0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L9678P

L9678P

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP64_10X10MM

  • 描述:

    IC INTERFACE SPECIALIZED 64LQFP

  • 数据手册
  • 价格&库存
L9678P 数据手册
L9678P L9678P-S Automotive user configurable airbag and battery cut-off IC Datasheet - production data – High and low side driver FET tests – Safing FET test  User customizable safing logic  Two channel PSI-5 remote sensor interface (asynchronous mode), [only for L9678P-S version]  Four channel hall-effect, resistive or switch sensor interface GAPGPS00313 LQFP64 (10x10x1.4mm)  ISO9141 transceiver  Dual channel configurable high-side/low-side LED driver Features  Watchdog timer  AEC-Q100 qualified  Energy reserve voltage power supply – High frequency boost regulator, 1.882 MHz – Output voltage user selectable, 23 V or 33 V ±5%  Two integrated oscillators: 7.5/16 MHz  Temperature sensor  32 bit SPI communications  Minimum operating voltage = 6 V  User configurable linear power supplies – 5.0 V and 7.2 V ±4% output voltages – External pass transistor  Operating temperature, -40 °C to 95 °C  Fully integrated 3.3 V ±4% linear regulator Applications  Battery voltage monitor and shutdown control with wake-up control  Low end airbag systems  System voltage diagnostics with integrated ADC  Pyro Fuse/Pyroswitch management  Packaging - 64 pin  Cut-off battery systems  Crossover switch – Crossover performance, max 3 Ω, 600 mA max.  Squib/pyroswitch deployment drivers – 4 channel HSD/LSD – 25 V maximum deployment voltage – 1.2 A @ 2 ms and 1.75 A @ 0.5/0.7 ms deployment profiles – Integrated safing FET linear regulator, 20 V/25 V nominal – Current monitoring – Rmeasure, STB, STG and leakage diagnostics November 2021 This is information on a product in full production. DS11626 Rev 5 1/210 www.st.com Contents L9678P, L9678P-S Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Absolute and operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Pin-out description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Overview and block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Start-up power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 4.4 5 4.2.1 Power_off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.3 Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.4 Passive mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.5 Power-up and power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.6 Operating states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Configurable system power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.1 ERBOOST switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.2 Energy reserve capacitor charging circuit . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.3 ER switch and COVRACT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.4 VDD5 linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.5 VDD3V3 linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.6 VSUP linear regulator (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.7 VSF linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reset functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1 Global SPI register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Read/write register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2/210 5.1.1 Fault status register (FLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1.2 System configuration register (SYS_CFG) . . . . . . . . . . . . . . . . . . . . . . 55 5.1.3 System control register (SYS_CTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 DS11626 Rev 5 L9678P, L9678P-S Contents 5.1.4 SPI Sleep command register (SPI_SLEEP) . . . . . . . . . . . . . . . . . . . . . 58 5.1.5 System status register (SYS_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.6 Power state register (POWER_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.7 Deployment configuration registers (DCR_x) . . . . . . . . . . . . . . . . . . . . 63 5.1.8 Deployment command (DEPCOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.9 Deployment configuration registers (DSR_x) . . . . . . . . . . . . . . . . . . . . 66 5.1.10 Deployment current monitor status registers (DCMTSxy) . . . . . . . . . . . 67 5.1.11 Deploy enable register (SPIDEPEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.12 Squib/pyroswitch ground loss register (LP_GNDLOSS) . . . . . . . . . . . . 68 5.1.13 Device version register (VERSION_ID) . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.14 Watchdog retry configuration register (WD_RETRY_CONF) . . . . . . . . 69 5.1.15 Watchdog timer configuration register (WDTCR) . . . . . . . . . . . . . . . . . 70 5.1.16 WD1 timer control register (WD1T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.17 WD1 state register (WDSTATE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.18 Clock configuration register (CLK_CONF) . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.19 Scrap state entry command register (SCRAP_STATE) . . . . . . . . . . . . . 73 5.1.20 Safing state entry command register (SAFING_STATE) . . . . . . . . . . . . 73 5.1.21 WD1 test command register (WD1_TEST) . . . . . . . . . . . . . . . . . . . . . . 74 5.1.22 System diagnostic register (SYSDIAGREQ) . . . . . . . . . . . . . . . . . . . . . 74 5.1.23 Diagnostic result register for deployment loops (LPDIAGSTAT) . . . . . . 76 5.1.24 Loops diagnostic configuration command register for low level diagnostic (LPDIAGREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.25 Loops diagnostic configuration command register for high level diagnostic (LPDIAGREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.1.26 DC sensor diagnostic configuration command register (SWCTRL) . . . . 83 5.1.27 ADC request and data registers (DIAGCTRL_x) . . . . . . . . . . . . . . . . . . 84 5.1.28 GPO configuration register (GPOCR) . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.29 GPO configuration register (GPOCTRLx) . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.30 GPO fault status register (GPOFLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.31 ISO fault status register (ISOFLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.1.32 Remote sensor configuration register (RSCRx) . . . . . . . . . . . . . . . . . . 91 5.1.33 Remote sensor control register (RSCTRL) . . . . . . . . . . . . . . . . . . . . . . 92 5.1.34 Remote sensor data/fault registers w/o fault (RSDRx) . . . . . . . . . . . . . 93 5.1.35 Safing algorithm configuration register (SAF_ALGO_CONF) . . . . . . . . 97 5.1.36 Arming signals register (ARM_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.1.37 ARMx assignment registers (LOOP_MATRIX_ARMx) . . . . . . . . . . . . . 99 5.1.38 ARMx pulse stretch registers (AEPSTS_ARMx) . . . . . . . . . . . . . . . . . 100 5.1.39 Safing records enable register (SAF_ENABLE) . . . . . . . . . . . . . . . . . 101 DS11626 Rev 5 3/210 7 Contents 6 L9678P, L9678P-S 5.1.41 Safing records request target registers (SAF_REQ_TARGET_x) . . . . 103 5.1.42 Safing records response mask registers (SAF_RESP_MASK_x) . . . . 104 5.1.43 Safing records response target registers (SAF_RESP_TARGET_x) . . 105 5.1.44 Safing records data mask registers (SAF_DATA_MASK_x) . . . . . . . . 106 5.1.45 Safing records threshold registers (SAF_THRESHOLD_x) . . . . . . . . . 107 5.1.46 Safing control registers (SAF_CONTROL_x) . . . . . . . . . . . . . . . . . . . 108 5.1.47 Safing record compare complete register (SAF_CC) . . . . . . . . . . . . . 111 Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 6.1.1 Deployment current selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.1.2 Deploy command expiration timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.1.3 Deployment control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.4 Deployment success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2 Energy reserve - deployment voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 6.3 Deployment ground return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 6.4 Deployment driver protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 6.5 6.4.1 Delayed low-side deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4.2 Low-side voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4.3 Short to battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4.4 Short to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4.5 Intermittent open squib/pyroswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 6.5.1 Low level diagnostic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.5.2 High level diagnostic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Remote sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.1 7.2 4/210 Safing records request mask registers (SAF_REQ_MASK_x) . . . . . . 102 Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.1 7 5.1.40 PSI-5 protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.1.1 Functional description - remote sensor modes . . . . . . . . . . . . . . . . . . 128 7.1.2 RSU data fields and CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.1.3 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Remote sensor interface fault protection . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.1 Short to ground, current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.2 Short to battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.3 Cross link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2.4 Leakage to battery, open condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 DS11626 Rev 5 L9678P, L9678P-S 8 Contents 7.2.5 Leakage to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2.6 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.1 Temporal watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.1.1 Watchdog timer configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.1.2 Watchdog timer operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.2 Watchdog reset assertion timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.3 Watchdog timer disable input (WDT/TM) . . . . . . . . . . . . . . . . . . . . . . . . 137 9 DC sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10 Safing logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.1 Safing logic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.2 SPI sensor data decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 10.3 In-frame and out-of-frame responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 10.4 Safing state machine operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10.4.1 Simple threshold comparison operation . . . . . . . . . . . . . . . . . . . . . . . 150 10.5 Safing engine output logic (ARMxINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.6 Arming pulse stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.7 Additional communication line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11 General purpose output (GPO) drivers . . . . . . . . . . . . . . . . . . . . . . . . 156 12 ISO9141 transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 13 System voltage diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 13.1 Analog to digital algorithmic converter . . . . . . . . . . . . . . . . . . . . . . . . . . 164 14 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 15 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 16 15.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 15.2 BOM (Bill Of Materials) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 16.1 Configuration and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 DS11626 Rev 5 5/210 7 Contents L9678P, L9678P-S 16.2 Internal analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 16.3 Internal regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 16.4 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 16.5 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 16.6 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 16.7 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 16.8 ER boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 16.9 ER charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 16.10 ER switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 16.11 COVRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 16.12 VDD5 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 16.13 VDD3V3 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 16.14 VSUP regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 16.15 VSF regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 16.16 Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 16.17 Squib/pyroswitch diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 16.17.1 Squib/pyroswitch resistance measurement . . . . . . . . . . . . . . . . . . . . . 188 16.17.2 Squib/pyroswitch leakage test (VRCM) . . . . . . . . . . . . . . . . . . . . . . . . 189 16.17.3 High/low side FET test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 16.17.4 Deployment timer test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 16.18 Remote sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 16.19 DC sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 16.20 Safing engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 16.21 General purpose output drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 16.22 ISO9141 interface (K-LINE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 16.22.1 Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 16.23 Voltage diagnostics (analog Mux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 16.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 17 Quality information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 17.1 18 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 18.1 6/210 OTP trim bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 LQFP64 (10x10x1.4 mm) package information . . . . . . . . . . . . . . . . . . . 204 DS11626 Rev 5 L9678P, L9678P-S 18.2 Contents LQFP64 (10x10x1.4) marking information . . . . . . . . . . . . . . . . . . . . . . . 206 19 Errata sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 20 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 21 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 DS11626 Rev 5 7/210 7 List of tables L9678P, L9678P-S List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 8/210 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functions disabling by state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SPI register R/W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Global SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Global status word (GSW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Short between loops diagnostics decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Watchdog timer status description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Records results comparison against two threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Diagnostics control register (DIAGCTRLx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Diagnostics divider ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Bill Of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Configuration and control DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Configuration and control AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Open ground detection DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Open ground detection AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Internal analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Internal regulators DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Internal regulators AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Oscillators AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Temporal watchdog timer AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Reset DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Reset AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 SPI DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 SPI AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 ER Boost converter DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 ER boost converter AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 ER boost converter external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . 178 ER current generator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 ER current generator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 ER switch DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 ER switch AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 COVRACT DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 COVRACT AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 VDD5 regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 VDD5 regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 VDD5 regulator external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 VDD3V3 regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 VDD3V3 regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 VDD3V3 regulator external components (design info) . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 VSUP regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 VSUP AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 VSUP regulator external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 VSF regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 VSF regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Deployment drivers - DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Deployment drivers - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Deployment drivers diagnostics (Squib/pyroswitch resistance) . . . . . . . . . . . . . . . . . . . . 188 DS11626 Rev 5 L9678P, L9678P-S Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. List of tables Squib/pyroswitch leakage test (VRCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 High/low side FET test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Deployment timer test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Remote sensor I/F DC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 PSI-5 remote sensor transceiver - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 DC sensor interface specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Arming interface - DC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Arming interface - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 GPO interface DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 GPO Driver Interface - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 ISO9141 interface DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 ISO9141 interface transceiver AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Voltage diagnostics (Analog MUX) DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Temperature sensor specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 LQFP64 (10x10x1.4 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Errata sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 DS11626 Rev 5 9/210 9 List of figures L9678P, L9678P-S List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 10/210 Pin-out description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power control state flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Wake-up input signal behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Normal power-up sequence - WAKEUP controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Normal power-up sequence - VIN controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Normal power down sequence - WAKEUP and SPI controlled . . . . . . . . . . . . . . . . . . . . . 26 Normal power down sequence - VIN controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 System operating state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ERBOOST block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ERBOOST control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ER cap charging circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ER switch control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VDD5 control behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VDD3V3 control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 VSUP control behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 VSF control logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Internal voltage errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Reset control diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Deployment driver control blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Deployment driver control logic - Enable signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Deployment driver control logic - Turn-on signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Deployment driver block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Global SPI deployment enable state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Deployment loop diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 SRx pull-down enable logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Deployment timer diagnostic sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 High level loop diagnostic flow1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 High level loop diagnostic flow2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Remote sensor interface logic blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Remote sensor interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 PSI-5 remote sensor protocol (10-bit, 1-bit parity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Manchester bit encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Manchester decoder state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Remote sensor current sensing auto adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Watchdog state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Watchdog timer refresh diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Switch sensor interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Top level safing engine flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Safing engine - 16-bit message decoding flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Safing engine - 32-bit message decoding flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Safing engine - validate data flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Safing engine - combine function flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Safing engine threshold comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Safing engine - compare complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 In-frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Out of frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Safing Engine Arming flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 DS11626 Rev 5 L9678P, L9678P-S Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. List of figures Safing engine diagnostic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 ARM output control logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Pulse stretch timer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Scrap ACL state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Disposal PWM signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 GPO driver block diagram - LS configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 GPO driver block diagram - HS configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 ISO9141 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 ADC conversion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Airbag application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 SPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Deployment drivers diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 LQFP64 (10x10x1.4 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 LQFP64 (10x10x1.4) marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 DS11626 Rev 5 11/210 11 Description 1 L9678P, L9678P-S Description The L9678P IC is a system chip solution targeted for emerging market applications. Base system designs can be completed with the L9678P, SPC560Px microcontroller and an onboard acceleration sensor or PSI5 sensor. Energy reserve voltage is derived through a cost effective high frequency boost regulator. High frequency operation allows the user to pick up low value and cheap inductance. The voltage is programmable to 23 V or 33 V nominal. Battery voltage is sensed through the VBATMON pin providing start-up and shutdown control for the system. Once battery voltage drops below the minimum operating voltage, the device enables the integrated crossover switch to permit orderly shutdown. L9678P offers two linear regulators (5 V with external pass transistor and fully integrated 3.3 V). User can use one of these regulators to supply µC. Input/output pins are compatible with both ranges by dedicated supply pin VDDQ. External pass transistor gives the flexibility to easily address different current loads in case of different micro-controllers. One optional 7.2 V linear regulator with external pass transistor can be used to supply remote sensor interface. External acceleration data is received through the PSI-5 remote sensor interface. Both channels have independent decoders. Sensor data and diagnostics are available via SPI. The safing logic monitors inertial sensors (remote sensors via PSI-5 or on-board sensors via SPI) to determine if a crash event is in progress, thereby enabling deployment to occur. Parameters for sensor configuration and thresholds are user programmable. Squib/pyroswitch/pyroswitch deployment uses four independent high and low side drivers, capable of deploying at 25 V max. Diagnostic data control is provided through the SPI interface. The Hall-effect, resistive or switch sensor interface can be used to determine the state of external switch devices, such as buckle switches, seat track position sensors, weight sensors, deactivation switches. The integrated clock module provides a fixed clock signal for the microcontroller. The clock module provides the user the option of deleting the commonly used resonator or crystal. 12/210 DS11626 Rev 5 L9678P, L9678P-S Absolute and operative maximum ratings 2 Absolute and operative maximum ratings 2.1 Absolute maximum ratings Warning: This part may be irreparably damaged if taken outside the specified absolute maximum ratings. Operation above the absolute maximum ratings may also cause a decrease in reliability. Table 1. Absolute maximum ratings Pin # Pin name 1 RESET 2 Pin function Min. Max. Unit Reset output -0.3 VDDQ+0.3 6.5 V SPI_MISO SPI interface data out / Safing sensor data in -0.3 VDDQ+0.3 6.5 V 3 SPI_MOSI SPI interface data in -0.3 VDDQ+0.3 6.5 V 4 SPI_SCK SPI interface clock -0.3 VDDQ+0.3 6.5 V 5 SPI_CS SPI interface chip select -0.3 VDDQ+0.3 6.5 V 6 WDT/TM Watchdog disable (Not for application) -0.3 20 V 7 VDD3V3 3.3 V regulator output -0.3 4.6 V - - - Not connected (1) 8 NC 9 CVDD Internal 3.3 V regulator output -0.3 4.6 V 10 GNDD Digital ground -0.3 0.3 V 11 SR0 Squib/pyroswitch 0 low-side pin -0.3 40 V 12 SF0 Squib/pyroswitch 0 high-side pin -1.0 40 V 13 SG01 Squib/pyroswitch 0 & 1 deployment ground pin -0.3 0.3 V 14 SS01 Squib/pyroswitch 0 & 1 deployment supply pin -0.3 40 V 15 SF1 Squib/pyroswitch 1 high-side pin -1.0 40 V 16 SR1 Squib/pyroswitch 1 low-side pin -0.3 40 V 17 DCS3 Sensor switch interface channel 3 -1.0 40 V 18 DCS2 Sensor switch interface channel 2 -1.0 40 V 19 DCS1 Sensor switch interface channel 1 -1.0 40 V 20 DCS0 Sensor switch interface channel 0 -1.0 40 V 21 VRESDIAG Reserve voltage diagnostic input -0.3 40 V 22 RSU0/NC PSI-5 Ch. 0 remote sensor output (only L9678PS), NC on L9678P -1.0 40 V 23 RSU1/NC PSI-5 Ch. 1 remote sensor output (only L9678PS), NC on L9678P -1.0 40 V 24 VSUP/NC Remote sensor power supply (only L9678P-S), NC(1) on L9678P -0.3 40 V DS11626 Rev 5 13/210 209 Absolute and operative maximum ratings L9678P, L9678P-S Table 1. Absolute maximum ratings (continued) Pin # Pin name Pin function Min. Max. Unit 25 BVSUP/NC VSUP external transistor control (only L9678P-S), NC(1) on L9678P -0.3 40 V 26 GPOD0 GPO driver 1 drain output pin -1.0 40 V 27 GPOS0 GPO driver 1 source output pin -1.0 40 V 28 GPOS1 GPO driver 0 source output pin -1.0 40 V 29 GPOD1 GPO driver 0 drain output pin -1.0 40 V - - - ISO9141 bus pin (K-LINE) -18.0 40 V Substrate ground -0.3 0.3 V Not connected (1) 30 NC 31 ISOK 32 GNDSUB1 33 SR3 Squib/pyroswitch 3 low-side pin -0.3 40 V 34 SF3 Squib/pyroswitch 3 high-side pin -1.0 40 V 35 SS23 Squib/pyroswitch 2 & 3 deployment supply pin -0.3 40 V 36 SG23 Squib/pyroswitch 2 & 3 deployment ground pin -0.3 0.3 V 37 SF2 Squib/pyroswitch 2 high-side pin -1.0 40 V 38 SR2 Squib/pyroswitch 2 low-side pin -0.3 40 V 39 GNDA Analog ground -0.3 0.3 V 40 ISORX ISO9141 receiver pin -0.3 VDDQ+0.3 6.5 V 41 ISOTX ISO9141 transmit pin -0.3 VDDQ+0.3 6.5 V 42 FENL LS driver FET control input -0.3 VDDQ+0.3 6.5 V 43 FENH HS driver FET control input -0.3 VDDQ+0.3 6.5 V 44 SAF_CS0 SPI interface safing sensor chip select -0.3 VDDQ+0.3 6.5 V 45 SAF_CS1 SPI interface safing sensor chip select -0.3 VDDQ+0.3 6.5 V - - - 46 NC 47 WAKEUP Wake-up control input -0.3 40 V 48 VBATMON Battery line voltage monitor -18 40 V 49 VSF Safing regulator supply output -0.3 ERBOOST+0.3 40 V 50 VIN Battery connection -0.3 40 V 51 VER Reserve voltage -0.3 40 V 52 ERBOOST Energy reserve regulator output -0.3 40 V 53 ERBSTSW Boost switching output -0.3 40 V - - - Boost regulator ground -0.3 0.3 V EOL disposal control input -0.3 40 V VDD5 external transistor control -0.3 40 V - - - -0.3 6.5 V - - - 54 NC 55 BSTGND 56 ACL 57 BVDD5 58 NC 59 VDD5 60 14/210 NC Not connected (1) Not connected (1) Not connected 5V regulator output Not connected (1) DS11626 Rev 5 L9678P, L9678P-S Absolute and operative maximum ratings Table 1. Absolute maximum ratings (continued) Pin # Pin name 61 COVRACT 62 VDDQ 63 ARM 64 GNDSUB2 1. Pin function Min. Max. Unit External crossover switch control -0.3 VDDQ+0.3 6.5 V I/O supply -0.3 6.5 V Arming Output -0.3 VDDQ+0.3 6.5 V Substrate ground -0.3 0.3 V Not connected internally, should be connected to GND externally. 2.2 Operative maximum ratings Within the operative ratings the part operates as specified and without parameter deviations. Once taken beyond the operative ratings and returned back within, the part will recover with no damage or degradation. Additional supply-voltage and temperature conditions are given separately at the beginning of each specification table. Table 2. Operative maximum ratings Pin # Pin name 1 RESET 2 Pin function Min. Max. Unit Reset output -0.1 VDDQ+0.1 5.5 V SPI_MISO SPI interface data out / Safing sensor data in -0.1 VDDQ+0.1 5.5 V 3 SPI_MOSI SPI interface data in -0.1 VDDQ+0.1 5.5 V 4 SPI_SCK SPI interface clock -0.1 VDDQ+0.1 5.5 V 5 SPI_CS SPI interface chip select -0.1 VDDQ+0.1 5.5 V 6 WDT/TM Watchdog disable -0.1 20 V 7 VDD3V3 3.3V regulator output -0.1 3.6 V 8 NC - - - 9 CVDD Internal 3.3V regulator output -0.1 3.6 V 10 GNDD Digital ground -0.1 0.1 V 11 SR0 Squib/pyroswitch 0 low-side pin -0.1 VER V 12 SF0 Squib/pyroswitch 0 high-side pin -1.0 VER V 13 SG01 Squib/pyroswitch 0 & 1 deployment ground pin -0.1 0.1 V 14 SS01 Squib/pyroswitch 0 & 1 deployment supply pin -0.1 40 V 15 SF1 Squib/pyroswitch 1 high-side pin -1.0 VER V 16 SR1 Squib/pyroswitch 1 low-side pin -0.1 VER V 17 DCS3 Sensor switch interface channel 3 -1.0 VDCS_L V 18 DCS2 Sensor switch interface channel 2 -1.0 VDCS_L V 19 DCS1 Sensor switch interface channel 1 -1.0 VDCS_L V 20 DCS0 Sensor switch interface channel 0 -1.0 VDCS_L V 21 VRESDIAG Reserve voltage diagnostic input -0.1 35 V 22 RSU0/NC PSI-5 Ch. 0 remote sensor output (only L9678PS), NC on L9678P -1.0 VSUP V Not connected(1) DS11626 Rev 5 15/210 209 Absolute and operative maximum ratings L9678P, L9678P-S Table 2. Operative maximum ratings (continued) Pin # Pin name Pin function Min. Max. Unit 23 RSU1/NC PSI-5 Ch. 1 remote sensor output (only L9678PS), NC on L9678P -1.0 VSUP V 24 VSUP/NC Remote sensor power supply (only L9678P-S, NC(1) on L9678P) -0.1 VIN V 25 BVSUP/NC VSUP external transistor control (only L9678P-S, NC(1) on L9678P) -0.1 VIN V 26 GPOD0 GPO driver 1 drain output pin -0.1 40 V 27 GPOS0 GPO driver 1 source output pin -1.0 VIN V 28 GPOS1 GPO driver 0 source output pin -1.0 VIN V 29 GPOD1 GPO driver 0 drain output pin -0.1 40 V - - - Not connected (1) 30 NC 31 ISOK ISO9141 bus pin -1.0 40 V 32 GNDSUB1 Substrate ground -0.1 0.1 V 33 SR3 Squib/pyroswitch 3 low-side pin -0.1 VER V 34 SF3 Squib/pyroswitch 3 high-side pin -1.0 VER V 35 SS23 Squib/pyroswitch 2 & 3 deployment supply pin -0.1 40 V 36 SG23 Squib/pyroswitch 2 & 3 deployment ground pin -0.1 0.1 V 37 SF2 Squib/pyroswitch 2 high-side pin -1.0 VER V 38 SR2 Squib/pyroswitch 2 low-side pin -0.1 VER V 39 GNDA Analog ground -0.1 0.1 V 40 ISORX ISO9141 receiver pin -0.1 VDDQ+0.1  5.5 V 41 ISOTX ISO9141 transmit pin -0.1 VDDQ+0.1  5.5 V 42 FENL LS driver FET control input -0.1 VDDQ+0.1  5.5 V 43 FENH HS driver FET control input -0.1 VDDQ+0.1  5.5 V 44 SAF_CS0 SPI interface safing sensor chip select -0.1 VDDQ+0.1  5.5 V 45 SAF_CS1 SPI interface safing sensor chip select -0.1 VDDQ+0.1  5.5 V - - - 46 NC 47 WAKEUP Wake-up control input -0.1 VIN V 48 VBATMON Battery line voltage monitor -0.1 18 V 49 VSF Safing regulator supply output -0.1 27 V 50 VIN Battery connection -0.1 35 V 51 VER Reserve voltage -0.1 35 V 52 ERBOOST Energy reserve regulator output -0.1 35 V 53 ERBSTSW Boost switching output -0.1 ERBOOST+1 V - - - Boost regulator ground -0.1 0.1 V EOL disposal control input --0.1 40 V VDD5 external transistor control -0.1 VIN V 54 NC 55 BSTGND 56 ACL 57 BVDD5 16/210 Not connected (1) Not connected (1) DS11626 Rev 5 L9678P, L9678P-S Absolute and operative maximum ratings Table 2. Operative maximum ratings (continued) Pin # Pin name 58 NC 59 VDD5 NC 61 COVRACT 62 VDDQ 63 ARM 64 GNDSUB2 Not connected (1) 5V regulator output Min. Max. Unit - - - -0.1 5.5 V (1) - - - External crossover switch control -0.1 VDDQ+0.1  5.5 V I/O supply -0.1 5.5 V Arming Output -0.1 VDDQ+0.1  5.5 V Substrate ground -0.1 0.1 V Not connected Not connected internally, should be connected to GND externally. Pin-out description The L9678P-S/L9678P pin-out is shown below. The package is a LQFP 64-pin full plastic package. VSF VIN VER ERBOOST ERBSTSW NC (**) BSTGND ACL BVDD5 NC (**) VDD5 NC (**) COVRACT VDDQ ARM Figure 1. Pin-out description GNDSUB2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 RESET 1 48 VBATMON SPI_MISO 2 47 WAKEUP SPI_MOSI 3 46 NC (**) SPI_SCKI 4 45 SAF_CS1 SPI_CS 5 44 SAF_CS0 WDT/TM 6 43 FENH VDD3V3 7 42 FENL NC (**) 8 41 ISOTX CVDD 9 40 ISORX GNDD 10 39 GNDA SR0 11 38 SR2 SF0 12 37 SF2 SG01 13 36 SG23 SS01 14 35 SS23 SF1 15 34 SF3 SR1 16 33 SR3 ISOK GNDSUB1 NC (**) GPOS1 GPOD1 GPOS0 GPOD0 (*) VSUP/NC (**) DS11626 Rev 5 (*) BVSUP/NC (**) (*) RSU1/NC (**) RSU0/NC (**) (*) (*) Those pins are NC in the L9678 version. (**) Not connected internally, should be connected to GND externally. VRESDIAG DCS0 DCS1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DCS2 2.3 DCS3 1. 60 Pin function GAPGPS01105 17/210 209 Overview and block diagram 3 L9678P, L9678P-S Overview and block diagram The L9678P is a unique solution specifically targeted for entry level airbag or cut-off battery systems while permitting the system designer significant flexibility in configuring the system power and management block. The configurable methodology allows cost versus performance trade-off without changing devices or circuit board designs. The L9678P contains the base functionality required for entry level systems and can complete a system design with a microcontroller and acceleration sensor. The high level block diagram is shown below Figure 2. Basic features include a configurable power supply & management block, 4 channel squib/pyroswitch drivers, 2 channel HS/LS GPO drivers, 4 channel sensor interface, safing logic, watchdog timer, ISO9141 communications and temperature sensor. The L9678P-S device is pin compatible to the L9678P and includes two PSI-5 remote sensor interface channels and a dedicated regulator for remote sensor. 18/210 DS11626 Rev 5 L9678P, L9678P-S Overview and block diagram Figure 2. Functional block diagram 361 0.47 Vbat 10μH, 0.5 100nF 2.2uF SS16 1A 2.2uF 100μF, 4 + 100nF 10nF 1mF to 10mF ERBSTSW ERBOOST VER VBatMon uC_FLEN ER Charge ER Boost BSTGND VIN 100nF 3k BVDD5 BCP53 VDD5 Safing regulator ER Switch VDD5 linear regulator VSF GNDSUBx 4.7nF GPOD0 4.7 F VDD3V3 4.7 F WAKEUP VIgn VDDQ CVDD VDD3V3 linear reg . GPOS0 GPOD1 GPO drivers supply VINT3V3 reg . for analog block s GPOS1 Digital Outputs VRESDIAG 100nF CVDD reg for digital block s GNDD SS01 GNDA 3k BVSUP BCP53 SS23 VSUP linear regulator Digital block VSUP SF0 SF1 4.7 F Satellite Driver & Decoder Optional L9678-S SF2 22nF SF3 Enable Control FENH HV analog MUX and AtoD converter (10 bits ) FENL SR0 SR1 Decoder RSU0 SR2 L9678-S RSU1 SR3 22nF DC / Hall sensor interface 22nF SG01 Enable Control Squib drivers and Diagnostic DCS0 Safing Logic DCS1 SG23 ACL ARM DCS2 22nF DCS3 System control & configuration ISO9141 transceiver GNDSUB2 COVRACT WDTDIS/TM SPI_MOSI RESET SPI_SCK SPI_MISO SAF_CS0 SAF_CS1 SPI_CS ISOTX ISORX 510 GNDISO ISOK Vbat GAPGPS01106 DS11626 Rev 5 19/210 209 Start-up power control L9678P, L9678P-S 4 Start-up power control 4.1 Power supply overview The L9678P IC contains a complete power management system able to provide all necessary voltages for an entry level airbag or cut-off battery application. Moreover L9678P power supply is user configurable allowing the design engineer to balance cost and performance as per their particular application. The power supply block contains the following features: 20/210  Two 3.3 V internal regulators for operating internal logic (CVDD) and analog circuits (VINT3V3). An external CVDD pin is used to provide filtering capacitance to digital section supply rail.  Energy reserve supply (ERBOOST) achieved through an integrated switching boost regulator. The design of this boost regulator is intended to be a cost effective solution with respect to traditional boost regulators because it makes use of a low value inductor with an operative frequency of 1.882 MHz. Switching output is ERBSTSW pin, while voltage feedback input pin is ERBOOST. The output voltage could be set to either 23 V±5% or 33 V±5%.  Energy reserve capacitor connected to VER pin. To control in-rush current, a dedicated current generator is implemented between ERBOOST pin and VER pin.  Capability to drive an external safing FET (n-ch type) by means of an internal voltage regulator on VSF pin, where a 20 V level is given (configurable to 25V via SPI command).  The integrated current limited ER switch requires no external components. This switch is controlled through the integrated power control state machine and is enabled either once a loss of battery is detected or a shutdown command is received. Under the same conditions also the discrete digital pin COVRACT is activated allowing the control of an external optional cross-over switch.  One linear regulator VDD5 (5 V nominal, ±4% tolerance) requiring external power transistor and capacitors. VDD5 is used as micro-controller supply (in case of 5 V family controllers) and, in any case, as supply for VDD3V3 rail.  One integrated linear regulator VDD3V3 (3.3 V nominal, ±4% tolerance) requiring external capacitors. VDD3V3 is used as micro-controller supply (in case of 3.3 V family controllers).  VDDQ pin to provide output voltage rail reference. VDDQ could be connected to either VDD5 or VDD3V3 to enable 5 V or 3.3 V digital communication between device and micro-controller.  Capability to drive an external power transistor connected to VIN to provide a 7.2 V rail on VSUP pin. This voltage rail could be used to supply PSI-5 remote sensor.  Battery voltage sense input comparator with hysteresis connected to VBATMON pin. Power-up and operation states are carefully handled with respect to the battery level to provide the most effective power supply configuration.  All voltage rails (VIN, ERBOOST, VER, VRESDIAG, VDD5, VDD3V3, VSUP and VSF) can be monitored through internal ADC diagnostics. DS11626 Rev 5 L9678P, L9678P-S 4.2 Start-up power control Power mode control Start-up and power down of the L9678P are controlled by the WAKEUP pin, VBATMON pin, VIN pin device status and the SPI interface. There are four main power modes: power-off, sleep, active and passive mode. Each power mode is described below and represented in the state flow diagram shown in Figure 3. The descriptions include references to conditions and sometimes nominal values. The absolute values for each condition are listed in the electrical specifications section. Figure 3. Power control state flow diagram From any state POR POWER OFF state POWER-OFF MODE (All supplies disabled) WAKEUP < WU_mon WAKEUP> WU_mon WAKEUP MONITOR state WAKEUP > WU_on [(WAKEUP < WU_off) AND (WakeUpFilt = 0)] AWAKE State WakeUpFilt= 1 AND VINVINGOOD Twakeup > 9ms WakeUpFilt = 0 AND SPI_SLEEP RUN state VBAT mon > VBGOOD (blanking time 10ms) ACTIVE MODE VIN < VINGOOD POWERMODE SHUTDOWN state ER state WakeUpFilt = 0 AND SPI_SLEEP Twakeup Timer: Cleared if (State = WAKEUP MONITOR or AWAKE) and WakeUpFilt=0 DS11626 Rev 5 PASSIVE MODE GAPGPS01108 21/210 209 Start-up power control 4.2.1 L9678P, L9678P-S Power_off mode During the Power-off mode all supplies are disabled keeping the system in a quiescent state with very low current draw from battery. As soon as WAKEUP > WU_mon the IC will move to Sleep mode. 4.2.2 Sleep mode During the Sleep mode the VINT3V3 and CVDD internal regulators are turned on and the IC is ready for full activation of all the other supplies. As soon as battery voltage is over a minimum threshold, all the other supplies are turned on and the IC enters the Active mode. 4.2.3 Active mode This is the normal operating mode for the system. All power supplies are enabled and the energy reserve boost converter starts to increase the voltage at ERBOOST. Likewise, the VDD5 regulator is turned on. Once the VDD5 has reached a good value, the VDD3V3 regulator starts up. Once the VDD3V3 regulator is in regulation, RESET is released allowing the system microcontroller and other components to begin their power-on sequence. Among these, also the ER charge current generator can be enabled by the microcontroller via a dedicated SPI command. The active mode can be left when either WAKEUP pin or VIN voltage drop down. For the very first 9 ms after having entered the active mode, the WAKEUP pin low would immediately cause the IC to switch back to sleep mode. After that time, WAKEUP pin low must be first confirmed by a MCUSPI_SLEEP command prior to cause the system to switch to passive mode. Passive mode is also entered in case of VIN voltage low. 4.2.4 Passive mode In this state, the energy reserve charge current is disabled and the ERBOOST boost converter is disabled only if the SYS_CFG(KEEP_ERBST_ON)=0. When in passive mode the device automatically activates both the COVRACT output pin and the integrated ER switch to allow VIN to be connected to the ER capacitor. In this time, VIN is supposed to be increased up to almost VER level and the system operation relies on energy from the ER capacitor. Two scenarios are possible: high or low battery. If VIN < VINGOOD, the device moved from RUN state in ACTIVE mode to the ER state. Here, the ER capacitor is depleted while supplying all the regulators until the POR on internal regulator occurs. The threshold to decide the ER switch activation is based on VIN, because VIN is the supply voltage rail for all regulators. If the device has still a good battery level, it entered the POWERMODE SHUTDOWN thanks to WAKEUP pin and MCU command to switch off. In this case, the VER node will be discharged down to approximately VIN level, which then will be supplied out of the battery line. System will continue to run up to a dedicated SPI command which will lead the device to enter the POWEROFF state. The wake-up pin is filtered to suppress undesired state changes resulting from transients or glitches. Typical conditions are shown in the chart below and summarized by state. 22/210 DS11626 Rev 5 L9678P, L9678P-S Start-up power control Figure 4. Wake-up input signal behaviour ACTIVE MODE SLEEP MODE PASSIVE MODE 1 2 3 5 4 6 WU_on WU_off WAKEUP t WU_on VBBAD - - - VBATMON bad pin status Set and cleared based on voltage 1 VBATMON < VBBAD 0 VBATMON > VBBAD NOT_VBGOOD - - - VBATMON good pin status Set and cleared based on voltage 1 VBATMON < VBGOOD 0 VBATMON > VBGOOD VINBAD - - - VIN bad pin status Set and cleared based on voltage 0 VIN > VINBAD 1 VIN < VINBAD NOT_VINGOOD - - - VIN good pin status Set and cleared based on voltage 0 VIN > VINGOOD 1 VIN < VINGOOD VDD3V3_UV 60/210 - - - VDD3V3 bad pin status DS11626 Rev 5 L9678P, L9678P-S SPI interface Set based on voltage, cleared on SPI read 0 VDD3V3 > VDD3V3_UV 1 VDD3V3 < VDD3V3_UV VDD3V3_OV - - - VDD3V3 bad pin status Set based on voltage, cleared on SPI read 0 VDD3V3 < VDD3V3_OV 1 VDD3V3 > VDD3V3_OV ER_BST_NOK - - - ERBOOST pin status Set and cleared based on voltage 1 V_ERBOOST < ERBOOST_OK 0 V_ERBOOST > ERBOOST_OK VDD5_UV - - - VDD5_UV status Set based on voltage, cleared on SPI read 0 VDD5 > VDD5_UV 1 VDD5 < VDD5_UV VDD5_OV - - - VDD5_OV status Set based on voltage, cleared on SPI read 0 VDD5 < VDD5_OV 1 VDD5 > VDD5_OV VSUP_NOK - - - VSUP status Set and cleared based on voltage 0 VSUP > VSUP_OK 1 VSUP < VSUP_OK ER_BST_ON 0 - - ERBOOST_ON state Updated according to ER_BOOST Control Behavior diagram 0 RBOOST_OFF or ERBOOST_OT state or ER_BST_STBY state (boost not running) 1 ERBOOST_ON state (boost running) ER_CHRG_ON 0 0 0 ERCHARGE_ON state Updated according to ER_CHARGE Power Mode Control diagram 0 ERCHARGE_ON = 0 1 ERCHARGE_ON = 1 DS11626 Rev 5 61/210 209 SPI interface ER_SW_ON L9678P, L9678P-S 0 - - ER_SWITCH State Updated according to ER Switch state diagram 0 ER_SWITCH_OFF 1 ER_SWITCH_ON VDD5_ACT 0 - - VDD5 Active state Updated according to VDD5 Power Mode Control state diagram 0 VDD5 supply in VDD5_OFF or VDD5_SHUTDOWN states 1 VDD5 supply in VDD5_RAMPUP or VDD5_ON states VSUP_ACT 0 0 0 VSUP Active state Updated according to VSUP Power Mode Control state diagram 0 VSUP supply in VSUP_OFF or VSUP_SHUTDOWN states 1 VSUP supply in VSUP_RAMPUP or VSUP_ON states VDD3V3_ACT 0 - - VDD3V3 Active state Updated according to VDD3V3 Power Mode Control state diagram 0 VDD3V3 supply in VDD3V3_OFF or VDD3V3_SHUTDOWN states 1 VDD3V3 supply in VSUP_ON state VSF_ACT 0 0 0 VSF Active state Updated according to VSF Control Logic diagram 0 VSF_EN = 0 1 VSF_EN = 1 62/210 DS11626 Rev 5 L9678P, L9678P-S 5.1.7 SPI interface Deployment configuration registers (DCR_x) Channel 0 (DCR_0) Channel 1 (DCR_1) Channel 2 (DCR_2) - 0 0 0 0 15 14 13 12 11 10 9 8 X X X X X X X X 0 0 0 0 0 0 0 0 RW Buffer: $0600 (DCR_0) $0700 (DCR_1) $0800 (DCR_2) $0900 (DCR_3) Reset: $000C (DCR_0) $000E (DCR_1) $0010 (DCR_2) $0012 (DCR_3) Deploy_Time[1:0] SSM Type: WSM 06 (DCR_0) 07 (DCR_1) 08 (DCR_2) 09 (DCR_3) POR Address: 00 00 00 Default deployment time select 7 6 5 4 3 2 Dep_expire_time Dep_expire_time MISO 16 Dep_Current MOSI 17 Dep_Current 18 Deploy_Time 19 Deploy_Time Channel 3 (DCR_3) 1 0 X X 0 0 Updated by SSM_RESET or SPI write while in DIAG state 00 Unused (no deploy, 8 us pulse output on ARM1 pin during PULSE TEST) 01 0.5 ms 10 0.7 ms 11 2.0 ms Dep_Current[1:0] 00 00 00 Deployment Current limit select Updated by SSM_RESET or SPI write while in DIAG state 00 Unused (no deploy) DS11626 Rev 5 63/210 209 SPI interface L9678P, L9678P-S 01 1.75A min 10 1.2A min 11 Unused (no deploy) Dep_expire_time[1: 0] 00 00 00 Deploy command expiration timer select Updated by SSM_RESET or SPI write while in DIAG state 00 500ms 01 250ms 10 125ms 11 0ms 64/210 DS11626 Rev 5 L9678P, L9678P-S - MISO 0 0 0 12 Type: RW Buffer: $1200 Reset: $0024 POR Address: CHxDEPREQ 0 15 14 13 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 3 2 1 0 CH0DEP CH0DEPREQ 16 WSM MOSI 17 CH1DEP CH1DEPREQ 18 CH2DEP CH2DEPREQ 19 CH3DEP CH3DEPREQ Deployment command (DEPCOM) SSM 5.1.8 SPI interface N/A N/A N/A Channel x Deploy Request - non-latched channel-specific deploy request 0 No change to deployment control for channel x 1 Clear and start Expiration timer if in ARMING or SAFING state and in DEPLOY_ENABLED state CHxDEP 0 0 0 Channel x deployment expiration timer enable Set when SPI_DEPCOM(CHxDEPREQ=1) AND in ARMING or SAFING state AND in DEP_ENABLED state Cleared on SSM_RESET OR when in DEP_DISABLED state OR when Deploy Expiration Timer x reaches time-out threshold 0 Expiration timer enabled - Deploy command still valid 1 Expiration Timer disabled - Deploy command no more valid DS11626 Rev 5 65/210 209 SPI interface 5.1.9 L9678P, L9678P-S Deployment configuration registers (DSR_x) Channel 0 (DSR_0) Channel 1 (DSR_1) Channel 2 (DSR_2) - MISO 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 x x x x x x x x x x x x x x x x 0 0 0 0 0 0 R Buffer: $1300 (DSR_0) $1400 (DSR_1) $1500 (DSR_2) $1600 (DSR_3) Reset: - CHxDS SSM Type: WSM 13 (DSR_0) 14 (DSR_1) 15 (DSR_2) 16 (DSR_3) POR Address: 0 0 0 DEP_CHx_ExpTimer 16 DCRxERR MOSI 17 CHxDD 18 CHxSTAT 19 CHxDS Channel 3 (DSR_3) Channel x deployment successful Updated according to Deployment Driver Control Logic (set when deployment terminates on ch x due to deploy timer time-out, cleared on SSM_RESET OR when deployment starts on ch x) 0 Deployment not successful 1 Deployment successful CHxSTAT 0 0 0 (set when deployment starts on ch x, cleared on SSM_RESET OR when deployment terminates due to deploy timer time-out, LS Over current OR GND Loss) 0 Deployment not in progress 1 Deployment in progress CHxDD 0 0 0 Default Deploy Flag on Channel x Updated by SSM_RESET, or when the Deployment Configuration Register is written with an incorrect configuration 66/210 DS11626 Rev 5 L9678P, L9678P-S SPI interface 0 Correct Time/Current combination selected 1 Incorrect Time/Current combination selected (default time/current is set) DCRxERR 0 0 0 Deployment configuration register err 0 Deploy configuration change accepted and stored in memory 1 Deploy configuration change rejected because deploy is in progress (or DEP_EXPIRE_TIME changed when in DEP_ENABLED state) DEP_CHx_ExpTimer 0000 0000 0000 Channel x Deployment Expiration Timer value 8ms/count [5:0] 00 00 00 Updated according to Deployment Driver Control Logic (Cleared on SSM_RESET OR when Exp Timer times out OR when SPI_DEPREQx is received while in DEP_ENABLED state AND in ARMING or SAFING states) 5.1.10 Deployment current monitor status registers (DCMTSxy) Channels 0, 1 (DCMTS01) Channels 2, 3 (DCMTS23) 19 18 0 0 MOSI MISO 17 16 0 0 - 15 14 X X 11 10 9 8 7 6 X X X X X X X X R Buffer: $1F00 (DCMTS01) $2000 (DCMTS23) Reset: - 5 4 3 2 1 0 X X X X X X Current_Mon_Timer_x[7:0] SSM Type: WSM 1F (DCMTS01)) 20 (DCMTS23) POR 12 Current_Mon_Timer_y[7:0] Address: Current_Mon_Time r_y[7:0] 13 $00 $00 $00 Channel y current monitor timer value corresponding to SPI command DCMTSxy. Set to default (cleared) on SSM_RESET or when a new deployment starts on channel y. Increments each 16µs while deployment current exceeds monitor threshold on channel y Current_Mon_Time r_x[7:0] $00 $00 $00 Channel x current monitor timer value corresponding to SPI command DCMTSxy. Set to default (cleared) on SSM_RESET or when a new deployment starts on channel x. Increments each 16µs while deployment current on channel x exceeds monitor threshold DS11626 Rev 5 67/210 209 SPI interface Deploy enable register (SPIDEPEN) 19 18 0 0 MOSI MISO 17 16 0 0 15 14 13 12 11 10 9 - 7 6 5 4 3 2 1 0 DEPEN_WR[15:0 25 Type: RW Buffer: $2500 Reset: $004A DEPEN_STATE[15:0] POR WSM Address: DEPEN_WR[15:0] 8 SSM 5.1.11 L9678P, L9678P-S N/A N/A N/A Non-latched encoded value for LOCK / UNLOCK command $0FF0 LOCK - enter DEP_DISABLED state $F00F UNLOCK - enter DEP_ENABLED state DEPEN_STATE[15: $0FF0$0FF0$0FF0Deploy Enabled State 0] Updated according to Global SPI Deployment Enable State Diagram $0FF0 In DEP_DISABLED state $F00F In DEP_ENABLED state MISO 17 16 - 0 0 0 R Buffer: $2600 Reset: - GNDLOSSx 68/210 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 X WSM 26 14 X POR Address: 0 15 GNDLOSS0 18 GNDLOSS1 19 MOSI GNDLOSS2 Squib/pyroswitch ground loss register (LP_GNDLOSS) GNDLOSS3 5.1.12 0 0 0 Loop x Squib/pyroswitch Ground loss DS11626 Rev 5 L9678P, L9678P-S SPI interface Cleared upon SSM_RESET or SPI read. Set when GND loss is detected during deployment or loop diag's (HS sw test, LS sw test, squib/pyroswitch resistance) 0 Loss of ground not detected 1 Loss of ground detected 5.1.13 Device version register (VERSION_ID) 19 18 MOSI 17 16 - MISO 0 0 0 0 R Buffer: $2700 Reset: - DEVICE ID 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 1 0 SSM Type: 13 WSM 27 14 POR Address: 15 - - - DEVICE ID VERSN Identification of the device Static value - never updated 001 Low end 010 Medium end 011 High end VERSN - - - Identification of the silicon version 000011 other codes 5.1.14 Watchdog retry configuration register (WD_RETRY_CONF) 19 18 17 16 15 14 13 12 MOSI MISO CB version previous versions 11 10 9 8 7 6 5 4 3 0 0 0 0 0 0 0 0 0 2 WD1_RETRY_TH 0 0 DS11626 Rev 5 0 0 0 0 0 0 WD1_RETRY_TH 69/210 209 SPI interface L9678P, L9678P-S RW Buffer: $2800 Reset: $0050 WD1_RETRY_TH 7 - WD1 retry counter threshold (number of WD errors permitted before latching WD1_LOCKOUT=1) Watchdog timer configuration register (WDTCR) 19 18 MOSI MISO 7 17 16 - 0 0 14 X 0 0 RW Buffer: $2A00 Reset: $0054 SSM Type: WSM 2A 0 POR Address: WD1_MODE 15 13 12 WD1_MODE WD1_MODE 5.1.15 SSM Type: WSM 28 POR Address: 0 0 - 11 10 9 8 7 6 5 4 3 2 WDTMIN[6:0] WDTDELTA[6:0] WDTMIN[6:0] WDTDELTA[6:0] 1 0 WD1 Mode Updated by WSM_RESET or SPI write while in WD1_INIT state 0 Fast WD1 mode - nominal 8µs timer resolution (2ms max value) 1 Slow WD1 mode - nominal 64µs timer resolution (16.3ms max value) WDTMIN[6:0] $32 $32 - WD1 window minimum value - resolution according to WD1_MODE bit ($32 = 400µs in WD1 fast mode) Updated by WSM_RESET or SPI write while in WD1_INIT state WDTDELTA[6:0] $19 $19 - WD1 window delta value - WDTMAX=WDTMIN+WDTDELTA - resolution according to WD1_MODE bit ($19 = 200µs in WD1 fast mode) Updated by WSM_RESET or SPI write while in WD1_INIT state 70/210 DS11626 Rev 5 L9678P, L9678P-S 5.1.16 WD1 timer control register (WD1T) 19 18 0 0 MOSI MISO SPI interface 17 16 0 0 - W Buffer: $2B00 Reset: $0056 WD1CTL[1:0] X X X 12 11 10 9 8 7 6 5 4 3 2 X X X X X X X X X X X WD1CTL[1:0] 0 0 0 0 0 0 WD1CTL[1:0] WD1_TIMER SSM Type: 13 WSM 2B 14 POR Address: 15 00 00 00 WD1 Control command 1 0 Updated by SSM_RESET or SPI write 00 NOP 01 Code 'A' 10 Code 'B' 11 NOP WD1_TIMER $00 $00 $00 WD1 Window timer value Cleared by SSM_RESET or by WD1 refresh, incremented every 8µs or 64µs while in WD1_RUN or WD1_TEST states WD1 state register (WDSTATE) 18 MOSI MISO 17 16 0 0 0 0 2C Type: R Buffer: $2C00 Reset: POR Address: WD1_ERR_CNT[3:0] 000 000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 WD1_ERR_CNT[3:0] WD_STATE[2:0] SSM 19 WSM 5.1.17 - Watchdog error counter Updated according to Watchdog State Diagram WD1_STATE[2:0] 000 000 - Watchdog state Updated according to Watchdog State Diagram 000 INITIAL DS11626 Rev 5 71/210 209 SPI interface L9678P, L9678P-S 001 RUN 010 TEST 011 RESET 100 OVERRIDE MISO 16 - 0 0 0 0 RW Buffer: $2D00 Reset: $005A AUX_SS_DIS 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 2D 14 POR Address: 15 1 - - Auxiliary 3.75MHz oscillator Spread Spectrum disable Updated by POR or SPI write while in INIT state 0 Spread Spectrum enabled 1 Spread Spectrum disabled MAIN_SS_DIS 0 - - Main 16MHz oscillator Spread Spectrum disable Updated by POR or SPI write while in INIT state 0 Spread Spectrum enabled 1 Spread Spectrum disabled ERBST_F_SEL[1:0] 00 - - ER Boost switching frequency select Updated by POR or SPI write while in INIT state 00 1.88 MHz 01 2.13 MHz 10 2.00 MHz 11 2.00 MHz 72/210 DS11626 Rev 5 3 2 1 0 ERBST_F_SEL ERBST_F_SEL[1:0] MOSI 17 MAIN_SS_DIS 18 MAIN_SS_DIS 19 AUX_SS_DIS Clock configuration register (CLK_CONF) AUX_SS_DIS 5.1.18 L9678P, L9678P-S Scrap state entry command register (SCRAP_STATE) 19 18 0 0 MOSI MISO 17 16 15 14 13 12 11 10 9 8 0 0 0 0 0 0 0 0 0 0 - 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 $3535 30 Type: W Buffer: - Reset: $0060 POR WSM Address: SSM 5.1.19 SPI interface N/A N/A N/A Non-latched Scrap State entry command Enter Scrap state from DIAG state Safing state entry command register (SAFING_STATE) 19 18 MISO 16 15 14 13 12 11 10 9 0 0 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 $ACAC 0 31 Type: W Buffer: - Reset: $0062 POR Address: 0 0 0 0 0 0 0 0 0 0 SSM MOSI 17 WSM 5.1.20 N/A N/A N/A Non-latched Safing State entry command Enter safing state from DIAG state and clear arming pulse stretch counter (if received in DIAG or SAFING state) DS11626 Rev 5 73/210 209 SPI interface 5.1.21 L9678P, L9678P-S WD1 test command register (WD1_TEST) 19 18 0 0 16 15 14 13 12 0 0 0 0 0 0 - MISO 11 10 9 8 0 0 0 0 $3C 35 Type: W Buffer: - Reset: $006A POR WSM Address: 7 6 5 4 3 2 1 0 X X X X X X X X 0 0 0 0 0 0 0 0 SSM MOSI 17 N/A N/A N/A Non-latched WD1 Test Command WD1_TEST SPI command as described in Figure 36: Watchdog state diagram. System diagnostic register (SYSDIAGREQ) 19 18 16 - MISO 0 0 0 0 36 Type: RW Buffer: $3601 Reset: $006C POR Address: WSM MOSI 17 15 14 13 12 11 10 9 8 7 6 5 4 3 X X X X X X X X X X X X DSTEST[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 DSTEST[3:0] SSM 5.1.22 DSTEST[3:0] 0000 0000 0000 Diagnostic State Test selection Updated by SSM_RESET or SPI write while in DIAG state 0000 = all outputs inactive 0001 = ARM pin active 0010 = all outputs inactive 0011 = all outputs inactive 0100 = all outputs inactive 0101 = all outputs inactive 0110 = VSF regulator active 74/210 DS11626 Rev 5 2 1 0 L9678P, L9678P-S SPI interface 0111 = HS squib/pyroswitch driver FET active 1000 = LS squib/pyroswitch driver FET active 1001 = Output deployment timing pulses on ARM1 (separated by 8 ms) 1010 = ST reserved 1011 - 1111 = all outputs inactive DS11626 Rev 5 75/210 209 SPI interface R Buffer: $3700 Reset: - DIAG_LEVEL 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X STB SQP 0 0 0 Diagnostic mode selector Not present for low level diagnostic Updated by SSM_RESET or SPI write to LPDIAGREQ 0 low level mode 1 high level mode TIP 0 0 0 High level diagnostic test is running Updated by SSM_RESET or Loops diagnostic state machine 0 High level diagnostic test is not running 1 High level diagnostic test is running FP 0 0 0 Fault present before requested diagnostic Updated by SSM_RESET or Loops diagnostic state machine 0 Fault not present before requested diagnostic 1 Fault present before requested diagnostic FETON 76/210 0 0 0 FET activation during diagnostic DS11626 Rev 5 LEAK_CHSEL 10 SSM Type: 11 WSM 37 12 POR Address: 13 STG FP 14 SBL 0 15 RES_MEAS_CHSEL/ HIGH_LEV_DIAG_SELECTED TIP MISO 16 - DIAG_LEVEL MOSI 17 HSR_LO 18 HSR_HI 19 ST_reserved Diagnostic result register for deployment loops (LPDIAGSTAT) FETON 5.1.23 L9678P, L9678P-S L9678P, L9678P-S SPI interface Updated by SSM_RESET or Loops diagnostic state machine or when HS or LS FET is activated during DIAG state 0 FET is off during diagnostic 1 FET is on during diagnostic ST_reserved 0 0 0 ST_reserved HSR_HI 0 0 0 HSR Diagnostic - HIGH Range Updated by SSM_RESET or Loops diagnostic state machine or when squib/pyroswitch resistance test is run 0 HSR measurement < HSR HIGH value 1 HSR measurement > HSR HIGH value HSR_LO 0 0 0 HSR Diagnostic - Low Range Updated by SSM_RESET or Loops diagnostic state machine or when squib/pyroswitch resistance test is run 1 HSR measurement< HSR LOW value 0 HSR measurement > HSR LOW value RES_MEAS_CHSEL 0000 0000 0000 Channel selected for resistance measurement [3:0] Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib/pyroswitch resistance channel selected 0000 = Ch 0 0001 = Ch 1 0010 = Ch 2 0011 = Ch 3 0100 - 1111 None Selected HIGH_LEV_DIAG_ 0000 0000 0000 SELECTED[3:0] 0000 No diagnostic selected 0001 VRCM CHECK 0010 Leakage CHECK 0011 Short Between Loops CHECK 0100 ER cap ESR measure 0101 Squib/pyroswitch resistance range CHECK 0110 Squib/pyroswitch resistance measurement 0111 FET test 1000 - 1111 Unused DS11626 Rev 5 77/210 209 SPI interface L9678P, L9678P-S SBL 0 0 0 Short between loop state Updated by SSM_RESET or Loops diagnostic state machine 0 Short between squib/pyroswitch loops is not present 1 Short between squib/pyroswitch loops is present STG 0 0 0 Short to Ground Test Status Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib/pyroswitch leakage diagnostic 0 STG not detected 1 1 STG detected STB 0 0 0 Short to Battery Test Status Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib/pyroswitch leakage diagnostic 0 STB not detected 1 STB detected SQP 0 0 0 Squib/pyroswitch PIN where leakage test has been performed Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib/pyroswitch leakage diagnostic 0 SRx 1 SFx LEAK_CHSEL[3:0] 0000 0000 0000 Channel selected for leakage measurement Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib/pyroswitch leakage diagnostic 0000 = Ch 0 0001 = Ch 1 0010 = Ch 2 0011 = Ch 3 0100 - 1111 None Selected 78/210 DS11626 Rev 5 L9678P, L9678P-S Loops diagnostic configuration command register for low level diagnostic (LPDIAGREQ) RW Buffer: $3800 Reset: $0070 DIAG_LEVEL SSM Type: WSM 38 POR Address: 0 0 0 5 4 3 2 1 0 LEAK_CHSEL[3:0] 6 LEAK_CHSEL[3:0] 7 RES_MEAS_CHSEL[3:0]RES_MEAS_CHSEL[3:0] 8 VRCM[1:0] 9 VRCM[1:0] 10 ISINK 0 11 ISINK 0 12 ISRC [1:0] 0 13 ISRC [1:0] 0 - MISO 14 PD_CURR 15 PD_CURR 16 ISRC_CURR_SEL MOSI 17 ISRC_CURR_SEL 18 DIAG_LEVEL 19 DIAG_LEVEL 5.1.24 SPI interface Diagnostic mode selector Updated by SSM_RESET or SPI write 0 low level mode 1 N/A - see description below ISRC_CURR_SEL 0 0 0 Selection of ISRC current value 0 40mA 1 8mA PD_CURR 0 0 0 Pull down current control Updated by SSM_RESET or SPI write 0 Request OFF only for channels connected to VRCM or ISINK or ISRC, ON for all other channels 1 Request OFF for all channels ISRC [1:0] 00 00 00 High side current source for channel selected in RES_MEAS_CHSEL[3:0] Updated by SSM_RESET or SPI write 00 = OFF 01 = ON 40 mA current for channel selected in RES_MEAS_CHSEL,  OFF on all other channels DS11626 Rev 5 79/210 209 SPI interface L9678P, L9678P-S 10 = ON bypass current for channel selected in RES_MEAS_CHSEL,  OFF ON all other channels 11 = OFF ISINK 0 0 0 Low Side current sink control (max 50mA) Updated by SSM_RESET or SPI write 0 All channels OFF 1 ON for channel selected by RES_MEAS_CHSEL[3:0], OFF on all other channels VRCM[1:0] 00 00 00 Voltage Regulator Current Monitor control Updated by SSM_RESET or SPI write 00 VRCM not connected 01 VRCM connected to SFx of channel selected by LEAK_CHSEL[3:0] 10 VRCM connected to SRx of channel selected by LEAK_CHSEL[3:0] and pull down current of the same channel disabled 11 VRCM connected to SRx of channel selected by LEAK_CHSEL[3:0] and pull down current of the same channel enabled (ISINK and ISRC must be switched OFF) RES_MEAS_CHS 0000 0000 0000 Squib/pyroswitch Resistance Measurement Channel select - selects the EL[3:0] channel and muxes for the resistance test, and the channel for HS driver test (full path fet test) activation Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected LEAK_CHSEL[3:0] 0000 0000 0000 Squib/pyroswitch Leakage Measurement Channel select - selects the channel and muxes for the leakage test, and the channel for HS/LS FET test activation. Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected 80/210 DS11626 Rev 5 L9678P, L9678P-S - 0 0 0 RW Buffer: $3800 Reset: $0070 DIAG_LEVEL 12 11 10 9 8 X X X X X X X 0 0 0 0 0 0 0 SSM Type: 13 WSM 38 14 POR Address: 0 15 0 0 0 7 6 5 4 3 2 1 0 LOOP_DIAG_CHSEL[3:0] LOOP_DIAG_CHSEL[3:0] MISO 16 SQP MOSI 17 SQP 18 HIGH_LEVEL_DIAG_SEL HIGH_LEVEL_DIAG_SEL 19 DIAG_LEVEL Loops diagnostic configuration command register for high level diagnostic (LPDIAGREQ) DIAG_LEVEL 5.1.25 SPI interface Diagnostic mode selector 0 0 N/A - see description above 1 1 high level mode HIGH_LEVEL_DIAG 000 000 000 Selection of high level squib/pyroswitch diagnostic _SEL Updated by SSM_RESET or SPI write 000 No diagnostic selected 001 VRCM CHECK 010 Leakage CHECK 011 Short Between Loops CHECK 100 ER cap ESR measure 101 Squib/pyroswitch resistance range CHECK 110 Squib/pyroswitch resistance measurement 111 FET test SQP 0 0 0 Squib/pyroswitch pin select for all leakage diagnostic Updated by SSM_RESET or SPI write DS11626 Rev 5 81/210 209 SPI interface L9678P, L9678P-S 0 SRx 1 SFx LOOP_DIAG_CHSE 0000 0000 0000 Channel select - selects the channel and muxes for all squib/pyroswitch L[3:0] diagnostic. Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected 82/210 DS11626 Rev 5 L9678P, L9678P-S 16 - MISO 0 0 0 RW Buffer: $3900 Reset: $0072 DCS_PDCURR 12 11 10 9 8 X X X X X X X X 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 39 14 POR Address: 0 15 0 0 0 7 6 5 4 X X CHID[3:0] MOSI 17 0 0 CHID[3:0] 18 SWOEN 19 SWOEN DC sensor diagnostic configuration command register (SWCTRL) DCS_PDCURR DCS_PDCURR 5.1.26 SPI interface 3 2 1 0 Disable of all pull down current for DC sensor Updated by SSM_RESET or SPI write 0 OFF for channel under voltage or current measurement, ON for all other channels 1 OFF for all channels SWOEN 0 0 0 Switch Output Enable Updated by SSM_RESET or SPI write 0 OFF 1 ON (40mA) CHID[3:0] 0000 0000 0000 Channel ID - selects DC sensor channel for output activation Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected DS11626 Rev 5 83/210 209 SPI interface 5.1.27 L9678P, L9678P-S ADC request and data registers (DIAGCTRL_x) ADC A control command (DIAGCTRL_A) 19 18 MISO 17 16 NEWDATA_A MOSI 0 15 14 13 12 11 10 9 8 7 X X X X X X X X X 0 6 3A Type: RW Buffer: $3A00 Reset: $0074 4 3 2 1 0 1 0 1 0 ADCREQ_A[6:0] ADCREQ_A[6:0] Address: 5 ADCRES_A[9:0] ADC B control command (DIAGCTRL_B) 19 18 MISO 16 NEWDATA_B MOSI 17 0 15 14 13 12 11 10 9 8 7 X X X X X X X X X 0 6 3B Type: RW Buffer: $3B00 Reset: $0076 4 3 2 ADCREQ_B[6:0] ADCREQ_B[6:0] Address: 5 ADCRES_B[9:0] ADC C control command (DIAGCTRL_C) 19 18 MISO 17 16 NEWDATA_C MOSI 0 0 Address: 3C Type: RW Buffer: $3C00 Reset: $0078 84/210 15 14 13 12 11 10 9 8 7 X X X X X X X X X ADCREQ_C[6:0] DS11626 Rev 5 6 5 4 3 2 ADCREQ_C[6:0] ADCRES_C[9:0] L9678P, L9678P-S SPI interface ADC D control command (DIAGCTRL_D) 19 18 MISO 17 16 NEWDATA_D MOSI 0 14 13 12 11 10 9 8 7 X X X X X X X X X 0 RW Buffer: $3D00 Reset: $007A SSM Type: WSM 3D 6 ADCREQ_D[6:0] POR Address: NEWDATA_x 15 0 0 0 5 4 3 2 1 0 ADCREQ_D[6:0] ADCRES_D[9:0] New data available from convertion Updated by SSM_RESET or ADC state machine 0 cleared on read 1 convertion finished ADCREQ_x[6:0] $00 $00 $00 ADC Request select command Updated by SSM_RESET or SPI write to DIAGCTRL_x Measurement $00 Unused $01 Ground Ref $02 Full scale Ref $030 DCSx voltage $04 DCSx current $05 DCSx resistance $06 Squib/pyroswitch x resistance $07 Internal BG reference voltage (BGR) $080 Internal BG monitor voltage (BGM) $09 Unused $0A Temperature $0B DCS 0 voltage $0C DCS 1 voltage $0D DCS 2 voltage $0E DCS 3 voltage $20 VBATMON pin voltage $21 VIN pin voltage $22 Internal analog supply voltage (VINT) $23 Internal digital supply voltage (VDD) DS11626 Rev 5 85/210 209 SPI interface L9678P, L9678P-S $24 ERBOOST pin voltage $25 Unused $26 VER pin voltage $27 VSUP voltage $28 VDDQ voltage $29 WAKEUP pin voltage $2A VSF pin voltage $2B WDTDIS pin voltage $2C GPOD0 pin voltage $2D GPOS0 pin voltage $2E GPOD1 pin voltage $2F GPOS1 pin voltage $30 Unused $31 Unused $32 RSU0 pin Voltage $33 RSU1 pin Voltage $34 Unused $35 Unused $36 SS0 pin voltage $37 SS1 pin voltage $38 SS2 pin voltage $39 SS3 pin voltage $3A Unused $3B Unused $3C Unused $3D Unused $3E Unused $3F Unused $40 Unused $41 Unused $42 VRESDIAG voltage $43 VDD5 voltage $44 VDD3V3 voltage $45 ISOK voltage $46 SF0 $47 SF1 $48 SF2 $49 SF3 $4A - $7F Unused ADCRES_x[9:0] $000 $000 $000 10-bit ADC result value corresponding to ADCREQ_x request Updated by SSM_RESET or ADC state machine 86/210 DS11626 Rev 5 L9678P, L9678P-S GPO configuration register (GPOCR) 18 MOSI MISO 17 16 - 0 0 0 RW Buffer: $4200 Reset: $0084 GPOxLS 12 11 10 9 8 7 6 5 4 3 2 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 42 14 POR Address: 0 15 0 0 0 1 0 GPO0LSGPO0LS 19 GPO1LSGPO1LS 5.1.28 SPI interface GPO driver configuration bit Updated by SSM_RESET or SPI write 0 High-side Driver configuration for GPOx (ER_BOOST_OK is required to enable GPO as HS) 1 Low-side Driver configuration for GPOx (ER_BOOST_OK is not required to enable GPO as LS) DS11626 Rev 5 87/210 209 SPI interface 5.1.29 L9678P, L9678P-S GPO configuration register (GPOCTRLx) Channel 0 (GPOCTRL0) Channel 1 (GPOCTRL1) 19 18 MOSI 17 16 - MISO 0 0 0 0 15 14 13 12 11 10 9 8 7 6 X X X X X X X X X X GPOxPWM[5:0] 0 0 0 0 0 0 0 0 0 0 GPOxPWM[5:0] Address: 43 (GPOCTRL0) 44 (GPOCTRL1) Type: RW Buffer: $4300 (GPOCTRL0) $4400 (GPOCTRL1) Reset: $0086 (GPOCTRL0) $0088 (GPOCTRL1) POR GPOxPWM WSM 5 3 2 SSM 000000 000000 000000 6 bit value for PWM% with scaling of 1.6% per count Updated by SSM_RESET or SPI write 88/210 4 DS11626 Rev 5 1 0 L9678P, L9678P-S R Buffer: $4600 Reset: - GPO1DISABLE 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 GPO0OPN 0 0 SSM Type: 12 WSM 46 13 POR Address: 0 14 GPO0LIM 0 GPO0DISABLE MISO 15 GPO0TEMP 16 GPO1DISABLE MOSI 17 GPO1OPN 18 GPO1LIM 19 GPO1TEMP GPO fault status register (GPOFLTSR) GPO_NOT_CONF 5.1.30 SPI interface 1 1 1 GPO 1 disable state 0 GPO enable to work 1 GPO disabled due to thermal fault or configuration not received or ERBOOST not OK (only HS mode) GPO0DISABLE 1 1 1 GPO 0 disable state 0 GPO enable to work 1 GPO disabled due to thermal fault or configuration not received or ERBOOST not OK (only HS mode) GPO_NOT_CONF 1 1 1 GPO configuration status 0 GPO HS/LS configured (activation is permitted) 1 GPO not yet configured (activation is denied) GPO1TEMP 0 0 0 GPO 1 Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected GPO1LIM 0 0 0 GPO 1 Current Limit Flag Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected GPO1OPN 0 0 0 GPO 1 Open Detection Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected DS11626 Rev 5 89/210 209 SPI interface L9678P, L9678P-S 1 Fault detected GPO0TEMP 0 0 0 GPO 0 Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected GPO0LIM 0 0 0 GPO 0 Current Limit Flag OK Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected GPO0OPN 0 0 0 GPO 0 Open Detection OK Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected 19 18 MOSI 17 16 - MISO 0 0 0 R Buffer: $4700 Reset: - ISOTEMP 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 X WSM 47 14 X POR Address: 0 15 ISOLIM ISO fault status register (ISOFLTSR) ISOTEMP 5.1.31 0 0 0 ISO Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected ISOLIM 0 0 0 ISO Current Limit Flag Cleared by SSM_RESET or SPI read, set by detection circuit while ON (ISOK=0) 0 Fault not detected 1 Fault detected 90/210 DS11626 Rev 5 L9678P, L9678P-S 5.1.32 SPI interface Remote sensor configuration register (RSCRx) Remote sensor configuration register 1 (RSCR1) 0 0 0 0 X 0 RW Buffer: $4A00 (RSCR1) $4B00 (RSCR2) Reset: $0094 (RSCR1) $0096 (RSCR2) SLOWTRACK SSM Type: WSM 4A (RSCR1) 4B (RSCR2) POR Address: 0 0 0 13 12 11 10 9 8 7 6 5 4 X X X X X X X X STSx[3:0] MISO 14 0 0 0 0 0 0 0 0 STSx[3:0] - 15 BLKTxSEL 16 BLKTxSEL MOSI 17 STARTbitsMEAS_DISABLE STARTbitsMEAS_DISABLE 18 SLOWTRACK 19 SLOWTRACK Remote sensor configuration register 2 (RSCR2) 3 2 1 0 Reduce frequency of base current tracking 0 8µs/1µs 1 16µs/2µs STARTbitsMEAS_ DISABLE 0 0 0 Disable of start bits period measure to decode data bits 0 Period of start bits used to decode following data bits 1 Period of start bits not used to decode following data bits BLKTxSEL 0 0 0 Current limiting blanking time select for channel x Updated by SSM_RESET or SPI write 0 Blanking time = 5ms 1 Blanking time = 10ms DS11626 Rev 5 91/210 209 L9678P, L9678P-S SSM POR WSM SPI interface STSx[3:0] 0000 0000 0000 Remote sensor type select Updated by SSM_RESET or SPI write 0000 Async PSI5, parity, 8-bit, 125k (A8P-228/1L) 0001 Async PSI5, parity, 8-bit, 189k (A8P-228/1H) 0010 Async PSI5, parity, 10-bit, 125k (A10P-228/1L) 0011 Async PSI5, parity, 10-bit, 189k (A10P-228/1H) 0100-1111 Async PSI5, parity, 10-bit, 189k (A10P-228/1H) Remote sensor control register (RSCTRL) 18 MOSI MISO 17 16 0 0 0 0 R/W Buffer: $4E00 Reset: $009C CHxEN 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 4E 14 POR Address: 15 0 0 0 Channel x Output enable Updated by SSM_RESET or SPI write 0 Off 1 On 92/210 DS11626 Rev 5 3 2 X 0 1 CH0EN CH0EN 19 CH1EN CH1EN 5.1.33 0 X 0 L9678P, L9678P-S 5.1.34 SPI interface Remote sensor data/fault registers w/o fault (RSDRx) Remote sensor 0 data and fault flag register (RSDR0) Remote sensor 1 data and fault flag register (RSDR1) Note: The value in Bit15 (FLT) will re-define the use of the other bits, hence the information below is divided into two groups. Bit 15 = 0 NO FAULT condition 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X R Buffer: $5000 (RSDR0) $5100 (RSDR1) Reset: SSM Type: WSM 50 (RSDR0) 51 (RSDR1) POR Address: DATA [9:0] 0 15 LCID [3:0] MISO 16 CRC MOSI 17 On/Off 18 FLT=0 19 CRC[2:0] 000 000 000 CRC based on bits [16:0] Updated based on bits [16:0] FLT 1 1 1 Fault Status - Depending on Fault Status, the DATA bits are defined differently Cleared when all of the following bits are '0': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA Set when any of the following bits are '1': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA 0 No fault 1 Fault On/Off 0 0 0 Channel On/Off Status Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL or when the STG bit is set or the RSTEMP bit is set Set when channel is commanded ON by SPI RSCTRL 0 Off 1 On LCID[0:3] 0000 0000 0000 Logical Channel ID DS11626 Rev 5 93/210 209 SPI interface L9678P, L9678P-S Updated based on SPI read request 0000 RSU0 0100 RSU1 DATA[9:0] $000 $000 $000 10-bit data from Manchester decoder Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL updated when a valid PSI5 frame is received 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X STB CURRENT_HI OPENDET RSTEMP INVALID NODATA X 15 STG MISO 16 - CRC MOSI 17 0 X X R Buffer: $5000 (RSDR0) $5100 (RSDR1) Reset: SSM Type: WSM 50 (RSDR0) 51 (RSDR1) POR Address: LCID [3:0] 18 On/Off 19 FLT=1 Bit 15 = 1 FAULTED condition CRC[2:0] 000 000 000 CRC based on bits [16:0] Updated based on bits [16:0] FLT 1 1 1 Fault Status - Depending on Fault Status, the DATA bits are defined differently Cleared when all of the following bits are '0': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA Set when any of the following bits are '1': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA 0 No fault 1 Fault On/Off 0 0 0 Channel On/Off Status Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL or when the STG bit is set or the RSTEMP bit is set Set when channel is commanded ON by SPI RSCTRL 0 Off 94/210 DS11626 Rev 5 L9678P, L9678P-S SPI interface 1 On LCID[0:3] 0000 0000 0000 Logical Channel ID Updated based on SPI read request 0000 RSU0 0100 RSU1 STG 0 0 0 Short to Ground (in current limit condition) Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL 0 No fault 1 Fault STB 0 0 0 Short to Battery Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL - not cleared by channel OFF caused by STG or RSTEMP Set when channel voltage exceeds VSUP for a time greater than TSTBTH 0 No fault 1 Fault CURRENT_HI 0 0 0 Current High Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL Set when channel current exceeds ILKGG for a time determined by an up/down counter 0 No fault 1 Fault OPENDET 0 0 0 Open Sensor Detected Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL Set when channel current exceeds ILKGB for a time determined by an up/down counter 0 No fault 1 Fault RSTEMP 0 0 0 Over temperature detected Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL Set when over-temp condition is detected 0 No fault 1 Fault DS11626 Rev 5 95/210 209 SPI interface INVALID L9678P, L9678P-S 0 0 0 Invalid Data Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL or if one of the following is set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP Set when two valid start bits are received and a Manchester error (# of bits, bit timing) or parity error is detected 0 No fault 1 Fault NODATA 1 1 1 No Data in buffer Cleared when a valid PSI frame is received or if one of the following is set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP Set upon SPI read of RSDRx if FIFO empty and none of the following bits are set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP 0 No fault 1 Fault 96/210 DS11626 Rev 5 L9678P, L9678P-S Safing algorithm configuration register (SAF_ALGO_CONF) - MISO 0 0 0 0 R/W Buffer: $6600 Reset: $00CC NO_DATA SSM Type: WSM 66 14 POR Address: 15 0 0 0 X 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADD_VAL ADD_VAL 16 SUB_VAL SUB_VAL MOSI 17 ARMP_TH ARMP_TH 18 ARMN_TH ARMN_TH 19 NO_DATA NO_DATA 5.1.35 SPI interface Event counter no data select Updated by SSM_RESET or SPI write while in DIAG state 0 Event counter reset to 0 if CC=0 when SPI read of SAF_CC bit is performed (end of sample cycle) 1 Event counter decremented by SUB_VAL if CC=0 when SPI read of SAF_CC bit is performed (end of sample cycle) ARMN_TH 0011 0011 0011 Negative event counter threshold to assert arming Updated by SSM_RESET or SPI write while in DIAG state 0000 Negative event counter disabled ARMP_TH 0011 0011 0011 Positive event counter threshold to assert arming Updated by SSM_RESET or SPI write while in DIAG state 0000 Positive event counter disabled SUB_VAL 011 011 011 Decremental step size of the event counter Updated by SSM_RESET or SPI write while in DIAG state ADD_VAL 001 001 001 Incremental step size of the event counter Updated by SSM_RESET or SPI write while in DIAG state DS11626 Rev 5 97/210 209 SPI interface - MISO 0 0 0 0 R Buffer: $6A00 Reset: - ACL_VALID 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 6A 14 POR Address: 15 FENH 16 FENL MOSI 17 ARMINT_1 18 ARMINT_2 19 ACL_VALID Arming signals register (ARM_STATE) ACL_PIN_STATE 5.1.36 L9678P, L9678P-S 0 0 0 Valid ACL detection 0 Cleared when ACL_BAD=2 1 Set when ACL_GOOD=3 ACL_PIN_STATE - - - Echo of ACL pin ARMINT_x 0 0 0 State of armint signals Updated per Safing Engine output logic diagram FENH/FENL - - - State of external arming control signals Updated based on pin state 98/210 DS11626 Rev 5 L9678P, L9678P-S 5.1.37 SPI interface ARMx assignment registers (LOOP_MATRIX_ARMx) Assignment of ARM1 to specific loops (LOOP_MATRIX_ARM1) 16 - MISO 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 RW Buffer: $6E00 (LOOP_MATRIX_ARM1) $6F00 (LOOP_MATRIX_ARM2) Reset: $00DC (LOOP_MATRIX_ARM1) $00DE (LOOP_MATRIX_ARM2) ARMx_Ly SSM Type: WSM 6E (LOOP_MATRIX_ARM1) 6F (LOOP_MATRIX_ARM2) POR Address: 0 0 0 3 2 1 0 ARMx_L0 ARMx_L0 MOSI 17 ARMx_L1 ARMx_L1 18 ARMx_L2 ARMx_L2 19 ARMx_L3 ARMx_L3 Assignment of ARM2 to specific loops (LOOP_MATRIX_ARM2) Configures ARMx for Loop_y Updated by SSM_RESET or SPI write while in DIAG state 0 ARMx signal is not associated with Loopy 1 ARMx signal is associated with Loopy DS11626 Rev 5 99/210 209 SPI interface 5.1.38 L9678P, L9678P-S ARMx pulse stretch registers (AEPSTS_ARMx) ARM1 enable pulse stretch timer status (AEPSTS_ARM1) ARM2 enable pulse stretch timer status (AEPSTS_ARM2) 19 18 MOSI MISO 17 16 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 RW Buffer: $7300 (AEPSTS_ARM1) $7400 (AEPSTS_ARM2) Reset: - (AEPSTS_ARM1) - (AEPSTS_ARM2) SSM Type: WSM 73 (AEPSTS_ARM1) 74 (AEPSTS_ARM2) POR Address: Timer Count[9:0] Timer Count 0000 0000 0000 10-bit ARMing Enable Pulse Stretcher timer value Cleared by SSM_RESET Loaded with initial value based on ARMx bit and DWELL[1:0] of SAF_CONTROL_y while safing is met for record y provided current value is < DWELL[1:0] value Decremented every 2ms while > 0 Contains remaining pulse stretcher timer value 100/210 DS11626 Rev 5 L9678P, L9678P-S MOSI 17 16 - MISO 0 0 0 0 RW Buffer: $7F00 Reset: $00FE EN_SAFx 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 7F 14 POR Address: 15 0 0 0 3 2 1 0 EN_SAF1 EN_SAF1 18 EN_SAF2 EN_SAF2 19 EN_SAF3 EN_SAF3 Safing records enable register (SAF_ENABLE) EN_SAF4 EN_SAF4 5.1.39 SPI interface Safing Record enable Updated by SSM_RESET or SPI write 0 Disable 1 Enable DS11626 Rev 5 101/210 209 SPI interface 5.1.40 L9678P, L9678P-S Safing records request mask registers (SAF_REQ_MASK_x) Safing record request mask for record 1 (SAF_REQ_MASK_1) Safing record request mask for record 2 (SAF_REQ_MASK_2) Safing record request mask for record 3 (SAF_REQ_MASK_3) Safing record request mask for record 4 (SAF_REQ_MASK_4) 19 18 MOSI MISO 17 16 15 14 13 12 0 0 11 10 9 8 7 6 5 4 3 2 1 0 SAF_REQ_MASKx[15:0] 0 0 SAF_REQ_MASKx[15:0] RW Buffer: $8000 (SAF_REQ_MASK_1) $8100 (SAF_REQ_MASK_2) $8200 (SAF_REQ_MASK_3) $8300 (SAF_REQ_MASK_4) Reset: $8000 (SAF_REQ_MASK_1) $8002 (SAF_REQ_MASK_2) $8004 (SAF_REQ_MASK_3) $8006 (SAF_REQ_MASK_4) SSM Type: WSM 80 (SAF_REQ_MASK_1) 81 (SAF_REQ_MASK_2) 82 (SAF_REQ_MASK_3) 83 (SAF_REQ_MASK_4) POR Address: SAF_REQ_MASKx 0000 0000 0000 Safing Request Mask for safing record x - 16-bit request mask that is bit-wise [15:0] ANDed with MOSI data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 102/210 DS11626 Rev 5 L9678P, L9678P-S 5.1.41 SPI interface Safing records request target registers (SAF_REQ_TARGET_x) Safing record request mask for record 1 (SAF_REQ_TARGET_1) Safing record request mask for record 2 (SAF_REQ_TARGET_2) Safing record request mask for record 3 (SAF_REQ_TARGET_3) Safing record request mask for record 4 (SAF_REQ_TARGET_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 0 SAF_REQ_TARGETx[15:0] 0 0 SAF_REQ_TARGETx[15:0] RW Buffer: $9300 (SAF_REQ_TARGET_1) $9400 (SAF_REQ_TARGET_2) $9500 (SAF_REQ_TARGET_3) $9600(SAF_REQ_TARGET_4) Reset: $8026 (SAF_REQ_TARGET_1) $8028 (SAF_REQ_TARGET_2) $802A (SAF_REQ_TARGET_3) $802C (SAF_REQ_TARGET_4) SSM Type: WSM 93 (SAF_REQ_TARGET_1) 94 (SAF_REQ_TARGET_2) 95 (SAF_REQ_TARGET_3) 96 (SAF_REQ_TARGET_4) POR Address: SAF_REQ_TARGETx 0000 0000 0000 Safing Request target for safing record x - 16-bit request target that is [15:0] compared to the bit-wise AND result of the SAF_REQ_MASKx and MOSI data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state DS11626 Rev 5 103/210 209 SPI interface 5.1.42 L9678P, L9678P-S Safing records response mask registers (SAF_RESP_MASK_x) Safing record response mask for record 1 (SAF_RESP_MASK_1) Safing record response mask for record 2 (SAF_RESP_MASK_2) Safing record response mask for record 3 (SAF_RESP_MASK_3) Safing record response mask for record 4 (SAF_RESP_MASK_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 0 SAF_RESP_MASKx[15:0] 0 0 SAF_RESP_MASKx[15:0] RW Buffer: $A600 (SAF_RESP_MASK_1) $A700 (SAF_RESP_MASK_2) $A800 (SAF_RESP_MASK_3) $A900 (SAF_RESP_MASK_4) Reset: $804C (SAF_RESP_MASK_1) $804E (SAF_RESP_MASK_2) $8050 (SAF_RESP_MASK_3) $8052 (SAF_RESP_MASK_4) SSM Type: WSM A6 (SAF_RESP_MASK_1) A7 (SAF_RESP_MASK_2) A8 (SAF_RESP_MASK_3) A9 (SAF_RESP_MASK_4) POR Address: SAF_RESP_MASKx 0000 0000 0000 Safing Response Mask for safing record x - 16-bit response mask that is bit[15:0] wise ANDed with MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 104/210 DS11626 Rev 5 L9678P, L9678P-S 5.1.43 SPI interface Safing records response target registers (SAF_RESP_TARGET_x) Safing record response target for record 1 (SAF_RESP_TARGET_1) Safing record response mask for record 2 (SAF_RESP_TARGET_2) Safing record response mask for record 3 (SAF_RESP_TARGET_3) Safing record response mask for record 4 (SAF_RESP_TARGET_4) 19 18 0 0 MOSI MISO 17 16 0 0 15 14 13 12 11 - 10 9 8 7 6 5 4 3 2 1 0 SAF_RESP_TARGETx[15:0] SAF_RESP_TARGETx[15:0] RW Buffer: $B900 (SAF_RESP_TARGET_1) $BA00 (SAF_RESP_TARGET_2) $BB00 (SAF_RESP_TARGET_3) $BC00 (SAF_RESP_TARGET_4) Reset: $8072 (SAF_RESP_TARGET_1) $8074 (SAF_RESP_TARGET_2) $8076 (SAF_RESP_TARGET_3) $8078 (SAF_RESP_TARGET_4) SSM Type: WSM B9 (SAF_RESP_TARGET_1) BA (SAF_RESP_TARGET_2) BB (SAF_RESP_TARGET_3) BC (SAF_RESP_TARGET_4) POR Address: SAF_RESP_TARGETx 0000 0000 0000 Safing Response target for safing record x - 16-bit response target that is [15:0] compared to the bit-wise AND result of the SAF_RESP_MASKx and MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state DS11626 Rev 5 105/210 209 SPI interface 5.1.44 L9678P, L9678P-S Safing records data mask registers (SAF_DATA_MASK_x) Safing record data mask for record 1 (SAF_DATA_MASK_1) Safing record data mask for record 2 (SAF_DATA_MASK_2) Safing record data mask for record 3 (SAF_DATA_MASK_3) Safing record data mask for record 4 (SAF_DATA_MASK_4) 19 18 0 0 MOSI MISO 17 16 0 0 15 14 13 12 11 - 10 9 8 7 6 5 4 3 2 1 SAF_DATA_MASKx[15:0] SAF_DATA_MASKx[15:0] RW Buffer: $CC00 (SAF_DATA_MASK_1) $CD00 (SAF_DATA_MASK_2) $CE00 (SAF_DATA_MASK_3) $CF00 (SAF_DATA_MASK_4) Reset: $8098 (SAF_DATA_MASK_1) $809A (SAF_DATA_MASK_2) $809C (SAF_DATA_MASK_3) $809E (SAF_DATA_MASK_4) SSM Type: WSM CC (SAF_DATA_MASK_1) CD (SAF_DATA_MASK_2) CE (SAF_DATA_MASK_3) CF (SAF_DATA_MASK_4) POR Address: SAF_DATA_MASKx[ 0000 0000 0000 Safing Data Mask for safing record x - 16-bit data mask that is bit-wise 15:0] ANDed with MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 106/210 DS11626 Rev 5 0 L9678P, L9678P-S 5.1.45 SPI interface Safing records threshold registers (SAF_THRESHOLD_x) Safing record threshold for record 1 (SAF_THRESHOLD_1) Safing record threshold for record 2 (SAF_THRESHOLD_2) Safing record threshold for record 3 (SAF_THRESHOLD_3) Safing record threshold for record 4 (SAF_THRESHOLD_4) 19 18 0 0 MOSI MISO 17 16 0 0 15 14 13 12 11 - 10 9 8 7 6 5 4 3 2 1 0 SAF_THRESHOLDx[15:0] SAF_THRESHOLDx[15:0] RW Buffer: $DF00 (SAF_THRESHOLD_1) $E000 (SAF_THRESHOLD_2) $E100 (SAF_THRESHOLD_3) $E200 (SAF_THRESHOLD_4) Reset: $80BE (SAF_THRESHOLD_1) $80C0 (SAF_THRESHOLD_2) $80C2 (SAF_THRESHOLD_3) $80C4 (SAF_THRESHOLD_4) SSM Type: WSM DF (SAF_THRESHOLD_1) E0 (SAF_THRESHOLD_2) E1 (SAF_THRESHOLD_3) E2 (SAF_THRESHOLD_4) POR Address: SAF_THRESHOLDx $FFFF$FFFF $FFFF Safing threshold for safing record x - 16-bit threshold used for safing data [15:0] comparison Updated by SSM_RESET or SPI write while in DIAG state DS11626 Rev 5 107/210 209 SPI interface 5.1.46 L9678P, L9678P-S Safing control registers (SAF_CONTROL_x) Safing control register for record 1 (SAF_CONTROL_1) Safing control register for record 2 (SAF_CONTROL_2) Safing control register for record 3 (SAF_CONTROL_3) RW Buffer: $EF00 (SAF_CONTROL_1) $F000 (SAF_CONTROL_2) $F100 (SAF_CONTROL_3) $F200 (SAF_CONTROL_4) Reset: $80DE (SAF_CONTROL_1) $80E0 (SAF_CONTROL_2) $80E2 (SAF_CONTROL_3) $80E4 (SAF_CONTROL_4) ARMSELx 6 X X ARM2x ARM1x CSx[2:0] IFx 0 0 ARM1x CSx[2:0] IFx 5 4 3 2 1 0 SSM Type: 7 WSM $EF (SAF_CONTROL_1) $F0 (SAF_CONTROL_2) $F1 (SAF_CONTROL_3) $F2 (SAF_CONTROL_4) 8 POR Address: 9 ARM2x 10 DWELLx[1:0] DWELLx[1:0] 0 11 COMBx 0 12 COMBx 0 13 LIM Enx 0 14 LIM Enx - MISO 15 LIM SELx 16 SPIFLDSELx SPIFLDSELx MOSI 17 ARMSELx 18 ARMSELx 19 LIM SELx Safing control register for record 4 (SAF_CONTROL_4) 00 00 00 ARMINT select for safing record x - correlates ARMINT 1 and ARMINT2 (as determined by ARM1x and ARM2x bits) to ARMP and ARMN Updated by SSM_RESET or SPI write while in DIAG state 00 ARMP OR ARMN 01 ARMP 10 ARMN 11 ARMP OR ARMN SPIFLDSELx 108/210 0 0 0 SPI field select for safing record x - determines which 16-bit field in long SPI messages (>31 bit) to use for response on MISO of SPI monitor. In case of messages less than 32 bits this bit is don't care. DS11626 Rev 5 L9678P, L9678P-S SPI interface Updated by SSM_RESET or SPI write while in DIAG state 0 First 16 bits of SPI MISO frame used for Response Mask and Data Mask bit-wise AND 1 Last 16 bits of SPI MISO frame used for Response Mask and Data Mask bit-wise AND LIM SELx 0 0 0 Data range limit select for safing record x - When enabled, determines the range limit used for incoming sensor data Updated by SSM_RESET or SPI write while in DIAG state 0 8-bit data range limit - incoming |data| >120d is not recognized as valid data 1 10-bit data range limit - incoming |data| > 480d is not recognized as valid data LIM Enx 0 0 0 Data range limit enable for safing record x Updated by SSM_RESET or SPI write while in DIAG state 0 Data range limit disabled 1 Data range limit enabled COMBx 0 0 0 Combine function enable for safing record x Updated by SSM_RESET or SPI write while in DIAG state 0 Combine function disabled 1 Combine function enabled For record pairs = x,x+1, the comparison for record x uses |data(x) + data(x+1)| and the comparison for record x+1 uses |data(x) - data(x+1)| Record pairs are 1,2 and 6,7 DWELLx[1:0] 00 00 00 Safing dwell extension time select for safing record x Updated by SSM_RESET or SPI write while in DIAG state 00 2048 ms 01 256 ms 10 32 ms 11 0 ms ARM2x 0 0 0 ARM2INT select for safing record x - correlates safing result to ARM2INT Updated by SSM_RESET or SPI write while in DIAG state 0 Safing record x not assigned to ARM2INT 1 Safing record x assigned to ARM2INT ARM1x 0 0 0 ARM1INT select for safing record x - correlates safing result to ARM1INT Updated by SSM_RESET or SPI write while in DIAG state DS11626 Rev 5 109/210 209 SPI interface L9678P, L9678P-S 0 Safing record x not assigned to ARM1INT 1 Safing record x assigned to ARM1INT CSx[2:0] 000 000 000 SPI Monitor CS select for safing record x Updated by SSM_RESET or SPI write while in DIAG state 000 None selected for record x 001 SAF_CS0 selected for record x 010 SAF_CS1 selected for record x 011 None selected for record x 100 None selected for record x 101 SPI_CS selected for record x 110 None selected for record x 111 None selected for record x IFx 0 0 0 SPI format select for safing record x - selects response protocol for SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 0 Out of frame response for record x 1 In Frame response for record x 110/210 DS11626 Rev 5 L9678P, L9678P-S 5.1.47 Safing record compare complete register (SAF_CC) 19 18 0 0 MOSI MISO SPI interface 17 16 0 0 - R Buffer: $FF00 Reset: - CC_xx 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM FF 14 POR Address: 15 0 0 0 3 2 1 0 X X X X CC_4 CC_3 CC_2 CC_1 Indicates compare complete status of each of the 4 safing records, and defines the end of the sample cycle for safing Cleared by SSM_RESET or SPI read, set by safing engine when request, response mask and target registers match the incoming SPI frame 0 Compare not completed for record x 1 Compare completed for record x DS11626 Rev 5 111/210 209 Deployment drivers 6 L9678P, L9678P-S Deployment drivers The squib/pyroswitch deployment block consists of 4 independent high side drivers and 4 independent low side drivers. Squib/pyroswitch deployment logic requires a deploy command received through SPI communications and either an arming condition processed by safing logic or a proper FENH and FENL input pin assessment, depending on whether the internal safing engine is used or not. FENH signal is used to enable high side squib/pyroswitch drivers and is active high, while FENL enables low side drivers and is active low. Both conditions must exist in order for the deployment to occur. Once a deployment is initiated, it can only be terminated by a RESET event. L9678P allows all 4 squib/pyroswitch loops to be deployed at the very same time or in other possible timing sequence. Deployment drivers are capable of granting a successful deployment also in case of short to ground on low-side circuit (SRx pins). Firing voltage capability across high side circuit is maximum 25 V. High side and low side drivers account for a maximum series total resistance of 2 Ω. Each loop is granted for a minimum number of deployments of 50, under all normal operating conditions and with a deployment repetition time higher than 10s. 6.1 Control logic A block diagram representing the deployment driver logic is shown below. Deployment driver logic features include:  Deploy command logic  Deployment current selection  Deployment current monitoring and deploy success feedback  Diagnostic control and feedback Figure 20. Deployment driver control blocks DCR Deployment Configuration Register DEPCOM Deployment Command Register Deploy Request Validation FENH X High Side FET X SFx DCMTSx Deploy Current Monitor Status Deployment Control & Timing intclk ITHDEPL DCR DCR Deployment Configuration Register Int/Ext safing engine Current Monitor DSRx Deployment Configuration Register Deployment Status Register Low Side FET FENL X X SRx ARM X Safing Engine Programmable Loop Assignments Int/Ext safing engine GAPGPS01124 112/210 DS11626 Rev 5 L9678P, L9678P-S Deployment drivers Figure 21. Deployment driver control logic - Enable signal ARMING STATE Analog DIAG STATE Deployment LPDIAGREQ(LEAK_CHSELx) DSTEST(HSFET_TEST) Block SAFESEL FENH ENABLE_HSx ARM1INT ARM1_Lx ARM2INT ARM2_Lx FENL SAFING STATE ARM_EN ENABLE_LSx DIAG STATE LPDIAGREQ(LEAK_CHSELx) DSTEST(LSFET_TEST) GAPGPS01656 Figure 22. Deployment driver control logic - Turn-on signals ARMING STATE Expiration Timer SAFING STATE DEP_ENABLED STATE S UpCtr EXP_Thresh EN SPI_DEPREQx R SSM RESET DEP_DISABLED STATE = CLR CHxDEP CHxSTAT S R DEP_Thresh UpCtr ENABLE_HSx ENABLE_LSx S DIAG STAT E DSTEST(PULSE) R = EN CLR LS_OVER_CURx GND_LOSSx Deploy Timer SSM RESET S S CHxDS R R HS_ONx DSTEST(HSFET_TEST) LPDIAGREQ(LEAK_CHSELx) LS_ONx DSTEST(LSFET_TEST) ANALOG Deployment BLOCK GAPGPS01641 The high level block diagram for the deployment drivers is shown below: DS11626 Rev 5 113/210 209 Deployment drivers L9678P, L9678P-S Figure 23. Deployment driver block SSxy R/2000 (50mΩ) 95%R OP with switching Offset compensation Enable_HSx 5%R + OPphase OPphase + R 2000 x IREF - SFx Open to short comp 22nF To deploy current >90% counter Rsquib SRx Vclamp >35V Ipulldown 3V3 HS_OFF 22nF Same power transistor LS_ON IREF= 1mA EN_ISINK Ilimit > 3A typ + Enable_LSx LS_OC_Comp - Ilimit = 70mA typ SGxy + Loss ground diode LS_Loss _Gnd - GNDSUB1&2 GAPGPS01126 6.1.1 Deployment current selection Deployment current is programmed for all channels using the Deploy Configuration Register (DCRx) shown in “Deployment Configuration register (DCRx). If 1.75 A deployment current is selected, the 2 ms deployment time cannot be chosen. If a SPI command with 2 ms and 1.75 A selection is received, L9678P will discard it and switch to a 500 µs and 1.2 A selection instead. This misuse is flagged with the CHxDD bit in the Deploy Status Register (DSR). 6.1.2 Deploy command expiration timer Deploy commands are received for all channels using SPI communications. Once a deploy command is received, it will remain valid for a specified time period selected in the Deploy Configuration Register (DCRx). The deploy status and deploy expiration timer can be read through the Deploy Status Register (DSRx). The deploy expiration timer is 6 bits and the maximum time is 500 ms nominal. 114/210 DS11626 Rev 5 L9678P, L9678P-S 6.1.3 Deployment drivers Deployment control flow Deployment control logic requires the following conditions to be true to successfully operate a deployment:  POR = 1  SSM to be either in Safing State or Arming State  a valid arming condition processed by safing logic or FENH and FENL signals to be set (depending on selection of internal or external safing engine)  "channel-specific deploy command request bits to be set via SPI in the Deploy command Register (DEPCOM)  a global deployment state has to be active, as described in the following figure. Figure 24. Global SPI deployment enable state diagram SSM_Reset DEP_DISABLED SPI_SPIDEPEN(DEPEN_WR) = UNLOCK SPI_SPIDEPEN(DEPEN_WR) = LOCK DEP_ENABLED GAPGPS01127 In case a multiple deployment request would be needed, i.e. deploying the same channel in sequence, a toggle on DEP_DISABLED has to be performed and a new DEPCOM command on the same channel has to be sent. The SPI DEPCOM command is ignored if the device is in the DEP_DISABLED state and the deploy command is not set. While in DEP_ENABLED state, the following functionalities that could be active are forced to their reset state:  All squib/pyroswitch and DC sensor diagnostic current or voltage sources  All squib/pyroswitch, DC sensor and ADC diagnostic mux settings, state machine, etc. The SPI_LOCK and SPI_UNLOCK signals are available in the SPIDEPEN command: High-side and Low-side enablers by internal/external safing are global and apply to all channels. The Deploy commands in the Deploy Command Register (DEPCOM) are channel specific. Deployment requires a valid arming command from safing logic or the FENH and FENL signals to be set any time before, during or after the specific sequence of deploy commands is received. It is feasible for a deploy command to be received without a valid arming command from safing logic or the FENH and FENL being set. In this case, the deploy command will be terminated according to the Deploy Command Expiration Timer described in Section 6.1.2. Likewise, a valid arming command or the FENH and FENL signals can be set without receiving a Deploy Command. In this case, the enabling signals will remain active according to the Arming Enable Pulse Stretch Timer or the FENx enabling state. The Arming Enable Pulse Stretch Timers is available in the AEPSTS register. DS11626 Rev 5 115/210 209 Deployment drivers 6.1.4 L9678P, L9678P-S Deployment success Deploy success flag is set when the deploy timer elapses. This bit (CHxDS) is contained in the Deploy Status Register. Within the Global Status Word register (GSW), a single bit (DEPOK) is also set once any of the four deployment channels sets a deploy success flag. 6.2 Energy reserve - deployment voltage One deployment voltage source pin is used for channels 0 and 1 (SS01) and one for channels 2 and 3 (SS23). These pins are directly connected to the high side drivers for each channel. 6.3 Deployment ground return There are dedicated power ground connections for deployment current, SGx pins. One ground connection is sufficient for two deployments occurring simultaneously. 6.4 Deployment driver protections 6.4.1 Delayed low-side deactivation To control voltage spikes at the squib/pyroswitch pins during drivers deactivation at the end of a deployment, the low side driver is switched off after tDEL_SD_LS delay time with respect to the high side deactivation. 6.4.2 Low-side voltage clamp The low side driver is protected against overvoltage at the SRx pins by means of a clamping structure as shown in Figure 23. When the Low side driver is turned off, voltage transients at the SRx pin may be caused by squib/pyroswitch inductance. In this case a low side FET drain to gate clamp will reactivate the low side FET allowing for residual inductance current recirculation, thus preventing potential low side FET damage by overvoltage. 6.4.3 Short to battery The low side driver is equipped with current limitation and overcurrent protection circuitry. In case of short to battery at the squib/pyroswitch pins, the short circuit current is limited by the Low side driver to ILIM_SR. If this condition lasts for longer than TFLT_ILIM_LS deglitch filter time then the low and high-side drivers will be switched off and latched in this state until a new deployment is commanded after SPI_DEPEN is re triggered. 6.4.4 Short to ground The squib/pyroswitch driver is designed to stand a short to ground at the squib/pyroswitch pins during deployment. In particular, the current flowing through the short circuit is limited by the high side driver (deployment current) and the high-side FET is sized to handle the related energy. In case the short to ground during deployment occurs after an open circuit, a protection against damage is also available. The high side current regulator would have normally 116/210 DS11626 Rev 5 L9678P, L9678P-S Deployment drivers reacted to the open circuit by increasing the Vgs of the high side FET. Thanks to a dedicated fast comparator detecting the open condition, the driver is able to discharge the FET gate quickly in order to reduce current overshoot and prevent potential driver damage when the short to ground occurs. 6.4.5 Intermittent open squib/pyroswitch A dedicated protection is also available in case of intermittent open load during deployment. In this case, if load is restored after an open circuit, due to slow reaction of the high-side current regulation loop, the current through the squib/pyroswitch is limited only to ILIMSRx by the low side driver. If this condition lasts for longer than tLIMOS then the high side is turned off for tHSOFFOS and then reactivated. By this feature, intermittent open squib/pyroswitch and short to battery faults may be distinguished and handled properly by the drivers. 6.5 Diagnostics The L9678P provides the following diagnostic feedback for all deployment channels:  High voltage leakage test for oxide isolation check on SFx and SRx  Leakage to battery and ground on both SFx and SRx pins with or without a squib/pyroswitch  Loop to loop short diagnostics  Squib/pyroswitch resistance measurement with leakage cancellation  High squib/pyroswitch resistance with range from 500 Ω to 2000 Ω  SSxy, SFx and VER voltage status  High and low side FET diagnostics  High side driver diagnostics  Loss of ground return diagnostics  High side safing FET diagnostics  Deployment Timer diagnostic The above diagnostic results are processed through a 10 bit Analog to digital algorithmic converter. These tests can be addressed in two different ways, with a high level approach or a low-level one. The main difference between the two approaches is that with the low level approach the user is allowed to precisely control the diagnostic circuitry, also deciding the proper timings involved in the different tests. On the other hand, the high level approach is an automatic way of getting diagnostic results for which an internal state machine is taking care of instructions and timings. The following is the block diagram of the squib/pyroswitch diagnostics. DS11626 Rev 5 117/210 209 Deployment drivers L9678P, L9678P-S Figure 25. Deployment loop diagnostics VER pin (from Energy Reserve) Safing transistor VRESDIAG ISRC 40mA SSxy Bypass 1nF Squib resistance measure (system error < 8%) Vgnd or VBat SFx RLeak Vref =2v5 22nF xN A to D Squib loop driver and diagnostic blocks Rsquib 1Ω to 10Ω + Vout 10bit Tot err = ±4LSB LSB = 2.5/1024 V Voffset HV analog MUX Gain = 5.25 Vgnd or VBat SRx Squib resistor HIGH Ipulldown I=1mA Squib resistor LOW Short to GND Rleak >10K Ω no detection Rleak 10K Ω no detection Rleak > Rsq) G  I src where: G = differential amplifier gain. The simplification in the calculation method reported above can result in some amount of error that is already incorporated in the overall tolerance of the squib/pyroswitch resistance measurement reported in the electrical parameters table. 120/210 DS11626 Rev 5 L9678P, L9678P-S Deployment drivers Values of each measurement step can be required addressing the proper ADCREQx code in the Diagnostic Control command (DIAGCTRL) on Table 10: Diagnostics control register (DIAGCTRLx) on page 161. This calculation is tolerant to leakages and, thanks to a dedicated EMI low-pass filter, also to high frequency noises on squib/pyroswitch lines. Moreover, L9678P features a slew rate control on the ISRC current generator to mitigate emissions. High squib/pyroswitch resistance diagnostics With this test, the device is able to understand if the squib/pyroswitch resistance value is below 200 Ω, between 500 Ω and 2000 Ω or beyond 5000 Ω. During a high squib/pyroswitch resistance diagnostics, VRCM and ISNK are enabled and connected respectively to SFx and SRx on the selected channel. VREF voltage level outputs on SFx. Current flowing on SFx is measured and compared to ISRlow and ISRhigh thresholds to identify if the resistance is above or below RSRlow or RSRhigh levels. The results are reported in the LPDIAGSTAT register. The relative flags (HSR_HI and HSR_LO) are not latched and reflect the current status of the comparators. High and low side FET diagnostics This couple of tests can only be run during the diagnostic mode of the power-up sequence (Figure 9). Tests are performed individually for HS driver or LS driver, with two dedicated commands. Prior to either the HS or LS FET diagnostics being run, the VRCM has to be first enabled. Within the command to enable the VRCM, also the channel onto which the FET test will be run has to be selected with the LEAK_CHSEL bit field. Running the leakage diagnostics with the appropriate delay time prior to either the HS or LS FET diagnostics will precondition the squib/pyroswitch pin to the appropriate voltage level. When the FET diagnostic command is issued with the Diagnostic Register SPI command (SYSDIAGREQ), the VRCM flags will be cleared. The device monitors the current through the VRCM. If the FET is working properly, this current will exceed ISTB (HS test) or ISTG (LS test) and the driver under test is turned off immediately. If the current does not exceed ISTB or ISTG then the test will be terminated and the output is anyway turned off within TFETTIMEOUT. During TFETTIMEOUT period, the bit stating that the FET is enabled will be set (FETON=1) and will be cleared as soon as the FET is switched back off. For all conditions the current on SFx/SRx will not exceed ILIM_VRCM_X, the VRCM block current limitation value. There may be higher currents on the squib/pyroswitch lines due to the presence of filter capacitors. During these FET tests, energy available to the squib/pyroswitch is limited to less than EFETtest. For high side FET diagnostics, if no faults were indicated in the preceding leakage diagnostics then a normal result would be [STB=1, STG=0]. If the returned result for the high side FET test is not as the previous then either the FET is not functional, a short to ground occurred during the test, or there is a missing SSxy connection for that channel. For low side FET diagnostics if no faults were indicated in the preceding leakage diagnostics then a normal result would be [STB=0, STG=1]. If the returned result for the low side FET test is not as the previous one then either the FET is not functional or a short to battery occurred during the test. In case of SGx loss the low-side FET diagnostic would not indicate a FETfault. DS11626 Rev 5 121/210 209 Deployment drivers L9678P, L9678P-S The VRCM flags will be given in the LPDIAGSTAT register. The status of the VRCM flags after FET test is latched and can be cleared upon either LPDIAGREQ or SYSDIAGREQ SPI commands. Loss of ground return diagnostics This diagnostics is available during a squib/pyroswitch measurement or a high side driver diagnostics. This test is based on the voltage drop across the ground return, if the voltage drop exceeds VSGopen, ground connection is considered as lost. Should the ground connection on the squib/pyroswitch driver circuit be missing, the bit related to the channel under test by the two above diagnostics will be activated in the LP_GNDLOSS register. The flag is latched after a proper filter time tSGopen and cleared upon read. High side safing FET diagnostics This test has to be issued during the Diag state of the power-up sequence (Figure 9). Safing FET has to be switched on with the proper code in DSTEST bit field of the SYSDIAGREQ. Therefore, when the command is received, the device activates VSF regulator to supply the external safing FET controller. The user can measure the voltage levels of both the VSF regulator and the SSxy nodes. If the safing FET is properly switched on, the voltage on SSxy is regulated. The measurement request is done via Diagnostic Control command (DIAGCTRLx), while results are reported through ADCRESx bit fields, as shown in Table 10. Deployment timer diagnostic This test allows verifying the correct functionality and duration of the timers used to control the deployment times. This test can be executed only when the IC is in the Diag state by setting the appropriate code in the DSTEST field of the SYSDIAGREQ register. When the test is launched, the IC sequentially triggers the activation of the deployment timers of the various channels (each of them separated by 8ms idle time) and outputs the relevant waveform to the ARM output discrete pin. See the sequence detail in Figure 27. The MCU can therefore test the deployment times by measuring the duration of the high pulses sent by the IC on the ARM pin. The deployment time configuration used during this test is the latest one programmed in the DCRx registers. In case the test is run on a channel with no DCRx deployment time previously configured, a default 8us high pulse is output on ARM for the relevant channel. 122/210 DS11626 Rev 5 L9678P, L9678P-S Deployment drivers Figure 27. Deployment timer diagnostic sequence From any state: DIAG state & SPI_SYSREQ(DSTEST=PULSE) / PULSE_TESTx=0 PT_TMR=8ms / PT_TMR=0 PULSE_TESTx=0 PULSE_TEST1=1 PT_WAIT SSM_RESET / PULSE_TESTx=0 PT1 PT_TMR=8ms / PT_TMR=0 PULSE_TESTx=0 PULSE_TEST2=1 PT_OFF PT2 PT_TMR=8ms / PULSE_TESTx=0 PT_TMR=8ms / PT_TMR=0 PULSE_TESTx=0 PULSE_TEST3=1 PT4 PT3 PT_TMR=8ms / PT_TMR=0 PULSE_TESTx=0 PULSE_TEST4=1 GAPGPS01995 Loop diagnostics control and results registers Diagnostic tests and channels for each test are controlled through the Loop Diagnostic Request Register (LPDIAGREQ), diagnostic results are stored in the Loop Diagnostic Status Register (LPDIAGSTAT). 6.5.2 High level diagnostic approach In this approach, the test steps described in the sections below are coded into a dedicated state machine that helps reducing the user intervention to a minimum. The high-level diagnostic commands are contained in the LPDIAGREQ, LOOP_DIAG_SEL, and LOOP_DIAG_CHSEL registers. These settings are described in the SPI Table for these commands in Read/write register. The high-level diagnostic response is available in the LPDIAGSTAT register. These are described in the SPI Table for this command in Read/write register. The concept is depicted in the following figures. DS11626 Rev 5 123/210 209 Deployment drivers L9678P, L9678P-S Figure 28. High level loop diagnostic flow1 Low level diagnostic is selected (bit 15 of LPDIAGREQ is low) OR an invalid high level diagnostic is selected OR we are in DEP_ENABLED state TIP = 0 Leakage test time elapsed SBL flag is asserted if STG is no more present Leakage is detected (due to the fact that FETs work properly) OR FET test timeout elapsed DIAG_OFF New high level diagnostic request (bit 15 of LPDIAGREQ is high) VRCM (check time elapsed AND ((VRCM, CHECK test) is selected OR VRCM fails) TIP = 1 Wait enaugh time to be sure that all currents and voltages supplies start in OFF state WAIT_OFF Off time = 24μs Latch STB, STG flags FP = 1 if LEAKAGE or FET T tests are selected Off time elapsed AND new diagnostic request is VRCM_CHECK OR LEAKAGE OR SBL OR FET tests VRCM_CHECK FET TEST TIP = 1 FET test timeout = 200μs Enable VRCM Disable ISRC and ISINK Enable HS or LS FET if also DSTEST = 0111 or 1000 Leakage test time elapsed AND (FET test is selected) AND NO leakage is present Leakage test time elapsed AND ((LEAKAGE test) OR (SBL and no leakage is present) OR (FET test and leakage is present)) Latch STB, STG flags FP = 1 if FET test is selected TIP = 1 LEAKAGE_TEST_2 Enable VRCM Disable ISRC and Leakage test time = 152/600μs ISINK Disable ALL pull down currents VRCM check time = 40μs/160μs TIP = 1 Enable VRCM Disable ISRC and ISINK Leakage test time elapsed AND (SBL is selected) AND leakage is present LEAKAGE_TEST_1 Leakage test time = 152/600μs TIP = 1 Enable VRCM Disable ISRC and ISINK GAPGPS01643 124/210 DS11626 Rev 5 L9678P, L9678P-S Deployment drivers Figure 29. High level loop diagnostic flow2 Low level diagnostic is selected (bit 15 of LPDIAGREQ is low) OR an invalid high level diagnostic is selected OR we are in DEP_ENABLED state End of conversion Store result in ADCRESB DIAG_OFF TIP = 0 Resistance range test time elapsed Latch HSR_HI, HSR_LO flags SQUIB RES RANGE TEST New high level diagnostic request (bit 15 of LPDIAGREQ is high) Off time elapsed AND new diagnostic request is SQUIB RESISTANCE RANGE test TIP = 1 Wait enough time to be sure that all currents and voltages supplies start in OFF state WAIT_OFF Resistance range test setting time = 152μs/600μs TIP = 1 Enable VRCM Enable ISINK Off time = 24μs Off time elapsed AND new diagnostic request is SQUIB RESISTANCE measure test SQUIB RES MEAS CONV1 SQUIB RES MEAS CONV12 End of conversion Store result in ADCRESA End of setting time End of setting time SQUIB RES MEAS SETTLE1 TIP = 1 Enable ISRC on SFx Enable ISINK Resistance test setting time = 304μs/1200μs SQUIB RES MEAS SETTLE2 TIP = 1 Resistance test Enable ISINK setting time = 304μs/1200μs Enable ISRC BYPASS ISRC on SRx GAPGPS01644 DS11626 Rev 5 125/210 209 Remote sensor interface 7 L9678P, L9678P-S Remote sensor interface The L9678P-S contains 2 remote sensor interfaces, capable of supporting PSI-5 protocol (standard voltage range). A block diagram of the interface is shown below. The circuitry consists of a power interface that demodulates current flowing in the external sensor and transmits these current states to the decoder, which produces a digital value for each satellite channel. Data are then output through the Remote Sensor Data Registers (RSDRx). The power interface also contains error detection circuitry. When a fault is detected, the error code is stored in a global SPI data buffer in the Remote Sensor Data Registers (RSDRx). Figure 30. Remote sensor interface logic blocks Remote Sensor Configuration Reg.(RSCR) Remote Sensor Data Reg.X (RSDRx) Manchester Decoder & Fault Detection Power & Input Protection X RSUx Remote Sensor Fault Status Reg.(RSFSR) Fault Status Reg.(FLTSR) GAPGPS01130 The Remote Sensor Configuration Registers (RSCRx) allow for configuration of the particular PSI5 protocol adopted by the sensor and the transceiver current limit blanking time. The Remote Sensor Control Register (RSCTRL) allows for interface channels to be switched on and off via SPI. RSU interface has 2 registers per channel, which can report either data or fault information, that can be readout by sending 2 consecutive Read commands of the Remote Sensor Data Register (RSDRx). It is a FIFO, so the first SPI reading contains the oldest received data and the next SPI reading contains the most recent one. SPI accesses both from the same address, i.e. the MCU should do 2 reads of the same RID to get both data samples. The couple of registers will retain only the last two received messages, regardless they have been qualified as valid or invalid data. In case of driver fault (Short to Ground, Short to Battery, Over-current, Open detection, Over-temperature) any message is lost. To re-start a correct reception of messages, it is needed to have no more fault present and fault flag read by MCU. If the device detects an error on the sensor interface, the fault bit in RSDRx (FLTBIT) will be set to '1' and the following bits will be used to report the detected errors. Otherwise, the register will contain only data information. Detailed information on data and fault reporting are explained in the following sections. When a fault condition is detected, the RSFLT bit of the global status word (GSW) is set to 1, except in the case the register is empty for which NODATA fault bit will be set instead. Data are cleared upon reading the RSDRx register. RSU interface is supplied by VSUP regulator as showed in Figure 31. To avoid a too low RSU output voltage in case of battery loss, the upper VINGOOD and VBATMOND 126/210 DS11626 Rev 5 L9678P, L9678P-S Remote sensor interface thresholds must be selected. In this way the device will detect the battery loss condition in time to guarantee the minimum RSU output voltage required. Figure 31. Remote sensor interface block diagram VSUP 500 5 + - + - + RSU_OC RSU_STB Short to VBAT comp + 2500 + Short to GND comp 20mV VREF + RSU_Enable - EMI filter ISAT RSUx ISAT/100 2Ω5 2n 2F 33nF RXSATSYNC or COMPBASEOUT I base fsample SAT Up/Down counter Digital word = Satellite Base current 7bits I threshold PSI5 current comparator 7.1 GAPGPS01131 PSI-5 protocol All channels are compliant to the PSI-5 v1.3 specification as described below:  Two-wire current interface  Manchester coded digital data transmission  High data transmission speeds of 125 kbps and 189 kbps  Variable data word length (8 & 10 bit only)  1-bit parity  Asynchronous operation mode DS11626 Rev 5 127/210 209 Remote sensor interface L9678P, L9678P-S An example of the data format for one possible PSI-5 protocol configuration is shown below. Data size may vary, but the presence of 2 sync start bits (referenced below as sync bits) and TGap time is consistent regardless the data size. Figure 32. PSI-5 remote sensor protocol (10-bit, 1-bit parity) Data Transmission TGAP frame duration S1 S2 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 P "0" "0" "1" "1" "1" "0" "0" "1" "1" "1" "1" "0" "1" Manchester Code Transmission of 0x1E7 0x1E7 = 01 1110 0111b TBIT 7.1.1 GAPGPS01132 Functional description - remote sensor modes The Remote sensor Interface block provides a hardware connection between the microcontroller and up to two remote sensors. Each channel is independent of the other, and is not influenced by fault conditions, such as short circuits to ground or vehicle battery, on the other channel. Each channel supplies an independently current limited DC voltage to its remote sensor derived from VSUP, and monitors the current draw to extract encoded data. The remote sensors modulate the current draw to transmit Manchester-encoded data back to the receiver. The current level detection threshold for all channels is automatically set by the integrated current adjust feature in order to adapt to the quiescent current draw of the sensors. All channels can be enabled or disabled independently via SPI commands. The operational status of all channels can also be read via SPI command. The message bits are encoded using a Manchester format, in which logic values are determined by a current transition in the middle of the bit time. The interface supports Manchester 2 encoding as shown in Figure 33. Figure 33. Manchester bit encoding Bit time Start bits = ’00 ’ Logic '0' Current Logic '1' ‘0’ ‘0’ ‘1’ ‘0’ ‘1’ Manchester-2 PSI5 GAPGPS01133 The received message data are stored in input data registers that are read out by the microcontroller via the SPI interface. All bits of these registers are simultaneously updated upon reception of the remote sensor message to prevent partial frame data from being sampled via the SPI interface. After the data for a given channel is read via the SPI 128/210 DS11626 Rev 5 L9678P, L9678P-S Remote sensor interface interface, subsequent requests for data from this channel will result in an error response (NODATA fault). The remote sensor interface is also able to detect faults occurring on the sensor interface. The Remote Sensor Data Register (RSDRx) will report multiple fault flags. When the number of bits decoded is incorrect (either too many or too few), a bit error is indicated. When any bit error is detected (bit time, too many bits or too few bits), the message is discarded. Error bit INVALID is an OR-ed combination of the following errors:  Data length error or stop bit error  Parity Error of received Remote sensor Message  Bit time error (a data bit edge is not received inside the expected time window) Should one or more of the channel faults (STG, STB, CURRENT_HI, OPENDET and RSTEMP) be set, the INVALID and NODATA bits are cleared. 7.1.2 RSU data fields and CRC The remote sensor interface reports both data information and fault information in the Remote Sensor Data Register (RSDRx). Independent data registers are defined for each remote sensor interface and the data contained therein is formatted differently based on whether a fault is detected. See SPI command in Remote sensor data/fault registers w/o fault (RSDRx) on page 93. The data available in the RSDRx register is separated into several bit fields. The Logical Channel ID is a 4-bit field to identify the satellite sensor. The DATA bits are appended to the LCID at the output of the Manchester decoder. The 3-bit CRC bit field is computed on the entire data packet of fields, bits[16:0], which also includes the CHxON and FLTBIT. To satisfy safety requirements, the LCID, DATA and CRC bit fields propagate through the same data path as a single item to the SPI output. The polynomial calculation implemented for PSI5 data is described as in PSI5 specification g(x)=1+x+x^3 with the initialization value equal to "111". Below are the equations to calculate the CRC in combinatorial way: CRC[2] = CRCext[0]+D[0]+D[1]+D[3]+D[6]+D[7]+D[8]+D[10]+D[13]+D[14]+D[15] CRC[1] = CRCext[2]+D[0]+D[1]+D[2]+D[4]+D[7]+D[8]+D[9]+D[11]+D[14]+D[15]+D[16] CRC[0] = CRCext[1]+CRCext[0]+D[0]+D[2]+D[5]+D[6]+D[7]+D[9]+D[12]+D[13]+D[14]+D[16] where D[16:0]= RSDR[16:0] and CRCext[n] are the starting seed values (all '1'). 7.1.3 Detailed description Manchester decoding The Manchester decoder will support remote sensor communication as per PSI specification rev 1.3 for the modes configurable via the STS bits in the RSCRx registers. The Manchester Decoder checks the duty-cycle and period of the start bits to determine their validity, depending on the configuration of the PERIOD_MEAS_DISABLE bit in the RSCRx registers. The expected time windows for the mid bit transitions of each subsequent bit within the received frame is determined by means of the internal oscillator time base. Glitches shorter than 25% of the minimum bit time duration are rejected. DS11626 Rev 5 129/210 209 Remote sensor interface L9678P, L9678P-S Figure 34. Manchester decoder state diagram RESET_DECODER Æ Strobe RESET_CNT IDLE T10 PERIOD_1_5 Strobe REC_END Strobe RESET_CNT (check PARITY_ERR) T1 T11 RISING_EDGE Æ PERIOD_1_5 Strobe RESET_CNT Strobe RESET_CNT T13 ANY and / PERIOD_1_5 Strobe RESET_CNT T2a T9 ANY and (PERIOD_0_75 or not FIRST) WAIT TGAP B B Strobe MANY BITS Strobe RESET_CNT Period_1_25 and ANY_EDGEÆ Strobe RESET_CNT A T2b ERROR A B START BIT DET. Period_1_25 and not ANY_EDGE E C T3 D (first pulse duty cycle check:) FALLING_EDGE before period_0_25 Æ Strobe RESET_CNT T4 T6a RISING_EDGE & /Period_0_75 Æ PERIOD_1_25 and ANY strobe CHECK_TIME Strobe RESET_CNT Strobe RESET_CNT T6b PERIOD_1_25 and not ANY strobe CHECK_TIME T7 ANY and not PERIOD_0_75 and not FIRST_EDGE Strobe RESET_CNT Strobe CHECK_TIME A B E DATA REC. T5 D T8 ANY and PERIOD_0_75 and STATE=C_NB Strobe RESET_CNT Strobe NEXT BIT DataFilt RISING_EDGE FALLING_EDGE ANY C_NB STATE BitCounter Period_1_50 Period_1_25 Period_0_75 FIRST_EDGE RISING and PERIOD_0_75 Strobe RESET_CNT C := := := := := := := := := := := T12 (ANY and not PERIOD_1_25 and PERIOD_0_75 and not STATE=C_NB) Strobe RESET_CNT Strobe NEXT BIT Filtered Raw Data (RXSAT) from Current Demodulator (after deglitcher ) DataFilt(n+1, n) == “01” DataFilt(n+1, n) == “10” RISING_EDGE or FALLING_EDGE 8bit frame configurated ? 10 : 12 {0@IDLE, 1@STATBITDET, 2@T5, STATE++@T12, 0xE @WAIT, 0xF@ERROR} RESET_CNT ? 0 : BitCounter++ BitCounter >= BitPeriod*1.5 BitCounter >= BitPeriod*1.25 BitCounter >= BitPeriod*0.75 Period_0_75? 1 : ANY? 0 : FIRST_EDGE after a delay of Tck (Remark: not a combinatorial signal ) End of message definition for use in timeslot control: EOM = T10+T9+T7+T6a+T6b GAPGPS01645 130/210 DS11626 Rev 5 L9678P, L9678P-S Remote sensor interface A Manchester Decoder Error occurs if one or more of the following conditions are true:  Two valid start bits are detected, and at least one of the expected 13 mid-bit transitions are not detected  Two valid start bits are detected, and more than 13 mid-bit transitions are detected  When the number of bits decoded is incorrect (either too many or too few), a bit error is indicated. When any bit error is detected (bit time, too many bits, too few bits), the decoder will revert to the minimum bit time of the selected range and the message is discarded. All errors are readable through the Sensor Fault Status Register and the RSFLT bit in the Global Status Word Register. When a valid message is correctly decoded, the 10/8 data bits are stored into the appropriate RSDRx register together with the related LCID. The RSDRx register contains the 10/8 bits data as they are received from the sensor (no data range check/mask is done at this stage). The 8-bit data word is right-justified inside the 10-bit data field in the RSDRx registers. Current sensor with auto-adjust trip current The current sensor is responsible for translating the current drawn by the sensor into a digital state (refer to Figure 35). Each satellite channel has a dedicated current sensor with hysteresis. Figure 35. Remote sensor current sensing auto adjust RxSat Itrip Isat e.g. 20mA 13mA Ibase 15mA count 42 0.5μs 4μs GAPGPS01134 The auto adjust feature uses a 7 bit D/A to converter to step up and down the threshold level for detecting the base current through the remote sensor before start bits are transmitted. Once start bits are received, the counter stops and the D/A value remains fixed until the remote sensor message is received. This procedure is repeated for each cycle of the remote sensor. The auto adjust circuit uses the following equation: Ibase = Ioffset + (D/A counts) * 300 µA where Ioffset is fixed to 2.5 mA DS11626 Rev 5 131/210 209 Remote sensor interface L9678P, L9678P-S The converter default count value is 42, therefore, Ibase = 2.5 mA + 42 * 300 µA Ibase = 15 mA Itrip = Ibase + threshold where threshold is a fixed at 12 mA Thanks to this implementation, Ibase can span from 2.5 mA up to 41 mA covering PSI-5 specification range. As an example, for a remote sensor that operates at 10 mA base current, Itrip = 23 mA. 7.2 Remote sensor interface fault protection 7.2.1 Short to ground, current limit Each output is short circuit protected by an independent current limit circuit. Should the output current level reach or exceed the ILIMTH for a time period greater than TILIMTH the output stage is disabled and an internal up-down counter will count in 25 µs increment up to TILIMTH. The filter time is chosen in order to avoid false current limit detection for in-rush current that may happen at interface switch-on. When the output is turned off due to current limit, the appropriate fault code STG is set in the Remote Sensor Data Register (RSDR). The fault timer latch is cleared when the sensor channel is first disabled and then reenabled through the Remote Sensor Configuration Register (RSCR). This fault condition does not interfere with the normal operation of the IC, nor with the operation of the other channels. When a sensor fault is detected, the RSFLT bit of the GSW is set indicating a fault occurred and can be decoded by addressing the RSFSR register. In order to fulfil the blanking time requirement at channel activation as per PSI-5 specification, a dedicated masking time is applied to the current limitation fault detection each time a channel is activated. 7.2.2 Short to battery All outputs are independently protected against a short to battery condition. Short to battery protection disconnects the channel from its supply rail to guarantee that no adverse condition occurs within the IC. The short-to-battery detection circuit has input offset voltage (10 mV, minimum) to prevent disconnecting of the output under an open circuit condition. A short to battery is detected when the output RSUx pin voltage increases above VSUP supply pin voltage for a TSTBTH time. An internal up-counter will count in 1.5 µs increment up to TSTBTH. The counter will be cleared if the short condition is not present for at least 1.5 µs. Short to battery protection blocks the battery condition to guarantee that no adverse condition occurs within the IC. The channel in short to battery is not shut down by this condition. Other channels are not affected in case of short of one output pin. As in the case previously described, the STB fault code can be read from RSDR bits and any fault will set the RSFLT bit of the global status word register (GSW). The STB bit is cleared upon read. 7.2.3 Cross link The device provides also the capability of a cross link check between outputs, in order to reveal conditions where two output channels are in short. This functionality is allowed by enabling one output channel, while asking for voltage measurement on any of the other ones. 132/210 DS11626 Rev 5 L9678P, L9678P-S 7.2.4 Remote sensor interface Leakage to battery, open condition The remote sensor interface offers detection of an open sensor condition. The autoadjusting counter for remote sensor current sensing will drop to 0 in case the current flowing through RSUx pin is lower than 3 mA. The OPENDET fault flag is asserted when the fault condition lasts for longer than TRSUOP_FILT deglitch filter time. This fault flag can be read from RSDR bits and any fault will set the RSFLT bit of the global status word register (GSW). The channel in this condition is not shutdown. 7.2.5 Leakage to ground The sensor interface offers as well the detection of a leakage to ground condition, that will possibly raise the sensor current higher than 36 mA. The CURRENT_HI fault flag is asserted when the fault condition lasts for longer than TRSUCH_FILT deglitch filter time. This fault flag can be read from RSDR bits and any fault will set the RSFLT bit of the global status word register (GSW). The channel in this condition is not shutdown. 7.2.6 Thermal shutdown Each output is protected by an independent over-temperature detection circuit. Should the remote sensor interface thermal protection be triggered the output stage is disabled and a corresponding thermal fault is latched and reported through the RSTEMP flag in the Remote Sensor Data Register (RSDRx). The thermal fault flag is cleared when the sensor channel is first disabled and then re-enabled through the Remote Sensor Configuration Register (RSCRx). DS11626 Rev 5 133/210 209 Watchdog timer 8 L9678P, L9678P-S Watchdog timer This device offers a watchdog implementation by means of a temporal WD. Window times are SPI programmable and a couple of specific codes has to be written within this window in order to serve the WD control. 8.1 Temporal watchdog The temporal watchdog ensures the system software is operating correctly by requiring periodic service from the microcontroller at a programmable rate. This service (watchdog refresh) must occur within a time window, and if serviced too early or too late will enter an error state (WD1_ERROR) reported via the WD1_WDR bit of the FLTSR register. The overall WD1 functionality is described in the state diagram reported in Figure 36. Figure 36. Watchdog state diagram WSM_Reset (From any state) / WD1_LOCKOUT=1 WD1_WDR=0 WD1_ERR_CNT=0 WD1_ERR_TH_WE=1 WDT/TM>VWD_OVERRIDE AND SPI WD1_TEST WD1_LOCKOUT=0 1ms / WD1_WDR=1 500ms AND WD1_TOVR=0 / WD1_LOCKOUT=1 WD1_ERR_CNT++ WD1 RESET WD1_ERROR / WD1_LOCKOUT=1 WD1_ERR_CNT++ WD1 OVERRIDE WD1 INITIAL WD1 RUN WD1 refresh OK / WD1 refresh OK / WD1_WDR=0 WD1_ERR_TH_WE=0 If (WD1_ERR_CNTMIN & SPI_WD1_A / TMR1=0 Strobe WD1 refresh OK WD1B2 WD1A2 TMR1>MIN & SPI_WD1_B / TMR1=0 Strobe WD1 refresh OK TMR1>MAX OR [TMR1MAX OR [TMR1= ARMP_TH? NEG_COUNT[i] >= ARMN_TH? Y ARMP = 0 N Y ARMP = 1 ARMN = 1 ARMSEL[i] = 00, 01, or 11? ARMSEL[i] = 00, 10, or 11? Y ARMN = 0 N Y N TIMER_CNTx is a 10 bit down counter always running at 2ms N ARM1[i]=1 & TIMER_CNT1< DWELL[i] ARM2[i]=1 & TIMER_CNT2< DWELL[i] N TIMER_CNTx control extends to 4 for high/mid Y Y TIMER_CNT1= DWELL[i] TIMER_CNT2= DWELL[i] i++ TIMER_CNT1 > 0? N i = N? TIMER_CNT2 > 0? Y ARM1INT=1 N=5 (L9678) N=13 (L9679) N=17 (L9680) N N ARMxINT control extends to 4 for high/mid Y ARM1INT=0 ARM2INT=1 ARM2INT=0 Y GAPGPS02868 152/210 DS11626 Rev 5 L9678P, L9678P-S Safing logic Figure 49. Safing engine diagnostic logic SCLK_G MOSI_G MISO_G CS_G SAF_CS0 SAF_CS1 SPI Decode / Threshold Compare Pulse Stretch DSTEST(VSF) DIAG STATE ARM1INT DSTEST(ARM) DSTEST(PULSE) CH1PULSE CH2PULSE CH3PULSE CH4PULSE ARM2INT ARMING STATE GAPGPS01651 A configurable mask for each internal ARMxINT signal is available for all of the integrated deployment loops (refer to ARMx assignment registers (LOOP_MATRIX_ARMx) on page 99). The un-masked ARMxINT signal for each loop will enable the respective loop drivers (refer to Figure 21). Activation of VSF (regulation rail for High Side Safing FET) occurs upon ARMxINT or FENH/FENL, depending on SPI configuration (refer to Figure 17). Actual High Side Safing FET activation still requires microcontroller signal. L9678P is able to provide arming signals to external deployment loops by means of the discrete output ARM pin. The ARM pin can either output an arming signal generated by the integrated safing engine or an arming signal made by the combination of FENH and FENL input signals, coming from external safing logic. Figure 50. ARM output control logic WD1_RUN WD1_LOCKOUT SSM_RESET ARM_EN WD1_OVERRIDE ARM1INT Safing Engine ARM2INT 0 ARM 1 FENL FENH SAFESEL GAPGPS01658 DS11626 Rev 5 153/210 209 Safing logic 10.6 L9678P, L9678P-S Arming pulse stretch Upon a valid command processed by the safing logic, the Dwell bits to stretch the arming time assertion (dwell time) apply to each safing record and is used to help safe the deployment sequence to avoid undesired behaviour. Once dwell time has started, it will continue, regardless of the En (Record Enable) bit. Dwell will be truncated in case of SSM reset. Dwell values in the safing records are transferred to the ARM signal. A dedicated counter is designed for ARM output pin. If different dwell values are assigned to ARM, the longer value is used. Dwell times can only be extended, not reduced. If the remaining dwell time is less than the new dwell extension setting, the new setting will be loaded into the dwell counter. Dwell times are user programmable. The behavior of the pulse stretch timer is shown in Figure 51. Figure 51. Pulse stretch timer example Arming Safing Logic Processed result Arming Enable Pulse Stretch Pulse Stretch Time Less Than Pulse Stretch Time Pulse Stretch Time GAPGPS01148 10.7 Additional communication line The ACL pin is the Additional Communication Line input that provides a means of safely activating the arming outputs (ARM and VSF) for disposal of restraints devices at the end of vehicle life. A valid ACL detection (as described below) allows L9678P to transition from Scrap state to Arming state. To remain in Arming state L9678P must receive the correct ACL signal; this must occur before the scrap time-out timer expires (TdisEOL). While the System Operating State Machine is in Arming state, the arming outputs are asserted (ARM=1, VSF on). If the ACL is not correctly received before the time-out expires, the System Operating State Machine reverts back to the Scrap state, and the arming outputs are deactivated. 154/210 DS11626 Rev 5 L9678P, L9678P-S Safing logic Figure 52. Scrap ACL state diagram SSM_RESET OR ((NOT SCRAP state) AND (NOT ARMING state)) / ACLGOOD=0 ACLBAD=0 ACLTMR=0 Rising edge / ACLTMR= 0 ACLGOOD=0 ACLBAD++ ACLTMR > periodmin & rising edge / ACLGOOD ++ ACLBAD=0 ACLTMR=0 ACLHIGH Falling edge & ACLTMR > highmin ACLTMR > highmax OR Falling edge & ACLTIMER < highmin / ACLLOW ACLTMR > periodmax / ACLGOOD =0 ACLBAD ++ ACLTMR=0 Rising edge OR ACLTMR > periodmax / ACLTMR=0 ACLGOOD=0 ACLBAD++ ACLERROR GAPGPS01652 A specific waveform needs to be present on this input in order to instruct L9678P to arm all deployment loops. L9678P is designed to support the Additional Communication Line (ACL) aspect of the ISO-26021 standard, which requires an independent hardwired signal (ACL) to implement the scrapping feature. The disposal signal may come from either the vehicle's service connector, or the systems main microcontroller, depending on the end customer's requirements. The arming function monitors the disposal PWM input (ACL pin) for a command to arm all loops for vehicle end-of-life. The disposal signal characteristic is shown in Figure 53. To remain in Arming state, at least three cycles of the ACL signal must be qualified. For the device to qualify the periodic ACL signal, the period and duty cycle are checked. Two consecutive cycles of invalid disposal signal are to be received to disqualify the ACL signal. Figure 53. Disposal PWM signal Cycle time On time GAPGPS01149 The disposal PWM signal cycle time and on time parameters can be found in the electrical parameters tables. DS11626 Rev 5 155/210 209 General purpose output (GPO) drivers 11 L9678P, L9678P-S General purpose output (GPO) drivers The L9678P contains two GPO drivers configurable either as high-side or low-side modes, controlled in ON-OFF mode or in PWM mode setting the desired duty cycle value through the GPO Control Register (GPOCTRLx). For low side driver configuration, the GPODx pin is the equivalent drain connection of the internal MOSFET and it is the current sink for the output driver. The GPOSx pin is the source connection of the GPO driver and is externally connected to ground. Figure 54. GPO driver block diagram - LS configuration VBatt Sel GPODx 10bits Vin GPOFLTSR (GPOxDISABLE ) LOAD Vref SPI(WID=’GPOCR’ ) S SSM_RESET R SET CL R 2V5 GPODx Q ERBOOST Q GPOCR(GPOxLS ) ERBOOST_OK OUT EN ON PWM ` CTL PWM_CLK (125us ) 6 GPOCTRLx [ 5:0] 22nF Driver with Slew Rate Control Temperature sensor CTL Current sense + GPOFLTSR (GPOxTEMP ) Q SET S Q Q CL R SET + - Tjsd S R Q CL R Current limitation R GPOSx GPOCTRLx [5:0]=0h SSM_RESET GPOFLTSR (GPOxOPN ) Q Q GPOFLTSR (GPOxLIM ) Q Q SET CL R SET CL R + - S Iopenload R + - S R Ilim SPI(RID=’GPOFLTSR’ ) SSM_RESET GAPGPS01653 For high side driver configuration, the GPODx pin will be connected to battery and GPOSx pin will be connected to the load high side. 156/210 DS11626 Rev 5 L9678P, L9678P-S General purpose output (GPO) drivers Figure 55. GPO driver block diagram - HS configuration Sel GPODx Vin 10bits Vin GPOFLTSR (GPOxDISABLE ) Vref SPI(WID=’GPOCR’ ) S SSM_RESET R SET CL R 2V5 GPODx Q ERBOOST Q GPOCR(GPOxLS ) ERBOOST_OK OUT EN ON PWM ` CTL PWM_CLK (125us ) 6 GPOCTRLx [ 5:0] Driver with Slew Rate Control Temperature sensor CTL Current sense + GPOFLTSR (GPOxTEMP ) Q SET S Q Q CL R SET S R Q CL R + - Tjsd Current limitation R GPOSx LOAD GPOCTRLx [5:0]=0h SSM_RESET GPOFLTSR (GPOxOPN ) Q Q GPOFLTSR (GPOxLIM ) Q Q SET CL R SET CL R S 22nF + - Iopenload R S + - R Ilim SPI(RID=’GPOFLTSR’ ) SSM_RESET GAPGPS01654 The drivers have to be configured in one of the two modes through the GPO Configuration Register (GPOCR) register before being activated. This hardware configuration is only allowed during the Init and Diag states. When configured as high-side, the drivers need ER Boost voltage to be above the VERBST_OK threshold to be enabled. The default state of both drivers is off. The drivers can be independently activated via SPI control bits on GPO Control Register (GPOCTRLx). In addition, a set point on the GPOCTRLx will control the output drivers in PWM with a 125Hz frequency. If PWM control is desired, user should set the needed set point in the GPOxPWM bits of the GPOCTRLx while activating the interface. When all bits are set to '0', the GPOx output will be disabled. PWM control is based on a 125 Hz frequency. 6 bits of GPOCTRLx are reserved to this mode, in order to control the drivers with 64 total levels from a 0% to a full 100% duty cycle. When both GPO channels are used in PWM Mode at the same frequency they are synchronized to provide parallel configuration capability. PWM control is implemented through a careful slew rate control to mitigate EMC emissions while operating the interface. The driver output structure is designed to stand -1V on its terminals and a +1V reverse voltage across source and drain. The GPO driver is protected against short circuits and thermal overload conditions. The output driver contains diagnostics available in the GPO Fault Status Register (GPOFLTSR). All faults except for thermal overload will be latched until the GPOFLTSR register is read. DS11626 Rev 5 157/210 209 General purpose output (GPO) drivers L9678P, L9678P-S Thermal overload faults will remain active after reading the GPOFLTSR register should the temperature remain above the thermal fault condition. For current limit faults, the output driver will operate in a linear mode (ILIM) until a thermal fault condition is detected. The device also offers an open load diagnostics while in ON state. The diagnostics is run comparing the current through the output stage with a reference threshold IOpenLoad: should the output current be lower than the threshold, the open detection flag is asserted. 158/210 DS11626 Rev 5 L9678P, L9678P-S 12 ISO9141 transceiver ISO9141 transceiver A block diagram of the function is shown below. Data transmitted by the main microcontroller is sent via the ISOTX pin and data is received via the ISORX pin. The bus output is ISOK. Figure 56. ISO9141 block diagram VBAT VIN 510 Ω ISORX ISOK vddq VIH Gate Control ISOTX FLTSR1(ILIMXCVR) Thermal Shutdown Filter td Ilin FLTSR 1(OTXCVR) GAPGPS01151 When the ISOTX pin is asserted, logic high, the ISOK output will be disabled (pulled high by an external resistor). When the ISOTX pin is deasserted, logic low, the ISOK output will be enabled (pulled low by the internal driver). This input pin contains an internal pull-up to command the output to the disabled state in the event of an open circuit condition. The ISORX pin has a push-pull output stage referenced to VDDQ voltage. This output is asserted high when the voltage on the ISOK pin is above the ISOK input receiver threshold, VBATMON, as defined in the electrical tables. This output is deasserted low when the voltage on the ISOK pin is below the ISOK input receiver threshold with hysteresis. ISOK output is a low side driver compatible with ISO9141 physical layer. The output stage is protected against short circuits and diagnostics provide feedback for current limit and thermal shutdown. While in current limit, the output stage will continue to function until thermal limit is reached. Should thermal limit occur, the output stage will shut down until the temperature decreases below the limit threshold with hysteresis. The fault status is reported in the ISO9141 Fault Status Register (ISOFLTSR). DS11626 Rev 5 159/210 209 System voltage diagnostics 13 L9678P, L9678P-S System voltage diagnostics L9678P has an integrated dedicated circuitry to provide diagnostic feedback and processing of several inputs. These inputs are addressed with an internal analog multiplexer and made available through the SPI digital interface with the Diagnostic Data commands. In order to avoid saturation of high voltage internal signals, an internal voltage divider is used. The diagnostics circuitry is activated by four SPI Diagnostics Control commands (DIAGCTRLx); each of them can address all the available nodes to be monitored, except for what mentioned in Table 10: Diagnostics control register (DIAGCTRLx) on page 161. DIAGCTRLx SPI command bit fields are structured in the following way: DIAGCTRL_A (ADDRESS HEX 3A) 19 18 17 16 15 14 13 12 11 10 9 8 7 MOSI x MISO NEWDATA_A 0 0 x x x x x x x 6 5 x 4 3 2 1 0 1 0 1 0 1 0 ADCREQ_A[6:0] ADCREQ_A[6:0] ADCRES_A[9:0] DIAGCTRL_B (ADDRESS HEX 3B) 19 18 17 16 15 14 13 12 11 10 9 8 7 MOSI MISO x NEWDATA_B 0 0 x x x x x x x 6 5 x 4 3 2 ADCREQ_B [6:0] ADCREQ_B [6:0] ADCRES_B [9:0] DIAGCTRL_C (ADDRESS HEX 3C) 19 18 17 16 15 14 13 12 11 10 9 8 7 MOSI x MISO NEWDATA_C 0 0 x x x x x x x 6 5 x 4 3 2 ADCREQ_C [6:0] ADCREQ_C [6:0] ADCRES_C [9:0] DIAGCTRL_D (ADDRESS HEX 3D) 19 18 17 16 15 14 13 12 11 10 9 8 7 x MOSI MISO NEWDATA_D 0 0 x x x x x x ADCREQ_D [6:0] x x 6 5 4 3 2 ADCREQ_D [6:0] ADCRES_D [9:0] ADCREQ[A-D] bit fields, used to address the different measurements offered, are listed in Table 10: Diagnostics control register (DIAGCTRLx) on page 161 for reference. L9678P diagnostics are structured to take four automatic conversions at a time. In order to get four measurements, four different SPI commands have to be sent (DIAGCTRL_A, DIAGCTRL_B, DIAGCTRL_C and DIAGCTRL_D), in no particular order. 160/210 DS11626 Rev 5 L9678P, L9678P-S System voltage diagnostics In case the voltage to be measured is not immediately available, the desired inputs for conversion have to be programmed by SPI in advance, to allow them to attain a stable voltage value. This case applies to the squib/pyroswitch resistance measurement and diagnostics (refer to Loop diagnostics control and results registers) and to the switch sensor measurement (refer to Section 9: DC sensor interface). CONVRDY_0 bit in GSW is equal to (NEWDATA_A or NEWDATA_B), while CONVRDY_1 bit in GSW corresponds to (NEWDATA_C or NEWDATA_D). Each NEWDATAx flag is asserted when conversion is finished and cleared when result is read out. However result is cleared only when new result for that register is available. When a new request is received it is queued if other conversions are ongoing. The conversions are executed in the same order as their request arrived. The queue is 4 measures long so it's possible to send all 4 requests at the same time and then wait for the results. If a DIAGCTLRx command is received twice, the second conversion request will overwrite the previous one. Requests are sent to the L9678P IC via the ADC measurement Registers (ADCREQx) as shown in Table 10: Diagnostics control register (DIAGCTRLx) on page 161. All diagnostics results are available on the ADCRESx registers, when addressed by the related ADCREQx register (e.g. data requested by ADCREQA would be written to ADCRESA). Table 10. Diagnostics control register (DIAGCTRLx) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 0 0 0 0 0 0 0 Unused 0 0 0 0 0 0 1 1 ADC Test Pattern 1 Ground reference 0 0 0 0 0 1 0 2 ADC Test Pattern 2 Full scale reference 0 0 0 0 0 1 1 3 DC Sensor ch. selected, Voltage 0 0 0 0 1 0 0 4 DC Sensor ch. selected, Current DCSV_selected DCSI_selected (1) 0 0 0 0 1 0 1 5 DC Sensor ch. selected, Resistance DCSV and DCSI selected 0 0 0 0 1 1 0 6 Squib/pyroswitch measurement loop selected Voutx 0 0 0 0 1 1 1 7 Bandgap reference Voltage VBGR 0 0 0 1 0 0 0 8 Bandgap reference monitor Voltage VBGM 0 0 0 1 0 0 1 9 Unused 0 0 0 1 0 1 0 10 Temperature Measurement 0 0 0 1 0 1 1 11 DC Sensor ch 0, Voltage DCSV_0 0 0 0 1 1 0 0 12 DC Sensor ch 1, Voltage DCSV_1 0 0 0 1 1 0 1 13 DC Sensor ch 2, Voltage DCSV_2 0 0 0 1 1 1 0 14 DC Sensor ch 3, Voltage DCSV_3 0 0 0 1 1 1 1 15 Unused 0 0 1 0 0 0 0 16 Unused 0 0 1 0 0 0 1 17 Unused DS11626 Rev 5 TEMP 161/210 209 System voltage diagnostics L9678P, L9678P-S Table 10. Diagnostics control register (DIAGCTRLx) (continued) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 0 1 0 0 1 0 18 Unused 0 0 1 0 0 1 1 19 Unused 0 0 1 0 1 0 0 20 Unused 0 0 1 0 1 0 1 21 Unused 0 0 1 0 1 1 0 22 Unused 0 0 1 0 1 1 1 23 Unused 0 0 1 1 0 0 0 24 Unused 0 0 1 1 0 0 1 25 Unused 0 0 1 1 0 1 0 26 Unused 0 0 1 1 0 1 1 27 Unused 0 0 1 1 1 0 0 28 Unused 0 0 1 1 1 0 1 29 Unused 0 0 1 1 1 1 0 30 Unused 0 0 1 1 1 1 1 31 Unused 0 1 0 0 0 0 0 32 Battery monitor Voltage VBATMON 0 1 0 0 0 0 1 33 Device battery Voltage VIN 0 1 0 0 0 1 0 34 Analog internal supply Voltage VINT3V3 0 1 0 0 0 1 1 35 Digital internal supply Voltage CVDD 0 1 0 0 1 0 0 36 ERBOOST voltage 0 1 0 0 1 0 1 37 Unused 0 1 0 0 1 1 0 38 VER Voltage 0 1 0 0 1 1 1 39 VSUP Voltage VSUP 0 1 0 1 0 0 0 40 VDDQ Voltage VDDQ 0 1 0 1 0 0 1 41 WAKEUP Voltage 0 1 0 1 0 1 0 42 VSF Regulator Voltage 0 1 0 1 0 1 1 43 WDT/TM Voltage WDTDIS 0 1 0 1 1 0 0 44 GPO Driver 0 drain Voltage GPOD0 0 1 0 1 1 0 1 45 GPO Driver 0 source Voltage GPOS0 0 1 0 1 1 1 0 46 GPO Driver 1 drain Voltage GPOD1 0 1 0 1 1 1 1 47 GPO Driver 1 source Voltage GPOS1 0 1 1 0 0 0 0 48 Unused 0 1 1 0 0 0 1 49 Unused 0 1 1 0 0 1 0 50 Remote sensor Interface Voltages ch. 0 162/210 DS11626 Rev 5 ERBOOST VER WAKEUP VSF RSU0 L9678P, L9678P-S System voltage diagnostics Table 10. Diagnostics control register (DIAGCTRLx) (continued) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 1 1 0 0 1 1 51 Remote sensor Interface Voltages ch. 1 RSU1 0 1 1 0 1 0 0 52 Unused 0 1 1 0 1 0 1 53 Unused 0 1 1 0 1 1 0 54 SSxy Voltage ch. 0 SS01 0 1 1 0 1 1 1 55 SSxy Voltage ch. 1 SS01 0 1 1 1 0 0 0 56 SSxy Voltage ch. 2 SS23 0 1 1 1 0 0 1 57 SSxy Voltage ch. 3 SS23 0 1 1 1 0 1 0 58 Unused 0 1 1 1 0 1 1 59 Unused 0 1 1 1 1 0 0 60 Unused 0 1 1 1 1 0 1 61 Unused 0 1 1 1 1 1 0 61 Unused 0 1 1 1 1 1 1 63 Unused 1 0 0 0 0 0 0 64 Unused 1 0 0 0 0 0 1 65 Unused 1 0 0 0 0 1 0 66 VRESDIAG 1 0 0 0 0 1 1 67 VDD5 1 0 0 0 1 0 0 68 VDD3V3 1 0 0 0 1 0 1 69 ISOK output voltage ISOK 1 0 0 0 1 1 0 70 SF0 voltage SF0 1 0 0 0 1 1 1 71 SF1 voltage SF1 1 0 0 1 0 0 0 72 SF2 voltage SF2 1 0 0 1 0 0 1 73 SF3 voltage SF3 VRESDIAG VDD5 VDD3V3 1. The DC sensor resistance measurement can only be addressed through DIAGCRTL_A command. Results are available through DIAGCTRL_A and DIAGCTRL_B, where ADCRES_A will contain DCSI and ADCRES_B will contain DCSV. Proper scaling is necessary for various voltage measurements. The divider ratios vary by measurement and are summarized by function in the table below. Table 11. Diagnostics divider ratios Divider Ratio Measurements 15:1 VER X ERBOOST X VSF X 10:1 DS11626 Rev 5 7.125:1 7:1 4:1 1:1 163/210 209 System voltage diagnostics L9678P, L9678P-S Table 11. Diagnostics divider ratios (continued) Divider Ratio Measurements 15:1 SSxy X SFx X VRESDIAG X 10:1 GPODx X GPOSx X VIN X VBATMON X WAKEUP X 7.125:1 7:1 ISOK X VSUP X WDTDIS X RSUx 4:1 1:1 X DCSx X VDDQ X VDD5 X VDD3V3 X VINT3V3 X Bandgap (BGR/BGM) X TEMP X For measurements other than voltage (current, resistance, temperature etc.) the ranges are specified in the electrical parameters section of the relevant block. 13.1 Analog to digital algorithmic converter The device hosts an integrated 10 bit Analog to Digital converter, running at a clock frequency of 16MHz. The ADC output is processed by a D to D converter with the following functions:  Use of trimming bits to recover ADC offset and gain errors;  Digital low-pass filtering;  Conversion from 12 to 10 bits. 10 bits data are filtered inside the digital section. The number of samples that are filtered varies depending on the chosen conversion. As per Section 5.1.2: System configuration register (SYS_CFG), the number of used samples in converting DC sensor, squib/pyroswitch or temperature measurements defaults to 8. The number of samples for all other measurements defaults to 4. The sample number can be configured by accessing the SYS_CFG register. After low pass filter, the residual total error is ±4 LSB. This error figure 164/210 DS11626 Rev 5 L9678P, L9678P-S System voltage diagnostics applies to the case of a precise reference voltage: the spread of reference voltage causes a proportional error in the conversion output. The reference voltage of the ADC is set to 2.5 V. The conversion time is comprised of several factors: the number of measurements loaded into the queue, the number of samples taken for any measurement, and the various settling times. An example of conversion time calculation for a full ADC request queue is reported in Figure 57. The timings reported in Figure 57 are nominal ones, min/max values can be obtained by considering the internal oscillator frequency variation reported in the DC characteristics section. Figure 57. ADC conversion time DIAGCTRL_ A PreADC S * T_SC DIAGCTRL_B IQ S * T_SC DIAGCTRL_C IQ S*T_SC DIAGCTRL_D IQ S*T_SC Post ADC Pre- AD C = Initial ADC Settling Time = 4.81 μs S = # of Samples (default = 4 for voltage only measurements) T_ SC = Single Sample Conversion Time = 2.25 μs IQ = Intra- Queue Settling Time = 3.5 μs Post- ADC = Final ADC Settling Time = 3.44 μs GAPGPS01655 DS11626 Rev 5 165/210 209 Temperature sensor 14 L9678P, L9678P-S Temperature sensor The L9678P provides an internal analog temperature sensor. The sensor is aimed to have a reference for the average junction temperature on silicon surface. The sensor is placed far away from power dissipating stages and squib/pyroswitch deployment drivers. The output of the temperature sensor is available via SPI through ADC conversion, as shown in Table 10. The formula to calculate temperature from ADC reading is the following one:  ADC REF_hi   220  T  C  = 180 –   ---------------   -------------------------------  DIAGCTRLn  ADCRESn  – 0.739    1.652  ADC RES     2  @ DIAGCTRLn(ADCREQn) = 0Ahex All parametric requirements for this block can be found in specification tables. 166/210 DS11626 Rev 5 L9678P, L9678P-S 15 Applications Applications The main applications for this IC are two: 15.1  as user configurable airbag IC  as pyro fuse manager IC Application circuit Figure 58. Airbag application DS11626 Rev 5 167/210 209 Applications 15.2 L9678P, L9678P-S BOM (Bill Of Materials) The following table summarizes the suggested BOM valid for both applications. Table 12. Bill Of Materials Component Min Typ Max Unit Requirement C1 - 100 - nF 50 V Input capacitor (unprotected battery) C2 - 2.2 - μF 50 V Input capacitor (protected battery) C3 - 2.2 15 μF 50 V ER Boost input capacitor C4 - 100 - nF 50 V ER Boost ceramic output capacitor C5 - 100 - μF 50 V ER Boost electrolytic output capacitor C6 - 10 - nF 25 V VBATMON capacitor C7 - 100 - nF 50 V VDD5 input capacitor C8 - 10 - μF 35 V VDD5 output capacitor C9 - 10 - μF 35 V VDD3V3 output capacitor C10 - 100 - nF 50 V CVDD output capacitor C11 - 100 - nF 50 V VSUP input capacitor C12 - 10 - μF 35 V VSUP output capacitor C13, C14 - 3.3 - nF 25 V RSUx capacitor C15 2.2 - 4.7 mF 35 V ER capacitor C16 - 10 - nF 25 V VSF capacitor (near device) C17 - 10 - nF 25 V VSF capacitor (near Safing FET gate) C18 - 100 - nF 50 V Safing FET output capacitor C19, C20 - 10 - nF 25 V SSxy capacitor C21, C22, C23, C24 - 22 - nF 25 V SFx capacitor C25, C26, C27, C28 - 22 - nF 25 V SRx capacitor C29, C30, C31, C32 - 22 - nF 25 V DCSx capacitor D1 - 2 - A - Reverse battery protection D2 - 1 - A - ER Boost diode D3 - 1 - A - WAKEUP diode D4 - 1 - A - ISO9141 pull-up diode D5 - 12 - V - Safing FET Zener diode D6, D7 - 1 - A - SSxy diode L1 - 10 - μH 1A ER Boost inductor R1 - 0.43 - Ω 1W Current limit resistor R2 - 1 - kΩ 100 mW 168/210 DS11626 Rev 5 Note VBATMON current limit resistor L9678P, L9678P-S Applications Table 12. (continued)Bill Of Materials Component Min Typ Max Unit Requirement R3 - 3 - kΩ 250 mW VDD5 pull-up resistor R4 - 3 - kΩ 250 mW VSUP pull-up resistor R5 - 510 - Ω 125 mW ISO9141 pull-up resistor R6 - 360 Ω 125 mW Diagnostic resistor R7 - 1.5 kΩ 100 mW Safing FET passive pull-up resistor R8 - 1 kΩ 100 mW External Safing FET enable resistor Q1 - 1 - A - VDD5 external pnp transistor Q2 - 1 - A - VSUP external pnp transistor Q3 - 60 - A 60 V U1 - - - - PUMD15 DS11626 Rev 5 Note External Safing FET (N-channel) External Safing FET enable 169/210 209 Electrical characteristics 16 L9678P, L9678P-S Electrical characteristics Every parameter in this chapter is fulfilled down to VINGOOD(max). No device damage is granted to occur down to VINBAD(min). GNDA pin is used as ground reference for the voltage measurements performed within the device, unless otherwise stated. All table or parameter declared "Design Info" are not tested during production testing 16.1 Configuration and control All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD(max)  VIN  35 V. Table 13. Configuration and control DC specifications N° Symbol Min Typ Max Unit 1 VNOV Normal operating voltage Design Info Depending on power supply configuration 6 13 18 V 2 VJSV Jump start voltage Design Info -40 °C ≤ Ta ≤ 50 °C 18.00 - 26.50 V 3 VLDV Load dump voltage Transient Design Info 26.50 - 40 V 4 WU_mon WAKEUP monitor threshold - - - 1.5 V 5 WU_off WAKEUP Off threshold - 2 2.5 3 V 6 WU_on WAKEUP On threshold - 4 4.5 5 V 7 WURPD WAKEUP pull-down resistor - 120 300 480 kΩ 8 VBGOOD1 SYS_CTL(VBATMON_TH_SEL)=0 0 5.5 - 6 V 9 VBBAD1 SYS_CTL(VBATMON_TH_SEL)=0 0 5 - 5.5 V 10 VBGOOD2 SYS_CTL(VBATMON_TH_SEL)=0 1 6.3 - 6.8 V 11 VBBAD2 SYS_CTL(VBATMON_TH_SEL)=0 1 5.8 - 6.3 V 12 VBGOOD3 SYS_CTL(VBATMON_TH_SEL)=1 0 7.5 - 8 V 13 VBBAD3 SYS_CTL(VBATMON_TH_SEL)=1 0 7 - 7.5 V 14 VBGOOD4 SYS_CTL(VBATMON_TH_SEL)=11 8.3 - 8.8 V 15 VBBAD4 SYS_CTL(VBATMON_TH_SEL)=11 7.8 - 8.3 V 170/210 Parameter VBATMON input voltage thresholds Condition DS11626 Rev 5 L9678P, L9678P-S Electrical characteristics Table 13. Configuration and control DC specifications (continued) N° Symbol 16 ILKG_VBATMON_OFF 17 ILKG_VBATMON_ON Parameter VBATMON input leakage Condition Min Typ Max Unit 5 µA Device OFF -5 Device ON Design Info 20 24 30 µA 18 RPD_VBATMON VBATMON pull-down resistance Device ON VBATMON < 10V Design Info 125 250 375 kΩ 19 ILKG_VBATMON_TOT VBATMON total input leakage ILKG_VBATMON_ON + RPD_VBATMO VBATMON = 18V 35 70 105 µA SYS_CTL(VIN_TH_SEL)=0 5 - 5.5 V SYS_CTL(VIN_TH_SEL)=0 4.5 - 5 V SYS_CTL(VIN_TH_SEL)=1 7 - 7.5 V SYS_CTL(VIN_TH_SEL)=1 6.5 - 7 V VIN Thresholds used to 25 VINFASTSLOPE_L change boost regulator transition time 26 VINFASTSLOPE_HYS 9.3 9.8 10.3 V 9 9.5 10 V 0.2 0.3 0.4 V 27 ILKG_VIN_OFF Device OFF, VIN = 40V -10 - 10 µA 28 ILKG_VIN_ON Device ON, VIN = 12V - - 30 mA 29 CVIN - 1 - - - 30 ILKG_VER_OFF Device OFF, VER = 40 V -5 - 5 µA 31 ILKG_VER_ON_L Device ON ERBOOST > VER -5 - 5 µA 32 ILKG_VER_ON_H Device ON ERBOOST < VER - - 200 µA 33 VWD_OVERRIDE_th WDT/TM threshold - 10 12 14 V 34 VWDTDIS_HYST WDT/TM hysteresis - 0.2 0.4 0.5 V 35 IPD_WDTDIS WDT/TM pull-down Current VWDTDIS ≤ 5 V 20 45 70 µA Battery line Input Leakage Total leakage at RT from VIN, VBATMON, ERBSTSW, ERBOOST, BVDD5, VDD5, VDDQ, BVSUP, VSUP VBAT = 12 V Guaranteed by design - - 100 µA Junction temperature Design Info - - 150 °C 20 VINGOOD1 21 VINBAD1 22 VINGOOD2 23 VINBAD2 24 VINFASTSLOPE_H VIN input voltage thresholds VIN input leakage 36 ILKG_BAT 37 Tj External VIN capacitor VER input leakage DS11626 Rev 5 171/210 209 Electrical characteristics L9678P, L9678P-S Table 14. Configuration and control AC specifications No Symbol 1 TFLT_VBATMONTH 2 TFLT_VINTH 3 TFLT_WAKEUP 4 TLATCH_WAKEUP 5 tdon Parameter Condition Min Typ Max Units VBATMON thresholds deglitch filter time - 26 30 34 µs VIN thresholds deglitch filter time - 3 3.5 4 µs Wakeup deglitch filter time - 0.95 1.05 1.15 ms Wakeup latch time - 9.7 10.8 11.9 ms - - 10 ms Min Typ Max Unit Power-up delay time –  Wake-up to RESET released Table 15. Open ground detection DC specifications N° Symbol Parameter Condition 1 GNDAOPEN GNDA threshold GNDSUBx=0 100 200 300 mV 2 GNDDOPEN GNDD threshold GNDSUBx=0 100 200 300 mV 3 BSTGNDOPEN BSTGND threshold GNDSUBx=0 100 200 300 mV 4 IPU_BSTGND BSTGND pull-up current - 80 120 160 µA Min Typ Max Unit - 7 11 16 µs - 1.9 2.3 2.7 µs Table 16. Open ground detection AC specifications N° Symbol Parameter 1 GNDA and GNDD TFLT_GNDREFOPEN Open Deglitch Filter Time 2 TFLT_BSTGNDOPEN 16.2 Condition BSTGND Latch Filter Time Internal analog reference All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  35 V. Table 17. Internal analog reference N° Symbol 1 VBG1 Bandgap reference 2 VBG2 3 VADC_GROUND 4 Parameter Condition Min Typ Max Unit - -1% 1.2 +1% V Bandgap monitor - -1% 1.2 +1% V ADC Ground reference - -3% 103 +3% mV -1.5% 2.5 +1.5% V VADC_FULLSCALE ADC Full scale reference - 172/210 DS11626 Rev 5 L9678P, L9678P-S 16.3 Electrical characteristics Internal regulators All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  35 V. Table 18. Internal regulators DC specifications N° Symbol Parameter Condition Min Typ Max Unit 1 VOUT_VINT3V3 VINT3V3 output voltage - 3.14 3.3 3.46 V 2 VOV_VINT3V3 VINT3V3 over voltage - 3.47 - 3.7 V 3 VUV_VINT3V3 VINT3V3 under voltage - 2.97 - 3.13 V 4 VOUT_VDD VDD output voltage - 3.14 3.3 3.46 V 5 IOUT_VDD VDD current capability External Load is not allowed - - 50 mA 6 ILIM_VDD VDD current limit - 80 - - mA 7 VOV_VDD VDD over voltage - 3.47 - 3.7 V 8 VUV_VDD VDD under voltage - 2.7 - 2.9 V 9 CVDD VDD output capacitance Design Info 60 100 140 nF Table 19. Internal regulators AC specifications N° Symbol 1 TFLT_ VINT_VDD_OV Internal regulator OV Deglitch filter time 2 TFLT_ VINT_VDD_UV Internal regulator UV Deglitch filter time 16.4 Parameter Condition Min Typ. Max Unit - 7 11 16 µs - 7 11 16 V Oscillators All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, 3.14  CVDD  3.46. Table 20. Oscillators AC specifications No Symbol Parameter Conditions / Comments Min Typ 1 fOSC Main oscillator average frequency - 2 fMOD_OSC Main oscillator modulation frequency 3 IMOD_OSC 4 5 15.2 16 SPI_CLK_CNF(MAIN_SS_DIS=0) Design Info - ƒ OSC --------------128 - MHz Main oscillator modulation index SPI_CLK_CNF(MAIN_SS_DIS=0) 3 4 5 % fAUX Aux oscillator average frequency - 7.125 7.5 fMOD_AUX Aux oscillator modulation frequency SPI_CLK_CNF(AUX_SS_DIS=0) Design Info - ƒ OSC_AUX ---------------------------128 DS11626 Rev 5 Max Unit 16.8 MHz 7.87 MHz 5 - MHz 173/210 209 Electrical characteristics L9678P, L9678P-S Table 20. Oscillators AC specifications (continued) No Symbol 6 IMOD_AUX 7 Parameter Aux oscillator modulation index Main oscillator Low fOSC_LOW_TH Frequency Detection Threshold 16.5 Conditions / Comments Min Typ Max Unit SPI_CLK_CNF(AUX_SS_DIS=0) 3 4 5 % - - 128 ----------  ƒ AUX 174 - MHz Watchdog All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C  Ta  +95 °C,VINGOOD1(max)  VIN  35 V Table 21. Temporal watchdog timer AC specifications N° Symbol 1 TWDT1_TIMEOUT Temporal watchdog timeout - 2 TWDT1_RST Temporal Watchdog Reset Time - 16.6 Parameter Condition Min Typ Max Unit - - 2.00 ms - - 16.3 ms 0.9 - 1.1 ms Reset All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C  Ta  +95 °C; VINGOOD1(max)  VIN  35 V, VDDx(min)  VDDx  VDDx(max), VDDQ = VDD5 or VDD3V3 Table 22. Reset DC specifications N° Symbol 1 VOH_RESET 2 VOL_RESET 3 RPD_RESET Parameter RESET output voltage RESET pull down resistance Condition Min Typ Max Unit ILOAD = -0.5 mA VDDQ -0.6 - VDDQ V ILOAD = 2.0 mA 0 - 0.4 V RESET=VDDQ, Device OFF 65 100 135 kΩ Table 23. Reset AC specifications N° Symbol 1 TRISE_RESET Rise Time 2 TFALL_RESET 3 THOLD_RESET 174/210 Parameter Condition Min Typ Max Unit 80pF load, 20%-80% - - 1.00 µs Fall Time 80pF load, 20%-80% - - 1.00 µs Reset Hold Time - 0.45 0.5 0.55 ms DS11626 Rev 5 L9678P, L9678P-S 16.7 Electrical characteristics SPI interface All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  35 V, VDDx(min)  VDDx  VDDx(max) VDDQ = VDD5 or VDD3V3. Table 24. SPI DC specifications N° Symbol Parameter 1 VIH_CS SPI_CS high level input voltage 2 VIL_CS 3 IPU_CS 4 Condition Min Typ Max Unit - 2 - - V SPI_CS low level input voltage - - - 0.8 V SPI_CS pull up current SPI_CS = 0 V -70 -45 -20 µA VIH_MOSI MOSI high level input voltage - 2 - - V 5 VIL_MOSI MOSI low level input voltage - - - 0.8 V 6 IPD_MOSI SPI_MOSI pull down current SPI_MOSI = VDDQ 20 45 70 µA 7 VIH_SCK SCK high level input voltage - 2 - - V 8 VIL_SCK SCK low level input voltage - - - 0.8 V 9 IPD_SCK SPI_SCK pull down current SPI_SCK = VDDQ 20 45 70 µA 10 VOH_MISO SPI_MISO high level output voltage ILOAD = -800 µA VDDQ -0.5 - VDDQ V 11 VOL_MISO SPI_MISO low level output voltage ILOAD = 2.0 mA - - 0.4 V 12 VIH_MISO SPI_MISO high level input voltage - 2 - - V 13 VIL_MISO SPI_MISO low level input voltage - - - 0.8 V 14 ILKG_MISO SPI_MISO tri-state leakage SPI_MISO= VDDQ or 0 V -10 - 10 µA DS11626 Rev 5 175/210 209 Electrical characteristics L9678P, L9678P-S Table 25. SPI AC specifications N° Symbol 1 FSCLK 2 Parameter SPI Transfer Frequency (1) SCLK_x Period (2) TSCLK (1) 3 TLEAD Enable Lead Time (3) 4 TLAG Enable Lag Time (4)(1) 5 6 Condition THIGH_SCLK TLOW_SCLK SCLK_x High Time (5) SCLK_x Low Time (6) (1) (1) (1) 7 TSETUP_MOSI MOSI_x Input Setup Time (7) 8 THOLD_MOSI MOSI_x Input Hold Time (8)(1) 9 10 TACC_MISO TDIS_MISO MISO_x Access Time (9)(1) MISO_x Disable Time (10)(1) (11)(1) 11 TVALID_MISO MISO_x Output Valid Time 12 THOLD_MISO MISO_x Output Hold Time (12)(1) Typ Max Unit - - 8 8.08 MHz - 123.8 - - ns - 250 - - ns - 50 - - ns - 50 - - ns - 50 - - ns - 20 - - ns - 20 - - ns 80 pF load - - 60 ns 80 pF load - - 100 ns 80 pF load - - 30 ns - 0 - - ns - 20 13 THOLD_SCLK 14 TFLT_CS CS_x noise glitch rejection time - 50 15 TNODATA SPI Interframe Time (15)(1) - 400 - 16 17 TSETUP_MISO THOLD_MISO SCLK_x Hold Time (13)(1) Min MISO Input Setup TIme MISO Input Hold TIme (7)(1) (8)(1) ns 300 ns - - ns 20 - - ns 20 - - ns 1. Refer to the Figure 59 for details. Note: All timing is shown with respect to 10% and 90% of the actual delivered VDDQ voltage. Figure 59. SPI timing diagram 4 CS_x 15 3 5 2 6 SCLK_x 13 7 MOSI_x 8 MSB IN DATA MISO_x 176/210 12 11 9 MSB OUT LSB IN DATA DS11626 Rev 5 10 LSB OUT DON’T CARE L9678P, L9678P-S 16.8 Electrical characteristics ER boost All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  18 V. Table 26. ER Boost converter DC specifications N° Symbol Parameter 1 VO_ERBST Boost output voltage 2 3 Condition Min Typ Max Unit Across all line and IO_BST load (steady state) ERBST33V=0 Test conditions: IO_BST = 0.1 & 40mA 22.4 23.8 25 V Across all line and IO_BST load (steady state) ERBST33V=1 Test conditions: IO_BST = 0.1 & 20mA 31.4 33 35 V BST33V = 0 0.1 - 60 mA BST33V = 1 0.1 - 40 mA IO_ERBST Boost output current dVSR_ac Line transient response All line, load; dt=100us; BST33V = 0/1 Design Info -8% - 8% % 6 dVLR_ac All line, load; dt=100us; Load transient response BST33V = 0/1 Design Info -8% - 8% % 7 RDSON_ERBST - - 1 Ω 8 IOC_ERBST Over current detection - 550 - 800 mA 9 ILKG_ERBST ERBOOST leakage current ERBOOST=40V Device off - - 5 µA VERBST_OK ERBOOST voltage threshold BST33V = 0 18 20 22 V BST33V = 1 26 28 30 V VERBST_OV ERBOOST Over Voltage BST33V = 0 threshold BST33V = 1 22.6 25 V 31.65 35 V 4 5 10 11 12 13 Power switch resistance - 14 Voltage difference between VIN and VERBST_DIS_TH VIN – ERBOOST ERBOOST to deactivate the ER Boost regulator 1.6 2.2 2.5 V 15 Voltage difference between ERBSTSW and VCLAMP_EN_TH ERBSTSW – ERBOOST ERBOOST to activate the ER Boost CLAMP 1.6 2.2 2.5 V - 150 175 190 °C - 5 10 15 °C 16 TJSD_ERBST 17 THYS_TSDERBST Thermal shutdown DS11626 Rev 5 177/210 209 Electrical characteristics L9678P, L9678P-S Table 27. ER boost converter AC specifications N° Symbol 1 FSW_ERBST Min Typ Max Unit - 1.8 1.882 2.0 MHz 10% to 90% voltage on ERBSTSW VIN ≥ VINFASTSLOPE_L = 10.3 V Iload = 60mA ERboost settings 23 V Guaranteed by design 10 15 - 25 35 ns TRISE_ERBSTSW_FAST TFALL_ERBSTSW_FAST 10% to 90% voltage on ERBSTSW VIN ≤ VINFASTSLOPE_H= 9V Iload=60mA ERboost settings 23 V Guaranteed by design 10 - 25 ns 4 TON_ERBST CERBOOST = 2.2µF, Vin =12V, IO_ERBST= 5mA BST33V = 1 Measured from CS edge to VO_ERBST(min) - - 5 ms 5 TFLT_TSD_ERBST - 10 µs Min Typ Max Unit 2 Parameter Condition ERBOOST switching frequency TRISE_ERBSTSW_SLOW TFALL_ERBSTSW_SLOW ERBSTSW transition time 3 ERBOOST charge-up time Thermal shutdown filter time - Table 28. ER boost converter external components (Design Info) N° Symbol 1 LERBST 2 ESLERBST 3 CBLK_ERBST 4 Parameter Condition Inductance - 8 10 - µH Inductance resistance - - - 0.1 Ω Output bulk capacitance to ensure regulator stability Min capacitance value including derating factors 1 2.2 - - - 0.1  ESRCBLK_ERBST Bulk capacitor ESR µF 5 VFSTR_ERBST Steering diode forward voltage IF=100 mA - - 0.85 V 6 ILKGSTR_ERBST Steering diode reverse leakage Ta = 95 °C - - 100 µA 178/210 DS11626 Rev 5 L9678P, L9678P-S 16.9 Electrical characteristics ER charge All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  35 V, 8 V  ERBOOST. Table 29. ER current generator DC specifications N° Symbol Parameter Condition 1 IER_CHARGE ER charge current ERBOOST – VER  3 V 2 RDSON_ERCHARGE ER charge power resistance (VERBOOST - VVER) / IVER IVER = 10mA Min Typ Max Unit -33 -30 -27 mA - - 22 Ω Min Typ Max Unit - - 6 s Table 30. ER current generator AC specifications N° Symbol 1 TON_ERCAP 16.10 Parameter Condition CVER  4.7mF nominal, BST33V = 0; Design Info Energy reserve capacitor charge-up time ER switch All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  35 V. Table 31. ER switch DC specifications N° Symbol 1 RDSON ERSW 2 ILIM,ERSW 3 TJSD_ERSW 4 THYS_TSDERSW Parameter Condition Min Typ Max Unit Power switch resistance ILIM,ERSW(min) 0.5 - 3 Ω ER switch current limit - 400 - 600 mA - 150 175 190 °C - 5 10 15 °C Min Typ Max Unit CVIN = 10µF - - 5 µs - - - 10 µs ER switch activation blanking time after thermal shutdown - 1 - ms Thermal shutdown Table 32. ER switch AC specifications N° Symbol Parameter 1 TON_ERSW ER turn-on time (time to reach either RDSON_ERSW or ILIM_ERSW) 2 3 Condition TFLT_TSD_ERSW Thermal shutdown filter time TBLK_ERSW DS11626 Rev 5 179/210 209 Electrical characteristics 16.11 L9678P, L9678P-S COVRACT All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  35 V, VDDx(min)  VDDx  VDDx(max), VDDQ = VDD5 or VDD3V3 Table 33. COVRACT DC Specifications N° Symbol 1 VOH_COVRACT 2 VOL_COVRACT Parameter Condition COVRACT output voltage Min Typ Max Unit ILOAD = -0.5 mA VDDQ -0.6 - VDDQ V ILOAD = 2.0 mA 0 - 0.4 V Table 34. COVRACT AC specifications N° Symbol 1 TRISE_COVRACT Rise time 2 TFALL_COVRACT Fall time 16.12 Parameter Condition Min Typ Max Unit 80pF load, 20%-80% - - 0.5 µs 80pF load, 20%-80% - - 0.5 µs VDD5 regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  35 V. Table 35. VDD5 regulator DC specifications N° Symbol Parameter Condition Min Typ Max Unit 1 VO_VDD5 Output voltage Across all line and load, steady state 4.85 5 5.15 V 2 IO_BVDD5 Base driver current limit VDD5 > VDD5UVL 4 7 10 mA 3 IO_BVDD5_LOW Base driver current limit Low level VDD5 < VDD5UVL 2 - 5 mA 4 IO_VDD5 Output load current - 0.5 - 200 mA 5 dVSR_ac Line transient response All load IO_VDD5; VIN=6V to 18V @ dt = 1 µs; Design Info 4.5 - 5.5 V 4.5 - 5.5 V 6 dVLR_ac Load transient response All line; IO_VDD5= 1mA to 100mA @dt = 1 µs; Design Info 7 IOF_VDD5 Open feedback current on VDD5 Active only during VDD5_rampup state 55 80 105 µA 8 VDD5OV Over voltage detection - 5.2 - 5.50 V 180/210 DS11626 Rev 5 L9678P, L9678P-S Electrical characteristics Table 35. VDD5 regulator DC specifications (continued) N° Symbol Parameter 9 VDD5UV Under voltage detection 10 VDD5UVL Condition Min Typ Max Unit - 4.5 - 4.8 V Under voltage detection low level 1.8 2 2.2 V Min Typ Max Unit Table 36. VDD5 regulator AC specifications N° Symbol 1 TSOFTST_VDD5 2 Parameter Condition Soft start time From 10% to 90% 1 2 3 ms TFLT_VDD5OV Over voltage detection deglitch filter time - 27 30 33 µs 3 TFLT_VDD5UV Under voltage detection deglitch filter time - 27 30 33 µs 4 TFLT_VDD5UVL Under voltage low detection deglitch filter time - 1.5 2 2.5 µs Min Typ Max Unit Table 37. VDD5 regulator external components (Design Info) N° Symbol 1 hFE_PNP 2 Parameter Condition Output transistor gain - 50 250 500 A/A Ft_PNP Output transistor transit frequency - 30 - - MHz 3 RVDD5BE Output transistor baseemitter Pull-up resistance - - 3 - k 4 CBLK_VDD5 Output bulk capacitance Min 4.7µF nominal 3 - 30 µF - - - 50 mΩ 5 ESRCBLK_VDD5 Bulk capacitor ESR DS11626 Rev 5 181/210 209 Electrical characteristics 16.13 L9678P, L9678P-S VDD3V3 regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VDD5(min)  VDD5. Table 38. VDD3V3 regulator DC specifications N° Symbol 1 VO_VDD3V3 2 IO_VDD3V3 3 Parameter Condition Min Typ Max Unit Output voltage Across all line and load, steady state 3.2 3.3 3.4 V Output load current capability - 0.5 - 125 mA - 150 - - mA 3 - 3.6 V 3 - 3.6 V IO_LIM_VDD3V3 Output load current limit All load IO_VDD3V3; VIN = 6 V to 18 V @ dt = 1 µs; Guaranteed by design dVSR_ac Line transient response 7 dVLR_ac All line; IO_VDD3V3= 1mA to 100mA Load transient response @dt = 1 µs; Guaranteed by design 4 VDD3V3OV Over-voltage threshold - 3.43 - 3.6 V 5 VDD3V3UV Under voltage reset threshold - 3 - 3.17 V Min Typ Max Unit 6 Table 39. VDD3V3 regulator AC specifications N° Symbol Parameter 1 TSOFTST_VDD3 2 3 Condition Soft start time From 10% to 90% 1 2 3 ms TFLT_VDD3OV Over voltage detection deglitch filter time - 27 30 33 µs TFLT_VDD3UV Under voltage detection deglitch filter time - 27 30 33 µs Min Typ Max Unit Min 4.7µF nominal 3 - 30 µF - - - 50 mΩ Table 40. VDD3V3 regulator external components (design info) N° Symbol 1 CBLK_VDD3 2 Parameter Output bulk capacitance ESRCBLK_VDD3 Bulk capacitor ESR 182/210 Condition DS11626 Rev 5 L9678P, L9678P-S 16.14 Electrical characteristics VSUP regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD2(max)  VIN  35 V. Table 41. VSUP regulator DC specifications N° Symbol 1 VO_VSUP 2 Parameter Condition Min Typ Max Unit Output voltage Across all line and load, steady state 6.5 6.8 7.1 V IO_BVSUP Base driver current limit - 4 7 10 mA 3 IO_VSUP Output load current - 0.5 200 mA 4 dVSR_ac Line transient response All load IO_VDD5; VIN = 6 V to 18 V @ dt = 1 µs; Design Info 6.2 7.4 V 6.2 7.4 V 8 V 5 dVLR_ac Load transient response All line; IO_VDD5= 1mA to 100mA @dt = 1µs; Design Info 6 VSUPOV Over voltage detection - 7.6 7 VSUPUV Under voltage detection - 1.8 2 2.2 V Min Typ Max Unit From 10% to 90% 1 2 3 ms Table 42. VSUP AC specifications N° 1 Symbol Parameter TSOFTST_VSUP Soft start time Condition 2 TFLT_VSUPOV Over voltage deglitch filter time - 27 30 33 µs 3 TFLT_VSUPUV Under voltage deglitch filter time - 27 30 33 µs Min Typ Max Unit Table 43. VSUP regulator external components (Design Info) N° Symbol 1 hFE_PNP 2 Ft_PNP 3 RVSUPBE 4 CBLK_VSUP 5 Component Conditions Output transistor gain - 50 250 500 A/A Output transistor transit frequency - 30 - - MHz Output transistor BaseEmitter Pull-up Resistance - - 3 - kΩ Output Bulk Capacitance Min 4.7µF nominal 3 - 30 µF - - - 50 mΩ ESRCBLK_VSUP Bulk Capacitor ESR DS11626 Rev 5 183/210 209 Electrical characteristics 16.15 L9678P, L9678P-S VSF regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C  Ta  +95 °C, VINGOOD1(max)  VIN  35 V, VSF + 2V  ERBOOST Table 44. VSF regulator DC specifications N° Symbol Parameter 1 VSF Output voltage 2 Condition Min Typ Max Unit All line, load, IO_VSF up to 6 mA SYS_CFG(VSF_V)= 0 18 20 22 V All line, load, IO_VSF up to 6 mA BST33V = 1, SYS_CFG(VSF_V)= 1 23 25 27 V 3 ILIM_VSF Output load current limit Test conditions: VSF = 0 7 10 13 mA 4 VDO_VSF Drop-out voltage V(ERBOOST-VSF) - - 2 V 5 CVSF Output capacitance Design Info. 2.9 - 14 nF Device OFF -5 5 µA 60 125 188 kΩ 6 ILKG_VSF_OFF VSF input leakage 7 RPD_VSF VSF pull-down resistance Device ON VSF regulator OFF or ON 1.5V
L9678P 价格&库存

很抱歉,暂时无法提供与“L9678P”相匹配的价格&库存,您可以联系我们找货

免费人工找货
L9678P
  •  国内价格
  • 1+77.67360
  • 10+68.66640
  • 30+63.16920

库存:10