latency jitter between receiving sensor data @ PSIx pin and reaching threshold high level of DOUTx pin (trigger point: 80% of PSIx amplitude) - - 176 ns DS11401 Rev 5 L9663 7 Errata Errata Table 27. Errata Category / Function Issue Description Asynchronous Mode FIFO_LOCK could still stay set even after clearing of the data buffer registers of the 2 PSI5 channels. Assuming a low data rate from sensor compared to SPI readout, the proposed workaround is to read both FIFOs in the following sequence: – Ch 1, slot 6 – Ch 2, slot 6 – Ch 1, slot 5 – Ch 2, slot 5 –… – Ch 2, slot 1 Afterwards, if the FIFO_LOCK bit is still high, the following read commands are needed: – Ch 1, slot 1 – Ch 2, slot 1 1822 Sync Pulse If the IC is configured to control the sync pulse length via pin (PSIx_EXT_UDB=0 and PSIx_TRIG_SEL=00/11, x=1 or 2) the generated sync pulse could be not compliant with the PSI5 standard, depending on the trigger pulse duration tw. – 1µs ≤ tw ≤ 5µs ≥ a short pulse is generated, PSI5 standard compliant; ≥ Correct short pulse – tw > 5µs ≥ the pulse could be not compliant with PSI5 standard, two consecutive pulses could be generated instead of a single pulse. ≥ Wrong pulse 1830 Cross coupling test BugID# 1526 3367 XCTRSLT1/2 fault flags are swapped in master mode The internal clock monitor (disabled by default) is not accurate enough: fCLKERR_H/L thresholds overlap the main oscillator Clock monitor by operating range. internal oscillator This function is disabled by default, it can be enabled by ST only (burning a dedicated OTP bit). If enabled it could detect false errors. => Activation is forbidden. DS11401 Rev 5 99/105 104 Package information 8 L9663 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 8.1 TQFP32 (7x7x1.0 mm exp. pad down) package information Figure 32. TQFP32 (7x7x1.0 mm exp. pad down) package outline *$3*36 100/105 DS11401 Rev 5 L9663 Package information Table 28. TQFP32 (7x7x1.0 mm exp. pad down) package mechanical data Dimensions (mm) Ref Min. Typ. Max. A - - 1.2 A1 0.05 - 0.15 A2 0.95 1 1.05 b 0.3 0.37 0.45 c 0.09 - 0.2 D 8.8 9 9.2 D1 6.8 7 7.2 D2 2 - - D3 - 5.6 - E 8.8 9 9.2 E1 6.8 7 7.2 E2 2 - - E3 - 5.6 - e - 0.8 - L 0.45 0.6 0.75 L1 - 1 - k - 3.5 7 ccc - - 0.1 DS11401 Rev 5 101/105 104 Package information 8.2 L9663 VFQFPN-28 (5x5x1.0 mm) package information Figure 33. VFQFPN-28 (5x5x1.0 mm) package outline *$3*36 B5HYB$9& Table 29. VFQFPN-28 (5x5x1.0 mm) package mechanical data Dimensions (mm) Ref Min. Typ. Max. A 0.80 - 1.00 A1 - 0.02 0.05 A2 - 0.65 0.75 A3 - 0.20 - b 0.18 0.25 0.3 D 5.00 (BSC) D1 4.75 (BSC) D2 3.1 (BSC) e 0.5 (BSC) E 5.00 (BSC) E1 4.75 (BSC) E2 3.1 (BSC) P 102/105 - DS11401 Rev 5 - 0.60 L9663 Package information Table 29. VFQFPN-28 (5x5x1.0 mm) package mechanical data (continued) Dimensions (mm) Ref L Min. Typ. Max. 0.30 0.40 0.50 N 28 (pins) DS11401 Rev 5 103/105 104 Revision history 9 L9663 Revision history Table 30. Document revision history Date Revision 19-Jan-2016 1 Initial release. 2 In cover page update document title and added AECQ100 qualified in Features section. Updated: – Section 3.5: Trigger pulse generator for synchronous pulses; – CH1_CR2 (PROG) on page 61;; – TSM1_ESn, n=1…6 (PROG) on page 65; – TSM1_END (PROG) on page 65; – CH2_CR2 (PROG) on page 68; – TSM2_ESn, n=1…6 (PROG) on page 72; – TSM2_END (PROG) on page 72; – ADVSET1 (PROG) on page 75; – Corrected errors in the pargraphs ‘MOSI’ and ‘MISO’ in the Section 5.2.1: Physical layer and signal description at page 81 and 82; – Section 5.2.4: Communication frames; – Mininimun value of the VASSUPuv parameter on Table 14: VAS pre regulator on page 90; – Min. and Max. value of tSTB and IXCT parametersin Table 16: PSI5 output supply; – Min value of VAsync_l parameter inTable 21: Synchronous pulse amplitude monitoring; – In Table 24: Frequency references removed fCLKMONERR_H and fCLKMONERR_L parameters and updated Min and Max value of fCLKERR_H and fCLKERR_L parameters; – In Table 26: Direct interface corrected the maximum value of tLatency_Jitter_ DOUTx parameter. 08-Mar-2017 3 Updated: – Feature and Description in cover page; – Registers: NOPR, UDBCR, CH1_CR1 (PROG), CH1_CR3 (PROG), CH1_CR4 (PROG), SID1 (PROG), SID2 (PROG), SID3 (PROG), SID4 (PROG), STRS, ADVSET3 (PROG); – Section 5.2.1: Physical layer and signal description; – Table 26: Direct interface; – Table 27: Errata; – Section 8.2: VFQFPN-28 (5x5x1.0 mm) package information on page 102. 21-Mar-2019 4 Updated: – CH1_CR4 (PROG); – Section 5.2.4: Communication frames. 09-Jul-2019 5 Minor text changes in Section 5.2.3: Frame definition 06-Feb-2017 104/105 Changes DS11401 Rev 5 L9663 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS11401 Rev 5 105/105 105
L9663-1 价格&库存

很抱歉,暂时无法提供与“L9663-1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
L9663-1

    库存:0