0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L9678TR-S

L9678TR-S

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    64-LQFP

  • 描述:

    IC INTERFACE SPECIALIZED 64LQFP

  • 数据手册
  • 价格&库存
L9678TR-S 数据手册
L9678 L9678-S User configurable airbag IC Datasheet - production data x Squib deployment drivers – 4 channel HSD/LSD – 25 V maximum deployment voltage – 1.2 A @ 2 ms and 1.75 A @ 0.5/0.7 ms deployment profiles – Integrated safing FET linear regulator, 20 V/25 V nominal – Current monitoring – Rmeasure, STB, STG and leakage diagnostics – High and low side driver FET tests – Safing FET test '!0'03 LQFP64 (10x10x1.4mm) x User customizable safing logic Features x Energy reserve voltage power supply – High frequency boost regulator, 1.882 MHz – Output voltage user selectable, 23 V or 33 V ±5% x User configurable linear power supplies – 5.0 V and 7.2 V ±4% output voltages – External pass transistor x Fully integrated 3.3 V ±4% linear regulator x Battery voltage monitor and shutdown control with wake-up control x System voltage diagnostics with integrated ADC x Crossover switch – Crossover performance, max 3 ȍ, 600 mA max. x Two channel PSI-5 remote sensor interface (asynchronous mode), [only for L9678-S version] x Four channel hall-effect, resistive or switch sensor interface x ISO9141 transceiver x Dual channel configurable high-side/low-side LED driver x Watchdog timer x Two integrated oscillators: 7.5/16 MHz x Temperature sensor x 32 bit SPI communications x Minimum operating voltage = 6 V x Operating temperature, -40 °C to 95 °C x Packaging - 64 pin Table 1. Device summary Order code Package Packing Remote sensor interface L9678 LQFP64 (10 x 10 x 1.4 mm) Tray No L9678-S LQFP64 (10 x 10 x 1.4 mm) Tray Yes May 2014 This is information on a product in full production. DocID025869 Rev 3 1/200 www.st.com Contents L9678, L9678-S Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Absolute and operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Pin-out description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Overview and block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Start-up power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 4.4 5 4.2.1 Power_off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.3 Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.4 Passive mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.5 Power-up and power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.6 Operating states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Configurable system power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 ERBOOST switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.2 Energy reserve capacitor charging circuit . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.3 ER switch and COVRACT pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.4 VDD5 linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.5 VDD3V3 linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.6 VSUP linear regulator (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.7 VSF linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Reset functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1 Global SPI register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Read/write register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2/200 5.1.1 Fault status register (FLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1.2 System configuration register (SYS_CFG) . . . . . . . . . . . . . . . . . . . . . . 53 5.1.3 System control register (SYS_CTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 DocID025869 Rev 3 L9678, L9678-S Contents 5.1.4 SPI Sleep command register (SPI_SLEEP) . . . . . . . . . . . . . . . . . . . . . 56 5.1.5 System status register (SYS_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.6 Power state register (POWER_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.1.7 Deployment configuration registers (DCR_x) . . . . . . . . . . . . . . . . . . . . 61 5.1.8 Deployment command (DEPCOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.1.9 Deployment configuration registers (DSR_x) . . . . . . . . . . . . . . . . . . . . 64 5.1.10 Deployment current monitor status registers (DCMTSxy) . . . . . . . . . . . 65 5.1.11 Deploy enable register (SPIDEPEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.1.12 Squib ground loss register (LP_GNDLOSS) . . . . . . . . . . . . . . . . . . . . . 66 5.1.13 Device version register (VERSION_ID) . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.14 Watchdog retry configuration register (WD_RETRY_CONF) . . . . . . . . 67 5.1.15 Watchdog timer configuration register (WDTCR) . . . . . . . . . . . . . . . . . 68 5.1.16 WD1 timer control register (WD1T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.17 WD1 state register (WDSTATE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.18 Clock configuration register (CLK_CONF) . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.19 Scrap state entry command register (SCRAP_STATE) . . . . . . . . . . . . . 71 5.1.20 Safing state entry command register (SAFING_STATE) . . . . . . . . . . . . 71 5.1.21 WD1 test command register (WD1_TEST) . . . . . . . . . . . . . . . . . . . . . . 72 5.1.22 System diagnostic register (SYSDIAGREQ) . . . . . . . . . . . . . . . . . . . . . 72 5.1.23 Diagnostic result register for deployment loops (LPDIAGSTAT) . . . . . . 74 5.1.24 Loops diagnostic configuration command register for low level diagnostic (LPDIAGREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1.25 Loops diagnostic configuration command register for high level diagnostic (LPDIAGREQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.26 DC sensor diagnostic configuration command register (SWCTRL) . . . . 81 5.1.27 ADC request and data registers (DIAGCTRL_x) . . . . . . . . . . . . . . . . . . 82 5.1.28 GPO configuration register (GPOCR) . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.29 GPO configuration register (GPOCTRLx) . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.30 GPO fault status register (GPOFLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.31 ISO fault status register (ISOFLTSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.32 Remote sensor configuration register (RSCRx) . . . . . . . . . . . . . . . . . . 89 5.1.33 Remote sensor control register (RSCTRL) . . . . . . . . . . . . . . . . . . . . . . 90 5.1.34 Remote sensor data/fault registers w/o fault (RSDRx) . . . . . . . . . . . . . 91 5.1.35 Safing algorithm configuration register (SAF_ALGO_CONF) . . . . . . . . 95 5.1.36 Arming signals register (ARM_STATE) . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1.37 ARMx assignment registers (LOOP_MATRIX_ARMx) . . . . . . . . . . . . . 97 5.1.38 ARMx pulse stretch registers (AEPSTS_ARMx) . . . . . . . . . . . . . . . . . . 98 DocID025869 Rev 3 3/200 6 Contents 6 L9678, L9678-S 5.1.40 Safing records request mask registers (SAF_REQ_MASK_x) . . . . . . 100 5.1.41 Safing records request target registers (SAF_REQ_TARGET_x) . . . . 101 5.1.42 Safing records response mask registers (SAF_RESP_MASK_x) . . . . 102 5.1.43 Safing records response target registers (SAF_RESP_TARGET_x) . . 103 5.1.44 Safing records data mask registers (SAF_DATA_MASK_x) . . . . . . . . 104 5.1.45 Safing records threshold registers (SAF_THRESHOLD_x) . . . . . . . . . 105 5.1.46 Safing control registers (SAF_CONTROL_x) . . . . . . . . . . . . . . . . . . . 106 5.1.47 Safing record compare complete register (SAF_CC) . . . . . . . . . . . . . 109 Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 6.1.1 Deployment current selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.1.2 Deploy command expiration timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.1.3 Deployment control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1.4 Deployment success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2 Energy reserve - deployment voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.3 Deployment ground return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.4 Deployment driver protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.5 6.4.1 Delayed low-side deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.2 Low-side voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.3 Short to battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.4 Short to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.5 Intermittent open squib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 6.5.1 Low level diagnostic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5.2 High level diagnostic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Remote sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.1 7.2 4/200 Safing records enable register (SAF_ENABLE) . . . . . . . . . . . . . . . . . . 99 Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.1 7 5.1.39 PSI-5 protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.1.1 Functional description - remote sensor modes . . . . . . . . . . . . . . . . . . 126 7.1.2 RSU data fields and CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.1.3 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Remote sensor interface fault protection . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.1 Short to ground, current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.2 Short to battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 DocID025869 Rev 3 L9678, L9678-S 8 Contents 7.2.3 Cross link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.4 Leakage to battery, open condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2.5 Leakage to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.2.6 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.1 Temporal watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.1.1 Watchdog timer configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.1.2 Watchdog timer operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.2 Watchdog reset assertion timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.3 Watchdog timer disable input (WDT/TM) . . . . . . . . . . . . . . . . . . . . . . . . 135 9 DC sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10 Safing logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.1 Safing logic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.2 SPI sensor data decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.3 In-frame and out-of-frame responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.4 Safing state machine operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.4.1 Simple threshold comparison operation . . . . . . . . . . . . . . . . . . . . . . . 148 10.5 Safing engine output logic (ARMxINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 149 10.6 Arming pulse stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.7 Additional communication line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11 General purpose output (GPO) drivers . . . . . . . . . . . . . . . . . . . . . . . . 154 12 ISO9141 transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 13 System voltage diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.1 Analog to digital algorithmic converter . . . . . . . . . . . . . . . . . . . . . . . . . . 162 14 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 15 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 15.1 Configuration and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 15.2 Internal analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 DocID025869 Rev 3 5/200 6 Contents L9678, L9678-S 15.3 Internal regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 15.4 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 15.5 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 15.6 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 15.7 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 15.8 ER boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 15.9 ER charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 15.10 ER switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 15.11 COVRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 15.12 VDD5 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 15.13 VDD3V3 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 15.14 VSUP regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 15.15 VSF regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 15.16 Deployment drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 15.17 Squib diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 15.17.1 Squib resistance measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 15.17.2 Squib leakage test (VRCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 15.17.3 High/low side FET test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 15.17.4 Deployment timer test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 15.18 Remote sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 15.19 DC sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 15.20 Safing engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 15.21 General purpose output drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.22 ISO9141 interface (K-LINE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.22.1 Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 15.23 Voltage diagnostics (analog Mux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 16 Quality information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 16.1 OTP trim bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 17 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 18 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6/200 DocID025869 Rev 3 L9678, L9678-S List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Operative maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Functions disabling by state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI register R/W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Global SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Global status word (GSW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Short between loops diagnostics decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Watchdog timer status description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Records results compare against two threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Diagnostics control register (DIAGCTRLx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Diagnostics divider ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Configuration and control DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Configuration and control AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Open ground detection DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Open ground detection AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Internal analog reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Internal regulators DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Internal regulators AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Oscillators AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Temporal watchdog timer AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Reset DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Reset AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 SPI DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 SPI AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 ER Boost converter DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 ER boost converter AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 ER boost converter external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . 173 ER current generator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 ER current generator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 ER switch DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 ER switch AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 COVRACT DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 COVRACT AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 VDD5 regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 VDD5 regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 VDD5 regulator external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 VDD3V3 regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 VDD3V3 regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 VDD3V3 regulator external components (design info) . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 VSUP regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 VSUP AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 VSUP regulator external components (Design Info) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 VSF regulator DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 VSF regulator AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Deployment drivers - DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Deployment drivers - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Deployment drivers diagnostics (Squib resistance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 DocID025869 Rev 3 7/200 8 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. 8/200 L9678, L9678-S Squib leakage test (VRCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 High/low side FET test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Deployment timer test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Remote sensor I/F DC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 PSI-5 remote sensor transceiver - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 DC sensor interface specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Arming interface - DC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Arming interface - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 GPO interface DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 GPO Driver Interface - AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 ISO9141 interface DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 ISO9141 interface transceiver AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Analog to digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Voltage diagnostics (Analog MUX) DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Temperature sensor specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 DocID025869 Rev 3 L9678, L9678-S List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Pin-out description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Power control state flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Wake-up input signal behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Normal power-up sequence - WAKEUP controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Normal power-up sequence - VIN controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Normal power down sequence - WAKEUP and SPI controlled . . . . . . . . . . . . . . . . . . . . . 25 Normal power down sequence - VIN controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 System operating state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ERBOOST block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ERBOOST control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ER cap charging circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ER switch control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 VDD5 control behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VDD3V3 control behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VSUP control behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 VSF control logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Internal voltage errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reset control diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Deployment driver control blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Deployment driver control logic - Enable signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Deployment driver control logic - Turn-on signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Deployment driver block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Global SPI deployment enable state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Deployment loop diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 SRx pull-down enable logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Deployment timer diagnostic sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 High level loop diagnostic flow1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 High level loop diagnostic flow2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Remote sensor interface logic blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Remote sensor interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 PSI-5 remote sensor protocol (10-bit, 1-bit parity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Manchester bit encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Manchester decoder state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Remote sensor current sensing auto adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Watchdog state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Watchdog timer refresh diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Switch sensor interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Top level safing engine flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Safing engine - 16-bit message decoding flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Safing engine - 32-bit message decoding flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Safing engine - validate data flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Safing engine - combine function flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Safing engine threshold comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Safing engine - compare complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 In-frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Out of frame example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Safing Engine Arming flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 DocID025869 Rev 3 9/200 10 List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. 10/200 L9678, L9678-S Safing engine diagnostic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 ARM output control logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Pulse stretch timer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Scrap ACL state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Disposal PWM signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 GPO driver block diagram - LS configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 GPO driver block diagram - HS configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 ISO9141 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 ADC conversion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 SPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Deployment drivers diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 LQFP64 (10 x 10) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . 198 DocID025869 Rev 3 L9678, L9678-S 1 Description Description The L9678 IC is a system chip solution targeted for emerging market applications. Base system designs can be completed with the L9678, SPC560Px microcontroller and an onboard acceleration sensor or PSI5 sensor. Energy reserve voltage is derived through a cost effective high frequency boost regulator. High frequency operation allows the user to pick up low value and cheap inductance. The voltage is programmable to 23 V or 33 V nominal. Battery voltage is sensed through the VBATMON pin providing start-up and shutdown control for the system. Once battery voltage drops below the minimum operating voltage, the device enables the integrated crossover switch to permit orderly shutdown. L9678 offers two linear regulators (5 V with external pass transistor and fully integrated 3.3 V). User can use one of these regulators to supply μC. Input/output pins are compatible with both ranges by dedicated supply pin VDDQ. External pass transistor gives the flexibility to easily address different current loads in case of different micro-controllers. One optional 7.2 V linear regulator with external pass transistor can be used to supply remote sensor interface. External acceleration data is received through the PSI-5 remote sensor interface. Both channels have independent decoders. Sensor data and diagnostics are available via SPI. The safing logic monitors inertial sensors (remote sensors via PSI-5 or on-board sensors via SPI) to determine if a crash event is in progress, thereby enabling deployment to occur. Parameters for sensor configuration and thresholds are user programmable. Squib deployment uses four independent high and low side drivers, capable of deploying at 25 V max. Diagnostic data control is provided through the SPI interface. The Hall-effect, resistive or switch sensor interface can be used to determine the state of external switch devices, such as buckle switches, seat track position sensors, weight sensors, deactivation switches. The integrated clock module provides a fixed clock signal for the microcontroller. The clock module provides the user the option of deleting the commonly used resonator or crystal. DocID025869 Rev 3 11/200 199 Absolute and operative maximum ratings L9678, L9678-S 2 Absolute and operative maximum ratings 2.1 Absolute maximum ratings Warning: This part may be irreparably damaged if taken outside the specified absolute maximum ratings. Operation above the absolute maximum ratings may also cause a decrease in reliability. Table 2. Absolute maximum ratings Pin # Pin name 1 RESET 2 Min. Max. Unit Reset output -0.3 VDDQ+0.3 d6.5 V SPI_MISO SPI interface data out / Safing sensor data in -0.3 VDDQ+0.3 d6.5 V 3 SPI_MOSI SPI interface data in -0.3 VDDQ+0.3 d6.5 V 4 SPI_SCK SPI interface clock -0.3 VDDQ+0.3 d6.5 V 5 SPI_CS SPI interface chip select -0.3 VDDQ+0.3 d6.5 V 6 WDT/TM Watchdog disable (Not for application) -0.3 20 V 7 VDD3V3 3.3 V regulator output -0.3 4.6 V - - - 8 NC Pin function Not connected (1) 9 CVDD Internal 3.3 V regulator output -0.3 4.6 V 10 GNDD Digital ground -0.3 0.3 V 11 SR0 Squib 0 low-side pin -0.3 40 V 12 SF0 Squib 0 high-side pin -1.0 40 V 13 SG01 Squib 0 & 1 deployment ground pin -0.3 0.3 V 14 SS01 Squib 0 & 1 deployment supply pin -0.3 40 V 15 SF1 Squib 1 high-side pin -1.0 40 V 16 SR1 Squib 1 low-side pin -0.3 40 V 17 DCS3 Sensor switch interface channel 3 -1.0 40 V 18 DCS2 Sensor switch interface channel 2 -1.0 40 V 19 DCS1 Sensor switch interface channel 1 -1.0 40 V 20 DCS0 Sensor switch interface channel 0 -1.0 40 V 21 VRESDIAG Reserve voltage diagnostic input -0.3 40 V -1.0 40 V 22 RSU0/NC PSI-5 Ch. 0 remote sensor output (only L9678-S), NC on L9678 23 RSU1/NC PSI-5 Ch. 1 remote sensor output (only L9678-S), NC on L9678 -1.0 40 V 24 VSUP/NC Remote sensor power supply (only L9678-S), NC(1) on L9678 -0.3 40 V 12/200 DocID025869 Rev 3 L9678, L9678-S Absolute and operative maximum ratings Table 2. Absolute maximum ratings (continued) Pin # Pin name 25 BVSUP/NC 26 Pin function Min. Max. Unit VSUP external transistor control (only L9678-S), NC(1) on L9678 -0.3 40 V GPOD0 GPO driver 1 drain output pin -1.0 40 V 27 GPOS0 GPO driver 1 source output pin -1.0 40 V 28 GPOS1 GPO driver 0 source output pin -1.0 40 V 29 GPOD1 GPO driver 0 drain output pin -1.0 40 V 30 NC - - - 31 ISOK ISO9141 bus pin (K-LINE) -18.0 40 V 32 GNDSUB1 Substrate ground -0.3 0.3 V 33 SR3 Squib 3 low-side pin -0.3 40 V 34 SF3 Squib 3 high-side pin -1.0 40 V 35 SS23 Squib 2 & 3 deployment supply pin -0.3 40 V 36 SG23 Squib 2 & 3 deployment ground pin -0.3 0.3 V 37 SF2 Squib 2 high-side pin -1.0 40 V 38 SR2 Squib 2 low-side pin -0.3 40 V 39 GNDA Analog ground -0.3 0.3 V 40 ISORX ISO9141 receiver pin -0.3 VDDQ+0.3 d6.5 V 41 ISOTX ISO9141 transmit pin -0.3 VDDQ+0.3 d6.5 V Not connected (1) 42 FENL LS driver FET control input -0.3 VDDQ+0.3 d6.5 V 43 FENH HS driver FET control input -0.3 VDDQ+0.3 d6.5 V 44 SAF_CS0 SPI interface safing sensor chip select -0.3 VDDQ+0.3 d6.5 V 45 SAF_CS1 SPI interface safing sensor chip select -0.3 VDDQ+0.3 d6.5 V 46 NC - - - 47 WAKEUP Wake-up control input -0.3 40 V 48 VBATMON Battery line voltage monitor -18 40 V 49 VSF Safing regulator supply output -0.3 ERBOOST+0.3 d40 V 50 VIN Battery connection -0.3 40 V 51 VER Reserve voltage -0.3 40 V 52 ERBOOST Energy reserve regulator output -0.3 40 V 53 ERBSTSW Boost switching output -0.3 40 V 54 NC 55 BSTGND 56 ACL 57 BVDD5 58 NC 59 VDD5 60 NC Not connected (1) Not connected (1) - - - Boost regulator ground -0.3 0.3 V EOL disposal control input -0.3 40 V VDD5 external transistor control -0.3 40 V - - - -0.3 6.5 V - - - Not connected 5V regulator output Not connected (1) DocID025869 Rev 3 13/200 199 Absolute and operative maximum ratings L9678, L9678-S Table 2. Absolute maximum ratings (continued) Pin # Pin name 61 COVRACT 62 VDDQ 1. 63 ARM 64 GNDSUB2 Pin function Min. Max. Unit External crossover switch control -0.3 VDDQ+0.3 d6.5 V I/O supply -0.3 6.5 V Arming Output -0.3 VDDQ+0.3 d6.5 V Substrate ground -0.3 0.3 V Not connected internally, should be connected to GND externally. 2.2 Operative maximum ratings Within the operative ratings the part operates as specified and without parameter deviations Once taken beyond the operative ratings and returned back within, the part will recover with no damage or degradation. Additional supply-voltage and temperature conditions are given separately at the beginning of each specification table. Table 3. Operative maximum ratings Pin # Pin name 1 RESET 2 3 Pin function Min. Max. Unit Reset output -0.1 VDDQ+0.1 d5.5 V SPI_MISO SPI interface data out / Safing sensor data in -0.1 VDDQ+0.1 d5.5 V SPI_MOSI SPI interface data in -0.1 VDDQ+0.1 d5.5 V 4 SPI_SCK SPI interface clock -0.1 VDDQ+0.1 d5.5 V 5 SPI_CS SPI interface chip select -0.1 VDDQ+0.1 d5.5 V 6 WDT/TM Watchdog disable -0.1 20 V 7 VDD3V3 3.3V regulator output -0.1 3.6 V 8 NC - - - 9 CVDD Internal 3.3V regulator output -0.1 3.6 V 10 GNDD Digital ground -0.1 0.1 V Not connected(1) 11 SR0 Squib 0 low-side pin -0.1 VER V 12 SF0 Squib 0 high-side pin -1.0 VER V 13 SG01 Squib 0 & 1 deployment ground pin -0.1 0.1 V 14 SS01 Squib 0 & 1 deployment supply pin -0.1 40 V 15 SF1 Squib 1 high-side pin -1.0 VER V 16 SR1 Squib 1 low-side pin -0.1 VER V 17 DCS3 Sensor switch interface channel 3 -1.0 VDCS_L V 18 DCS2 Sensor switch interface channel 2 -1.0 VDCS_L V 19 DCS1 Sensor switch interface channel 1 -1.0 VDCS_L V 20 DCS0 Sensor switch interface channel 0 -1.0 VDCS_L V 21 VRESDIAG Reserve voltage diagnostic input -0.1 35 V 22 RSU0/NC PSI-5 Ch. 0 remote sensor output (only L9678-S), NC on L9678 -1.0 VSUP V 14/200 DocID025869 Rev 3 L9678, L9678-S Absolute and operative maximum ratings Table 3. Operative maximum ratings (continued) Pin # Pin name 23 RSU1/NC 24 VSUP/NC 25 BVSUP/NC 26 27 Pin function Min. Max. Unit PSI-5 Ch. 1 remote sensor output (only L9678-S), NC on L9678 -1.0 VSUP V Remote sensor power supply (only L9678-S, NC(1) on L9678) -0.1 VIN V VSUP external transistor control (only L9678-S, NC(1) on L9678) -0.1 VIN V GPOD0 GPO driver 1 drain output pin -0.1 40 V GPOS0 GPO driver 1 source output pin -1.0 VIN V 28 GPOS1 GPO driver 0 source output pin -1.0 VIN V 29 GPOD1 GPO driver 0 drain output pin -0.1 40 V 30 NC Not connected (1) - - - 31 ISOK ISO9141 bus pin -1.0 40 V 32 GNDSUB1 Substrate ground -0.1 0.1 V 33 SR3 Squib 3 low-side pin -0.1 VER V 34 SF3 Squib 3 high-side pin -1.0 VER V 35 SS23 Squib 2 & 3 deployment supply pin -0.1 40 V 36 SG23 Squib 2 & 3 deployment ground pin -0.1 0.1 V 37 SF2 Squib 2 high-side pin -1.0 VER V 38 SR2 Squib 2 low-side pin -0.1 VER V 39 GNDA Analog ground -0.1 0.1 V 40 ISORX ISO9141 receiver pin -0.1 VDDQ+0.1 d 5.5 V 41 ISOTX ISO9141 transmit pin -0.1 VDDQ+0.1 d 5.5 V 42 FENL LS driver FET control input -0.1 VDDQ+0.1 d 5.5 V 43 FENH HS driver FET control input -0.1 VDDQ+0.1 d 5.5 V 44 SAF_CS0 SPI interface safing sensor chip select -0.1 VDDQ+0.1 d 5.5 V 45 SAF_CS1 SPI interface safing sensor chip select -0.1 VDDQ+0.1 d 5.5 V 46 NC - - - 47 WAKEUP Wake-up control input -0.1 VIN V 48 VBATMON Battery line voltage monitor -0.1 18 V 49 VSF Safing regulator supply output -0.1 27 V 50 VIN Battery connection -0.1 35 V 51 VER Reserve voltage -0.1 35 V 52 ERBOOST Energy reserve regulator output -0.1 35 V 53 ERBSTSW Boost switching output -0.1 ERBOOST+1 V 54 NC - - - 55 BSTGND Boost regulator ground -0.1 0.1 V 56 ACL EOL disposal control input --0.1 40 V 57 BVDD5 VDD5 external transistor control -0.1 VIN V Not connected (1) Not connected (1) DocID025869 Rev 3 15/200 199 Absolute and operative maximum ratings L9678, L9678-S Table 3. Operative maximum ratings (continued) Pin # 1. Pin name 58 NC 59 VDD5 60 NC 61 COVRACT 62 VDDQ 63 ARM 64 GNDSUB2 Pin function Not connected Min. Max. Unit - - - -0.1 5.5 V (1) 5V regulator output (1) - - - External crossover switch control -0.1 VDDQ+0.1 d 5.5 V I/O supply -0.1 5.5 V Arming Output -0.1 VDDQ+0.1 d 5.5 V Substrate ground -0.1 0.1 V Not connected Not connected internally, should be connected to GND externally. 2.3 Pin-out description The L9678-S/L9678 pin-out is shown below. The package is a LQFP 64-pin full plastic package. 96) 9,1 9(5 (5%2267 (5%676: 1& %67*1' $&/ %9'' 1& 9'' 1& &295$&7 9''4 $50 *1'68% Figure 1. Pin-out description                 5(6(7   9%$7021 63,B0,62   :$.(83 63,B026,   1& 63,B6&.,   6$)B&6 63,B&6   6$)B&6 :'770   )(1+ 9''9   )(1/ 1&   ,627; &9''   ,625; *1''   *1'$ 65   65 6)   6) 6*   6* 66   66 6)   6) 65   65 16/200 DocID025869 Rev 3 *1'68% ,62. 1& *326 *32' *326 *32' %96831& 96831& 5681& 95(6',$* 5681& 7KRVHSLQVDUH1&LQWKH/YHUVLRQ 1RWFRQQHFWHGLQWHUQDOO\VKRXOGEHFRQQHFWHGWR*1'H[WHUQDOO\ '&6 '&6 '&6 '&6                 *$3*36 L9678, L9678-S 3 Overview and block diagram Overview and block diagram The L9678 is a unique solution specifically targeted for entry level airbag systems while permitting the system designer significant flexibility in configuring the system power and management block. The configurable methodology allows cost versus performance tradeoff without changing devices or circuit board designs. The L9678 contains the base functionality required for entry level systems and can complete a system design with a microcontroller and acceleration sensor. The high level block diagram is shown below Figure 2. Basic features include a configurable power supply & management block, 4 channel squib drivers, 2 channel HS/LS GPO drivers, 4 channel sensor interface, safing logic, watchdog timer, ISO9141 communications and temperature sensor. The L9678-S device is pin compatible to the L9678 and includes two PSI-5 remote sensor interface channels and a dedicated regulator for remote sensor. DocID025869 Rev 3 17/200 199 Overview and block diagram L9678, L9678-S Figure 2. Functional block diagram   9EDW —+ Q) X) 66 $ X) —) Q) Q) P)WRP) (5%676: (5%2267 9(5 9%DW0RQ X&B)/(1 (5&KDUJH (5 %RRVW %67*1' 9,1 Q) N %9'' %&3 9'' 6DILQJ  UHJXODWRU  (56ZLWFK 9'' OLQHDU UHJXODWRU 96) *1'68%[ Q) *32'  ) 9''9  ) :$.(83 9,JQ 9''4 &9'' 9''9 OLQHDUUHJ  *326 *32' *32 GULYHUV VXSSO\ 9,179 UHJ IRU DQDORJ EORFN V *326 'LJLWDO 2XWSXWV 95(6',$* Q) &9''UHJ IRU GLJLWDOEORFN V *1'' 66 *1'$ N %9683 %&3 66 9683 OLQHDU UHJXODWRU 'LJLWDO EORFN 9683 6) 6)  ) 6DWHOOLWH'ULYHU  'HFRGHU 2SWLRQDO /6 6) Q) 6) (QDEOH &RQWURO )(1+ +9DQDORJ08;  DQG $WR'FRQYHUWHU )(1/ 65 ELWV 65 'HFRGHU 568 65 /6 568 Q) 65 '&+DOOVHQVRULQWHUIDFH Q) 6* (QDEOH &RQWURO 6TXLEGULYHUV  DQG 'LDJQRVWLF '&6  6DILQJ /RJLF '&6 6* $&/ $50 '&6 Q) '&6 6\VWHPFRQWURO  FRQILJXUDWLRQ ,62 WUDQVFHLYHU *1'68% &295$&7 :'7',670 63,B026, 5(6(7 63,B6&. 63,B0,62 6$)B&6 6$)B&6 63,B&6 ,627; ,625;  *1',62 ,62. 9EDW '!0'03 18/200 DocID025869 Rev 3 L9678, L9678-S Start-up power control 4 Start-up power control 4.1 Power supply overview The L9678 IC contains a complete power management system able to provide all necessary voltages for an entry level airbag application. Moreover L9678 power supply is user configurable allowing the design engineer to balance cost and performance per their particular application. The power supply block contains the following features: x Two 3.3 V internal regulators for operating internal logic (CVDD) and analog circuits (VINT3V3). An external CVDD pin is used to provide filtering capacitance to digital section supply rail. x Energy reserve supply (ERBOOST) achieved through an integrated switching boost regulator. The design of this boost regulator is intended to be a cost effective solution with respect to traditional boost regulators because it makes use of a low value inductor with an operative frequency of 1.882 MHz. Switching output is ERBSTSW pin, while voltage feedback input pin is ERBOOST. The output voltage could be set to either 23 V±5% or 33 V±5%. x Energy reserve capacitor connected to VER pin. To control in-rush current, a dedicated current generator is implemented between ERBOOST pin and VER pin. x Capability to drive an external safing FET (n-ch type) by means of an internal voltage regulator on VSF pin, where a 20 V level is given (configurable to 25V via SPI command). x The integrated current limited ER switch requires no external components. This switch is controlled through the integrated power control state machine and is enabled either once a loss of battery is detected or a shutdown command is received. Under the same conditions also the discrete digital pin COVRACT is activated allowing the control of an external optional cross-over switch. x One linear regulator VDD5 (5 V nominal, ±4% tolerance) requiring external power transistor and capacitors. VDD5 is used as micro-controller supply (in case of 5 V family controllers) and, in any case, as supply for VDD3V3 rail. x One integrated linear regulator VDD3V3 (3.3 V nominal, ±4% tolerance) requiring external capacitors. VDD3V3 is used as micro-controller supply (in case of 3.3 V family controllers). x VDDQ pin to provide output voltage rail reference. VDDQ could be connected to either VDD5 or VDD3V3 to enable 5 V or 3.3 V digital communication between device and micro-controller. x Capability to drive an external power transistor connected to VIN to provide a 7.2 V rail on VSUP pin. This voltage rail could be used to supply PSI-5 remote sensor. x Battery voltage sense input comparator with hysteresis connected to VBATMON pin. Power-up and operation states are carefully handled with respect to the battery level to provide the most effective power supply configuration. x All voltage rails (VIN, ERBOOST, VER, VRESDIAG, VDD5, VDD3V3, VSUP and VSF) can be monitored through internal ADC diagnostics. DocID025869 Rev 3 19/200 199 Start-up power control 4.2 L9678, L9678-S Power mode control Start-up and power down of the L9678 are controlled by the WAKEUP pin, VBATMON pin, VIN pin device status and the SPI interface. There are four main power modes: power-off, sleep, active and passive mode. Each power mode is described below and represented in the state flow diagram shown in Figure 3. The descriptions include references to conditions and sometimes nominal values. The absolute values for each condition are listed in the electrical specifications section. Figure 3. Power control state flow diagram )URP DQ\VWDWH 325 32:(5 2)) VWDWH 32:(52)) 02'( $OOVXSSOLHVGLVDEOHG :$.(83 :8BPRQ :$.(83! :8BPRQ :$.(83 021,725 VWDWH :$.(83! :8BRQ > :$.(83 :8BRII $1'  :DNH8S)LOW  @ $:$.( 6WDWH :DNH8S)LOW  $1' 9,19,1*22'  :DNH8S)LOW  25 9,19,1%$' :DNH8S)LOW  $1' 9,1!9,1*22' 6/((302'( 67$5783 VWDWH :DNH8S)LOW  $1' 9,1!9,1*22' 7ZDNHXS!PV  :DNH8S)LOW  $1' 63,B6/((3 581 VWDWH 9%$7 PRQ!9%*22' EODQNLQJWLPHPV $&7,9(02'( 9,19,1*22' 32:(502'( 6+87'2:1 VWDWH (5 VWDWH :DNH8S)LOW  $1' 63,B6/((3 7ZDNHXS7LPHU&OHDUHGLI 6WDWH :$.(83021,725RU$:$.( DQG:DNH8S)LOW  20/200 DocID025869 Rev 3 3$66,9(02'( '!0'03 L9678, L9678-S 4.2.1 Start-up power control Power_off mode During the Power-off mode all supplies are disabled keeping the system in a quiescent state with very low current draw from battery. As soon as WAKEUP > WU_mon the IC will move to Sleep mode. 4.2.2 Sleep mode During the Sleep mode the VINT3V3 and CVDD internal regulators are turned on and the IC is ready for full activation of all the other supplies. As soon as battery voltage is over a minimum threshold, all the other supplies are turned on and the IC enters the Active mode. 4.2.3 Active mode This is the normal operating mode for the system. All power supplies are enabled and the energy reserve boost converter starts to increase the voltage at ERBOOST. Likewise, the VDD5 regulator is turned on. Once the VDD5 has reached a good value, the VDD3V3 regulator starts up. Once the VDD3V3 regulator is in regulation, RESET is released allowing the system microcontroller and other components to begin their power-on sequence. Among these, also the ER charge current generator can be enabled by the microcontroller via a dedicated SPI command. The active mode can be left when either WAKEUP pin or VIN voltage drop down. For the very first 9 ms after having entered the active mode, the WAKEUP pin low would immediately cause the IC to switch back to sleep mode. After that time, WAKEUP pin low must be first confirmed by a MCUSPI_SLEEP command prior to cause the system to switch to passive mode. Passive mode is also entered in case of VIN voltage low. 4.2.4 Passive mode In this state, the energy reserve charge current is disabled and the ERBOOST boost converter is disabled only if the SYS_CFG(KEEP_ERBST_ON)=0. When in passive mode the device automatically activates both the COVRACT output pin and the integrated ER switch to allow VIN to be connected to the ER capacitor. In this time, VIN is supposed to be increased up to almost VER level and the system operation relies on energy from the ER capacitor. Two scenarios are possible: high or low battery. If VIN < VINGOOD, the device moved from RUN state in ACTIVE mode to the ER state. Here, the ER capacitor is depleted while supplying all the regulators until the POR on internal regulator occurs. The threshold to decide the ER switch activation is based on VIN, because VIN is the supply voltage rail for all regulators. If the device has still a good battery level, it entered the POWERMODE SHUTDOWN thanks to WAKEUP pin and MCU command to switch off. In this case, the VER node will be discharged down to approximately VIN level, which then will be supplied out of the battery line. System will continue to run up to a dedicated SPI command which will lead the device to enter the POWEROFF state. The wake-up pin is filtered to suppress undesired state changes resulting from transients or glitches. Typical conditions are shown in the chart below and summarized by state. DocID025869 Rev 3 21/200 199 Start-up power control L9678, L9678-S Figure 4. Wake-up input signal behaviour $&7,9(02'( 6/((302'( 3$66,9(02'(       :8BRQ :8BRII :$.(83 W PV PV PV PV  PV :DNH8S)LOW W '!0'03 Condition summary: 1. No change of sleep mode state but current consumption may exceed specification for sleep mode. 2. The sleep mode current returns within the specified limits. 3. Power supply exits sleep mode. Switchers start operating if applicable voltages exceed under voltage lockouts. As Twakeup time-out is not elapsed, a low level at WAKEUP instantaneously sends the system back to sleep. 4. Sleep Reset is released and the entire system starts operating. A SPI command to enter sleep state would be ignored. 5. No change in system status, a SPI command to enter sleep state would be ignored. 6. No change in system status, but a SPI command to turn off switchers would be accepted and turn the system off. With the below table, all the functionalities of the device are shown with respect of the power states. When one function is flagged, the related circuitry cannot be activated on that state. Table 4. Functions disabling by state Power Off Wake-up monitor Awake Start-up Run Power mode shutdown ER Wakeup detector X - - - - - - Internal regulator X X - - - - - Function ERBOOST regulator X X X - - X X VSUP regulator (L9678-S only) X X X - - - - ER CAP charge current source X X X - - X X ER switch X X X X X - - COVRACT Output X X X X X - - VDD5 regulator X X X - - - - VDD3V3 regulator X X X - - - - Deployment drivers X X X - - - - VSF safing FET regulator X X X - - - - Remote sensor interfaces (L9678-S only) X X X - - - - 22/200 DocID025869 Rev 3 L9678, L9678-S Start-up power control Table 4. Functions disabling by state (continued) Power Off Wake-up monitor Awake Start-up Run Power mode shutdown ER Watchdog X X X - - - - Diagnostics X X X - - - - DC sensor interface X X X - - - - GPO drivers X X X - - - - Safing logic X X X - - - - ISO9141 X X X - - - - Function Power-up and power-down sequence The behavior of the IC during normal power-up and power-down is shown in Figure 5 to Figure 8. The following sequences represent just a subset of all possible power-up and power-down scenarios. In Figure 5 a normal IC power-up controlled by the state of the WAKEUP pin is shown. Figure 5. Normal power-up sequence - WAKEUP controlled   9,1FXUUHQW       9%$7 9%*22'   9%$7PRQ    :8BRQ :$.(83   :8BPRQ     9,17&9''      325         (5%2267    9''     9''9     9''9B8 9    5(6(7    5(6(7  +ROG7LPH  63,(5 FKDUJHRQ  4.2.5    9(5    DocID025869 Rev 3 *$3*36 23/200 199 Start-up power control L9678, L9678-S Figure 6. Normal power-up sequence - VIN controlled     9,1FXUUHQW      9,1*22'   9%$7 9,1      :8BRQ :8BPRQ  :$.(83      9,17&9''      325        (5%2267    9''       9''9   9''9B8 9     5(6(7    5(6(7  +ROG7LPH  63,(5 FKDUJHRQ    9(5    *$3*36 Two different scenarios for power-down of the IC are here below shown. Figure 7 describes the powering down for the case when WAKEUP pin is released. As soon as a SPI_SLEEP command is received by the MCU the System will immediately move to the energy reserve (PASSIVE mode). In Figure 8, VIN release begins the shutdown process. 24/200 DocID025869 Rev 3 L9678, L9678-S Start-up power control Figure 7. Normal power down sequence - WAKEUP and SPI controlled  9%$7 9%$7021 9%*22' 9%%$'       63, :8BRQ :8BRII   63,B6/((3 FRPPDQG    :$.(83 63,B2)) FRPPDQG     (56ZLWFKHQDEOH &295$&7        9(5     9''      9''989      9''9   5(6(7      9,17&9''     325 9,17&9''89   7KLVSHULRGRIWLPHFDQEHKROGIRUORQJ WLPHEHFDXVHEDWWHU\LVJRRG7KHV\VWHP ZDLWVXQWLODGHGLFDWHGIUDPHWRVZLWFKRII DocID025869 Rev 3  *$3*36 25/200 199 Start-up power control L9678, L9678-S Figure 8. Normal power down sequence - VIN controlled      9,1*22'  9,1     9%$7 :$.(83    9,17&9''89   9,17&9''       (56ZLWFKHQDEOH &295$&7       9(5      9''      9''9 9''989      5(6(7     325   *$3*36 4.2.6 Operating states Different states can be identified while operating the device. These states allow safe and predictable initialization, test, operation and end of line disposal of the part (scrapping). As soon as the RESET signal is de-asserted at the beginning of the ACTIVE mode, the microcontroller powers up. At this stage, L9678 is in the Init state: during this state the device must be initialized by the controller. In particular, the watchdog timer window can be programmed during this state. When the watchdog service begins (upon the first successful watchdog feed), the device switches to Diag state for diagnostics purposes. The remaining configuration of the device is allowed in this state, in particular for safing records and deployment masks. Several tests are also enabled while in this state and all these tests are mutually exclusive to one another. HS and LS switch tests of the squib drivers can only be processed during this diag state. Also high side safing FET can only be run during this state. When not in diag state, any 26/200 DocID025869 Rev 3 L9678, L9678-S Start-up power control commands for squib driver switch tests will be ignored. Other checks are also performed: on the arming output to check for non stuck-at conditions on the pin and for the configured firing time. The SSM remains in this state until commanded to transition into the Safing state or Scrap state via the dedicated SPI commands. Upon reception of the SAFING_STATE command while in Diag state, the device enters Safing state. This is the primary run-time state for normal operation, and the logic performs the safing function, including monitoring of sensor data and setting of the ARM signal. The only means of exiting Safing state is by the assertion of the SSM_Reset signal. The Scrap state is entered upon reception of the SCRAP_STATE command while in Diag state. While in Scrap state, the part allows the main microcontroller to initiate a transition to Arming state, and monitoring of the Remote Sensor SPI interface (in L9678-S) and the safing logic is disabled. From Scrap state, the device can transition to Arming state only, and the only means of moving back to Init state is through an SSM_Reset. In order to protect from inadvertent entry into Arming state, and to prevent undesired activation of the safing signals, a dedicated mechanism is used to control entry into, and exit from Arming state. This mechanism is described further in Section 10.7: Additional communication line. While in Arming state, the arming output is asserted. Exit from Arming state occurs when the time-out is reached without a correct ACL signal or when SSM_Reset is asserted. Upon exit, the device re-enters Scrap state, except for the case of SSM_Reset, which results in entry into Init state. System Operating states are shown in Figure 9. Figure 9. System operating state diagram 33-2ESET #ONFIGURATIONENABLEDFOR 7ATCHDOGTIMINGTHRESHOLDS !2-INOUTSELECT 235OUTPUTTYPE'M37 $IAGSAMPLESELECT 63&VOLTAGESELECT )NIT 3TATE 7$25. 7$/6%22)$% #ONFIGURATIONENABLEDFOR 3AFINGRECORDSANDCONTROL $EPLOYMASK (3,3'0/ $IAG 3TATE 30)3!&).'?34!4% 4ESTINGENABLEDFOR !2-X 63& $EPLOYTIME (3,3(33&%4 30)3#2!0?34!4% !2- 63&DETERMINED BYSAFINGENGINE 3AFING 3TATE 3CRAP 3TATE !2-X 63& !#,'//$ !#,"!$ !RMING 3TATE !2-X 63& '!0'03 DocID025869 Rev 3 27/200 199 Start-up power control 4.3 L9678, L9678-S Configurable system power control The overall operating voltage requirements of the device are different considering the L9678 device (without VSUP regulator and remote sensor interface) or the L9678-S device (with VSUP regulator and remote sensor interface). Performance for the L9678-S device is influenced by the PSI-5 remote sensor interfaces. This function requires a minimum voltage at the channel's input (VSUP) to ensure a proper functionality for the sensor. An integrated current generator (30 mA nominal) is used to charge the external energy reserve capacitor connected to VER pin. Any system load (regulators, interfaces, squib driver diagnostics) operate directly from battery until battery is lost. Upon detecting low or loss of battery, the crossover switch enables operation from energy reserve. 4.3.1 ERBOOST switching regulator The L9678 IC uses an advanced energy reserve switching regulator operating at 1.882 MHz nominal. The higher switching frequency enables the user to select smaller less expensive inductors and moves the operating frequency to permit easier compliance with system emissions. The energy reserve boost regulator charges the external system tank capacitor through an integrated fixed current source significantly reducing in-rush currents typical of large energy reserve capacitors. The boost circuit provides energy for the reserve capacitor with assumed run time load of less than 20 mA and to the VSF regulator. Once system shutdown is initiated or a loss of battery condition is diagnosed, the boost regulator is disabled so that system power can be taken from the energy reserve capacitor. The energy reserve boost regulator defaults to 23 V at power-on and can be set to 33 V nominal by the user through an SPI command. The boost converter can also be disabled by the user through an SPI command. Enabling, disabling and setting the boost output voltage is done through the System Control (SYS_CTL) register. Boost converter diagnostics include over voltage and under voltage. The under voltage condition is reported by the ER_BST_NOK bit in the POWER_STATE register. The integrated FET featuring the boost switch is protected against short to battery by means of a thermal shutdown circuit. When thermal fault is detected the FET is switched off and latched in this state until the related fault flag ERBST_OT in the FLTSR register is read. In case of loss of ground the FET is switched off and automatically reactivated as soon as ground connection is restored. Overvoltage protection from load dump and inductive flyback is provided via an active clamp and an ER_Boost disable circuitry, see Figure 10. Figure 10. ERBOOST block diagram 9,1 &/$03B(17+   (5%67 'ULYHU &RQWURO  (5%67B',6$%/( 7+  HQDEOH (5%2267 (5%676: &RPS &/$03 %67*1' *$3*36 28/200 DocID025869 Rev 3 L9678, L9678-S Start-up power control Normal run time power for the system is provided directly from the battery input, not from the boost. Boost energy is available to the system through the energy reserve crossover switch once battery is lost or a commanded system shutdown is initiated. By default, the ERBoost regulator is switched off once enetered in passive mode. To keep active the ERBoost also in passive mode the SPI bit SYS_CFG(KEEP_ERBST_ON) must be set to 1. Figure 11. ERBOOST control behaviour 32:(52))B02'( 256/((3B02'( (5%2267  SRZHUPRGHFRQWURO (5%672)) 'HIDXOW6 VDD3V3_UV 1 VDD3V3 < VDD3V3_UV VDD3V3_OV - - - VDD3V3 bad pin status Set based on voltage, cleared on SPI read 0 VDD3V3 < VDD3V3_OV 1 VDD3V3 > VDD3V3_OV ER_BST_NOK - - - ERBOOST pin status Set and cleared based on voltage 1 V_ERBOOST < ERBOOST_OK 0 V_ERBOOST > ERBOOST_OK VDD5_UV - - - VDD5_UV status Set based on voltage, cleared on SPI read 0 VDD5 > VDD5_UV 1 VDD5 < VDD5_UV VDD5_OV - - - VDD5_OV status Set based on voltage, cleared on SPI read 0 VDD5 < VDD5_OV 1 VDD5 > VDD5_OV VSUP_NOK - - - VSUP status Set and cleared based on voltage 0 VSUP > VSUP_OK 1 VSUP < VSUP_OK ER_BST_ON 0 - - ERBOOST_ON state Updated according to ER_BOOST Control Behavior diagram 0 RBOOST_OFF or ERBOOST_OT state or ER_BST_STBY state (boost not running) 1 ERBOOST_ON state (boost running) ER_CHRG_ON 0 0 0 ERCHARGE_ON state Updated according to ER_CHARGE Power Mode Control diagram 0 ERCHARGE_ON = 0 1 ERCHARGE_ON = 1 DocID025869 Rev 3 59/200 199 SPI interface ER_SW_ON L9678, L9678-S 0 - - ER_SWITCH State Updated according to ER Switch state diagram 0 ER_SWITCH_OFF 1 ER_SWITCH_ON VDD5_ACT 0 - - VDD5 Active state Updated according to VDD5 Power Mode Control state diagram 0 VDD5 supply in VDD5_OFF or VDD5_SHUTDOWN states 1 VDD5 supply in VDD5_RAMPUP or VDD5_ON states VSUP_ACT 0 0 0 VSUP Active state Updated according to VSUP Power Mode Control state diagram 0 VSUP supply in VSUP_OFF or VSUP_SHUTDOWN states 1 VSUP supply in VSUP_RAMPUP or VSUP_ON states VDD3V3_ACT 0 - - VDD3V3 Active state Updated according to VDD3V3 Power Mode Control state diagram 0 VDD3V3 supply in VDD3V3_OFF or VDD3V3_SHUTDOWN states 1 VDD3V3 supply in VSUP_ON state VSF_ACT 0 0 0 VSF Active state Updated according to VSF Control Logic diagram 0 VSF_EN = 0 1 VSF_EN = 1 60/200 DocID025869 Rev 3 L9678, L9678-S 5.1.7 SPI interface Deployment configuration registers (DCR_x) Channel 0 (DCR_0) Channel 1 (DCR_1) Channel 2 (DCR_2) - 0 0 0 0 15 14 13 12 11 10 9 8 X X X X X X X X 0 0 0 0 0 0 0 0 RW Buffer: $0600 (DCR_0) $0700 (DCR_1) $0800 (DCR_2) $0900 (DCR_3) Reset: $000C (DCR_0) $000E (DCR_1) $0010 (DCR_2) $0012 (DCR_3) Deploy_Time[1:0] SSM Type: WSM 06 (DCR_0) 07 (DCR_1) 08 (DCR_2) 09 (DCR_3) POR Address: 00 00 00 Default deployment time select 7 6 5 4 3 2 Dep_expire_time Dep_expire_time MISO 16 Dep_Current MOSI 17 Dep_Current 18 Deploy_Time 19 Deploy_Time Channel 3 (DCR_3) 1 0 X X 0 0 Updated by SSM_RESET or SPI write while in DIAG state 00 Unused (no deploy, 8 us pulse output on ARM1 pin during PULSE TEST) 01 0.5 ms 10 0.7 ms 11 2.0 ms Dep_Current[1:0] 00 00 00 Deployment Current limit select Updated by SSM_RESET or SPI write while in DIAG state 00 Unused (no deploy) DocID025869 Rev 3 61/200 199 SPI interface L9678, L9678-S 01 1.75A min 10 1.2A min 11 Unused (no deploy) Dep_expire_time[1: 0] 00 00 00 Deploy command expiration timer select Updated by SSM_RESET or SPI write while in DIAG state 00 500ms 01 250ms 10 125ms 11 0ms 62/200 DocID025869 Rev 3 L9678, L9678-S - MISO 0 0 0 12 Type: RW Buffer: $1200 Reset: $0024 POR Address: CHxDEPREQ 0 15 14 13 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 3 2 1 0 CH0DEP CH0DEPREQ 16 WSM MOSI 17 CH1DEP CH1DEPREQ 18 CH2DEP CH2DEPREQ 19 CH3DEP CH3DEPREQ Deployment command (DEPCOM) SSM 5.1.8 SPI interface N/A N/A N/A Channel x Deploy Request - non-latched channel-specific deploy request 0 No change to deployment control for channel x 1 Clear and start Expiration timer if in ARMING or SAFING state and in DEPLOY_ENABLED state CHxDEP 0 0 0 Channel x deployment expiration timer enable Set when SPI_DEPCOM(CHxDEPREQ=1) AND in ARMING or SAFING state AND in DEP_ENABLED state Cleared on SSM_RESET OR when in DEP_DISABLED state OR when Deploy Expiration Timer x reaches time-out threshold 0 Expiration timer enabled - Deploy command still valid 1 Expiration Timer disabled - Deploy command no more valid DocID025869 Rev 3 63/200 199 SPI interface 5.1.9 L9678, L9678-S Deployment configuration registers (DSR_x) Channel 0 (DSR_0) Channel 1 (DSR_1) Channel 2 (DSR_2) MISO 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 x x x x x x x x x x x x x x x x 0 0 0 0 0 0 R Buffer: $1300 (DSR_0) $1400 (DSR_1) $1500 (DSR_2) $1600 (DSR_3) Reset: - CHxDS SSM Type: WSM 13 (DSR_0) 14 (DSR_1) 15 (DSR_2) 16 (DSR_3) POR Address: 0 0 0 DEP_CHx_ExpTimer 16 DCRxERR 17 - CHxDD 18 CHxSTAT 19 MOSI CHxDS Channel 3 (DSR_3) Channel x deployment successful Updated according to Deployment Driver Control Logic (set when deployment terminates on ch x due to deploy timer time-out, cleared on SSM_RESET OR when deployment starts on ch x) 0 Deployment not successful 1 Deployment successful CHxSTAT 0 0 0 (set when deployment starts on ch x, cleared on SSM_RESET OR when deployment terminates due to deploy timer time-out, LS Over current OR GND Loss) 0 Deployment not in progress 1 Deployment in progress CHxDD 0 0 0 Default Deploy Flag on Channel x Updated by SSM_RESET, or when the Deployment Configuration Register is written with an incorrect configuration 64/200 DocID025869 Rev 3 L9678, L9678-S SPI interface 0 Correct Time/Current combination selected 1 Incorrect Time/Current combination selected (default time/current is set) DCRxERR 0 0 0 Deployment configuration register err 0 Deploy configuration change accepted and stored in memory 1 Deploy configuration change rejected because deploy is in progress (or DEP_EXPIRE_TIME changed when in DEP_ENABLED state) DEP_CHx_ExpTimer 0000 0000 0000 Channel x Deployment Expiration Timer value 8ms/count [5:0] 00 00 00 Updated according to Deployment Driver Control Logic (Cleared on SSM_RESET OR when Exp Timer times out OR when SPI_DEPREQx is received while in DEP_ENABLED state AND in ARMING or SAFING states) 5.1.10 Deployment current monitor status registers (DCMTSxy) Channels 0, 1 (DCMTS01) Channels 2, 3 (DCMTS23) 19 18 0 0 MOSI MISO 17 16 0 0 - 15 14 X X 11 10 9 8 7 6 X X X X X X X X R Buffer: $1F00 (DCMTS01) $2000 (DCMTS23) Reset: - 5 4 3 2 1 0 X X X X X X Current_Mon_Timer_x[7:0] SSM Type: WSM 1F (DCMTS01)) 20 (DCMTS23) POR 12 Current_Mon_Timer_y[7:0] Address: Current_Mon_Time r_y[7:0] 13 $00 $00 $00 Channel y current monitor timer value corresponding to SPI command DCMTSxy. Set to default (cleared) on SSM_RESET or when a new deployment starts on channel y. Increments each 16μs while deployment current exceeds monitor threshold on channel y Current_Mon_Time r_x[7:0] $00 $00 $00 Channel x current monitor timer value corresponding to SPI command DCMTSxy. Set to default (cleared) on SSM_RESET or when a new deployment starts on channel x. Increments each 16μs while deployment current on channel x exceeds monitor threshold DocID025869 Rev 3 65/200 199 SPI interface Deploy enable register (SPIDEPEN) 19 18 MOSI MISO 17 16 15 14 13 12 11 10 0 8 7 6 5 4 3 2 1 0 DEPEN_WR[15:0 0 0 0 25 Type: RW Buffer: $2500 Reset: $004A DEPEN_STATE[15:0] POR WSM Address: DEPEN_WR[15:0] 9 SSM 5.1.11 L9678, L9678-S N/A N/A N/A Non-latched encoded value for LOCK / UNLOCK command $0FF0 LOCK - enter DEP_DISABLED state $F00F UNLOCK - enter DEP_ENABLED state DEPEN_STATE[15: $0FF0$0FF0$0FF0Deploy Enabled State 0] Updated according to Global SPI Deployment Enable State Diagram $0FF0 In DEP_DISABLED state $F00F In DEP_ENABLED state MOSI MISO 17 16 - 0 0 0 R Buffer: $2600 Reset: - GNDLOSSx 66/200 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 26 14 POR Address: 0 15 GNDLOSS0 18 GNDLOSS1 19 GNDLOSS2 Squib ground loss register (LP_GNDLOSS) GNDLOSS3 5.1.12 0 0 0 Loop x Squib Ground loss DocID025869 Rev 3 L9678, L9678-S SPI interface Cleared upon SSM_RESET or SPI read. Set when GND loss is detected during deployment or loop diag's (HS sw test, LS sw test, squib resistance) 0 Loss of ground not detected 1 Loss of ground detected 5.1.13 Device version register (VERSION_ID) 19 18 0 0 MOSI 17 16 0 0 - MISO R Buffer: $2700 Reset: - DEVICE ID 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 1 0 SSM Type: 13 WSM 27 14 POR Address: 15 - - - DEVICE ID VERSN Identification of the device Static value - never updated 001 Low end 010 Medium end 011 High end VERSN - - - Identification of the silicon version CB version previous versions 000011 other codes 5.1.14 Watchdog retry configuration register (WD_RETRY_CONF) 19 18 17 16 15 14 13 12 0 0 0 0 0 0 0 0 MOSI MISO 11 10 9 8 7 6 5 4 3 0 0 0 0 0 0 0 0 - RW Buffer: $2800 Reset: $0050 WD1_RETRY_TH SSM Type: WSM 28 POR Address: 7 7 - 0 2 WD1_RETRY_TH WD1_RETRY_TH WD1 retry counter threshold (number of WD errors permitted before latching WD1_LOCKOUT=1) DocID025869 Rev 3 67/200 199 SPI interface Watchdog timer configuration register (WDTCR) 19 18 MOSI MISO 17 16 - 0 0 14 X 0 0 RW Buffer: $2A00 Reset: $0054 SSM Type: WSM 2A 0 POR Address: WD1_MODE 15 13 12 WD1_MODE WD1_MODE 5.1.15 L9678, L9678-S 0 0 - 11 10 9 8 7 6 5 4 3 2 WDTMIN[6:0] WDTDELTA[6:0] WDTMIN[6:0] WDTDELTA[6:0] 1 0 WD1 Mode Updated by WSM_RESET or SPI write while in WD1_INIT state 0 Fast WD1 mode - nominal 8μs timer resolution (2ms max value) 1 Slow WD1 mode - nominal 64μs timer resolution (16.3ms max value) WDTMIN[6:0] $32 $32 - WD1 window minimum value - resolution according to WD1_MODE bit ($32 = 400μs in WD1 fast mode) Updated by WSM_RESET or SPI write while in WD1_INIT state WDTDELTA[6:0] $19 $19 - WD1 window delta value - WDTMAX=WDTMIN+WDTDELTA - resolution according to WD1_MODE bit ($19 = 200μs in WD1 fast mode) Updated by WSM_RESET or SPI write while in WD1_INIT state 68/200 DocID025869 Rev 3 L9678, L9678-S 5.1.16 SPI interface WD1 timer control register (WD1T) 19 18 MOSI MISO 17 16 0 0 0 14 13 12 11 10 9 8 7 6 5 4 3 2 X X X X X X X X X X X X X X WD1CTL[1:0] 0 0 0 0 0 0 WD1CTL[1:0] 0 W Buffer: $2B00 Reset: $0056 SSM Type: WSM 2B WD1_TIMER POR Address: WD1CTL[1:0] 15 00 00 00 WD1 Control command 1 0 Updated by SSM_RESET or SPI write 00 NOP 01 Code 'A' 10 Code 'B' 11 NOP WD1_TIMER $00 $00 $00 WD1 Window timer value Cleared by SSM_RESET or by WD1 refresh, incremented every 8μs or 64μs while in WD1_RUN or WD1_TEST states WD1 state register (WDSTATE) 18 0 0 MOSI MISO 17 16 0 0 - 2C Type: R Buffer: $2C00 Reset: POR Address: WD1_ERR_CNT[3:0] 000 000 15 14 13 12 11 X X X X X 0 WD1_ERR_CNT[3:0] 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X 0 0 0 0 0 0 0 0 WD_STATE[2:0] SSM 19 WSM 5.1.17 - Watchdog error counter Updated according to Watchdog State Diagram WD1_STATE[2:0] 000 000 - Watchdog state Updated according to Watchdog State Diagram 000 INITIAL DocID025869 Rev 3 69/200 199 SPI interface L9678, L9678-S 001 RUN 010 TEST 011 RESET 100 OVERRIDE MISO 16 - 0 0 0 0 RW Buffer: $2D00 Reset: $005A AUX_SS_DIS 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 2D 14 POR Address: 15 1 - - Auxiliary 3.75MHz oscillator Spread Spectrum disable Updated by POR or SPI write while in INIT state 0 Spread Spectrum enabled 1 Spread Spectrum disabled MAIN_SS_DIS 0 - - Main 16MHz oscillator Spread Spectrum disable Updated by POR or SPI write while in INIT state 0 Spread Spectrum enabled 1 Spread Spectrum disabled ERBST_F_SEL[1:0] 00 - - ER Boost switching frequency select Updated by POR or SPI write while in INIT state 00 1.88 MHz 01 2.13 MHz 10 2.00 MHz 11 2.00 MHz 70/200 DocID025869 Rev 3 3 2 1 0 ERBST_F_SEL ERBST_F_SEL[1:0] MOSI 17 MAIN_SS_DIS 18 MAIN_SS_DIS 19 AUX_SS_DIS Clock configuration register (CLK_CONF) AUX_SS_DIS 5.1.18 L9678, L9678-S Scrap state entry command register (SCRAP_STATE) 19 18 MOSI MISO 17 16 15 14 13 12 11 10 9 0 0 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 $3535 0 0 30 Type: W Buffer: - Reset: $0060 POR WSM Address: 0 0 0 0 0 0 0 0 SSM 5.1.19 SPI interface N/A N/A N/A Non-latched Scrap State entry command Enter Scrap state from DIAG state Safing state entry command register (SAFING_STATE) 19 18 MISO 16 15 14 13 12 11 10 9 0 0 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 $ACAC 0 31 Type: W Buffer: - Reset: $0062 POR Address: 0 0 0 0 0 0 0 0 0 0 SSM MOSI 17 WSM 5.1.20 N/A N/A N/A Non-latched Safing State entry command Enter safing state from DIAG state and clear arming pulse stretch counter (if received in DIAG or SAFING state) DocID025869 Rev 3 71/200 199 SPI interface 5.1.21 L9678, L9678-S WD1 test command register (WD1_TEST) 19 18 17 16 15 14 13 12 - MISO 0 0 11 10 9 8 $3C 0 0 35 Type: W Buffer: - Reset: $006A POR WSM Address: 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0 X X X X X X X X 0 0 0 0 0 0 0 0 SSM MOSI N/A N/A N/A Non-latched WD1 Test Command WD1_TEST SPI command as described in Figure 36: Watchdog state diagram. System diagnostic register (SYSDIAGREQ) 19 18 0 0 16 0 0 - MISO 36 Type: RW Buffer: $3601 Reset: $006C POR Address: WSM MOSI 17 15 14 13 12 11 10 9 8 7 6 5 4 3 X X X X X X X X X X X X DSTEST[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 DSTEST[3:0] SSM 5.1.22 DSTEST[3:0] 0000 0000 0000 Diagnostic State Test selection Updated by SSM_RESET or SPI write while in DIAG state 0000 = all outputs inactive 0001 = ARM pin active 0010 = all outputs inactive 0011 = all outputs inactive 0100 = all outputs inactive 0101 = all outputs inactive 0110 = VSF regulator active 72/200 DocID025869 Rev 3 2 1 0 L9678, L9678-S SPI interface 0111 = HS squib driver FET active 1000 = LS squib driver FET active 1001 = Output deployment timing pulses on ARM1 (separated by 8 ms) 1010 = ST reserved 1011 - 1111 = all outputs inactive DocID025869 Rev 3 73/200 199 SPI interface R Buffer: $3700 Reset: - DIAG_LEVEL 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X SQP 0 0 0 Diagnostic mode selector Not present for low level diagnostic Updated by SSM_RESET or SPI write to LPDIAGREQ 0 low level mode 1 high level mode TIP 0 0 0 High level diagnostic test is running Updated by SSM_RESET or Loops diagnostic state machine 0 High level diagnostic test is not running 1 High level diagnostic test is running FP 0 0 0 Fault present before requested diagnostic Updated by SSM_RESET or Loops diagnostic state machine 0 Fault not present before requested diagnostic 1 Fault present before requested diagnostic FETON 74/200 0 0 0 FET activation during diagnostic DocID025869 Rev 3 LEAK_CHSEL 10 X SSM Type: 11 X WSM 37 12 X POR Address: 13 X STB FP 14 X STG 0 15 SBL 16 RES_MEAS_CHSEL/ HIGH_LEV_DIAG_SELECTED TIP DIAG_LEVEL MISO 17 - HSR_LO 18 HSR_HI 19 MOSI ST_reserved Diagnostic result register for deployment loops (LPDIAGSTAT) FETON 5.1.23 L9678, L9678-S L9678, L9678-S SPI interface Updated by SSM_RESET or Loops diagnostic state machine or when HS or LS FET is activated during DIAG state 0 FET is off during diagnostic 1 FET is on during diagnostic ST_reserved 0 0 0 ST_reserved HSR_HI 0 0 0 HSR Diagnostic - HIGH Range Updated by SSM_RESET or Loops diagnostic state machine or when squib resistance test is run 0 HSR measurement < HSR HIGH value 1 HSR measurement > HSR HIGH value HSR_LO 0 0 0 HSR Diagnostic - Low Range Updated by SSM_RESET or Loops diagnostic state machine or when squib resistance test is run 1 HSR measurement< HSR LOW value 0 HSR measurement > HSR LOW value RES_MEAS_CHSEL 0000 0000 0000 Channel selected for resistance measurement [3:0] Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib resistance channel selected 0000 = Ch 0 0001 = Ch 1 0010 = Ch 2 0011 = Ch 3 0100 - 1111 None Selected HIGH_LEV_DIAG_ 0000 0000 0000 SELECTED[3:0] 0000 No diagnostic selected 0001 VRCM CHECK 0010 Leakage CHECK 0011 Short Between Loops CHECK 0100 Unused 0101Squib resistance range CHECK 0110 Squib resistance measurement 0111 FET test 1000 - 1111 Unused DocID025869 Rev 3 75/200 199 SPI interface L9678, L9678-S SBL 0 0 0 Short between loop state Updated by SSM_RESET or Loops diagnostic state machine 0 Short between squib loops is not present 1 Short between squib loops is present STG 0 0 0 Short to Ground Test Status Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib leakage diagnostic 0 STG not detected 1 1 STG detected STB 0 0 0 Short to Battery Test Status Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib leakage diagnostic 0 STB not detected 1 STB detected SQP 0 0 0 Squib PIN where leakage test has been performed Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib leakage diagnostic 0 SRx 1 SFx LEAK_CHSEL[3:0] 0000 0000 0000 Channel selected for leakage measurement Updated by SSM_RESET or Loops diagnostic state machine or as determined by squib leakage diagnostic 0000 = Ch 0 0001 = Ch 1 0010 = Ch 2 0011 = Ch 3 0100 - 1111 None Selected 76/200 DocID025869 Rev 3 L9678, L9678-S Loops diagnostic configuration command register for low level diagnostic (LPDIAGREQ) RW Buffer: $3800 Reset: $0070 DIAG_LEVEL SSM Type: WSM 38 POR Address: 0 0 0 5 4 3 2 1 0 LEAK_CHSEL[3:0] 6 LEAK_CHSEL[3:0] 7 RES_MEAS_CHSEL[3:0]RES_MEAS_CHSEL[3:0] 8 VRCM[1:0] 9 VRCM[1:0] 10 ISINK 0 11 ISINK 0 12 ISRC [1:0] 0 13 ISRC [1:0] 0 - MISO 14 PD_CURR 15 PD_CURR 16 ISRC_CURR_SEL MOSI 17 ISRC_CURR_SEL 18 DIAG_LEVEL 19 DIAG_LEVEL 5.1.24 SPI interface Diagnostic mode selector Updated by SSM_RESET or SPI write 0 low level mode 1 N/A - see description below ISRC_CURR_SEL 0 0 0 Selection of ISRC current value 0 40mA 1 8mA PD_CURR 0 0 0 Pull down current control Updated by SSM_RESET or SPI write 0 Request OFF only for channels connected to VRCM or ISINK or ISRC, ON for all other channels 1 Request OFF for all channels ISRC [1:0] 00 00 00 High side current source for channel selected in RES_MEAS_CHSEL[3:0] Updated by SSM_RESET or SPI write 00 = OFF 01 = ON 40 mA current for channel selected in RES_MEAS_CHSEL,  OFF on all other channels DocID025869 Rev 3 77/200 199 SPI interface L9678, L9678-S 10 = ON bypass current for channel selected in RES_MEAS_CHSEL,  OFF ON all other channels 11 = OFF ISINK 0 0 0 Low Side current sink control (max 50mA) Updated by SSM_RESET or SPI write 0 All channels OFF 1 ON for channel selected by RES_MEAS_CHSEL[3:0], OFF on all other channels VRCM[1:0] 00 00 00 Voltage Regulator Current Monitor control Updated by SSM_RESET or SPI write 00 VRCM not connected 01 VRCM connected to SFx of channel selected by LEAK_CHSEL[3:0] 01 VRCM connected to SFx of channel selected by LEAK_CHSEL[3:0] and pull down current of the same channel disabled 10 VRCM connected to SRx of channel selected by LEAK_CHSEL[3:0] and pull down current of the same channel enabled (ISINK and ISRC must be switched RES_MEAS_CHS 0000 0000 0000 Squib Resistance Measurement Channel select - selects the channel and EL[3:0] muxes for the resistance test, and the channel for HS driver test (full path fet test) activation Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected LEAK_CHSEL[3:0] 0000 0000 0000 Squib Leakage Measurement Channel select - selects the channel and muxes for the leakage test, and the channel for HS/LS FET test activation. Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected 78/200 DocID025869 Rev 3 L9678, L9678-S - 0 0 0 RW Buffer: $3800 Reset: $0070 DIAG_LEVEL 12 11 10 9 8 X X X X X X X 0 0 0 0 0 0 0 SSM Type: 13 WSM 38 14 POR Address: 0 15 0 0 0 7 6 5 4 3 2 1 0 LOOP_DIAG_CHSEL[3:0] LOOP_DIAG_CHSEL[3:0] MISO 16 SQP MOSI 17 SQP 18 HIGH_LEVEL_DIAG_SEL HIGH_LEVEL_DIAG_SEL 19 DIAG_LEVEL Loops diagnostic configuration command register for high level diagnostic (LPDIAGREQ) DIAG_LEVEL 5.1.25 SPI interface Diagnostic mode selector 0 0 N/A - see description above 1 1 high level mode HIGH_LEVEL_DIAG 000 000 000 Selection of high level squib diagnostic _SEL Updated by SSM_RESET or SPI write 000 No diagnostic selected 001 VRCM CHECK 010 Leakage CHECK 011 Short Between Loops CHECK 100 Unused 101 Squib resistance range CHECK 110 Squib resistance measurement 111 FET test SQP 0 0 0 Squib pin select for all leakage diagnostic Updated by SSM_RESET or SPI write DocID025869 Rev 3 79/200 199 SPI interface L9678, L9678-S 0 SRx 1 SFx LOOP_DIAG_CHSE 0000 0000 0000 Channel select - selects the channel and muxes for all squib diagnostic. L[3:0] Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected 80/200 DocID025869 Rev 3 L9678, L9678-S 16 - MISO 0 0 0 RW Buffer: $3900 Reset: $0072 DCS_PDCURR 12 11 10 9 8 X X X X X X X X 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 39 14 POR Address: 0 15 0 0 0 7 6 5 4 X X CHID[3:0] MOSI 17 0 0 CHID[3:0] 18 SWOEN 19 SWOEN DC sensor diagnostic configuration command register (SWCTRL) DCS_PDCURR DCS_PDCURR 5.1.26 SPI interface 3 2 1 0 Disable of all pull down current for DC sensor Updated by SSM_RESET or SPI write 0 OFF for channel under voltage or current measurement, ON for all other channels 1 OFF for all channels SWOEN 0 0 0 Switch Output Enable Updated by SSM_RESET or SPI write 0 OFF 1 ON (40mA) CHID[3:0] 0000 0000 0000 Channel ID - selects DC sensor channel for output activation Updated by SSM_RESET or SPI write 0000 Channel 0 0001 Channel 1 0010 Channel 2 0011 Channel 3 0100 - 1111 None Selected DocID025869 Rev 3 81/200 199 SPI interface 5.1.27 L9678, L9678-S ADC request and data registers (DIAGCTRL_x) ADC A control command (DIAGCTRL_A) 19 18 MISO 16 NEWDATA_A MOSI 17 0 15 14 13 12 11 10 9 8 7 X X X X X X X X X 0 6 3A Type: RW Buffer: $3A00 Reset: $0074 4 3 2 1 0 1 0 1 0 ADCREQ_A[6:0] ADCREQ_A[6:0] Address: 5 ADCRES_A[9:0] ADC B control command (DIAGCTRL_B) 19 18 MISO 17 16 NEWDATA_B MOSI 0 15 14 13 12 11 10 9 8 7 X X X X X X X X X 0 6 3B Type: RW Buffer: $3B00 Reset: $0076 4 3 2 ADCREQ_B[6:0] ADCREQ_B[6:0] Address: 5 ADCRES_B[9:0] ADC C control command (DIAGCTRL_C) 19 18 MISO 17 16 NEWDATA_C MOSI 0 0 Address: 3C Type: RW Buffer: $3C00 Reset: $0078 82/200 15 14 13 12 11 10 9 8 7 X X X X X X X X X ADCREQ_C[6:0] DocID025869 Rev 3 6 5 4 3 2 ADCREQ_C[6:0] ADCRES_C[9:0] L9678, L9678-S SPI interface ADC D control command (DIAGCTRL_D) 19 18 MISO 17 16 NEWDATA_D MOSI 0 14 13 12 11 10 9 8 7 X X X X X X X X X 0 RW Buffer: $3D00 Reset: $007A SSM Type: WSM 3D 6 ADCREQ_D[6:0] POR Address: NEWDATA_x 15 0 0 0 5 4 3 2 1 0 ADCREQ_D[6:0] ADCRES_D[9:0] New data available from convertion Updated by SSM_RESET or ADC state machine 0 cleared on read 1 convertion finished ADCREQ_x[6:0] $00 $00 $00 ADC Request select command Updated by SSM_RESET or SPI write to DIAGCTRL_x Measurement $00 Unused $01 Ground Ref $02 Full scale Ref $030 DCSx voltage $04 DCSx current $05 DCSx resistance $06 Squib x resistance $07 Internal BG reference voltage (BGR) $080 Internal BG monitor voltage (BGM) $09 Unused $0A Temperature $0B DCS 0 voltage $0C DCS 1 voltage $0D DCS 2 voltage $0E DCS 3 voltage $20 VBATMON pin voltage $21 VIN pin voltage $22 Internal analog supply voltage (VINT) $23 Internal digital supply voltage (VDD) DocID025869 Rev 3 83/200 199 SPI interface L9678, L9678-S $24 ERBOOST pin voltage $25 Unused $26 VER pin voltage $27 VSUP voltage $28 VDDQ voltage $29 WAKEUP pin voltage $2A VSF pin voltage $2B WDTDIS pin voltage $2C GPOD0 pin voltage $2D GPOS0 pin voltage $2E GPOD1 pin voltage $2F GPOS1 pin voltage $30 Unused $31 Unused $32 RSU0 pin Voltage $33 RSU1 pin Voltage $34 Unused $35 Unused $36 SS0 pin voltage $37 SS1 pin voltage $38 SS2 pin voltage $39 SS3 pin voltage $3A Unused $3B Unused $3C Unused $3D Unused $3E Unused $3F Unused $40 Unused $41 Unused $42 VRESDIAG voltage $43 VDD5 voltage $44 VDD3V3 voltage $45 ISOK voltage $46 SF0 $47 SF1 $48 SF2 $49 SF3 $4A - $7F Unused ADCRES_x[9:0] $000 $000 $000 10-bit ADC result value corresponding to ADCREQ_x request Updated by SSM_RESET or ADC state machine 84/200 DocID025869 Rev 3 L9678, L9678-S GPO configuration register (GPOCR) 18 MOSI MISO 17 16 - 0 0 0 RW Buffer: $4200 Reset: $0084 GPOxLS 12 11 10 9 8 7 6 5 4 3 2 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 42 14 POR Address: 0 15 0 0 0 1 0 GPO0LSGPO0LS 19 GPO1LSGPO1LS 5.1.28 SPI interface GPO driver configuration bit Updated by SSM_RESET or SPI write 0 High-side Driver configuration for GPOx (ER_BOOST_OK is required to enable GPO as HS) 1 Low-side Driver configuration for GPOx (ER_BOOST_OK is not required to enable GPO as LS) DocID025869 Rev 3 85/200 199 SPI interface 5.1.29 L9678, L9678-S GPO configuration register (GPOCTRLx) Channel 0 (GPOCTRL0) Channel 1 (GPOCTRL1) 19 18 0 0 MOSI 17 16 0 0 - MISO 15 14 13 12 11 10 9 8 7 6 X X X X X X X X X X GPOxPWM[5:0] 0 0 0 0 0 0 0 0 0 0 GPOxPWM[5:0] Address: 43 (GPOCTRL0) 44 (GPOCTRL1) Type: RW Buffer: $4300 (GPOCTRL0) $4400 (GPOCTRL1) Reset: $0086 (GPOCTRL0) $0088 (GPOCTRL1) POR GPOxPWM WSM 5 3 2 SSM 000000 000000 000000 6 bit value for PWM% with scaling of 1.6% per count Updated by SSM_RESET or SPI write 86/200 4 DocID025869 Rev 3 1 0 L9678, L9678-S R Buffer: $4600 Reset: - GPO1DISABLE 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 SSM Type: 12 X WSM 46 13 X POR Address: 0 14 X GPO0OPN GPO0DISABLE 0 GPO1DISABLE MISO 15 GPO0LIM 16 GPO0TEMP 17 - GPO1OPN 18 GPO1LIM 19 MOSI GPO1TEMP GPO fault status register (GPOFLTSR) GPO_NOT_CONF 5.1.30 SPI interface 1 1 1 GPO 1 disable state 0 GPO enable to work 1 GPO disabled due to thermal fault or configuration not received or ERBOOST not OK (only HS mode) GPO0DISABLE 1 1 1 GPO 0 disable state 0 GPO enable to work 1 GPO disabled due to thermal fault or configuration not received or ERBOOST not OK (only HS mode) GPO_NOT_CONF 1 1 1 GPO configuration status 0 GPO HS/LS configured (activation is permitted) 1 GPO not yet configured (activation is denied) GPO1TEMP 0 0 0 GPO 1 Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected GPO1LIM 0 0 0 GPO 1 Current Limit Flag Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected GPO1OPN 0 0 0 GPO 1 Open Detection Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected DocID025869 Rev 3 87/200 199 SPI interface L9678, L9678-S 1 Fault detected GPO0TEMP 0 0 0 GPO 0 Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected GPO0LIM 0 0 0 GPO 0 Current Limit Flag OK Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected GPO0OPN 0 0 0 GPO 0 Open Detection OK Cleared by SSM_RESET or SPI read, set by detection circuit while ON 0 Fault not detected 1 Fault detected 19 18 MOSI 17 16 - MISO 0 0 0 R Buffer: $4700 Reset: - ISOTEMP 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 X WSM 47 14 X POR Address: 0 15 ISOLIM ISO fault status register (ISOFLTSR) ISOTEMP 5.1.31 0 0 0 ISO Thermal Fault Cleared by SSM_RESET or SPI read, set by detection circuit 0 Fault not detected 1 Fault detected ISOLIM 0 0 0 ISO Current Limit Flag Cleared by SSM_RESET or SPI read, set by detection circuit while ON (ISOK=0) 0 Fault not detected 1 Fault detected 88/200 DocID025869 Rev 3 L9678, L9678-S 5.1.32 SPI interface Remote sensor configuration register (RSCRx) Remote sensor configuration register 1 (RSCR1) 0 0 0 0 X 0 RW Buffer: $4A00 (RSCR1) $4B00 (RSCR2) Reset: $0094 (RSCR1) $0096 (RSCR2) SLOWTRACK SSM Type: WSM 4A (RSCR1) 4B (RSCR2) POR Address: 0 0 0 13 12 11 10 9 8 7 6 5 4 X X X X X X X X STSx[3:0] MISO 14 0 0 0 0 0 0 0 0 STSx[3:0] - 15 BLKTxSEL 16 BLKTxSEL MOSI 17 STARTbitsMEAS_DISABLE STARTbitsMEAS_DISABLE 18 SLOWTRACK 19 SLOWTRACK Remote sensor configuration register 2 (RSCR2) 3 2 1 0 Reduce frequency of base current tracking 0 8μs/1μs 1 16μs/2μs STARTbitsMEAS_ DISABLE 0 0 0 Disable of start bits period measure to decode data bits 0 Period of start bits used to decode following data bits 1 Period of start bits not used to decode following data bits BLKTxSEL 0 0 0 Current limiting blanking time select for channel x Updated by SSM_RESET or SPI write 0 Blanking time = 5ms 1 Blanking time = 10ms DocID025869 Rev 3 89/200 199 L9678, L9678-S SSM POR WSM SPI interface STSx[3:0] 0000 0000 0000 Remote sensor type select Updated by SSM_RESET or SPI write 0000 Async PSI5, parity, 8-bit, 125k (A8P-228/1L) 0001 Async PSI5, parity, 8-bit, 189k (A8P-228/1H) 0010 Async PSI5, parity, 10-bit, 125k (A10P-228/1L) 0011 Async PSI5, parity, 10-bit, 189k (A10P-228/1H) 0100-1111 Async PSI5, parity, 10-bit, 189k (A10P-228/1H) Remote sensor control register (RSCTRL) 18 MOSI MISO 17 16 0 0 0 0 R/W Buffer: $4E00 Reset: $009C CHxEN 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 4E 14 POR Address: 15 0 0 0 Channel x Output enable Updated by SSM_RESET or SPI write 0 Off 1 On 90/200 DocID025869 Rev 3 3 2 X 0 1 CH0EN CH0EN 19 CH1EN CH1EN 5.1.33 0 X 0 L9678, L9678-S 5.1.34 SPI interface Remote sensor data/fault registers w/o fault (RSDRx) Remote sensor 0 data and fault flag register (RSDR0) Remote sensor 1 data and fault flag register (RSDR1) Note: The value in Bit15 (FLT) will re-define the use of the other bits, hence the informations below are divided into two groups. Bit 15 = 0 NO FAULT condition 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X R Buffer: $5000 (RSDR0) $5100 (RSDR1) Reset: SSM Type: WSM 50 (RSDR0) 51 (RSDR1) POR Address: DATA [9:0] 0 15 LCID [3:0] MISO 16 CRC MOSI 17 On/Off 18 FLT=0 19 CRC[2:0] 000 000 000 CRC based on bits [16:0] Updated based on bits [16:0] FLT 1 1 1 Fault Status - Depending on Fault Status, the DATA bits are defined differently Cleared when all of the following bits are '0': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA Set when any of the following bits are '1': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA 0 No fault 1 Fault On/Off 0 0 0 Channel On/Off Status Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL or when the STG bit is set or the RSTEMP bit is set Set when channel is commanded ON by SPI RSCTRL 0 Off 1 On LCID[0:3] 0000 0000 0000 Logical Channel ID DocID025869 Rev 3 91/200 199 SPI interface L9678, L9678-S Updated based on SPI read request 0000 RSU0 0100 RSU1 DATA[9:0] $000 $000 $000 10-bit data from Manchester decoder Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL updated when a valid PSI5 frame is received 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X STB CURRENT_HI OPENDET RSTEMP INVALID NODATA X 15 STG MISO 16 - CRC MOSI 17 0 X X R Buffer: $5000 (RSDR0) $5100 (RSDR1) Reset: SSM Type: WSM 50 (RSDR0) 51 (RSDR1) POR Address: LCID [3:0] 18 On/Off 19 FLT=1 Bit 15 = 1 FAULTED condition CRC[2:0] 000 000 000 CRC based on bits [16:0] Updated based on bits [16:0] FLT 1 1 1 Fault Status - Depending on Fault Status, the DATA bits are defined differently Cleared when all of the following bits are '0': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA Set when any of the following bits are '1': STG, STB, CURRENT_HI, OPENDET, RSTEMP, NODATA 0 No fault 1 Fault On/Off 0 0 0 Channel On/Off Status Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL or when the STG bit is set or the RSTEMP bit is set Set when channel is commanded ON by SPI RSCTRL 0 Off 92/200 DocID025869 Rev 3 L9678, L9678-S SPI interface 1 On LCID[0:3] 0000 0000 0000 Logical Channel ID Updated based on SPI read request 0000 RSU0 0100 RSU1 STG 0 0 0 Short to Ground (in current limit condition) Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL 0 No fault 1 Fault STB 0 0 0 Short to Battery Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL - not cleared by channel OFF caused by STG or RSTEMP Set when channel voltage exceeds VSUP for a time greater than TSTBTH 0 No fault 1 Fault CURRENT_HI 0 0 0 Current High Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL Set when channel current exceeds ILKGG for a time determined by an up/down counter 0 No fault 1 Fault OPENDET 0 0 0 Open Sensor Detected Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL Set when channel current exceeds ILKGB for a time determined by an up/down counter 0 No fault 1 Fault RSTEMP 0 0 0 Over temperature detected Cleared by SSM_RESET or when channel is commanded OFF via SPI RSCTRL Set when over-temp condition is detected 0 No fault 1 Fault DocID025869 Rev 3 93/200 199 SPI interface INVALID L9678, L9678-S 0 0 0 Invalid Data Cleared by SSM_RESET or SPI read or when channel is commanded OFF via SPI RSCTRL or if one of the following is set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP Set when two valid start bits are received and a Manchester error (# of bits, bit timing) or parity error is detected 0 No fault 1 Fault NODATA 1 1 1 No Data in buffer Cleared when a valid PSI frame is received or if one of the following is set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP Set upon SPI read of RSDRx if FIFO empty and none of the following bits are set: STG, STB, CURRENT_HI, OPEN_DET, RSTEMP 0 No fault 1 Fault 94/200 DocID025869 Rev 3 L9678, L9678-S Safing algorithm configuration register (SAF_ALGO_CONF) - MISO 0 0 0 0 R/W Buffer: $6600 Reset: $00CC NO_DATA SSM Type: WSM 66 14 POR Address: 15 0 0 0 X 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADD_VAL ADD_VAL 16 SUB_VAL SUB_VAL MOSI 17 ARMP_TH ARMP_TH 18 ARMN_TH ARMN_TH 19 NO_DATA NO_DATA 5.1.35 SPI interface Event counter no data select Updated by SSM_RESET or SPI write while in DIAG state 0 Event counter reset to 0 if CC=0 when SPI read of SAF_CC bit is performed (end of sample cycle) 1 Event counter decremented by SUB_VAL if CC=0 when SPI read of SAF_CC bit is performed (end of sample cycle) ARMN_TH 0011 0011 0011 Negative event counter threshold to assert arming Updated by SSM_RESET or SPI write while in DIAG state 0000 Negative event counter disabled ARMP_TH 0011 0011 0011 Positive event counter threshold to assert arming Updated by SSM_RESET or SPI write while in DIAG state 0000 Positive event counter disabled SUB_VAL 011 011 011 Decremental step size of the event counter Updated by SSM_RESET or SPI write while in DIAG state ADD_VAL 001 001 001 Incremental step size of the event counter Updated by SSM_RESET or SPI write while in DIAG state DocID025869 Rev 3 95/200 199 SPI interface MISO 0 0 0 0 R Buffer: $6A00 Reset: - ACL_VALID 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 X WSM 6A 14 X POR Address: 15 FENH 16 FENL 17 - ARMINT_1 18 ARMINT_2 19 MOSI ACL_VALID Arming signals register (ARM_STATE) ACL_PIN_STATE 5.1.36 L9678, L9678-S 0 0 0 Valid ACL detection 0 Cleared when ACL_BAD=2 1 Set when ACL_GOOD=3 ACL_PIN_STATE - - - Echo of ACL pin ARMINT_x 0 0 0 State of armint signals Updated per Safing Engine output logic diagram FENH/FENL - - - State of external arming control signals Updated based on pin state 96/200 DocID025869 Rev 3 L9678, L9678-S 5.1.37 SPI interface ARMx assignment registers (LOOP_MATRIX_ARMx) Assignment of ARM1 to specific loops (LOOP_MATRIX_ARM1) 16 - MISO 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 RW Buffer: $6E00 (LOOP_MATRIX_ARM1) $6F00 (LOOP_MATRIX_ARM2) Reset: $00DC (LOOP_MATRIX_ARM1) $00DE (LOOP_MATRIX_ARM2) ARMx_Ly SSM Type: WSM 6E (LOOP_MATRIX_ARM1) 6F (LOOP_MATRIX_ARM2) POR Address: 0 0 0 3 2 1 0 ARMx_L0 ARMx_L0 MOSI 17 ARMx_L1 ARMx_L1 18 ARMx_L2 ARMx_L2 19 ARMx_L3 ARMx_L3 Assignment of ARM2 to specific loops (LOOP_MATRIX_ARM2) Configures ARMx for Loop_y Updated by SSM_RESET or SPI write while in DIAG state 0 ARMx signal is not associated with Loopy 1 ARMx signal is associated with Loopy DocID025869 Rev 3 97/200 199 SPI interface 5.1.38 L9678, L9678-S ARMx pulse stretch registers (AEPSTS_ARMx) ARM1 enable pulse stretch timer status (AEPSTS_ARM1) ARM2 enable pulse stretch timer status (AEPSTS_ARM2) 19 18 MOSI MISO 17 16 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 RW Buffer: $7300 (AEPSTS_ARM1) $7400 (AEPSTS_ARM2) Reset: - (AEPSTS_ARM1) - (AEPSTS_ARM2) SSM Type: WSM 73 (AEPSTS_ARM1) 74 (AEPSTS_ARM2) POR Address: Timer Count[9:0] Timer Count 0000 0000 0000 10-bit ARMing Enable Pulse Stretcher timer value Cleared by SSM_RESET Loaded with initial value based on ARMx bit and DWELL[1:0] of SAF_CONTROL_y while safing is met for record y provided current value is < DWELL[1:0] value Decremented every 2ms while > 0 Contains remaining pulse stretcher timer value 98/200 DocID025869 Rev 3 L9678, L9678-S MOSI 17 16 - MISO 0 0 0 0 RW Buffer: $7F00 Reset: $00FE EN_SAFx 12 11 10 9 8 7 6 5 4 X X X X X X X X X X X X 0 0 0 0 0 0 0 0 SSM Type: 13 WSM 7F 14 POR Address: 15 0 0 0 3 2 1 0 EN_SAF1 EN_SAF1 18 EN_SAF2 EN_SAF2 19 EN_SAF3 EN_SAF3 Safing records enable register (SAF_ENABLE) EN_SAF4 EN_SAF4 5.1.39 SPI interface Safing Record enable Updated by SSM_RESET or SPI write 0 Disable 1 Enable DocID025869 Rev 3 99/200 199 SPI interface 5.1.40 L9678, L9678-S Safing records request mask registers (SAF_REQ_MASK_x) Safing record request mask for record 1 (SAF_REQ_MASK_1) Safing record request mask for record 2 (SAF_REQ_MASK_2) Safing record request mask for record 3 (SAF_REQ_MASK_3) Safing record request mask for record 4 (SAF_REQ_MASK_4) 19 18 MOSI MISO 17 16 15 14 13 12 0 0 11 10 9 8 7 6 5 4 3 2 1 0 SAF_REQ_MASKx[15:0] 0 0 SAF_REQ_MASKx[15:0] RW Buffer: $8000 (SAF_REQ_MASK_1) $8100 (SAF_REQ_MASK_2) $8200 (SAF_REQ_MASK_3) $8300 (SAF_REQ_MASK_4) Reset: $8000 (SAF_REQ_MASK_1) $8002 (SAF_REQ_MASK_2) $8004 (SAF_REQ_MASK_3) $8006 (SAF_REQ_MASK_4) SSM Type: WSM 80 (SAF_REQ_MASK_1) 81 (SAF_REQ_MASK_2) 82 (SAF_REQ_MASK_3) 83 (SAF_REQ_MASK_4) POR Address: SAF_REQ_MASKx 0000 0000 0000 Safing Request Mask for safing record x - 16-bit request mask that is bit-wise [15:0] ANDed with MOSI data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 100/200 DocID025869 Rev 3 L9678, L9678-S 5.1.41 SPI interface Safing records request target registers (SAF_REQ_TARGET_x) Safing record request mask for record 1 (SAF_REQ_TARGET_1) Safing record request mask for record 2 (SAF_REQ_TARGET_2) Safing record request mask for record 3 (SAF_REQ_TARGET_3) Safing record request mask for record 4 (SAF_REQ_TARGET_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 0 SAF_REQ_TARGETx[15:0] 0 0 SAF_REQ_TARGETx[15:0] RW Buffer: $9300 (SAF_REQ_TARGET_1) $9400 (SAF_REQ_TARGET_2) $9500 (SAF_REQ_TARGET_3) $9600(SAF_REQ_TARGET_4) Reset: $8026 (SAF_REQ_TARGET_1) $8028 (SAF_REQ_TARGET_2) $802A (SAF_REQ_TARGET_3) $802C (SAF_REQ_TARGET_4) SSM Type: WSM 93 (SAF_REQ_TARGET_1) 94 (SAF_REQ_TARGET_2) 95 (SAF_REQ_TARGET_3) 96 (SAF_REQ_TARGET_4) POR Address: SAF_REQ_TARGETx 0000 0000 0000 Safing Request target for safing record x - 16-bit request target that is [15:0] compared to the bit-wise AND result of the SAF_REQ_MASKx and MOSI data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state DocID025869 Rev 3 101/200 199 SPI interface 5.1.42 L9678, L9678-S Safing records response mask registers (SAF_RESP_MASK_x) Safing record response mask for record 1 (SAF_RESP_MASK_1) Safing record response mask for record 2 (SAF_RESP_MASK_2) Safing record response mask for record 3 (SAF_RESP_MASK_3) Safing record response mask for record 4 (SAF_RESP_MASK_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 0 SAF_RESP_MASKx[15:0] 0 0 SAF_RESP_MASKx[15:0] RW Buffer: $A600 (SAF_RESP_MASK_1) $A700 (SAF_RESP_MASK_2) $A800 (SAF_RESP_MASK_3) $A900 (SAF_RESP_MASK_4) Reset: $804C (SAF_RESP_MASK_1) $804E (SAF_RESP_MASK_2) $8050 (SAF_RESP_MASK_3) $8052 (SAF_RESP_MASK_4) SSM Type: WSM A6 (SAF_RESP_MASK_1) A7 (SAF_RESP_MASK_2) A8 (SAF_RESP_MASK_3) A9 (SAF_RESP_MASK_4) POR Address: SAF_RESP_MASKx 0000 0000 0000 Safing Response Mask for safing record x - 16-bit response mask that is bit[15:0] wise ANDed with MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 102/200 DocID025869 Rev 3 L9678, L9678-S 5.1.43 SPI interface Safing records response target registers (SAF_RESP_TARGET_x) Safing record response target for record 1 (SAF_RESP_TARGET_1) Safing record response mask for record 2 (SAF_RESP_TARGET_2) Safing record response mask for record 3 (SAF_RESP_TARGET_3) Safing record response mask for record 4 (SAF_RESP_TARGET_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 0 SAF_RESP_TARGETx[15:0] 0 0 SAF_RESP_TARGETx[15:0] RW Buffer: $B900 (SAF_RESP_TARGET_1) $BA00 (SAF_RESP_TARGET_2) $BB00 (SAF_RESP_TARGET_3) $BC00 (SAF_RESP_TARGET_4) Reset: $8072 (SAF_RESP_TARGET_1) $8074 (SAF_RESP_TARGET_2) $8076 (SAF_RESP_TARGET_3) $8078 (SAF_RESP_TARGET_4) SSM Type: WSM B9 (SAF_RESP_TARGET_1) BA (SAF_RESP_TARGET_2) BB (SAF_RESP_TARGET_3) BC (SAF_RESP_TARGET_4) POR Address: SAF_RESP_TARGETx 0000 0000 0000 Safing Response target for safing record x - 16-bit response target that is [15:0] compared to the bit-wise AND result of the SAF_RESP_MASKx and MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state DocID025869 Rev 3 103/200 199 SPI interface 5.1.44 L9678, L9678-S Safing records data mask registers (SAF_DATA_MASK_x) Safing record data mask for record 1 (SAF_DATA_MASK_1) Safing record data mask for record 2 (SAF_DATA_MASK_2) Safing record data mask for record 3 (SAF_DATA_MASK_3) Safing record data mask for record 4 (SAF_DATA_MASK_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 SAF_DATA_MASKx[15:0] 0 0 SAF_DATA_MASKx[15:0] RW Buffer: $CC00 (SAF_DATA_MASK_1) $CD00 (SAF_DATA_MASK_2) $CE00 (SAF_DATA_MASK_3) $CF00 (SAF_DATA_MASK_4) Reset: $8098 (SAF_DATA_MASK_1) $809A (SAF_DATA_MASK_2) $809C (SAF_DATA_MASK_3) $809E (SAF_DATA_MASK_4) SSM Type: WSM CC (SAF_DATA_MASK_1) CD (SAF_DATA_MASK_2) CE (SAF_DATA_MASK_3) CF (SAF_DATA_MASK_4) POR Address: SAF_DATA_MASKx[ 0000 0000 0000 Safing Data Mask for safing record x - 16-bit data mask that is bit-wise 15:0] ANDed with MISO data from SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 104/200 DocID025869 Rev 3 0 L9678, L9678-S 5.1.45 SPI interface Safing records threshold registers (SAF_THRESHOLD_x) Safing record threshold for record 1 (SAF_THRESHOLD_1) Safing record threshold for record 2 (SAF_THRESHOLD_2) Safing record threshold for record 3 (SAF_THRESHOLD_3) Safing record threshold for record 4 (SAF_THRESHOLD_4) 19 18 MOSI MISO 17 16 15 14 13 12 11 0 0 10 9 8 7 6 5 4 3 2 1 0 SAF_THRESHOLDx[15:0] 0 0 SAF_THRESHOLDx[15:0] RW Buffer: $DF00 (SAF_THRESHOLD_1) $E000 (SAF_THRESHOLD_2) $E100 (SAF_THRESHOLD_3) $E200 (SAF_THRESHOLD_4) Reset: $80BE (SAF_THRESHOLD_1) $80C0 (SAF_THRESHOLD_2) $80C2 (SAF_THRESHOLD_3) $80C4 (SAF_THRESHOLD_4) SSM Type: WSM DF (SAF_THRESHOLD_1) E0 (SAF_THRESHOLD_2) E1 (SAF_THRESHOLD_3) E2 (SAF_THRESHOLD_4) POR Address: SAF_THRESHOLDx $FFFF$FFFF $FFFF Safing threshold for safing record x - 16-bit threshold used for safing data [15:0] comparison Updated by SSM_RESET or SPI write while in DIAG state DocID025869 Rev 3 105/200 199 SPI interface 5.1.46 L9678, L9678-S Safing control registers (SAF_CONTROL_x) Safing control register for record 1 (SAF_CONTROL_1) Safing control register for record 2 (SAF_CONTROL_2) Safing control register for record 3 (SAF_CONTROL_3) RW Buffer: $EF00 (SAF_CONTROL_1) $F000 (SAF_CONTROL_2) $F100 (SAF_CONTROL_3) $F200 (SAF_CONTROL_4) Reset: $80DE (SAF_CONTROL_1) $80E0 (SAF_CONTROL_2) $80E2 (SAF_CONTROL_3) $80E4 (SAF_CONTROL_4) ARMSELx 6 X X ARM2x ARM1x CSx[2:0] IFx 0 0 ARM1x CSx[2:0] IFx 5 4 3 2 1 0 SSM Type: 7 WSM $EF (SAF_CONTROL_1) $F0 (SAF_CONTROL_2) $F1 (SAF_CONTROL_3) $F2 (SAF_CONTROL_4) 8 POR Address: 9 ARM2x 10 DWELLx[1:0] DWELLx[1:0] 0 11 COMBx 0 12 COMBx 0 13 LIM Enx 0 14 LIM Enx - MISO 15 LIM SELx 16 SPIFLDSELx SPIFLDSELx MOSI 17 ARMSELx 18 ARMSELx 19 LIM SELx Safing control register for record 4 (SAF_CONTROL_4) 00 00 00 ARMINT select for safing record x - correlates ARMINT 1 and ARMINT2 (as determined by ARM1x and ARM2x bits) to ARMP and ARMN Updated by SSM_RESET or SPI write while in DIAG state 00 ARMP OR ARMN 01 ARMP 10 ARMN 11 ARMP OR ARMN SPIFLDSELx 106/200 0 0 0 SPI field select for safing record x - determines which 16-bit field in long SPI messages (>31 bit) to use for response on MISO of SPI monitor. In case of messages less than 32 bits this bit is don't care. DocID025869 Rev 3 L9678, L9678-S SPI interface Updated by SSM_RESET or SPI write while in DIAG state 0 First 16 bits of SPI MISO frame used for Response Mask and Data Mask bit-wise AND 1 Last 16 bits of SPI MISO frame used for Response Mask and Data Mask bit-wise AND LIM SELx 0 0 0 Data range limit select for safing record x - When enabled, determines the range limit used for incoming sensor data Updated by SSM_RESET or SPI write while in DIAG state 0 8-bit data range limit - incoming |data| >120d is not recognized as valid data 1 10-bit data range limit - incoming |data| > 480d is not recognized as valid data LIM Enx 0 0 0 Data range limit enable for safing record x Updated by SSM_RESET or SPI write while in DIAG state 0 Data range limit disabled 1 Data range limit enabled COMBx 0 0 0 Combine function enable for safing record x Updated by SSM_RESET or SPI write while in DIAG state 0 Combine function disabled 1 Combine function enabled For record pairs = x,x+1, the comparison for record x uses |data(x) + data(x+1)| and the comparison for record x+1 uses |data(x) - data(x+1)| Record pairs are 1,2 and 6,7 DWELLx[1:0] 00 00 00 Safing dwell extension time select for safing record x Updated by SSM_RESET or SPI write while in DIAG state 00 2048 ms 01 256 ms 10 32 ms 11 0 ms ARM2x 0 0 0 ARM2INT select for safing record x - correlates safing result to ARM2INT Updated by SSM_RESET or SPI write while in DIAG state 0 Safing record x not assigned to ARM2INT 1 Safing record x assigned to ARM2INT ARM1x 0 0 0 ARM1INT select for safing record x - correlates safing result to ARM1INT Updated by SSM_RESET or SPI write while in DIAG state DocID025869 Rev 3 107/200 199 SPI interface L9678, L9678-S 0 Safing record x not assigned to ARM1INT 1 Safing record x assigned to ARM1INT CSx[2:0] 000 000 000 SPI Monitor CS select for safing record x Updated by SSM_RESET or SPI write while in DIAG state 000 None selected for record x 001 SAF_CS0 selected for record x 010 SAF_CS1 selected for record x 011 None selected for record x 100 None selected for record x 101 SPI_CS selected for record x 110 None selected for record x 111 None selected for record x IFx 0 0 0 SPI format select for safing record x - selects response protocol for SPI monitor Updated by SSM_RESET or SPI write while in DIAG state 0 Out of frame response for record x 1 In Frame response for record x 108/200 DocID025869 Rev 3 L9678, L9678-S 5.1.47 SPI interface Safing record compare complete register (SAF_CC) 19 18 MOSI MISO 17 16 0 0 0 0 R Buffer: $FF00 Reset: - CC_xx 12 11 10 9 8 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 SSM Type: 13 X WSM FF 14 X POR Address: 15 0 0 0 CC_4 CC_3 CC_2 CC_1 Indicates compare complete status of each of the 4 safing records, and defines the end of the sample cycle for safing Cleared by SSM_RESET or SPI read, set by safing engine when request, response mask and target registers match the incoming SPI frame 0 Compare not completed for record x 1 Compare completed for record x DocID025869 Rev 3 109/200 199 Deployment drivers 6 L9678, L9678-S Deployment drivers The squib deployment block consists of 4 independent high side drivers and 4 independent low side drivers. Squib deployment logic requires a deploy command received through SPI communications and either an arming condition processed by safing logic or a proper FENH and FENL input pin assessment, depending on whether the internal safing engine is used or not. FENH signal is used to enable high side squib drivers and is active high, while FENL enables low side drivers and is active low. Both conditions must exist in order for the deployment to occur. Once a deployment is initiated, it can only be terminated by a RESET event. L9678 allows all 4 squib loops to be deployed at the very same time or in other possible timing sequence. Deployment drivers are capable of granting a successful deployment also in case of short to ground on low-side circuit (SRx pins). Firing voltage capability across high side circuit is maximum 25 V. High side and low side drivers account for a maximum series total resistance of 2 ȍ. Each loop is granted for a minimum number of deployments of 50, under all normal operating conditions and with a deployment repetition time higher than 10s. 6.1 Control logic A block diagram representing the deployment driver logic is shown below. Deployment driver logic features include: x Deploy command logic x Deployment current selection x Deployment current monitoring and deploy success feedback x Diagnostic control and feedback Figure 20. Deployment driver control blocks '&5 'HSOR\PHQW&RQILJXUDWLRQ 5HJLVWHU '(3&20 'HSOR\PHQW &RPPDQG5HJLVWHU 'HSOR\ 5HTXHVW 9DOLGDWLRQ )(1+ ; +LJK 6LGH )(7 ; 6)[ '&076[ 'HSOR\&XUUHQW 0RQLWRU6WDWXV 'HSOR\PHQW &RQWURO  7LPLQJ LQWFON ,7+'(3/ '&5 'HSOR\PHQW &RQILJXUDWLRQ 5HJLVWHU ,QW([WVDILQJHQJLQH &XUUHQW 0RQLWRU '&5 '65[ 'HSOR\PHQW &RQILJXUDWLRQ 5HJLVWHU 'HSOR\PHQW6WDWXV 5HJLVWHU /RZ 6LGH )(7 )(1/ ; ; 65[ $50 ; 6DILQJ(QJLQH 3URJUDPPDEOH /RRS $VVLJQPHQWV ,QW([WVDILQJHQJLQH '!0'03 110/200 DocID025869 Rev 3 L9678, L9678-S Deployment drivers Figure 21. Deployment driver control logic - Enable signal $50,1*67$7( $QDORJ ',$*67$7( 'HSOR\PHQW /3',$*5(4 /($.B&+6(/[  '67(67 +6)(7B7(67  %ORFN 6$)(6(/ )(1+ (1$%/(B+6[ $50,17 $50B/[ $50,17 $50B/[ )(1/ 6$),1*67$7( $50B(1 (1$%/(B/6[ ',$*67$7( /3',$*5(4 /($.B&+6(/[  '67(67 /6)(7B7(67  '!0'03 Figure 22. Deployment driver control logic - Turn-on signals $50,1*67$7( ([SLUDWLRQ 7LPHU 6$),1*67$7( '(3B(1$%/('67$7( 6 63,B'(35(4[ 5 6605(6(7 '(3B',6$%/('67$7( 8S&WU (;3B7KUHVK (1 &/5 &+['(3 &+[67$7 6 5 '(3B7KUHVK 8S&WU (1$%/(B+6[ (1$%/(B/6[ 6 ',$*67$7 ( '67(67 38/6( 5 (1 &/5 /6B29(5B&85[ *1'B/266[ 'HSOR\ 7LPHU 6605(6(7 6 6 5 5 &+['6 +6B21[ '67(67 +6)(7B7(67 /3',$*5(4 /($.B&+6(/[ /6B21[ '67(67 /6)(7B7(67 $1$/2* 'HSOR\PHQW%/2&. '!0'03 The high level block diagram for the deployment drivers is shown below: DocID025869 Rev 3 111/200 199 Deployment drivers L9678, L9678-S Figure 23. Deployment driver block 66[\ 5 P7 5 23ZLWKVZLWFKLQJ 2IIVHWFRPSHQVDWLRQ (QDEOHB+6[ 5   23SKDVH 23SKDVH   [,5() 5  6)[ 2SHQWRVKRUWFRPS Q) 7RGHSOR\ FXUUHQW ! FRXQWHU 5VTXLE 65[ 9FODPS !9 ,SXOOGRZQ 9 +6B2)) Q) 6DPHSRZHU WUDQVLVWRU /6B21 ,5() P$ (1B,6,1. ,OLPLW !$W\S  (QDEOHB/6[ /6B2&B&RPS  ,OLPLW P$ W\S 6*[\  /RVVJURXQG GLRGH /6B/RVV B*QG  *1'68%  *$3*36 6.1.1 Deployment current selection Deployment current is programmed for all channels using the Deploy Configuration Register (DCRx) shown in “Deployment Configuration register (DCRx). If 1.75 A deployment current is selected, the 2 ms deployment time cannot be chosen. If a SPI command with 2 ms and 1.75 A selection is received, L9678 will discard it and switch to a 500 μs and 1.2 A selection instead. This misuse is flagged with the CHxDD bit in the Deploy Status Register (DSR). 6.1.2 Deploy command expiration timer Deploy commands are received for all channels using SPI communications. Once a deploy command is received, it will remain valid for a specified time period selected in the Deploy Configuration Register (DCRx). The deploy status and deploy expiration timer can be read through the Deploy Status Register (DSRx). The deploy expiration timer is 6 bits and the maximum time is 500 ms nominal. 112/200 DocID025869 Rev 3 L9678, L9678-S 6.1.3 Deployment drivers Deployment control flow Deployment control logic requires the following conditions to be true to successfully operate a deployment: x POR = 1 x SSM to be either in Safing State or Arming State x a valid arming condition processed by safing logic or FENH and FENL signals to be set (depending on selection of internal or external safing engine) x "channel-specific deploy command request bits to be set via SPI in the Deploy command Register (DEPCOM) x a global deployment state has to be active, as described in the following figure. Figure 24. Global SPI deployment enable state diagram 660B5HVHW '(3B',6$%/(' 63,B63,'(3(1 '(3(1B:5 63,B63,'(3(1 '(3(1B:5 81/2&. /2&. '(3B(1$%/(' '!0'03 In case a multiple deployment request would be needed, i.e. deploying the same channel in sequence, a toggle on DEP_DISABLED has to be performed and a new DEPCOM command on the same channel has to be sent. The SPI DEPCOM command is ignored if the device is in the DEP_DISABLED state and the deploy command is not set. While in DEP_ENABLED state, the following functionalities that could be active are forced to their reset state: x All squib and DC sensor diagnostic current or voltage sources x All squib, DC sensor and ADC diagnostic mux settings, state machine, etc. The SPI_LOCK and SPI_UNLOCK signals are available in the SPIDEPEN command: High-side and Low-side enablers by internal/external safing are global and apply to all channels. The Deploy commands in the Deploy Command Register (DEPCOM) are channel specific. Deployment requires a valid arming command from safing logic or the FENH and FENL signals to be set any time before, during or after the specific sequence of deploy commands is received. It is feasible for a deploy command to be received without a valid arming command from safing logic or the FENH and FENL being set. In this case, the deploy command will be terminated according to the Deploy Command Expiration Timer described in Section 6.1.2. Likewise, a valid arming command or the FENH and FENL signals can be set without receiving a Deploy Command. In this case, the enabling signals will remain active according to the Arming Enable Pulse Stretch Timer or the FENx enabling state. The Arming Enable Pulse Stretch Timers is available in the AEPSTS register. DocID025869 Rev 3 113/200 199 Deployment drivers 6.1.4 L9678, L9678-S Deployment success Deploy success flag is set when the deploy timer elapses. This bit (CHxDS) is contained in the Deploy Status Register. Within the Global Status Word register (GSW), a single bit (DEPOK) is also set once any of the four deployment channels sets a deploy success flag. 6.2 Energy reserve - deployment voltage One deployment voltage source pin is used for channels 0 and 1 (SS01) and one for channels 2 and 3 (SS23). These pins are directly connected to the high side drivers for each channel. 6.3 Deployment ground return There are dedicated power ground connections for deployment current, SGx pins. One ground connection is sufficient for two deployments occurring simultaneously. 6.4 Deployment driver protections 6.4.1 Delayed low-side deactivation To control voltage spikes at the squib pins during drivers deactivation at the end of a deployment, the low side driver is switched off after tDEL_SD_LS delay time with respect to the high side deactivation. 6.4.2 Low-side voltage clamp The low side driver is protected against overvoltage at the SRx pins by means of a clamping structure as shown in Figure 23. When the Low side driver is turned off, voltage transients at the SRx pin may be caused by squib inductance. In this case a low side FET drain to gate clamp will reactivate the low side FET allowing for residual inductance current recirculation, thus preventing potential low side FET damage by overvoltage. 6.4.3 Short to battery The low side driver is equipped with current limitation and overcurrent protection circuitry. In case of short to battery at the squib pins, the short circuit current is limited by the Low side driver to ILIM_SR. If this condition lasts for longer than TFLT_ILIM_LS deglitch filter time then the low and high-side drivers will be switched off and latched in this state until a new deployment is commanded after SPI_DEPEN is re triggered. 6.4.4 Short to ground The squib driver is designed to stand a short to ground at the squib pins during deployment. In particular, the current flowing through the short circuit is limited by the high side driver (deployment current) and the high-side FET is sized to handle the related energy. In case the short to ground during deployment occurs after an open circuit, a protection against damage is also available. The high side current regulator would have normally reacted to the open circuit by increasing the Vgs of the high side FET. Thanks to a dedicated 114/200 DocID025869 Rev 3 L9678, L9678-S Deployment drivers fast comparator detecting the open condition, the driver is able to discharge the FET gate quickly in order to reduce current overshoot and prevent potential driver damage when the short to ground occurs. 6.4.5 Intermittent open squib A dedicated protection is also available in case of intermittent open load during deployment. In this case, if load is restored after an open circuit, due to slow reaction of the high-side current regulation loop, the current through the squib is limited only to ILIMSRx by the low side driver. If this condition lasts for longer than tLIMOS then the high side is turned off for tHSOFFOS and then reactivated. By this feature, intermittent open squib and short to battery faults may be distinguished and handled properly by the drivers. 6.5 Diagnostics The L9678 provides the following diagnostic feedback for all deployment channels: x High voltage leakage test for oxide isolation check on SFx and SRx x Leakage to battery and ground on both SFx and SRx pins with or without a squib x Loop to loop short diagnostics x Squib resistance measurement with leakage cancellation x High squib resistance with range from 500 ȍ to 2000 ȍ x SSxy, SFx and VER voltage status x High and low side FET diagnostics x High side driver diagnostics x Loss of ground return diagnostics x High side safing FET diagnostics x Deployment Timer diagnostic The above diagnostic results are processed through a 10 bit Analog to digital algorithmic converter. These tests can be addressed in two different ways, with a high level approach or a low-level one. The main difference between the two approaches is that with the low level approach the user is allowed to precisely control the diagnostic circuitry, also deciding the proper timings involved in the different tests. On the other hand, the high level approach is an automatic way of getting diagnostic results for which an internal state machine is taking care of instructions and timings. The following is the block diagram of the squib diagnostics. DocID025869 Rev 3 115/200 199 Deployment drivers L9678, L9678-S Figure 25. Deployment loop diagnostics 9(5SLQ IURP(QHUJ\5HVHUYH 6DILQJ WUDQVLVWRU 95(6',$* ,65& P$ 66[\ %\SDVV Q) 6TXLEUHVLVWDQFHPHDVXUH V\VWHPHUURU 9JQGRU 9%DW 6)[ 5/HDN 9UHI Y Q) [1 $WR' 6TXLEORRS GULYHUDQG GLDJQRVWLF EORFNV 5VTXLE 7 WR7   9RXW ELW 7RW HUU “/6% /6% 9 9RIIVHW  +9DQDORJ08; *DLQ  9JQGRU 9%DW 65[ 6TXLEUHVLVWRU+,*+ ,SXOOGRZQ , P$ 6TXLEUHVLVWRU/2: 6KRUWWR*1' 5OHDN !. 7 QRGHWHFWLRQ 5OHDN .7 GHWHFWLRQ 5/HDN Q)   6*[ 9UHI Y ,6,1. *1'$ ,OLPLW P$ 6KRUWWR%$7 5OHDN !. 7 QRGHWHFWLRQ 5OHDN .7 GHWHFWLRQ 95&0 YROWDJHUHJXODWRUFXUUHQWPRQLWRU *$3*36 The leakage diagnostic includes short to battery, short to ground and shorts between loops. The test is applied to each SFx and SRx pin so shorts can be detected regardless of the resistance between the squib pins. 6.5.1 Low level diagnostic approach In this approach, each of the test steps described in the sections below requires user intervention by issuing the proper SPI command. High voltage leakage test for oxide isolation check This test is mandatory to address possible leakages that could not be experienced at low voltages on SFx or SRx pins. The Isource current generator (ISRC) is enabled on the chosen SFx pin. To confirm that the SFx pin has then reached a suitable voltage level, a dedicated ADC measurement on the SFx pin can be requested. Once this test is performed, a leakage test on SFx and SRx pins can be issued to double check possible leakages. Leakage to battery/ground diagnostics Prior to the real test, the Voltage Regulator Current Monitor block (VRCM) has to be tested and validated. The validation of VRCM goes into verifying both the short to battery and short to ground flags. The Isource current generator (ISRC) is first connected to SFx pin to raise its voltage to VRESDIAG. Then, the Voltage Regulator Current Monitor block (VRCM) is enabled and connected to the selected SFx pin. The Isink current limited switch (ISNK) is turned off, as 116/200 DocID025869 Rev 3 L9678, L9678-S Deployment drivers well as the pull-down current generator. If the VRCM block works properly, the short to battery flag would be asserted. Then, the Isink current limited switch (ISNK) is connected to SRx pin, the Voltage Regulator Current Monitor block (VRCM) is enabled and connected to the selected SRx pin. The Isource current generator (ISRC) is turned off, as well as the pull-down current generator. If the VRCM block works properly, the short to ground flag would be asserted. Figure 26. SRx pull-down enable logic /3',$*5(4 3'B&855 +6B21[ (1B3'B&855[ /6B21[ /3',$*5(4 ,65& RU /3',$*5(4 5(6B0($6B&+6(/[ /3',$*5(4 ,61. /3',$*5(4 95&0 RU /3',$*5(4 /($.B&+6(/[ /3',$*5(4 ',$*B/(9(/ /3',$*5(4 /223B',$*B&+6(/[   DQG  /3',$*5(4 +,*+B/(9(/ B',$*B6(/ *$3*36 Once the VRCM block is validated, the real leakage tests can be performed. ISRC and ISNK currents have to be kept switched off. The VRCM shall be connected to the desired pin (either SFx or SRx pins); by doing this, also the pull-down current on the selected SRx pin is automatically deactivated). During the test, if no leakage is present the voltage on the selected SFx or SRx pin will be forced by the VRCM to the VREF level and no current is detected or sourced by the VRCM. If there is leakage to ground or battery, the VRCM will sink or source current trying to maintain VREF. Two current comparators, ISTB and ISTG, will detect the abnormal current flow and the relative flags will be given in the LPDIAGSTAT (these flags are not latched and report the real time status of the relevant comparators in case of low-level leakage diagnostic test). In LPDIAGSTAT register are also reported the channel and the pin (SFx or SRx) under test, respectively with LEAK_CHSEL and SQP bit fields. The pull-down currents on the other SRx pins are still active. Therefore, the leakage test that would show a leakage to ground may be depending on a real leakage on the pin under test or on a short between loops. Short between loops diagnostics In case the previous test has reported a leakage to ground fault, the short between loops diagnostics shall be run. The same procedure is followed as described for normal leakage tests except the fact that in this case all the pull-down current generators have to be deactivated (not only the one for the pin under test), by means of the PD_CURR bit in the Diagnostic Request Register (LPDIAGREQ). If a leakage or ground fault is not present, then the channel under test has a short to another squib loop. DocID025869 Rev 3 117/200 199 Deployment drivers L9678, L9678-S Table 8. Short between loops diagnostics decoding Channel leakage diagnostics with PD_CURR on (for other channels than the one under test Channel leakage diagnostics with PD_CURR off (for all channels) No fault No fault Short to battery STB fault STB fault Short to ground STG fault STG fault Short between loops STG fault No fault Fault condition on squib channel No shorts The condition of two open channels, i.e. without squib resistance connecting SFx to SRx, that have a short between loops on SFx cannot be detected. If only one of the two shorted SFx pins is open, the fault is indicated on the open channel. Squib resistance measurement During a resistance measurement, a two-step process is performed. At the first step, both ISRC current generator and ISNK current limited switch are enabled and connected to the selected SFx and SRx channel, through ISRC, ISNK and RES_MEAS_CHSEL bit fields in the Loop Diagnostic Request Register (LPDIAGREQ). A differential voltage is created between the SFx and SRx pin based in the ISRC current and squib resistance between the pins. The SPI interface will provide the first resistance measurement voltage (Vout1) based on the amplifying factor of the differential amplifier and a 10 bit internal ADC conversion. The second measurement step (bypass measurement) is performed redirecting ISRC to the selected SRx pin, while keeping ISNK on; this way, the differential amplifier and following ADC will output the offset measurement through SPI (Vout2). Microcontroller is then allowed to calculate the mathematical difference between first and second measurements to obtain the real squib resistance value. The current sources ISRC and ISNK used for Squib Resistance measurements are completely controlled by the user via SPI. Optionally, an automatic control by the IC for current sources switch-off after ADC reading can be activated by enabling the EN_AUTO_SWITCH_OFF bit in the SYS_CFG register. R sq § R leak u R sq· V out1 = G u I source u ¨ -------------------------------¸ + ------------------------------- V gnd – V refSQL + G u V offset R + R R © leak sq¹ leak + R sq G u R sq V out2 = ------------------------------- u V gnd – V refSQL + G u V offset R leak + R sq 'V out - (assuming Rleak >> Rsq) R sq = ------------------G u I src where: G = differential amplifier gain. The simplification in the calculation method reported above can result in some amount of error that is already incorporated in the overall tolerance of the squib resistance measurement reported in the electrical parameters table. 118/200 DocID025869 Rev 3 L9678, L9678-S Deployment drivers Values of each measurement step can be required addressing the proper ADCREQx code in the Diagnostic Control command (DIAGCTRL) on Table 11: Diagnostics control register (DIAGCTRLx) on page 159. This calculation is tolerant to leakages and, thanks to a dedicated EMI low-pass filter, also to high frequency noises on squib lines. Moreover, L9678 features a slew rate control on the ISRC current generator to mitigate emissions. High squib resistance diagnostics With this test, the device is able to understand if the squib resistance value is below 200 :, between 500 : and 2000 : or beyond 5000 :. During a high squib resistance diagnostics, VRCM and ISNK are enabled and connected respectively to SFx and SRx on the selected channel. VREF voltage level outputs on SFx. Current flowing on SFx is measured and compared to ISRlow and ISRhigh thresholds to identify if the resistance is above or below RSRlow or RSRhigh levels. The results are reported in the LPDIAGSTAT register. The relative flags (HSR_HI and HSR_LO) are not latched and reflect the current status of the comparators. High and low side FET diagnostics This couple of tests can only be run during the diagnostic mode of the power-up sequence (Figure 9). Tests are performed individually for HS driver or LS driver, with two dedicated commands. Prior to either the HS or LS FET diagnostics being run, the VRCM has to be first enabled. Within the command to enable the VRCM, also the channel onto which the FET test will be run has to be selected with the LEAK_CHSEL bit field. Running the leakage diagnostics with the appropriate delay time prior to either the HS or LS FET diagnostics will precondition the squib pin to the appropriate voltage level. When the FET diagnostic command is issued with the Diagnostic Register SPI command (SYSDIAGREQ), the VRCM flags will be cleared. The device monitors the current through the VRCM. If the FET is working properly, this current will exceed ISTB (HS test) or ISTG (LS test) and the driver under test is turned off immediately. If the current does not exceed ISTB or ISTG then the test will be terminated and the output is anyway turned off within TFETTIMEOUT. During TFETTIMEOUT period, the bit stating that the FET is enabled will be set (FETON=1) and will be cleared as soon as the FET is switched back off. For all conditions the current on SFx/SRx will not exceed ILIM_VRCM_X, the VRCM block current limitation value. There may be higher currents on the squib lines due to the presence of filter capacitors. During these FET tests, energy available to the squib is limited to less than EFETtest. For high side FET diagnostics, if no faults were indicated in the preceding leakage diagnostics then a normal result would be [STB=1, STG=0]. If the returned result for the high side FET test is not as the previous then either the FET is not functional, a short to ground occurred during the test, or there is a missing SSxy connection for that channel. For low side FET diagnostics if no faults were indicated in the preceding leakage diagnostics then a normal result would be [STB=0, STG=1]. If the returned result for the low side FET test is not as the previous one then either the FET is not functional or a short to battery occurred during the test. In case of SGx loss the low-side FET diagnostic would not indicate a FETfault. DocID025869 Rev 3 119/200 199 Deployment drivers L9678, L9678-S The VRCM flags will be given in the LPDIAGSTAT register. The status of the VRCM flags after FET test is latched and can be cleared upon either LPDIAGREQ or SYSDIAGREQ SPI commands. Loss of ground return diagnostics This diagnostics is available during a squib measurement or a high side driver diagnostics. This test is based on the voltage drop across the ground return, if the voltage drop exceeds VSGopen, ground connection is considered as lost. Should the ground connection on the squib driver circuit be missing, the bit related to the channel under test by the two above diagnostics will be activated in the LP_GNDLOSS register. The flag is latched after a proper filter time tSGopen and cleared upon read. High side safing FET diagnostics This test has to be issued during the Diag state of the power-up sequence (Figure 9). Safing FET has to be switched on with the proper code in DSTEST bit field of the SYSDIAGREQ. Therefore, when the command is received, the device activates VSF regulator to supply the external safing FET controller. The user can measure the voltage levels of both the VSF regulator and the SSxy nodes. If the safing FET is properly switched on, the voltage on SSxy is regulated. The measurement request is done via Diagnostic Control command (DIAGCTRLx), while results are reported through ADCRESx bit fields, as shown in Table 11. Deployment timer diagnostic This test allows verifying the correct functionality and duration of the timers used to control the deployment times. This test can be executed only when the IC is in the Diag state by setting the appropriate code in the DSTEST field of the SYSDIAGREQ register. When the test is launched, the IC sequentially triggers the activation of the deployment timers of the various channels (each of them separated by 8ms idle time) and outputs the relevant waveform to the ARM output discrete pin. See the sequence detail in Figure 27. The MCU can therefore test the deployment times by measuring the duration of the high pulses sent by the IC on the ARM pin. The deployment time configuration used during this test is the latest one programmed in the DCRx registers. In case the test is run on a channel with no DCRx deployment time previously configured, a default 8us high pulse is output on ARM for the relevant channel. 120/200 DocID025869 Rev 3 L9678, L9678-S Deployment drivers Figure 27. Deployment timer diagnostic sequence )URPDQ\VWDWH ',$*VWDWH 63,B6L@ " < &6>L@  FVBDFWLYH" 1 < ,)>L@ " 1 UHTBRN>L@ " < 1 < QG 63,)/'6(/>L@"   63,)/'6(/>L@" VW VW 1 QG 5(637$5*>L@ VW>0,62@ 5(630$6.>L@ 5(637$5*>L@ QG>0,62@ 5(630$6.>L@ < PDWFK>L@  UHTBRN>L@  < GDWDUHVXOW>L@  VW>0,62@  '$7$0$6. >L@ 1 1 5(637$5*>L@ QG>0,62@ 5(630$6.>L@ < < GDWDUHVXOW>L@  VW>0,62@  '$7$0$6. >L@ GDWDUHVXOW>L@  QG>0,62@  '$7$0$6. >L@ PDWFK>L@  5(637$5*>L@ VW>0,62@ 5(630$6.>L@ 1 PDWFK>L@  UHTBRN>L@  GDWDUHVXOW>L@  QG>0,62@  '$7$0$6. >L@ PDWFK>L@  5(47$5*>L@ 06>026,@ 5(40$6.>L@" PDWFK>L@  PDWFK&&>L@  UHTBRN>L@  1 < PDWFK>L@  PDWFK&&>L@  5(47$5*>L@ 06>026,@ 5(40$6.>L@" PDWFK>L@  1 < L 1 L 1" < 140/200 UHTBRN>L@  UHTBRN>L@  1  / 1  / 1  / % 2XWSXWVWR9$/'$7IXQFWLRQ  GDWDUHVXOW>L@ UHTBRN>L@ PDWFK>L@ DocID025869 Rev 3 '!0'03 L9678, L9678-S Safing logic Figure 41. Safing engine - 32-bit message decoding flow chart 06*'(& % L " < 1 L 1" L  UHFRUGV 1  / 1  // < 1 (1B6$) L  " L 6DILQJ5HFRUGLQGH[ 65 65 65 65 /VNLSVELW & 1 2XWSXWVWR9$/'$7IXQFWLRQ  GDWDUHVXOW>L@ PDWFK>L@ < 1 &&>L@ " < &6>L@  FVBDFWLYH" 1 < ,)>L@ " 1 1 < UHTBRN>L@ " < UHTBRN>L@  5(637$5*>L@ 0,62 5(630$6.>L@ 5(637$5*>L@ 0,62 5(630$6.>L@ 1 < < GDWDUHVXOW>L@  0,62  '$7$0$6. >L@ 0DWFK>L@  GDWDUHVXOW>L@  0,62  '$7$0$6. >L@ 5(47$5*>L@ 026, 5(40$6.>L@" 5(47$5*>L@ 026, 5(40$6.>L@" 1 < PDWFK>L@  1 PDWFK>L@  1 < PDWFK>L@  PDWFK>L@  UHTBRN>L@  UHTBRN>L@  L *$3*36 DocID025869 Rev 3 141/200 199 Safing logic L9678, L9678-S Figure 42. Safing engine - validate data flow chart 9$/'$7 & L 6DILQJ5HFRUGLQGH[ 65 65 65 65 L  0DWFK>L@   &20%>L@  < 1 1 &KHFNVIRUFRPELQDEOH UHFRUGV = / = / = / L=  &20%>L@  < &KHFNVIRURGGLQGLFHV 1 0RG L < 1 0DWFK>L@   0DWFK&&>L@  < 1 0DWFK>L@   0DWFK&&>L@  < &&>L@  1 &&>L@ " < < /,0(1>L@ " 1 /,06(/>L@ " < 1 $EV GDWDUHVXOW>L@  G" $EV GDWDUHVXOW>L@  G" 1 1 < < YDOGDW>L@  YDO&&>L@  YDOGDW>L@  YDO&&>L@  YDOGDW>L@  YDO&&>L@  YDOGDW>L@  YDO&&>L@  YDOGDW>L@  YDO&&>L@  L L < 1 L  1 142/200 L   /" L 1" 1  / 1  / 1  / < ' DocID025869 Rev 3 2XWSXWVWR&20%,1(IXQFWLRQ &&>L@ YDOGDW>L@ YDO&&>L@ *$3*36 L9678, L9678-S Safing logic Figure 43. Safing engine - combine function flow chart ' &20%,1( L 6DILQJ5HFRUGLQGH[ 65 65 65 65 L  9DO&&>L@ YDO&&>L@ " 1 < &20%>L@ " 1 < WHPS GDWDUHVXOW>L@ GDWDUHVXOW>L@ WHPSGDWDUHVXOW>L@ 1 &20%>L@ " < WHPS GDWDUHVXOW>L@ GDWDUHVXOW>L@ WHPS GDWDUHVXOW>L@ L L 1 L 1" 1  / 1  / 1  / < ( 2XWSXWVWR&203$5(IXQFWLRQ GDWDUHVXOW>L@ &&>L@ FRPS>L@ DocID025869 Rev 3 '!0'03 143/200 199 Safing logic L9678, L9678-S Figure 44. Safing engine threshold comparison ( &203$5( L  1 9DOGDW>L@ " 1RPDWFKFDVH < 1 PDWFK>L@ " GDWDUHVXOW>L@• 6$)B7+5(6+>L@ 1 GDWDUHVXOW>L@” 6$)B7+5(6+>L@ 326B&2817>L@ 326B&2817>L@ 68%B9$/ 1(*B&2817>L@ 1(*B&2817>L@ $''B9$/ < 1 'DWDRXWRI UDQJHFDVH 326B&2817>L@ " 1 1(*B&2817>L@ 1(*B&2817>L@ 68%B9$/ 1(*B&2817>L@ " < < 326B&2817>L@  1 12B'$7$ >L@ " < 326B&2817>L@ 326B&2817>L@ $''B9$/ < < 1 326B&2817>L@ 326B&2817>L@ 68%B9$/ 1(*B&2817>L@ 1(*B&2817>L@ 68%B9$/ 1(*B&2817>L@  1(*B&2817>L@ " 326B&2817>L@! $503B7+" 1 1(*B&2817>L@! $501B7+" < 1 1 1(*B&2817>L@  $501B7+ 326B&2817>L@ " 1 < 1(*B&2817>L@  < 326B&2817>L@  $503B7+ 1(*B&2817>L@  326B&2817>L@  < 326B&2817>L@  0DWFK>L@  YDOGDW>L@  L L < L   /" 1 L  1 L 1" 1  / 1  / 1  / < ) '!0'03 144/200 DocID025869 Rev 3 L9678, L9678-S Safing logic Figure 45. Safing engine - compare complete * &&B5($' L  < &&>L@ " 1 1 12B'$7$ >L@ " < 326B&2817>L@ 326B&2817>L@ 68%B9$/ 1(*B&2817>L@ 1(*B&2817>L@ 68%B9$/ 1(*B&2817>L@ " 1 1(*B&2817>L@  326B&2817>L@ " 1 < 1(*B&2817>L@  < 326B&2817>L@  326B&2817>L@  &&>L@  YDO&&>L@  PDWFK&&>L@  L < L  1 L   /" < 1 L 1" 1  / 1  / 1  / < + 2XWSXWV &&>L@ PDWFK>L@ PDWFK&&>L@ 326B&2817>L@ 1(*B&2817>L@ DocID025869 Rev 3 '!0'03 145/200 199 Safing logic L9678, L9678-S Each safing record has SPI accessible registers defined in the SPI command tables and summarized below: x Request Mask and Request Target - to understand what sensor the microcontroller is addressing x Response Mask and Response Target - to identify the sensor response – Data Mask - to extract relevant sensor data from the response. Sensor data is extracted as a bit-wise AND result of the SAF_DATA_MASKx and monitored SPI_MISO data – The extracted data is then right-justified into a 16-bit register for 16-bit safing records, respectively, prior to further processing steps which assume data is signed - two-s complement represented x Safing Threshold - specific value that sets the comparator limit for successful arming x Control: – IF, In Frame - to indicate serial data response is "in frame". There are two types of potential serial data responses, "in-frame" and "out of frame" – CS - to align safing record with a specific SPI CS. The device contains 2 SPI CS inputs for the safing function (SAF_CS0 and SAF_CS1) – ARM - there are two internal arming signals, each active record is assigned or mapped to any arming signal. Several safing records can be mapped to a single arming output – Dwell - Once an arming condition is detected, the safing record remains armed for the specified dwell time – Comb (Combined Data) - specific solution for dual axis high-g sensors specifically oriented off-axis – Lim En (Limit Enable) - to enable PSI5 out-of-range control – Lim Sel (Limit Select) - to select PSI5 out-of-range thresholds between 8-bit and 10-bit protocol – SPIFLDSEL (Spi Field Select) – to determine which 16-bit field in long SPI messages (>31 bit) to use for response on MISO of SPI monitor. If the SPIFLDSEL bit is set to 0 the message bits from 0 (first bit received) to 15 are processed, while if set to 1 the message bits from 16 to 31 are processed. SPIFLDSEL bit will not help L9678 device to work with sensor that places data across this boundary or has response and data in separate 'fields'. In case of message less than 32-bit, always the first 16bits received will be processed regardless of the SPIFLDSEL value. If input packet matches multiple safing records, the safing engine should process all of them and treat them independently. Safing record can only be evaluated on the first matching input packet. Any further data packet matches are ignored (i.e. once CC is set, record can't be processed until is cleared). The En (Record Enable) bit for any record is programmable as on or off at any time and will enable/disable the record itself upon the following sensor sampling period. All CC bits are available in one register (SAF_CC) for access in one single SPI read. Safing Engine must not process sensor data in any state but Safing state (refer to Figure 9). All safing records are cleared on SSM RESET. 146/200 DocID025869 Rev 3 L9678, L9678-S Safing logic Comb (Combined Data) bit allows combining X and Y for off-axis oriented sensors. In this case, it is typical for such orientations to add or subtract the sensor response to translate the sensor signal to an on-axis response. Only couples of 16-bit long records have this feature (i.e. 1&2, 3&4). Records are added and subtracted and results compare against two thresholds. Safing engine will process data as follows: x Use record (n) and record (n+1), where n = 1, 3. x The matching inputs used for math combinations are processed only after both are captured. x The sum of the two matching inputs will be compared to the threshold of record (n). x The difference of the two records will be compared to the threshold of record (n+1). x If the Comb feature was enabled on only one of the two records in a couple, math would be performed only on it as shown in Figure 43. Example: Table 10. Records results compare against two threshold Combine Bit Data Resulting Value Record Threshold (assume ARMP) ARMing Result Record 1 0 12 12 48 0 Record 2 0 50 50 48 1 Record 3 0 12 12 48 0 Record 4 1 50 50 – 12 = 38 48 0 Record 1 1 12 12 + 50 = 62 48 1 Record 2 0 50 50 48 1 Record 3 1 12 12 + 50 = 62 48 1 Record 4 1 50 50 – 12 = 38 48 0 In this example the ARM and dwell assignments for record1 only would be asserted. All items in the safing records, except En(Record Enable) bit, can be configured only in Diag state (refer to Figure 9). Additionally, the global bit to select internal or external safing engine is set in Diag state. DocID025869 Rev 3 147/200 199 Safing logic 10.3 L9678, L9678-S In-frame and out-of-frame responses Some sensors will communicate data within the current communication frame while others will send data on the next communication frame. Sometimes this is sensor specific and sometimes this is due to the amount of data to be transmitted. A simplified diagram shows the basic communication differences of in and out of frame responses. Figure 46. In-frame example -/3) 2EQUESTN -)3/ 3TATUS 5NUSED 2ESPONSEN '!0'03 Figure 47. Out of frame example -/3) 2EQUESTN 2EQUESTN  -)3/ 2EQUESTN  2ESPONSEN '!0'03 Synchronization between clock domains relies upon inter-frame gap. 10.4 Safing state machine operation State machine operation is disabled when the safing state machine reset signal is active as described in the power supply diagnostics and controls section of this document. The outputs of the state machine are ARM1INT and ARM2INT. As previously stated, there is a maximum of 4 safing records available to the state machine. Inputs to the safety state machine are programmed safing records and sensor data. The configuration of the state machine is common to all sensors. 10.4.1 Simple threshold comparison operation In this mode, sensor data received through the sensor SPI interface and validated by the safing record is passed to the safing algorithm. The simple threshold comparison algorithm compares the received data to two thresholds, SAF_TH (positive threshold) and (-SAF_TH) (negative threshold). If the sensor data is greater than SAF_TH or is less than (-SAF_TH) then and event is flagged and the event counter is incremented based on the programmed value of ADD_VAL. If sensor data does not trigger the SAF_TH comparators, the counter is decremented by SUB_VAL. SUB_VAL is programmed by the user and can be same or different than ADD_VAL. This feature allows for an asymmetrical counter function making the system either more or less sensitive to sensor data. Since sensor data can indicate a positive or negative event, the algorithm maintains separate event counters, POS_COUNT and NEG_COUNT. The ADD_VAL and SUB_VAL programmed values are the same for all safing sources. On each sensor sample, the event counters, both POS_COUNT and NEG_COUNT, are updated. Each event counter is then compared with a corresponding arming threshold. In this case, POS_COUNT value is compared to ARMP_TH and NEG_COUNT to ARMN_TH. ARMP_TH and ARMN_TH are programmable thresholds set by the user. The compared result will set ARMP and ARMN to either "1" or "0" depending on the comparison status. If 148/200 DocID025869 Rev 3 L9678, L9678-S Safing logic ARMP_TH or ARMN_TH are set to 0, the arming will be activated immediately entering in safing state. POS_COUNT and NEG_COUNT are not updated if microcontroller stops reading SAF_CC bits (this must be avoided otherwise ARMING set and reset will not be possible). By way of the assignment of the ADD_VAL, SUB_VAL, ARMP_TH and ARMN_TH settings, the safing engine can be configured to assert arming for either a simple accumulation of COUNTs in a non-consecutive manner, or it could be set to require some number of consecutive samples. 10.5 Safing engine output logic (ARMxINT) SPI messages are monitored and mapped to specific safing records. Each safing record is configured with its own threshold, dwell time and the appropriate ARMxINT internal signal to activate if safing criteria are met. Any enabled safing record can be programmed to an arming signal. All safing records arming status is logically "OR'd" to its programmed arming signal. For example, if safing records 1, 2, 4 are programmed to ARMINT1 and the records are enabled, any of the records can set the ARMINT1 signal. Configuration of safing record mapping to ARMxINT signals is specified in the SAF_CONTROL_x register (refer to Safing control registers (SAF_CONTROL_x) on page 106). While in Diag state, L9678 allows diagnostics of the squib driver HS and LS FETs, ARM pin, VSF output and firing timers. The ARM and VSF output tests are mutually exclusive. For safety purposes, the safing logic circuitry is physically separated from the circuitry that contains the deployment logic. DocID025869 Rev 3 149/200 199 Safing logic L9678, L9678-S Figure 48. Safing Engine Arming flow diagram 67$57 L  1 326B&2817>L@ ! $503B7+" 1(*B&2817>L@ ! $501B7+" < $503  1 < $503  $501  $506(/>L@ RU" $506(/>L@ RU" < $501  1 < 1 7,0(5B&17[LVDELW GRZQFRXQWHUDOZD\V UXQQLQJDWPV 1 $50>L@   7,0(5B&17 ':(//>L@ $50>L@   7,0(5B&17 ':(//>L@ < 1 7,0(5B&17[FRQWURO H[WHQGVWRIRUKLJKPLG < 7,0(5B&17 ':(//>L@ 7,0(5B&17 ':(//>L@ L 7,0(5B&17 !" 1 L 1" 7,0(5B&17 !" < 1 $50[,17FRQWUROH[WHQGV WRIRUKLJKPLG < $50,17  1  / 1  / 1  / 1 $50,17  $50,17  $50,17  < *$3*36 150/200 DocID025869 Rev 3 L9678, L9678-S Safing logic Figure 49. Safing engine diagnostic logic 6&/.B* 026,B* 0,62B* &6B* 6$)B&6 6$)B&6 63,'HFRGH 7KUHVKROG &RPSDUH 3XOVH 6WUHWFK '67(67 96)  ',$*67$7( $50,17 '67(67 $50  '67(67 38/6(  &+38/6( &+38/6( &+38/6( &+38/6( $50,17 $50,1*67$7( '!0'03 A configurable mask for each internal ARMxINT signal is available for all of the integrated deployment loops (refer to ARMx assignment registers (LOOP_MATRIX_ARMx) on page 97). The un-masked ARMxINT signal for each loop will enable the respective loop drivers (refer to Figure 21). Activation of VSF (regulation rail for High Side Safing FET) occurs upon ARMxINT or FENH/FENL, depending on SPI configuration (refer to Figure 17). Actual High Side Safing FET activation still requires microcontroller signal. L9678 is able to provide arming signals to external deployment loops by means of the discrete output ARM pin. The ARM pin can either output an arming signal generated by the integrated safing engine or an arming signal made by the combination of FENH and FENL input signals, coming from external safing logic. Figure 50. ARM output control logic :'B581 :'B/2&.287 660B5(6(7 $50B(1 :'B29(55,'( $50,17 6DILQJ (QJLQH $50,17  $50  )(1/ )(1+ 6$)(6(/ '!0'03 DocID025869 Rev 3 151/200 199 Safing logic 10.6 L9678, L9678-S Arming pulse stretch Upon a valid command processed by the safing logic, the Dwell bits to stretch the arming time assertion (dwell time) apply to each safing record and is used to help safe the deployment sequence to avoid undesired behaviour. Once dwell time has started, it will continue, regardless of the En (Record Enable) bit. Dwell will be truncated in case of SSM reset. Dwell values in the safing records are transferred to the ARM signal. A dedicated counter is designed for ARM output pin. If different dwell values are assigned to ARM, the longer value is used. Dwell times can only be extended, not reduced. If the remaining dwell time is less than the new dwell extension setting, the new setting will be loaded into the dwell counter. Dwell times are user programmable. The behavior of the pulse stretch timer is shown in Figure 51. Figure 51. Pulse stretch timer example $UPLQJ6DILQJ/RJLF 3URFHVVHGUHVXOW $UPLQJ(QDEOH 3XOVH6WUHWFK 3XOVH6WUHWFK7LPH /HVV7KDQ3XOVH 6WUHWFK7LPH 3XOVH6WUHWFK 7LPH '!0'03 10.7 Additional communication line The ACL pin is the Additional Communication Line input that provides a means of safely activating the arming outputs (ARM and VSF) for disposal of restraints devices at the end of vehicle life. A valid ACL detection (as described below) allows L9678 to transition from Scrap state to Arming state. To remain in Arming state L9678 must receive the correct ACL signal; this must occur before the scrap time-out timer expires (TdisEOL). While the System Operating State Machine is in Arming state, the arming outputs are asserted (ARM=1, VSF on). If the ACL is not correctly received before the time-out expires, the System Operating State Machine reverts back to the Scrap state, and the arming outputs are deactivated. 152/200 DocID025869 Rev 3 L9678, L9678-S Safing logic Figure 52. Scrap ACL state diagram 660B5  (6(725 1276&5$3VWDWH $1' 127$50,1*VWDWH  $&/*22'  $&/%$'  $&/705  5LVLQJHGJH $&/705  $&/*22'  $&/%$' $&/705!SHULRGPLQ ULVLQJHGJH $&/*22' $&/%$'  $&/705   $&/+,*+ )DOOLQJHGJH  $&/705!KLJKPLQ $&/705!KLJKPD[25 )DOOLQJHGJH $&/7,0(5 KLJKPLQ $&//2: $&/705!SHULRGPD[ $&/*22'  $&/%$' $&/705  5LVLQJHGJH25 $&/705!SHULRGPD[ $&/705  $&/*22'  $&/%$' $&/(5525 '!0'03 A specific waveform needs to be present on this input in order to instruct L9678 to arm all deployment loops. L9678 is designed to support the Additional Communication Line (ACL) aspect of the ISO-26021 standard, which requires an independent hardwired signal (ACL) to implement the scrapping feature. The disposal signal may come from either the vehicle's service connector, or the systems main microcontroller, depending on the end customer's requirements. The arming function monitors the disposal PWM input (ACL pin) for a command to arm all loops for vehicle end-of-life airbag disposal. The disposal signal characteristic is shown in Figure 53. To remain in Arming state, at least three cycles of the ACL signal must be qualified. For the device to qualify the periodic ACL signal, the period and duty cycle are checked. Two consecutive cycles of invalid disposal signal are to be received to disqualify the ACL signal. Figure 53. Disposal PWM signal &\FOHWLPH 2QWLPH '!0'03 The disposal PWM signal cycle time and on time parameters can be found in the electrical parameters tables. DocID025869 Rev 3 153/200 199 General purpose output (GPO) drivers 11 L9678, L9678-S General purpose output (GPO) drivers The L9678 contains two GPO drivers configurable either as high-side or low-side modes, controlled in ON-OFF mode or in PWM mode setting the desired duty cycle value through the GPO Control Register (GPOCTRLx). For low side driver configuration, the GPODx pin is the equivalent drain connection of the internal MOSFET and it is the current sink for the output driver. The GPOSx pin is the source connection of the GPO driver and is externally connected to ground. Figure 54. GPO driver block diagram - LS configuration 9%DWW 6HO*32'[ ELWV 9LQ *32)/765 *32[',6$%/( 9UHI 63, :,' ¶*32&5¶ 6 660B5(6(7 5 6(7 &/ 5 /2$' 9 *32'[ 4 (5%2267 4 *32&5 *32[/6 (5%2267B2. 287 (1 21 3:0 C &7/ 3:0B&/. XV  *32&75/[ > @ &7/ 'ULYHUZLWK 6OHZ5DWH &RQWURO Q) 7HPSHUDWXUH VHQVRU &XUUHQW VHQVH  *32)/765 *32[7(03 4 6(7 6 4 4 &/ 5 6(7 6 5 4 &/ 5   7MVG  &XUUHQWOLPLWDWLRQ 5 *326[ *32&75/[ >@ K 660B5(6(7 *32)/765 *32[231 4 4 *32)/765 *32[/,0 4 4 6(7 &/ 5 6(7 &/ 5 6 5 6 5     ,RSHQORDG ,OLP 63, 5,' ¶*32)/765¶ 660B5(6(7 *$3*36 For high side driver configuration, the GPODx pin will be connected to battery and GPOSx pin will be connected to the load high side. 154/200 DocID025869 Rev 3 L9678, L9678-S General purpose output (GPO) drivers Figure 55. GPO driver block diagram - HS configuration 6HO*32'[ 9LQ ELWV 9LQ *32)/765 *32[',6$%/( 9UHI 63, :,' ¶*32&5¶ 6 660B5(6(7 5 6(7 &/ 5 9 *32'[ 4 (5%2267 4 *32&5 *32[/6 (5%2267B2. 287 (1 21 3:0 C &7/ 3:0B&/. XV  *32&75/[ > @ 'ULYHUZLWK 6OHZ5DWH &RQWURO 7HPSHUDWXUH VHQVRU &7/ &XUUHQW VHQVH  *32)/765 *32[7(03 4 6 6(7 4 4 &/ 5 6(7 6 5 4 &/ 5   7MVG  &XUUHQWOLPLWDWLRQ 5 *326[ /2$' *32&75/[ >@ K 660B5(6(7 *32)/765 *32[231 4 4 *32)/765 *32[/,0 4 4 6(7 &/ 5 6(7 &/ 5 6 Q)   ,RSHQORDG 5 6 5   ,OLP 63, 5,' ¶*32)/765¶ 660B5(6(7 *$3*36 The drivers have to be configured in one of the two modes through the GPO Configuration Register (GPOCR) register before being activated. This hardware configuration is only allowed during the Init and Diag states. When configured as high-side, the drivers need ER Boost voltage to be above the VERBST_OK threshold to be enabled. The default state of both drivers is off. The drivers can be independently activated via SPI control bits on GPO Control Register (GPOCTRLx). In addition, a set point on the GPOCTRLx will control the output drivers in PWM with a 125Hz frequency. If PWM control is desired, user should set the needed set point in the GPOxPWM bits of the GPOCTRLx while activating the interface. When all bits are set to '0', the GPOx output will be disabled. PWM control is based on a 125 Hz frequency. 6 bits of GPOCTRLx are reserved to this mode, in order to control the drivers with 64 total levels from a 0% to a full 100% duty cycle. When both GPO channels are used in PWM Mode at the same frequency they are synchronized to provide parallel configuration capability. PWM control is implemented through a careful slew rate control to mitigate EMC emissions while operating the interface. The driver output structure is designed to stand -1V on its terminals and a +1V reverse voltage across source and drain. The GPO driver is protected against short circuits and thermal overload conditions. The output driver contains diagnostics available in the GPO Fault Status Register (GPOFLTSR). All faults except for thermal overload will be latched until the GPOFLTSR register is read. DocID025869 Rev 3 155/200 199 General purpose output (GPO) drivers L9678, L9678-S Thermal overload faults will remain active after reading the GPOFLTSR register should the temperature remain above the thermal fault condition. For current limit faults, the output driver will operate in a linear mode (ILIM) until a thermal fault condition is detected. The device offers also an open load diagnostics while in ON state. The diagnostics is run comparing the current through the output stage with a reference threshold IOpenLoad: should the output current be lower than the threshold, the open detection flag is asserted. 156/200 DocID025869 Rev 3 L9678, L9678-S 12 ISO9141 transceiver ISO9141 transceiver A block diagram of the function is shown below. Data transmitted by the main microcontroller is sent via the ISOTX pin and data is received via the ISORX pin. The bus output is ISOK. Figure 56. ISO9141 block diagram 9%$7 9,1  7 ,625; ,62. YGGT 9,+ *DWH &RQWURO ,627; )/765 ,/,0;&95 7KHUPDO 6KXWGRZQ )LOWHU WG ,OLQ )/765  27;&95 '!0'03 When the ISOTX pin is asserted, logic high, the ISOK output will be disabled (pulled high by an external resistor). When the ISOTX pin is deasserted, logic low, the ISOK output will be enabled (pulled low by the internal driver). This input pin contains an internal pull-up to command the output to the disabled state in the event of an open circuit condition. The ISORX pin has a push-pull output stage referenced to VDDQ voltage. This output is asserted high when the voltage on the ISOK pin is above the ISOK input receiver threshold, VBATMON, as defined in the electrical tables. This output is deasserted low when the voltage on the ISOK pin is below the ISOK input receiver threshold with hysteresis. ISOK output is a low side driver compatible with ISO9141 physical layer. The output stage is protected against short circuits and diagnostics provide feedback for current limit and thermal shutdown. While in current limit, the output stage will continue to function until thermal limit is reached. Should thermal limit occur, the output stage will shut down until the temperature decreases below the limit threshold with hysteresis. The fault status is reported in the ISO9141 Fault Status Register (ISOFLTSR). DocID025869 Rev 3 157/200 199 System voltage diagnostics 13 L9678, L9678-S System voltage diagnostics L9678 has an integrated dedicated circuitry to provide diagnostic feedback and processing of several inputs. These inputs are addressed with an internal analog multiplexer and made available through the SPI digital interface with the Diagnostic Data commands. In order to avoid saturation of high voltage internal signals, an internal voltage divider is used. The diagnostics circuitry is activated by four SPI Diagnostics Control commands (DIAGCTRLx); each of them can address all the available nodes to be monitored, except for what mentioned in Table 11: Diagnostics control register (DIAGCTRLx) on page 159. DIAGCTRLx SPI command bit fields are structured in the following way: DIAGCTRL_A (ADDRESS HEX 3A) 19 18 17 16 15 14 13 12 11 10 9 8 7 x MOSI MISO NEWDATA_A 0 0 x x x x x x x 6 5 x 4 3 2 1 0 1 0 1 0 1 0 ADCREQ_A[6:0] ADCREQ_A[6:0] ADCRES_A[9:0] DIAGCTRL_B (ADDRESS HEX 3B) 19 18 17 16 15 14 13 12 11 10 9 8 7 x MOSI MISO NEWDATA_B 0 0 x x x x x x x 6 5 x 4 3 2 ADCREQ_B [6:0] ADCREQ_B [6:0] ADCRES_B [9:0] DIAGCTRL_C (ADDRESS HEX 3C) 19 18 17 16 15 14 13 12 11 10 9 8 7 MOSI x MISO NEWDATA_C 0 0 x x x x x x x 6 5 x 4 3 2 ADCREQ_C [6:0] ADCREQ_C [6:0] ADCRES_C [9:0] DIAGCTRL_D (ADDRESS HEX 3D) 19 18 17 16 15 14 13 12 11 10 9 8 7 MOSI x MISO NEWDATA_D 0 0 x x x x x x ADCREQ_D [6:0] x x 6 5 4 3 2 ADCREQ_D [6:0] ADCRES_D [9:0] ADCREQ[A-D] bit fields, used to address the different measurements offered, are listed in Table 11: Diagnostics control register (DIAGCTRLx) on page 159 for reference. L9678 diagnostics are structured to take four automatic conversions at a time. In order to get four measurements, four different SPI commands have to be sent (DIAGCTRL_A, DIAGCTRL_B, DIAGCTRL_C and DIAGCTRL_D), in no particular order. 158/200 DocID025869 Rev 3 L9678, L9678-S System voltage diagnostics In case the voltage to be measured is not immediately available, the desired inputs for conversion have to be programmed by SPI in advance, to allow them to attain a stable voltage value. This case applies to the squib resistance measurement and diagnostics (refer to Loop diagnostics control and results registers) and to the switch sensor measurement (refer to Section 9: DC sensor interface). CONVRDY_0 bit in GSW is equal to (NEWDATA_A or NEWDATA_B), while CONVRDY_1 bit in GSW corresponds to (NEWDATA_C or NEWDATA_D). Each NEWDATAx flag is asserted when conversion is finished and cleared when result is read out. However result is cleared only when new result for that register is available. When a new request is received it is queued if other conversions are ongoing. The conversions are executed in the same order as their request arrived. The queue is 4 measures long so it's possible to send all 4 requests at the same time and then wait for the results. If a DIAGCTLRx command is received twice, the second conversion request will overwrite the previous one. Requests are sent to the L9678 IC via the ADC measurement Registers (ADCREQx) as shown in Table 11: Diagnostics control register (DIAGCTRLx) on page 159. All diagnostics results are available on the ADCRESx registers, when addressed by the related ADCREQx register (e.g. data requested by ADCREQA would be written to ADCRESA). Table 11. Diagnostics control register (DIAGCTRLx) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 0 0 0 0 0 0 0 $00 Unused 0 0 0 0 0 0 1 1 $01 ADC Test Pattern 1 Ground reference 0 0 0 0 0 1 0 2 $02 ADC Test Pattern 2 Full scale reference 0 0 0 0 0 1 1 3 $03 DC Sensor ch. selected, Voltage DCSV_selected 0 0 0 0 1 0 0 4 $04 DC Sensor ch. selected, Current DCSI_selected Resistance(1) DCSV and DCSI selected 0 0 0 0 1 0 1 5 $05 DC Sensor ch. selected, 0 0 0 0 1 1 0 6 $06 Squib measurement loop selected Voutx 0 0 0 0 1 1 1 7 $07 Bandgap reference Voltage VBGR 0 0 0 1 0 0 0 8 $08 Bandgap reference monitor Voltage VBGM 0 0 0 1 0 0 1 9 $09 Unused 0 0 0 1 0 1 0 10 $0A Temperature Measurement 0 0 0 1 0 1 1 11 $0B DC Sensor ch 0, Voltage DCSV_0 0 0 0 1 1 0 0 12 $0C DC Sensor ch 1, Voltage DCSV_1 0 0 0 1 1 0 1 13 $0D DC Sensor ch 2, Voltage DCSV_2 0 0 0 1 1 1 0 14 $0E DC Sensor ch 3, Voltage DCSV_3 0 0 0 1 1 1 1 15 $0F Unused 0 0 1 0 0 0 0 16 $10 Unused 0 0 1 0 0 0 1 17 $11 Unused 0 0 1 0 0 1 0 18 $12 Unused DocID025869 Rev 3 TEMP 159/200 199 System voltage diagnostics L9678, L9678-S Table 11. Diagnostics control register (DIAGCTRLx) (continued) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 0 1 0 0 1 1 19 $13 Unused 0 0 1 0 1 0 0 20 $14 Unused 0 0 1 0 1 0 1 21 $15 Unused 0 0 1 0 1 1 0 22 $16 Unused 0 0 1 0 1 1 1 23 $17 Unused 0 0 1 1 0 0 0 24 $18 Unused 0 0 1 1 0 0 1 25 $19 Unused 0 0 1 1 0 1 0 26 $1A Unused 0 0 1 1 0 1 1 27 $1B Unused 0 0 1 1 1 0 0 28 $1C Unused 0 0 1 1 1 0 1 29 $1D Unused 0 0 1 1 1 1 0 30 $1E Unused 0 0 1 1 1 1 1 31 $1F Unused 0 1 0 0 0 0 0 32 $20 Battery monitor Voltage VBATMON 0 1 0 0 0 0 1 33 $21 Device battery Voltage VIN 0 1 0 0 0 1 0 34 $22 Analog internal supply Voltage VINT3V3 0 1 0 0 0 1 1 35 $23 Digital internal supply Voltage CVDD 0 1 0 0 1 0 0 36 $24 ERBOOST voltage 0 1 0 0 1 0 1 37 $25 Unused 0 1 0 0 1 1 0 38 $26 VER Voltage 0 1 0 0 1 1 1 39 $27 VSUP Voltage VSUP 0 1 0 1 0 0 0 40 $28 VDDQ Voltage VDDQ 0 1 0 1 0 0 1 41 $29 WAKEUP Voltage 0 1 0 1 0 1 0 42 $2A VSF Regulator Voltage 0 1 0 1 0 1 1 43 $2B WDT/TM Voltage WDTDIS 0 1 0 1 1 0 0 44 $2C GPO Driver 0 drain Voltage GPOD0 0 1 0 1 1 0 1 45 $2D GPO Driver 0 source Voltage GPOS0 0 1 0 1 1 1 0 46 $2E GPO Driver 1 drain Voltage GPOD1 0 1 0 1 1 1 1 47 $2F GPO Driver 1 source Voltage GPOS1 0 1 1 0 0 0 0 48 $30 Unused 0 1 1 0 0 0 1 49 $31 Unused 0 1 1 0 0 1 0 50 $32 Remote sensor Interface Voltages ch. 0 RSU0 0 1 1 0 0 1 1 51 $33 Remote sensor Interface Voltages ch. 1 RSU1 160/200 DocID025869 Rev 3 ERBOOST VER WAKEUP VSF L9678, L9678-S System voltage diagnostics Table 11. Diagnostics control register (DIAGCTRLx) (continued) ADC Request (ADCREQx) ADC Results (ADCRESx) Voltage measurement selection Bit [6:0] Hex Bit [9:0] 0 1 1 0 1 0 0 52 $34 Unused 0 1 1 0 1 0 1 53 $35 Unused 0 1 1 0 1 1 0 54 $36 SSxy Voltage ch. 0 SS01 0 1 1 0 1 1 1 55 $37 SSxy Voltage ch. 1 SS01 0 1 1 1 0 0 0 56 $38 SSxy Voltage ch. 2 SS23 0 1 1 1 0 0 1 57 $39 SSxy Voltage ch. 3 SS23 0 1 1 1 0 1 0 58 $3A Unused 0 1 1 1 0 1 1 59 $3B Unused 0 1 1 1 1 0 0 60 $3C Unused 0 1 1 1 1 0 1 61 $3D Unused 0 1 1 1 1 1 0 61 $3E Unused 0 1 1 1 1 1 1 63 $3F Unused 1 0 0 0 0 0 0 64 $40 Unused 1 0 0 0 0 0 1 65 $41 Unused 1 0 0 0 0 1 0 66 $42 VRESDIAG 1 0 0 0 0 1 1 67 $43 VDD5 1 0 0 0 1 0 0 68 $44 VDD3V3 1 0 0 0 1 0 1 69 $45 ISOK output voltage ISOK 1 0 0 0 1 1 0 70 $46 SF0 voltage SF0 1 0 0 0 1 1 1 71 $47 SF1 voltage SF1 1 0 0 1 0 0 0 72 $48 SF2 voltage SF2 1 0 0 1 0 0 1 73 $49 SF3 voltage SF3 VRESDIAG VDD5 VDD3V3 1. The DC sensor resistance measurement can only be addressed through DIAGCRTL_A command. Results are available through DIAGCTRL_A and DIAGCTRL_B, where ADCRES_A will contain DCSI and ADCRES_B will contain DCSV. Proper scaling is necessary for various voltage measurements. The divider ratios vary by measurement and are summarized by function in the table below. Table 12. Diagnostics divider ratios Divider Ratio Measurements 15:1 VER X ERBOOST X VSF X SSxy X 10:1 DocID025869 Rev 3 7.125:1 7:1 4:1 1:1 161/200 199 System voltage diagnostics L9678, L9678-S Table 12. Diagnostics divider ratios (continued) Divider Ratio Measurements 15:1 SFx X VRESDIAG X 10:1 GPODx X GPOSx X VIN X VBATMON X WAKEUP X 7.125:1 7:1 ISOK X VSUP X WDTDIS X RSUx 4:1 1:1 X DCSx X VDDQ X VDD5 X VDD3V3 X VINT3V3 X Bandgap (BGR/BGM) X TEMP X For measurements other than voltage (current, resistance, temperature etc.) the ranges are specified in the electrical parameters section of the relevant block. 13.1 Analog to digital algorithmic converter The device hosts an integrated 10 bit Analog to Digital converter, running at a clock frequency of 16MHz. The ADC output is processed by a D to D converter with the following functions: x Use of trimming bits to recover ADC offset and gain errors; x Digital low-pass filtering; x Conversion from 12 to 10 bits. 10 bits data are filtered inside the digital section. The number of samples that are filtered vary depending on the chosen conversion. As per Section 5.1.2: System configuration register (SYS_CFG), the number of used samples in converting DC sensor, squib or temperature measurements defaults to 8. The number of samples for all other measurements defaults to 4. The sample number can be configured by accessing the SYS_CFG register. After low pass filter, the residual total error is ±4 LSB. This error figure 162/200 DocID025869 Rev 3 L9678, L9678-S System voltage diagnostics applies to the case of a precise reference voltage: the spread of reference voltage causes a proportional error in the conversion output. The reference voltage of the ADC is set to 2.5 V. The conversion time is comprised of several factors: the number of measurements loaded into the queue, the number of samples taken for any measurement, and the various settling times. An example of conversion time calculation for a full ADC request queue is reported in Figure 57. The timings reported in Figure 57 are nominal ones, min/max values can be obtained by considering the internal oscillator frequency variation reported in the DC characteristics section. Figure 57. ADC conversion time ',$*&75/B$  3UH $'& 6 7  B 6 & ',$*&75/B%  ,4 6 7  B 6 & ',$*&75/B&  ,4 6 7  B 6 & ',$*&75/B'  ,4 6 7  B 6 & 3RVW $'& 3UH$  '& ,QLWLDO$'&6HWWOLQJ7LPH  X V 6   R I6DPSOHV GHIDXOW  IRUYROWDJHRQO\PHDVXUHPHQWV   7B  6 & 6 LQJOH6DPSOH&RQYHUVLRQ7LPH X V ,4 ,QWUD4  XHXH6HWWOLQJ7LPH  X V 3RVW$  '& ) LQDO$'&6HWWOLQJ7LPH  X V '!0'03 DocID025869 Rev 3 163/200 199 Temperature sensor 14 L9678, L9678-S Temperature sensor The L9678 provides an internal analog temperature sensor. The sensor is aimed to have a reference for the average junction temperature on silicon surface. The sensor is placed far away from power dissipating stages and squib deployment drivers. The output of the temperature sensor is available via SPI through ADC conversion, as shown in Table 11. The formula to calculate temperature from ADC reading is the following one: § ADC REF_hi · ­ 220 ½ T qC = 180 – ® §© ---------------·¹ ˜ ¨ ------------------------------- ˜ DIAGCTRLn ADCRESn ¸ – 0.739 ¾  ADC RES © 2 ¹ ¯ 1.652 ¿   @ DIAGCTRLn(ADCREQn) = 0Ahex All parametric requirements for this block can be found in specification tables. 164/200 DocID025869 Rev 3 L9678, L9678-S 15 Electrical characteristics Electrical characteristics Every parameter in this chapter is fulfilled down to VINGOOD(max). No device damage is granted to occur down to VINBAD(min). GNDA pin is used as ground reference for the voltage measurements performed within the device, unless otherwise stated. All table or parameter declared "Design Info" are not tested during production testing 15.1 Configuration and control All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD(max) d VIN d 35 V. Table 13. Configuration and control DC specifications N° Symbol Parameter Min Typ Max Unit 1 VNOV Normal operating voltage Design Info Depending on power supply configuration 6 13 18 V 2 VJSV Jump start voltage Design Info -40 °C ” Ta ” 50 °C 18.00 - 26.50 V 3 VLDV Load dump voltage Transient Design Info 26.50 - 40 V 4 WU_mon WAKEUP monitor threshold - - - 1.5 V 5 WU_off WAKEUP Off threshold - 2 2.5 3 V 6 WU_on WAKEUP On threshold - 4 4.5 5 V 7 WURPD WAKEUP pull-down resistor - 120 300 480 k: 8 VBGOOD1 SYS_CTL(VBATMON_TH_SEL)=0 0 5.5 - 6 V 9 VBBAD1 SYS_CTL(VBATMON_TH_SEL)=0 0 5 - 5.5 V 10 VBGOOD2 SYS_CTL(VBATMON_TH_SEL)=0 1 6.3 - 6.8 V 11 VBBAD2 SYS_CTL(VBATMON_TH_SEL)=0 1 5.8 - 6.3 V 12 VBGOOD3 SYS_CTL(VBATMON_TH_SEL)=1 0 7.5 - 8 V 13 VBBAD3 SYS_CTL(VBATMON_TH_SEL)=1 0 7 - 7.5 V 14 VBGOOD4 SYS_CTL(VBATMON_TH_SEL)=11 8.3 - 8.8 V 15 VBBAD4 SYS_CTL(VBATMON_TH_SEL)=11 7.8 - 8.3 V VBATMON input voltage thresholds Condition DocID025869 Rev 3 165/200 199 Electrical characteristics L9678, L9678-S Table 13. Configuration and control DC specifications (continued) N° Symbol 16 ILKG_VBATMON_OFF 17 ILKG_VBATMON_ON Parameter Condition VBATMON input leakage Min Typ Max Unit 5 μA Device OFF -5 Device ON Design Info 20 24 30 μA 18 RPD_VBATMON VBATMON pull-down resistance Device ON VBATMON < 10V Design Info 125 250 375 kȍ 19 ILKG_VBATMON_TOT VBATMON total input leakage ILKG_VBATMON_ON + RPD_VBATMO VBATMON = 18V 35 70 105 μA SYS_CTL(VIN_TH_SEL)=0 5 - 5.5 V SYS_CTL(VIN_TH_SEL)=0 4.5 - 5 V SYS_CTL(VIN_TH_SEL)=1 7 - 7.5 V SYS_CTL(VIN_TH_SEL)=1 6.5 - 7 V 9.3 9.8 10.3 V 20 VINGOOD1 21 VINBAD1 22 VINGOOD2 23 VINBAD2 24 VINFASTSLOPE_H VIN input voltage thresholds VIN Thresholds used to 25 VINFASTSLOPE_L change boost regulator transition time 26 VINFASTSLOPE_HYS 9 9.5 10 V 0.2 0.3 0.4 V 27 ILKG_VIN_OFF Device OFF, VIN = 40V -10 - 10 μA 28 ILKG_VIN_ON Device ON, VIN = 12V - - 30 mA 29 CVIN - 1 - - - 30 ILKG_VER_OFF Device OFF, VER = 40 V -5 - 5 μA 31 ILKG_VER_ON_L Device ON ERBOOST > VER -5 - 5 μA 32 ILKG_VER_ON_H Device ON ERBOOST < VER - - 200 μA 33 VWD_OVERRIDE_th WDT/TM threshold - 10 12 14 V 34 VWDTDIS_HYST WDT/TM hysteresis - 0.2 0.4 0.5 V 35 IPD_WDTDIS WDT/TM pull-down Current VWDTDIS ” 5 V 20 45 70 μA Battery line Input Leakage Total leakage at RT from VIN, VBATMON, ERBSTSW, ERBOOST, BVDD5, VDD5, VDDQ, BVSUP, VSUP VBAT = 12 V Guaranteed by design - - 100 μA Junction temperature Design Info - - 150 °C VIN input leakage 36 ILKG_BAT 37 Tj 166/200 External VIN capacitor VER input leakage DocID025869 Rev 3 L9678, L9678-S Electrical characteristics Table 14. Configuration and control AC specifications No Symbol 1 TFLT_VBATMONTH 2 TFLT_VINTH 3 TFLT_WAKEUP 4 TLATCH_WAKEUP 5 tdon Parameter Condition Min Typ Max Units VBATMON thresholds deglitch filter time - 26 30 34 μs VIN thresholds deglitch filter time - 3 3.5 4 μs Wakeup deglitch filter time - 0.95 1.05 1.15 ms Wakeup latch time - 9.7 10.8 11.9 ms - - 10 ms Min Typ Max Unit Power-up delay time –  Wake-up to RESET released Table 15. Open ground detection DC specifications N° Symbol Parameter Condition 1 GNDAOPEN GNDA threshold GNDSUBx=0 100 200 300 mV 2 GNDDOPEN GNDD threshold GNDSUBx=0 100 200 300 mV 3 BSTGNDOPEN BSTGND threshold GNDSUBx=0 100 200 300 mV 4 IPU_BSTGND BSTGND pull-up current - 80 120 160 μA Min Typ Max Unit - 7 11 16 μs - 1.9 2.3 2.7 μs Table 16. Open ground detection AC specifications N° Symbol Parameter 1 GNDA and GNDD TFLT_GNDREFOPEN Open Deglitch Filter Time 2 TFLT_BSTGNDOPEN 15.2 Condition BSTGND Latch Filter Time Internal analog reference All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 35 V. Table 17. Internal analog reference N° Symbol 1 VBG1 Bandgap reference 2 VBG2 3 VADC_GROUND 4 Parameter Condition Min Typ Max Unit - -1% 1.2 +1% V Bandgap monitor - -1% 1.2 +1% V ADC Ground reference - -3% 103 +3% mV -1.5% 2.5 +1.5% V VADC_FULLSCALE ADC Full scale reference - DocID025869 Rev 3 167/200 199 Electrical characteristics 15.3 L9678, L9678-S Internal regulators All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 35 V. Table 18. Internal regulators DC specifications N° Symbol Parameter Condition Min Typ Max Unit 1 VOUT_VINT3V3 VINT3V3 output voltage - 3.14 3.3 3.46 V 2 VOV_VINT3V3 VINT3V3 over voltage - 3.47 - 3.7 V 3 VUV_VINT3V3 VINT3V3 under voltage - 2.97 - 3.13 V 4 VOUT_VDD VDD output voltage - 3.14 3.3 3.46 V 5 IOUT_VDD VDD current capability External Load is not allowed - - 50 mA 6 ILIM_VDD VDD current limit - 80 - - mA 7 VOV_VDD VDD over voltage - 3.47 - 3.7 V 8 VUV_VDD VDD under voltage - 2.7 - 2.9 V 9 CVDD VDD output capacitance Design Info 60 100 140 nF Table 19. Internal regulators AC specifications N° Symbol 1 TFLT_ VINT_VDD_OV Internal regulator OV Deglitch filter time 2 TFLT_ VINT_VDD_UV Internal regulator UV Deglitch filter time 15.4 Parameter Condition Min Typ. Max Unit - 7 11 16 μs - 7 11 16 V Oscillators All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, 3.14 d CVDD d 3.46. Table 20. Oscillators AC specifications No Symbol Parameter Min Typ 1 fOSC Main oscillator average frequency - 15.2 16 2 fMOD_OSC Main oscillator modulation frequency SPI_CLK_CNF(MAIN_SS_DIS=0) Design Info - ƒ OSC --------------128 - MHz 3 IMOD_OSC Main oscillator modulation index SPI_CLK_CNF(MAIN_SS_DIS=0) 3 4 5 % 4 fAUX Aux oscillator average frequency - 7.125 7.5 5 fMOD_AUX Aux oscillator modulation frequency SPI_CLK_CNF(AUX_SS_DIS=0) Design Info - ƒ OSC_AUX --------------------------128 168/200 Conditions / Comments DocID025869 Rev 3 Max Unit 16.8 MHz 7.87 MHz 5 - MHz L9678, L9678-S Electrical characteristics Table 20. Oscillators AC specifications (continued) No Symbol 6 IMOD_AUX 7 Parameter Aux oscillator modulation index Main oscillator Low fOSC_LOW_TH Frequency Detection Threshold 15.5 Conditions / Comments Min Typ Max Unit SPI_CLK_CNF(AUX_SS_DIS=0) 3 4 5 % - - 128 ---------- ˜ ƒ AUX 174 - MHz Watchdog All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C d Ta d +95 °C,VINGOOD1(max) d VIN d 35 V Table 21. Temporal watchdog timer AC specifications N° Symbol 1 TWDT1_TIMEOUT Temporal watchdog timeout - 2 TWDT1_RST Temporal Watchdog Reset Time - 15.6 Parameter Condition Min Typ Max Unit - - 2.00 ms - - 16.3 ms 0.9 - 1.1 ms Reset All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C d Ta d +95 °C; VINGOOD1(max) d VIN d 35 V, VDDx(min) d VDDx d VDDx(max), VDDQ = VDD5 or VDD3V3 Table 22. Reset DC specifications N° Symbol 1 VOH_RESET 2 VOL_RESET 3 RPD_RESET Parameter RESET output voltage RESET pull down resistance Condition Min Typ Max Unit ILOAD = -0.5 mA VDDQ -0.6 - VDDQ V ILOAD = 2.0 mA 0 - 0.4 V RESET=VDDQ, Device OFF 65 100 135 k: Table 23. Reset AC specifications N° Symbol Parameter 1 TRISE_RESET Rise Time 2 TFALL_RESET 3 THOLD_RESET Condition Min Typ Max Unit 80pF load, 20%-80% - - 1.00 μs Fall Time 80pF load, 20%-80% - - 1.00 μs Reset Hold Time - 0.45 0.5 0.55 ms DocID025869 Rev 3 169/200 199 Electrical characteristics 15.7 L9678, L9678-S SPI interface All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 35 V, VDDx(min) d VDDx d VDDx(max) VDDQ = VDD5 or VDD3V3. Table 24. SPI DC specifications N° Symbol Min Typ Max Unit 1 VIH_CS SPI_CS high level input voltage - 2 - - V 2 VIL_CS SPI_CS low level input voltage - - - 0.8 V 3 IPU_CS SPI_CS pull up current SPI_CS = 0V -70 -45 -20 μA 4 VIH_MOSI MOSI high level input voltage - 2 - - V 5 VIL_MOSI MOSI low level input voltage - - - 0.8 V 6 IPD_MOSI SPI_MOSI pull down current SPI_MOSI = VDDQ 20 45 70 μA 7 VIH_SCK SCK high level input voltage - 2 - - V 8 VIL_SCK SCK low level input voltage - - - 0.8 V 9 IPD_SCK SPI_SCK pull down current SPI_SCK = VDDQ 20 45 70 μA 10 VOH_MISO SPI_MISO high level output voltage ILOAD = -800μA VDDQ -0.5 - VDDQ V 11 VOL_MISO SPI_MISO low level output voltage ILOAD = 2.0mA - - 0.4 V 12 VIH_MISO SPI_MISO high level input voltage - 2 - - V 13 VIL_MISO SPI_MISO low level input voltage - - - 0.8 V 14 ILKG_MISO SPI_MISO tri-state leakage SPI_MISO= VDDQ or 0V -10 - 10 μA 170/200 Parameter Condition DocID025869 Rev 3 L9678, L9678-S Electrical characteristics Table 25. SPI AC specifications N° Symbol Min Typ Max Unit 1 FSCLK SPI Transfer frequency - - 8 8.08 MHz 2 TSCLK SPI_SCK period - 123.8 - - ns 3 TLEAD Enable lead time - 250 - - ns 4 TLAG Enable lag time - 50 - - ns 5 THIGH_SCLK SPI_SCK high time - 50 - - ns 6 TLOW_SCLK SPI_SCK low time - 50 - - ns 7 TSETUP_MOSI SPI_MOSI input setup time - 20 - - ns 8 THOLD_MOSI SPI_MOSI input hold time - 20 - - ns 9 TACC_MISO SPI_MISO access time 80pF load - - 60 ns 10 TDIS_MISO SPI_MISO disable time 80pF load - - 100 ns 11 TVALID_MISO_OUT SPI_MISO output valid time 80pF load - - 30 ns 12 THOLD_MISO_OUT SPI_MISO output hold time 80pF load 0 - - ns 13 TSETUP_MISO_IN SPI_MISO Input Setup Time 20 ns 14 THOLD_MISO_IN SPI_MISO Input Hold Time 20 ns 15 THOLD_SCLK SPI_SCK hold time - 20 - - ns 16 TFLT_CS SPI_CS noise glitch rejection time - 50 - 300 ns 17 TNODATA SPI interframe time - 400 - - ns Note: Parameter Condition All timing is shown with respect to 10% and 90% of the actual delivered VDDQ voltage. Figure 58. SPI timing diagram  63,B&6    63,B6&/.  06%287  63,B0,62    63,B026,   '$7$  /6%287 '21¶7 &$5(  06%,1 '$7$ /6%,1 '!0'03 DocID025869 Rev 3 171/200 199 Electrical characteristics 15.8 L9678, L9678-S ER boost All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 18 V. Table 26. ER Boost converter DC specifications N° Symbol Parameter 1 VO_ERBST Boost output voltage 2 3 Condition Min Typ Max Unit Across all line and IO_BST load (steady state) ERBST33V=0 Test conditions: IO_BST = 0.1 & 40mA 22.4 23.8 25 V Across all line and IO_BST load (steady state) ERBST33V=1 Test conditions: IO_BST = 0.1 & 20mA 31.4 33 35 V BST33V = 0 0.1 - 60 mA BST33V = 1 0.1 - 40 mA IO_ERBST Boost output current 5 dVSR_ac Line transient response All line, load; dt=100us; BST33V = 0/1 Design Info -8% - 8% % 6 dVLR_ac All line, load; dt=100us; Load transient response BST33V = 0/1 Design Info -8% - 8% % 7 RDSON_ERBST - - 1 : 8 IOC_ERBST Over current detection - 550 - 800 mA 9 ILKG_ERBST ERBOOST leakage current ERBOOST=40V Device off - - 5 μA VERBST_OK ERBOOST voltage threshold BST33V = 0 18 20 22 V BST33V = 1 26 28 30 V VERBST_OV ERBOOST Over Voltage BST33V = 0 threshold BST33V = 1 22.6 25 V 31.65 35 V 4 10 11 12 13 Power switch resistance - Voltage difference between VIN and VIN – ERBOOST ERBOOST to deactivate the ER Boost regulator 14 VERBST_DIS_TH 15 Voltage difference between ERBSTSW and ERBSTSW – ERBOOST VCLAMP_EN_TH ERBOOST to activate the ER Boost CLAMP 16 TJSD_ERBST 17 THYS_TSDERBST 172/200 Thermal shutdown 1.6 2.2 2.5 V 1.6 2.2 2.5 V - 150 175 190 °C - 5 10 15 °C DocID025869 Rev 3 L9678, L9678-S Electrical characteristics Table 27. ER boost converter AC specifications N° Symbol 1 FSW_ERBST Min Typ Max Unit - 1.8 1.882 2.0 MHz 10% to 90% voltage on ERBSTSW VIN • VINFASTSLOPE_L = 10.3 V Iload = 60mA ERboost settings 23 V Guaranteed by design 10 15 - 25 35 ns TRISE_ERBSTSW_FAST TFALL_ERBSTSW_FAST 10% to 90% voltage on ERBSTSW VIN ” VINFASTSLOPE_H= 9V Iload=60mA ERboost settings 23 V Guaranteed by design 10 - 25 ns 4 TON_ERBST CERBOOST = 2.2μF, Vin =12V, IO_ERBST= 5mA BST33V = 1 Measured from CS edge to VO_ERBST(min) - - 5 ms 5 TFLT_TSD_ERBST - 10 μs Min Typ Max Unit 2 Parameter Condition ERBOOST switching frequency TRISE_ERBSTSW_SLOW TFALL_ERBSTSW_SLOW ERBSTSW transition time 3 ERBOOST charge-up time Thermal shutdown filter time - Table 28. ER boost converter external components (Design Info) N° Symbol 1 LERBST 2 ESLERBST 3 CBLK_ERBST 4 Parameter Condition Inductance - 8 10 - μH Inductance resistance - - - 0.1 : Output bulk capacitance to ensure regulator stability Min capacitance value including derating factors 1 2.2 - - - 0.1 : ESRCBLK_ERBST Bulk capacitor ESR μF 5 VFSTR_ERBST Steering diode forward voltage IF=100 mA - - 0.85 V 6 ILKGSTR_ERBST Steering diode reverse leakage Ta = 95 °C - - 100 μA DocID025869 Rev 3 173/200 199 Electrical characteristics 15.9 L9678, L9678-S ER charge All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 35 V, 8 V d ERBOOST. Table 29. ER current generator DC specifications N° Symbol 1 IER_CHARGE 2 Parameter RDSON_ERCHARGE Condition ER charge current ERBOOST – VER t 3 V ER charge power resistance (VERBOOST - VVER) / IVER IVER = 10mA Min Typ Max Unit -33 -30 -27 mA - - 22 : Min Typ Max Unit - - 6 s Table 30. ER current generator AC specifications N° Symbol 1 TON_ERCAP 15.10 Parameter Condition Energy reserve capacitor charge-up time CVER d 4.7mF nominal, BST33V = 0; Design Info ER switch All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 35 V. Table 31. ER switch DC specifications N° Symbol 1 RDSON ERSW 2 ILIM,ERSW 3 TJSD_ERSW 4 THYS_TSDERSW Parameter Condition Min Typ Max Unit Power switch resistance ILIM,ERSW(min) 0.5 - 3 : ER switch current limit - 400 - 600 mA - 150 175 190 °C - 5 10 15 °C Min Typ Max Unit CVIN = 10μF - - 5 μs - - - 10 μs ER switch activation blanking time after thermal shutdown - 1 - ms Thermal shutdown Table 32. ER switch AC specifications N° Symbol Parameter 1 TON_ERSW ER turn-on time (time to reach either RDSON_ERSW or ILIM_ERSW) 2 Condition TFLT_TSD_ERSW Thermal shutdown filter time 3 174/200 TBLK_ERSW DocID025869 Rev 3 L9678, L9678-S 15.11 Electrical characteristics COVRACT All electrical characteristics are valid for the following conditions unless otherwise noted: -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 35 V, VDDx(min) d VDDx d VDDx(max), VDDQ = VDD5 or VDD3V3 Table 33. COVRACT DC Specifications N° Symbol 1 VOH_COVRACT 2 VOL_COVRACT Parameter Condition COVRACT output voltage Min Typ Max Unit ILOAD = -0.5 mA VDDQ -0.6 - VDDQ V ILOAD = 2.0 mA 0 - 0.4 V Table 34. COVRACT AC specifications N° Symbol 1 TRISE_COVRACT Rise time 2 TFALL_COVRACT Fall time 15.12 Parameter Condition Min Typ Max Unit 80pF load, 20%-80% - - 0.5 μs 80pF load, 20%-80% - - 0.5 μs VDD5 regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 35 V. Table 35. VDD5 regulator DC specifications N° Symbol Parameter Condition Min Typ Max Unit 1 VO_VDD5 Output voltage Across all line and load, steady state 4.85 5 5.15 V 2 IO_BVDD5 Base driver current limit VDD5 > VDD5UVL 4 7 10 mA 3 IO_BVDD5_LOW Base driver current limit Low level VDD5 < VDD5UVL 2 - 5 mA 4 IO_VDD5 Output load current - 0.5 - 200 mA 5 dVSR_ac Line transient response All load IO_VDD5; VIN=6V to 18V @ dt = 1 μs; Design Info 4.5 - 5.5 V 4.5 - 5.5 V 6 dVLR_ac Load transient response All line; IO_VDD5= 1mA to 100mA @dt = 1 μs; Design Info 7 IOF_VDD5 Open feedback current on VDD5 Active only during VDD5_rampup state 55 80 105 μA 8 VDD5OV Over voltage detection - 5.2 - 5.50 V DocID025869 Rev 3 175/200 199 Electrical characteristics L9678, L9678-S Table 35. VDD5 regulator DC specifications N° Symbol Parameter 9 VDD5UV Under voltage detection 10 VDD5UVL Condition Min Typ Max Unit - 4.5 - 4.8 V Under voltage detection low level 1.8 2 2.2 V Min Typ Max Unit Table 36. VDD5 regulator AC specifications N° Symbol 1 TSOFTST_VDD5 2 Parameter Condition Soft start time From 10% to 90% 1 2 3 ms TFLT_VDD5OV Over voltage detection deglitch filter time - 27 30 33 μs 3 TFLT_VDD5UV Under voltage detection deglitch filter time - 27 30 33 μs 4 TFLT_VDD5UVL Under voltage low detection deglitch filter time - 1.5 2 2.5 μs Min Typ Max Unit Table 37. VDD5 regulator external components (Design Info) N° Symbol 1 hFE_PNP 2 Parameter Condition Output transistor gain - 50 250 500 A/A Ft_PNP Output transistor transit frequency - 30 - - MHz 3 RVDD5BE Output transistor baseemitter Pull-up resistance - - 3 - k: 4 CBLK_VDD5 Output bulk capacitance Min 4.7μF nominal 3 - 30 μF - - - 50 mȍ 5 ESRCBLK_VDD5 Bulk capacitor ESR 176/200 DocID025869 Rev 3 L9678, L9678-S 15.13 Electrical characteristics VDD3V3 regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VDD5(min) d VDD5. Table 38. VDD3V3 regulator DC specifications N° Symbol 1 VO_VDD3V3 2 IO_VDD3V3 3 Parameter Condition Min Typ Max Unit Output voltage Across all line and load, steady state 3.2 3.3 3.4 V Output load current capability - 0.5 - 125 mA - 150 - - mA 3 - 3.6 V 3 - 3.6 V IO_LIM_VDD3V3 Output load current limit All load IO_VDD3V3; VIN = 6 V to 18 V @ dt = 1 μs; Guaranteed by design dVSR_ac Line transient response 7 dVLR_ac All line; IO_VDD3V3= 1mA to 100mA Load transient response @dt = 1 μs; Guaranteed by design 4 VDD3V3OV Over-voltage threshold - 3.43 - 3.6 V 5 VDD3V3UV Under voltage reset threshold - 3 - 3.17 V Min Typ Max Unit 6 Table 39. VDD3V3 regulator AC specifications N° Symbol Parameter 1 TSOFTST_VDD3 2 3 Condition Soft start time From 10% to 90% 1 2 3 ms TFLT_VDD3OV Over voltage detection deglitch filter time - 27 30 33 μs TFLT_VDD3UV Under voltage detection deglitch filter time - 27 30 33 μs Min Typ Max Unit Min 4.7μF nominal 3 - 30 μF - - - 50 mȍ Table 40. VDD3V3 regulator external components (design info) N° Symbol 1 CBLK_VDD3 2 Parameter Condition Output bulk capacitance ESRCBLK_VDD3 Bulk capacitor ESR DocID025869 Rev 3 177/200 199 Electrical characteristics 15.14 L9678, L9678-S VSUP regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD2(max) d VIN d 35 V. Table 41. VSUP regulator DC specifications N° Symbol 1 VO_VSUP 2 Parameter Condition Min Typ Max Unit Output voltage Across all line and load, steady state 6.5 6.8 7.1 V IO_BVSUP Base driver current limit - 4 7 10 mA 3 IO_VSUP Output load current - 0.5 200 mA 4 dVSR_ac Line transient response All load IO_VDD5; VIN = 6 V to 18 V @ dt = 1 μs; Design Info 6.2 7.4 V 5 dVLR_ac Load transient response All line; IO_VDD5= 1mA to 100mA @dt = 1μs; Design Info 6.2 7.4 V 6 VSUPOV Over voltage detection - 7.6 8 V 7 VSUPUV Under voltage detection - 1.8 2 2.2 V Min Typ Max Unit From 10% to 90% 1 2 3 ms Table 42. VSUP AC specifications N° 1 Symbol Parameter Condition TSOFTST_VSUP Soft start time 2 TFLT_VSUPOV Over voltage deglitch filter time - 27 30 33 μs 3 TFLT_VSUPUV Under voltage deglitch filter time - 27 30 33 μs Min Typ Max Unit Table 43. VSUP regulator external components (Design Info) N° Symbol 1 hFE_PNP 2 Ft_PNP 3 RVSUPBE 4 CBLK_VSUP 5 Component Output transistor gain - 50 250 500 A/A Output transistor transit frequency - 30 - - MHz Output transistor BaseEmitter Pull-up Resistance - - 3 - k: Output Bulk Capacitance Min 4.7μF nominal 3 - 30 μF - - - 50 mȍ ESRCBLK_VSUP Bulk Capacitor ESR 178/200 Conditions DocID025869 Rev 3 L9678, L9678-S 15.15 Electrical characteristics VSF regulator All electrical characteristics are valid for the following conditions unless otherwise noted. -40 °C d Ta d +95 °C, VINGOOD1(max) d VIN d 35 V, VSF + 2V d ERBOOST Table 44. VSF regulator DC specifications N° Symbol Parameter 1 VSF Output voltage 2 Condition Min Typ Max Unit All line, load, IO_VSF up to 6 mA SYS_CFG(VSF_V)= 0 18 20 22 V All line, load, IO_VSF up to 6 mA BST33V = 1, SYS_CFG(VSF_V)= 1 23 25 27 V 3 ILIM_VSF Output load current limit Test conditions: VSF = 0 7 10 13 mA 4 VDO_VSF Drop-out voltage V(ERBOOST-VSF) - - 2 V 5 CVSF Output capacitance Design Info. 2.9 - 14 nF Device OFF -5 5 μA 60 125 188 kŸ 6 ILKG_VSF_OFF VSF input leakage 7 RPD_VSF VSF pull-down resistance Device ON VSF regulator OFF or ON 1.5V
L9678TR-S 价格&库存

很抱歉,暂时无法提供与“L9678TR-S”相匹配的价格&库存,您可以联系我们找货

免费人工找货