L9908
Datasheet
Automotive 3-Phase motor gate driver unit
Features
TQFP48 (exposed pad down)
•
•
•
•
•
•
•
•
Product status link
L9908
Product summary
Order
code
L9908
L9908-TR
•
Package
Packing
TQFP48 (exp.
pad down)
Tray
Tape&Reel
•
AEC-Q100 qualified
Full ISO26262 compliant, ASIL-D systems ready
VDH motor supply voltage range from 4.5 V to 75 V for working in single
(12 V systems), double (24 V systems) and 48 V battery applications
3.3 V internal supply voltage generated from 5 V on VDD pin
Digital I/O compatible to 3.3 V/5 V logics
6 separate N-channel FET pre-drivers:
–
dedicated source connection to each FET
–
the device can withstand -14 V to 95 V on motor connection pins
–
0% to 100% duty cycle operation support
–
dedicated PWM input pin for each gate driver
3 differential high accuracy current monitors for ground referred current
measurements:
–
ADC/DAC architecture
–
SPI adjustable Gain Factor and Output Offset
–
built-in error calibration
–
the device can withstand -14 V to 6 V on input sensing pins
–
SPI readable current measurement
–
0 to 4.6 V DAC output dynamic range
3 real time phase voltage monitor channels:
–
SPI programmable phase voltage feedback;
–
SPI readable phase duty cycle measurement;
32-bit - 10 MHz SPI interface with 5-bit CRC and 1bit frame counter for internal
setting, self-test and full diagnostics
Protection and diagnostic:
–
SPI programmable VDS diagnostic and protection in on-state
–
SPI programmable Dead Time protection
–
SPI programmable Shoot-through diagnostic and protection
–
Open load, short to GND and short to battery diagnostic in off-state
–
Over-temperature diagnostic and protection with SPI programmable
warning flag
–
SPI readable Tj measurement
–
Ground loss diagnostic
–
System clock monitoring
–
Power supply pins VDD, VDH, VBP over-voltage and under-voltage
diagnostic
–
FET driver supply VPRE and VCP under-voltage and over-voltage
diagnostic
–
SPI Window Watchdog
–
Fault status flag output
DS13546 - Rev 3 - March 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
L9908
Application
•
•
•
•
•
EPS – Electronic Power Steering
HVAC Blowers – Heating, ventilation, and air conditioning
Engine Cooling Fans
Electronic Brake Booster
EWP, EFP, EOP
Description
L9908 is a gate driver unit (GDU) for controlling 6 N-channel FETs for brushless
motors in automotive applications.
Each one of the 3 half bridge drivers channels (HS/LS couples) can be independently
configured allowing different load driving and is able to withstand -14 V to 95 V
excursion on motor`s pins.
Through 6 dedicated parallel inputs the pre-driver stages can be controlled
independently supporting duty cycle operations from 0% to 100% and allowing to
implement all kinds of electric motor control strategy. A dedicated combination of
regulators, charge pumps and bootstrap circuits allows L9908 to be suitable to
operate in passenger, commercial or hybrid vehicles.
Safe operation of half bridges is ensured by shoot-through diagnosis, dead-time,
short to battery, short to ground and open load detection plus a real time phase
voltage monitoring.
L9908 is equipped with 3 independent high accuracy current monitor channels
with SPI-configurable input differential voltage ranges for ground referenced current
measurements, with 5 V/3.3 V output dynamic range compatibility.
L9908 implements diagnostics on external and internal supply, ground level, internal
temperature.
A 32-bit out of frame SPI-slave interface is implemented for communication up to 10
MHz between L9908 and uC. SPI communication is safe-guarded by 5-bit CRC, 1bit
frame counter, frame length check and an SPI-configurable Window Watchdog.
DS13546 - Rev 3
page 2/153
L9908
Block diagram and pin description
1
Block diagram and pin description
Figure 1. Block diagram
DS13546 - Rev 3
page 3/153
L9908
Block diagram and pin description
Figure 2. Pin connection diagram (top view)
Legenda: I = Input, O = Output, P = Power Supply, G = Ground, I/O = Input/Output
Table 1. Pin list description
Pin #
Pin name
1
NCS
2
Pin type
Class
SPI Chip Select Input (Active LOW)
I
Local
SCLK
SPI Serial Clock Input
I
Local
3
SDI
SPI Serial Data Input
I
Local
4
SDO
SPI Serial Data Output
O
Local
5
VIO
Power supply for digital output
P
Local
O
Local
6
DS13546 - Rev 3
Description
CSO3/PVM Current monitor 3 analog output. Phase voltage feedback output
7
CSO2
Current monitor 2 analog output
O
Local
8
CSO1
Current monitor 1 analog output
O
Local
9
VDD
Power supply input for internal circuitry and current monitors analog output (CSOn)
P
Local
10
SGND
Signal Ground (Analog, Digital, Reference)
G
Local
11
EN_BR
Bridge Enable Input (Active HIGH)
I
Local
page 4/153
L9908
Block diagram and pin description
Pin #
Pin name
12
NDIS
13
Description
Pin type
Class
Safe switch-off activation Input (Active LOW)
I
Local
IS3-
Current monitor 3 negative input
I
Local
14
IS3+
Current monitor 3 positive input
I
Local
15
IS2-
Current monitor 2 negative input
I
Local
16
IS2+
Current monitor 2 positive input
I
Local
17
IS1-
Current monitor 1 negative input
I
Local
18
IS1+
Current monitor 1 positive input
I
Local
19
SLS_3
Source connection of LS FET, phase 3
I/O
Local
20
GLS_3
Gate connection of LS FET, phase 3
I/O
Local
21
SLS_2
Source connection of LS FET, phase 2
I/O
Local
22
GLS_2
Gate connection of LS FET, phase 2
I/O
Local
23
SLS_1
Source connection of LS FET, phase 1
I/O
Local
24
GLS_1
Gate connection of LS FET, phase 1
I/O
Local
25
CBS_3
Bootstrap capacitor of HS, phase 3
I/O
Local
26
GHS_3
Gate connection of HS FET, phase 3
I/O
Local
27
SHS_3
Source connection of HS FET, phase 3
I/O
Global
28
CBS_2
Bootstrap capacitor of HS, phase 2
I/O
Local
29
GHS_2
Gate connection of HS FET, phase 2
I/O
Local
30
SHS_2
Source connection of HS FET, phase 2
I/O
Global
31
CBS_1
Bootstrap capacitor of HS, phase 1
I/O
Local
32
GHS_1
Gate connection of HS FET, phase 1
I/O
Local
33
SHS_1
Source connection of HS FET, phase 1
I/O
Global
34
VDH
Drain connection of HS FETs
P
Global
35
CP2P
Charge Pump 2 positive input of fly capacitance
I/O
Local
36
CP2M
Charge Pump 2 negative input of fly capacitance
I/O
Local
37
VBP
P
Global
38
CP1M
Charge Pump 1 negative input of fly capacitance
I/O
Local
Pre-regulation stage power supply
39
PGND
Power Ground (Charge Pump 1 and 2)
G
Local
40
CP1P
Charge Pump 1 positive input of fly capacitance
I/O
Local
41
VPRE
Pre-regulated voltage for HS/LS Vgs driving
I/O
Local
42
INH3
PWM command for HS, phase 3 (Active HIGH)
I
Local
43
INH2
PWM command for HS, phase 2 (Active HIGH)
I
Local
44
INH1
PWM command for HS, phase 1 (Active HIGH)
I
Local
45
INL3
PWM command for LS, phase 3 (Active HIGH)
I
Local
46
INL2
PWM command for LS, phase 2 (Active HIGH)
I
Local
47
INL1
PWM command for LS, phase 1 (Active HIGH)
I
Local
48
FS_FLAG
Fault status flag output (Active LOW)
O
Local
Exp. PAD
Cooling pad not electrically connected. Connect to GND plane on PCB
Safety Related pin NDIS and EN_BR have the following characteristics:
DS13546 - Rev 3
page 5/153
L9908
Block diagram and pin description
Table 2. Safety related digital input pins functional partitioning
Pins
Default State
Description
NDIS
Type B – Internal Resistance Pull-down
SPI Pin (SPI communication related pin)
EN_BR
Type B – Internal Resistance Pull-down
SPI Pin (SPI communication related pin)
Table 3. NDIS and EN_BR electrical characteristics
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
Notes
NDIS_ll_th
NDIS Input Low Level
-0.3
-
0.8
V
-
NDIS_hl_th
NDIS Input High Level
2
-
65
V
-
NDIS filtering time
1
2.5
5
μs
Analog filter
-65
-40
-15
μA
-
T_ndis_flt
NDIS_in_ipd
NDIS Pull Down Current
EN_BR_ll_th
EN_BR Input Low Level
-0.3
-
0.8
V
-
EN_BR _hl_th
EN_BR Input High Level
2
-
65
V
-
EN_BR filtering time
1
2.5
5
μs
Digital filter
-65
-40
-15
μA
-
T_en_br_flt
EN_BR _in_ipd
EN_BR Pull Down Current
NDIS = VIO
EN_BR = VIO
The state of Safety control pins EN_BR and NDIS is echoed into dedicated SPI readable bits EN_BR_ECHO and
NDIS_ECHO in the register GEN_STATUS2.
DS13546 - Rev 3
page 6/153
L9908
Absolute maximum ratings
2
Absolute maximum ratings
In the following section the voltage ranges of each pin are described by dividing them into three categories:
Functional Operating Range, Parametrical Operating Range and Absolute maximum rating.
Figure 3. Pin voltage ranges
2.1
2.1.1
Maximum Operating Range (MOR)
Functional Operating Range
Within these operating ranges the part operates as specified in the circuit description, electrical characteristics are
guaranteed only in the parametrical operating range, between these two ranges parametrical deviation may occur.
The device may not operate properly if functional operating range conditions are exceeded. Once taken beyond
the functional operative ratings and returned back within, the part will recover with no damage or degradation
(provided that AMR range is not exceeded). All analog and digital voltages are related to the potential at signal
ground SGND. All currents are assumed to be positive when current flows into the pin.
Table 4. Functional operating conditions
Symbol
Parameter
Min
Typ
Max
Unit
Notes
VBP UV
-
VBP OV
V
Thermally
limited
VBP UV + HYST
-
V
Power-Up
VDH UV
-
V
-
VDH UV + HYST
-
V
Power-Up
VDD UV
-
V
-
VDD UV + HYST
-
V
Power-Up
2.5
-
5.5
V
-
Power Supply
VBP_MOR
VBP_MOR_PU
VDH_MOR
VDH_MOR_PU
VDD_MOR
VDD_MOR_PU
VIO_MOR
VBP: voltage range
VBP: voltage range for
power up
VDH: voltage range
VDH: voltage range for
power up
VDD: voltage range
VDD: voltage range for
power up
VIO: voltage range
VDH OV
VDD OV
Gate Driver Supply
d_CP1P_CP1M_MOR
VPRE_MOR
d_CP2P_CP2M_MOR
DS13546 - Rev 3
CP1P - CP1M: Charge
Pump1 external
capacitance terminals
differential voltage
VPRE UV
-
VPRE OV
V
-
VPRE: voltage range
VPRE UV
-
VPRE OV
V
-
CP2P – CP2M: Charge
Pump2 external
capacitance terminals
differential voltage
VPRE UV
-
VPRE OV
V
-
page 7/153
L9908
Maximum Operating Range (MOR)
Symbol
Parameter
Min
Typ
Max
Unit
Notes
V
Charge
through BT
charge limiter
1 only
[n=1,2,3]
Gate Drivers
CBS_n – SHS_n:
differential voltage
d_CBSN_SHSN_MOR_BT1_MOR
between CBS_n and
SHS_n
VPRE UV
CBS_n – SHS_n:
differential voltage
d_CBSN_SHSN_MOR_BT2_MOR
between CBS_n and
SHS_n
-
VPRE OV
BT_lim2_vlim
(MIN)
-
BT_lim2_vlim
(MAX)
V
Charge
through BT
charge limiter
2 only
[n=1,2,3]
d_GHSN_SHSN_MOR
GHS_n – SHS_n:
differential voltage
between GHS_n and
SHS_n
0
-
CBS_n-SHS_n
V
[n=1,2,3]
SHSN_MOR
SHS_n: voltage range
-12
-
VDH +12
V
[n=1,2,3]
d_GLSN_SLSN_MOR
GLS_n – SLS_n:
differential voltage
between GLS_n and
SLS_n
0
-
VPRE-SLS_n
V
[n=1,2,3]
d_SLSN_MOR
SLS_n: voltage range
-12
-
2
V
[n=1,2,3]
-0.3
-
0.3
V
[n=1,2,3]
Current Monitors
ISN_MOR
ISn+ – ISn-: differential
voltage between ISn+
and IS-n
ISN_MOR
ISn+/ISn-: common
mode voltage range
-2
-
2
V
[n=1,2,3]
CSON_MOR
CSOn: voltage range
0
-
VDD-0.4
V
[n=1,2,3]
Digital I/O
Note:
DS13546 - Rev 3
DO_MOR
SDO, PVM, FS_FLAG:
voltage range
0
-
VIO
V
-
DI_MOR
NCS, SCLK, SDI,
EN_BR, NDIS, INHn,
INLn: voltage range
0
-
VIO
V
[n=1,2,3]
undershoot spikes at motor`s phase (SHS_n) take place when the high side is switched off and the load current
must flow through the low-side freewheeling diode.
page 8/153
L9908
Maximum Operating Range (MOR)
Figure 4. 14 V pulse scenario - applicative condition
The negative peak voltage reached during such a transition can be described by the following formula:
SHSn peak = Vd_peak + LPAR_TOT
dILOAD
R
+ RPAR_TOT Iload
tfall + sℎunt
SHSn peak ≈ LPAR_TOT
(1)
dILOAD
tfall
(2)
The first term Vd_peak is the transient peak voltage of the LS FET body diode, the second is due to transient
response of the parasitic inductances between SHS_n and GND while the third is related to path resistance
drop. Given the maximum current conducted, the application shall limit the maximum undershoot peak voltage by
minimizing the ratio:
LPAR_TOT
tfall
(3)
(Ex: if Iload = 100 A then LPAR_TOT = 4 nH then tfall must be kept higher than 33 ns)
The above-mentioned considerations also apply to SHS_n positive pulse which takes place when the inverter is
working in generator mode.
2.1.2
Parametrical Operating Range
Within these operating ranges the part operates as specified and without parameter deviations. The device may
show parameters deviation if parametrical operating conditions are exceeded.
Once taken beyond the operative ratings and returned back within, the part will recover with no damage or
degradation (provided that AMR range is not exceeded). All analog and digital voltages are related to the potential
at signal ground SGND. All currents are assumed to be positive when current flows into the pin.
DS13546 - Rev 3
page 9/153
L9908
Absolute Maximum Ratings (AMR)
Table 5. Parametrical operating conditions
Symbol
Parameter
Test Condition Min Typ Max Unit
Notes
Power Supply
VBP_MOR_PAR
VBP: voltage range
t ≤ 15 min
4.5
-
36
V
-
36
-
48
V
Jump Start Pulse
48
-
60
V
Load Dump Pulse
VBP_MOR_PAR_EXT1
VBP: extended voltage range 1
VBP_MOR_PAR_EXT2
VBP: extended voltage range 2
VDD_MOR_PAR_CSON
VDD: voltage range (CSOn
related parameter)
-
4.85
5
5.15
V
-
VDD_MOR_PAR
VDD: voltage range
-
4. 5
5
5.5
V
-
VIO_MOR_PAR
VIO: voltage range
-
2.5
-
5.5
V
-
VPRE: voltage range
-
7
-
15
V
-
VDH: voltage range
-
4.5
-
52
V
-
52
-
60
V
Long Term
Overvoltage
60
-
70
V
Transient Overvoltage
VPRE_MOR_PAR
VDH_MOR_PAR
VDH_MOR_PAR_EXT1 VDH: extended voltage range 1
VDH_MOR_PAR_EXT2 VDH: extended voltage range 2
Tamb = 25°C
t ≤ 400 ms
Tamb = 25°C
t ≤ 60 min
Tamb = 25°C
t ≤ 40 ms
Tamb = 25°C
Note:
All parameters are guaranteed and tested, in the voltage ranges reported above in Table 5 unless otherwise
specified. Where not specified the parametrical operating range equals the functional operating range.
2.2
Absolute Maximum Ratings (AMR)
Maximum ratings are absolute ratings; exceeding any one of these values may cause permanent damage to
the integrated circuit. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. All analog and digital voltages are related to the potential at signal ground SGND. All currents are
assumed to be positive when current flows into the pin.
Table 6. Absolute maximum ratings
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
Notes
-0.3
-
65(1)
V
-
-1
-
65(1)
V
Not subject to
production test
-0.3
-
75(2)
V
-1
-
90
V
Not subject to
production test
Power Supply
VBP_AMR_DC
VBP: DC voltage range
VBP_AMR_AC
VBP: transient voltage range
VDH_AMR_DC
VDH: DC voltage range.
VDH_AMR_AC
VDH: transient voltage range.
t ≤ 400 ns;
IVBP ≤ 500 mA
t ≤ 400 ns;
IVDH ≤ 500 mA
VDH - VBP Differential
voltage between VDH and
VBP
-
-65
-
75
V
-
VDD_AMR
VDD: voltage range
-
-0.3
-
20
V
-
VIO_AMR
VIO: voltage range
-
-0.3
-
20
V
-
-0.3
-
65
V
-
d_VDH_VBP_AMR
Gate Driver Supply
CP1M_AMR
DS13546 - Rev 3
CP1M: voltage range
page 10/153
L9908
Absolute Maximum Ratings (AMR)
Symbol
Parameter
Min
Typ
Max
Unit
Notes
d_VBP_CP1M_AMR
VBP - CP1M: Charge Pump1
external differential voltage
between VBP and CP1M
-
-0.3
-
65
V
-
CP1P: voltage range
-
-0.3
-
20
V
-
d_CP1P_CP1M_AMR
CP1P - CP1M: Charge
Pump1 external capacitance
terminals differential voltage
-
-65
-
20
V
-
d_VBP_CP1P_AMR
VBP - CP1P: Charge Pump1
external differential voltage
between VBP and CP1P
-
-20
-
65
V
-
d_VPRE_CP1P_AMR
VPRE – CP1P: Charge
Pump1 external differential
voltage between VPRE and
CP1P
-
-0.3
-
20
V
-
VPRE_AMR
VPRE: voltage range
-
-0.3
-
20
V
-
CP2M_AMR
CP2M: voltage range
-
-0.3
-
75
V
-
VPRE – CP2M: Charge
Pump2 external differential
voltage between VPRE and
CP2M
-
-75
-
20
V
-
CP2P: voltage range
-
-0.3
-
95
V
-
d_CP2P_CP2M_AMR
CP2P – CP2M: Charge
Pump2 external capacitance
terminals differential voltage
-
-20
-
75
V
-
d_VPRE_CP2P_AMR
VPRE – CP2P: Charge
Pump2 external differential
voltage between VPRE and
CP2P
-
-75
-
20
V
-
VDH – CP2P: Charge Pump2
external differential voltage
between VDH and CP2P
-
-95
-
0.3
V
-
VDH+VPRE-SHS_n:
constraint on simultaneous
voltage on VDH, VPRE and
SHS_n/GHS_n
-
-
-
100(3)
V
Application
information
CP1P_AMR
d_VPRE_CP2M_AMR
CP2P_AMR
d_VDH_CP2P_AMR
d_VDH_VPRE_SHSN_AMR
Test Condition
[n=1,2,3]
Gate Drivers
CBS_n: DC voltage range in
RESET
VDD < VDD UV +
HYST
-0.3
-
95
V
[n=1,2,3]
CBS_AMR_DC
CBS_n: DC voltage range
VDD≥VDD UV +
HYST
-7(1)
-
95
V
[n=1,2,3]
CBS_AMR_AC
CBS_n: transient voltage
range
-14(1)
-
95
V
[n=1,2,3] Not
subject to
production test
CBS_AMR_DC_RES
DS13546 - Rev 3
VDD ≥ VDD UV +
HYST
t ≤ 200 ns
d_CBSN_CP2P_AMR
CBS_n - CP2P: differential
voltage between CBS_n and
CP2P terminals
-
-95
-
20
V
[n=1,2,3]
GHS_N_AMR_DC_RES
GHS_n: DC voltage range in
RESET
VDD < VDD UV +
HYST
-0.3
-
95
V
[n=1,2,3]
GHS_N_AMR_DC
GHS_n: DC voltage range
VDD ≥ VDD UV +
HYST
-7
-
95
V
[n=1,2,3]
GHS_N_AMR_AC
GHS_n: transient voltage
range
-14
-
95
V
[n=1,2,3] Not
subject to
production test
VDD ≥ VDD UV +
HYST
t ≤ 200 ns
page 11/153
L9908
Absolute Maximum Ratings (AMR)
Symbol
Test Condition
Min
Typ
Max
Unit
Notes
SHS_n: DC voltage range in
RESET
VDD < VDD UV +
HYST
-0.3
-
95
V
[n=1,2,3]
SHS_N_AMR_DC
SHS_n: DC voltage range
VDD ≥ VDD UV +
HYST
-7
-
75
V
[n=1,2,3]
SHS_N_AMR_AC
SHS_n: transient voltage
range
-14
-
95
V
[n=1,2,3] Not
subject to
production test
-
-
20
V
[n=1,2,3] Not
subject to
production test
SHS_N_AMR_DC_RES
SHS_N_AMR_SR
VDD ≥ VDD UV +
HYST
t ≤ 200 ns
SHS_n: transient slew rate
SR ≤ 1V/ns
d_CBSN_GHSN_AMR
CBS_n - GHS_n: differential
voltage between CBS_n and
GHS_n terminals
-
-0.3
-
20
V
[n=1,2,3]
d_CBSN_SHSN_AMR
CBS_n - SHS_n: Differential
voltage between CBS_n and
SHS_n
-
-0.3
-
20
V
[n=1,2,3]
d_GHSN_SHSN_AMR_DC
GHS _n - SHS_n: Differential
DC voltage between GHS_n
and SHS_n
-
-0.3
-
20
V
[n=1,2,3]
d_GHSN_SHSN_AMR_AC
GHS _n - SHS_n: Differential
transient voltage between
GHS_n and SHS_n
t ≤ 200 ns; IGHS_n
≤ - 2A
-2
-
20
V
[n=1,2,3] Not
subject to
production test
d_VDH_SHSN_AMR_RES
VDH - SHS_n: Differential
voltage between VDH and
SHS_n in RESET
VDD < VDD UV +
HYST
-0.3
-
95
V
-
d_VDH_SHSN_AMR
VDH - SHS_n: Differential
voltage between VDH and
SHS_n
VDD ≥ VDD UV +
HYST
-14
-
95
V
[n=1,2,3]
GLS_n: DC voltage range in
RESET
VDD < VDD UV +
HYST
-0.3
-
95
V
[n=1,2,3]
GLS_N_AMR
GLS_n: DC voltage range
VDD ≥ VDD UV +
HYST
-7
-
20
V
[n=1,2,3]
GLS_N_AMR_AC
GLS_n: transient voltage
range
-14
-
20
V
[n=1,2,3] Not
subject to
production test
GLS_N_AMR_RES
VDD ≥ VDD UV +
HYST
t ≤ 200 ns
SLS_n: DC voltage range in
RESET
VDD < VDD UV +
HYST
-0.3
-
95
V
[n=1,2,3]
SLS_N_AMR_DC
SLS_n: DC voltage range
VDD ≥ VDD UV +
HYST
-7
-
20
V
[n=1,2,3]
SLS_N_AMR_AC
SLS_n: transient voltage
range
-14
-
20
V
[n=1,2,3] Not
subject to
production test
SLS_N_AMR_DC_RES
DS13546 - Rev 3
Parameter
VDD ≥ VDD UV +
HYST
t ≤ 200 ns
d_VPRE_GLSN_AMR
VPRE - GLS_n: Differential
voltage between VPRE and
GLS_n
-
-0.3
-
35
V
[n=1,2,3]
d_VPRE_SLSN_AMR
VPRE - SLS_n: Differential
voltage between VPRE and
SLS_n
-
-0.3
-
35
V
[n=1,2,3]
d_GLSN_SLSN_AMR_DC
GLS_n - SLS_n: Differential
voltage between GLS_n and
SLS_n
-
0(1)
-
20
V
[n=1,2,3]
page 12/153
L9908
Absolute Maximum Ratings (AMR)
Symbol
d_GLSN_SLSN_AMR_AC
Parameter
GLS_n - SLS_n: Differential
voltage between GLS_n and
SLS_n
Test Condition
Min
Typ
Max
Unit
Notes
t ≤ 200 ns; IGLS_n
≤-2A
-2(1)
-
20
V
[n=1,2,3] Not
subject to
production test
Current Monitors
IS_AMR_DC_RES
ISn+/ISn-: DC voltage range
in RESET
VDD < VDD UV +
HYST
-0.3
-
20
V
[n=1,2,3]
IS_AMR_DC
ISn+/ISn-: DC common mode
voltage range
VDD ≥ VDD UV +
HYST
-7
-
20
V
[n=1,2,3]
IS_AMR_AC
ISn+/ISn-: transient common
mode voltage range
-14
-
20
V
[n=1,2,3] Not
subject to
production test
VDD ≥ VDD UV +
HYST
t ≤ 200 ns
ISn+ - ISn-: Differential
voltage between ISn+ and
ISn-
-
-5
-
5
V
[n=1,2,3]
VPRE - ISn+/ISn: Differential
voltage between VPRE and
ISn+/ISn
-
0
-
40
V
[n=1,2,3] Not
subject to
production test
IS_AMR_SR
ISn+/ISn-: common mode
transient slew rate
SR ≤ 1V/ns
-
-
20
V
[n=1,2,3] Not
subject to
production test
CSON_AMR
CSOn: voltage range
-
-0.3
-
20
V
[n=1,2,3]
VIO – CSOn: differential
voltage between VIO supply
and CSOn outputs
-
-0.3
-
20
V
[n=1,2,3]
d_ISMPN_ISMN_AMR
d_VPRE_IS_AMR
d_VIO_CSON_AMR
SPI Interface
NCS_AMR
NCS: voltage range
-
-0.3
-
20
V
-
SCLK_AMR
SCLK: voltage range
-
-0.3
-
20
V
-
SDI_AMR
SDI: voltage range
-
-0.3
-
20
V
-
SDO_AMR
SDO: voltage range
-
-0.3
-
20
V
-
Digital I/O
d_VIO_SDO_AMR
VIO – SDO: differential
voltage between VIO supply
and SDO outputs
-
-0.3
-
20
V
-
d_VIO_PVF_AMR
VIO – PVF: differential
voltage between VIO supply
and PVF outputs
-
-20
-
20
V
-
d_VIO_FSFLAG_AMR
VIO – FS_FLAG: differential
voltage between VIO supply
and FS_FLAG outputs
-
-0.3
-
20
V
-
PVF_AMR
PVF: voltage range
-
-0.3
-
20
V
-
FS_FLAG
FS_FLAG: voltage range
-
-0.3
-
20
V
-
INHN_AMR
INHn: voltage range
-
-0.3
-
20
V
[n=1,2,3]
INLN_AMR
INLn: voltage range
-
-0.3
-
20
V
[n=1,2,3]
EN_BR: voltage range
-
-0.3
-
65
V
-
NDIS: voltage range
-
-0.3
-
65
V
-
-0.6
-
0.6
V
-
EN_BR _AMR
NDIS _AMR
Grounds
GND_AMR
SGND, PGND
-
1. 36 V AMR over life-time. 48 V ≥ AMR ≥ 36 V for Jump Start transient pulse E-02 as defined in LV 124 standard and AMR ≥
48 V for Load Dump Test B transient pulse as defined in ISO 16750-2 standard.
DS13546 - Rev 3
page 13/153
L9908
ESD resistivity
2. 52 V AMR over life-time. 60 V ≥ AMR ≥ 52 V for E48-01a transient pulse, AMR ≥ 60 V for E48-02 transients pulse as
defined in VDA_320/LV 148 standard.
3. The maximum voltage drop experienced by internal structures has to be limited to 100V in order to avoid damages. The
HS pre-driver stage may experience together the maximum voltage and the minimum voltage all over L9908 respectively
imposed by CP2 output voltage or CBS_n and SHS_n negative pulses. HS pre-driver then must be protected by ensuring
that the absolute maximum voltage on CP2 or on CBS_n never takes place simultaneously with the absolute minimum
voltage on SHS_n so that: VDH * VPRE - SHSn ≤ 100 W
Note:
Integrated protection and diagnostics are designed to prevent device damage under the fault conditions defined
in the functional description. Fault conditions are considered to be out of normal operating range. Protection
functions are not designed for a continuous repetitive operation.
2.3
ESD resistivity
Table 7. ESD resistivity (pin level)
Symbol
HBM_LOC_ESD
Parameter
HBM (Local
HBM_GLO_ESD
HBM (Global
CDM _ESD
(1)
CDM_COR_ESD
LUT
CDM
Test Condition
Min
Typ
Max
Unit
Notes
-2
-
2
kV
Class 2
VBP, VDH, SHS_n
-4
-
4
kV
Class 3A
All pins
-500
-
500
V
Class C3
Corner pins
-750
-
750
V
Class C4
All pins
-100
-
100
mA
-
Pins)(1)
Pins)(1)
All
CDM (1)
Latch Up (3)
pins(2)
1. According to AEC-Q100-011
2. Pins are all GND connected together.
3. According to AEC-Q100-004
2.4
Temperature ranges and thermal data
Table 8. Temperature ranges and thermal data
Symbol
Parameter
Min Typ Max
Unit
Notes
Tamb
Operating temperature (ECU environment)
-40
-
150
°C
-
T (1)
j
Operating junction temperature
-40
-
150
°C
-
Tj
Extended operating junction temperature
-40
-
175
°C
200h over life time
Storage temperature
-55
-
150
°C
-
31
-
°C/W
Homogeneous internal power distribution (3)
-
2.1
-
°C/W
Homogeneous internal power distribution
Tsto
(2)
RthJ-A
Thermal resistance junction-to-ambient
RThj-cb(2) Thermal resistance junction-to-case-bottom
1. All parameters are guaranteed and tested, in the temperature range Tj -40 ÷ 150°C unless otherwise specified. The
device is still operative and functional at higher temperatures (up to Tj 175°C). Device functionality at high temperature is
guaranteed by bench validation, electrical parameters are guaranteed by correlation with ATE tests at reduced temperature
and adjusted limits (if needed).
2. Not subject to production test, guaranteed by design.
3. RthJA value is retrieved according to Jedec JESD51-2,-5,-7 guideline with a 2s2p board.
DS13546 - Rev 3
page 14/153
L9908
Temperature ranges and thermal data
Figure 5. 2s2p PCB with thermal vias
Note:
DS13546 - Rev 3
In “2s2p”, the “s” suffix stands for “Signal” and the number before indicates how many PCB layers are dedicated
to signal wires. The “p” suffix stands for “Power” and the number before indicates how many PCB layers are
dedicated to power planes.
page 15/153
L9908
Current consumption
3
Current consumption
Table 9. Quiescent current consumption in reset mode
Symbol
Parameter
Test Condition
IQ_VBP1 Quiescent consumption for VBP in reset mode
IQ_VBP2 Quiescent consumption for VBP in reset mode
IQ_VBP3 Quiescent consumption for VBP in reset mode
IQ_VBP4 Quiescent consumption for VBP in reset mode
IQ_VDH1 Quiescent consumption for VDH in reset mode
IQ_VDH2 Quiescent consumption for VDH in reset mode
IQ_VDH3 Quiescent consumption for VDH in reset mode
IQ_VDH4 Quiescent consumption for VDH in reset mode
IQ_VIO1
Quiescent consumption for VIO in reset mode
IQ_VIO2
Quiescent consumption for VIO in reset mode
VBP = 14 V, -40° ≤ Tj ≤ 25°C VDD = 0 V
VBP = 14 V, 25°C < Tj ≤ 150°C
VDD = 0 V
VBP = 60 V, -40°C ≤ Tj ≤ 25°C
VDD = 0 V
VBP = 60 V, 25°C < Tj ≤ 150°C
VDD = 0 V
VDH = 14 V, -40°C ≤ Tj ≤ 25°C
VDD = 0 V
VDH = 14 V, 25°C IPD_TOT_PHy + IPD_TOT_PHz
(21)
Where:
Ipu_totx is the equivalent pull-up current injected into the phase x (assuming phase x being configured as
OFD_EN = 01)
Ipd_toty and Ipd_totz are the equivalent pull-down currents injected respectively into the phase y and z
(assuming phase y and z being configured as OFD_EN = 10)
Figure 66. OFD currents in motor phases
Blanking and Filtering
To avoid false error detections during the diagnosis settling time and to increase noise robustness, the OSD
implements a two-step digital filtering: an Up/Down counter of length equal to T_ofd_flt on the comparator`s
output filters out the high frequency noise while a blanking time masks the filters output by a programmable delay
time T_ofd_blank.
Figure 67. OFD enabling and masking time start - IPU example
DS13546 - Rev 3
page 92/153
L9908
Off State Diagnosis (OFD)
Figure 68. OFD Masking and deglitch filtering - LSn_OFD Example
Figure 69. OFD Masking and deglitch filtering - LSn_OFD Example with multiple glitches
The T_ofd_blank can be configured by dedicated SPI bits as follows:
Table 86. OFD blanking time configuration bits
DS13546 - Rev 3
OFD_BLANK1
OFD_BLANK0
0
0
T_ofd_blank = 10 ms
0
1
T_ofd_blank = 25 ms
1
0
T_ofd_blank = 50 ms (Default)
1
1
T_ofd_blank = 100 ms
Description
page 93/153
L9908
On State Diagnosis (OND)
Note:
The application software must configure T_ofd_blank to ensure that the motor is not running and the phases are
not energized. For some applications the maximum available T_ofd_blank configuration could be too short, the
application SW then shall enable the OFD circuit with an additional delay after disabling the bridge drivers.
Table 87. OFD electrical characteristics
Symbol
Parameter
Test Condition
Min
Typ
Max Unit
Notes
2
2.7
3.1
V
-
-
-
0.9
V
-
OFD_rvef
OFD phase reference voltage
in with no fault
OFDn_EN = 01
OFD_vpd_ol
OFD open load voltage in pd
mode
OFDn_EN = 10
OFD_ipu
OFD pull up current capability
OFDn_EN = 01
2.25
-
3.3
mA
-
OFD_ipd
OFD pull down current
capability
OFDn_EN = 10
0.6
0.75
0.9
mA
It includes ILEAK
contribution
OFD_scb_th
OFD_SCB detection threshold
-
-
SLS_n+1.7
-
V
Not subject to
production test
OFD_scg_th
OFD_SCG detection threshold
-
-
VDH-0.7
-
V
Not subject to
production test
T_ofd_flt
OFD Fault detection filter time
-
85
100
115
μs
Digital filter
CLK_SSM_EN = 0
-15
-
15
%
-
T_ofd_blank_acc OFD Blanking Time accuracy
OFDi,j_EN = 10
SHS_n = No Load
Note:
All parameters are guaranteed, and tested, in the voltage ranges reported above in Table 5 unless otherwise
specified. Where not specified the parametrical operating range equals the functional operating range.
5.15
On State Diagnosis (OND)
L9908 implements a monitoring unit to detect failure condition affecting the load during the half bridges ON state
by monitoring the voltage drain-source drop across the Ext. FET.
The ON state diagnosis unit is composed by a dedicated VDS comparator for each HS and LS Ext. FET that
constantly monitors the voltage drop during FET`s ON state.
ON State Load Failure Mode Detection:
•
Short-circuit to ground at one SHS_n terminals → HSn_STG flag is set to 1
•
Short-circuit to battery at one SHS_n terminals → LSn_STB flag is set to 1
The ON state diagnosis can be disabled by a dedicated SPI bit as follows:
Table 88. OND enable bits
ONDn_DIS
Description
0
ON State diagnosis enabled on n-th HS and LS (Default)
1
ON State diagnosis disabled on n-th HS and LS
When the OND monitoring is disabled while having the fault flag set, the flag will not be cleared until SPI read.
If VDH-SHS_n ≥ V_ond_hs_th occurs for an interval longer than T_ond_flt filter time, the HSn_STG flag is set.
The error flag remains set until the failure condition is removed and the flag is cleared by the SPI command.
If SHS_n-SLSn ≥ V_ond_ls_th occurs for an interval longer than T_ond_flt filter time, the LSn_STB flag is set. The
error flag remains set until the failure condition is removed and the flag is cleared by the SPI command.
DS13546 - Rev 3
page 94/153
L9908
On State Diagnosis (OND)
Figure 70. ON State Diagnosis simplified block diagram
Threshold configuration
The reference thresholds for the OND unit V_ond_th are generated through two 6-bit Current Steering DAC, one
for HS and one for LS FETs.
Diagnosis thresholds can be configured through dedicated SPI bits as follows:
VOND_TH_HS = ΔLSB × VDS_HS_TH 5: 0
(22)
VOND_TH_LS = ΔLSB × VDS_LS_TH 5: 0
(23)
Where: ΔLSB is the minimum voltage step and VDS_HS_TH/VDS_LS_TH [5:0] in the register GEN_CFG2 there
are the dedicated SPI configuration bits.
Default value is VDS_HS_TH = VDS_LS_TH = 0x00. The default code equals the first non-zero code 0x01 which
corresponds to a Vond_hs_th = 1LSB = 27 mV
Blanking and Filtering
The OND fault detection is based on the correlation between Vds voltage with the current conducted through
ohm`s law; it turns out that a correct detection can be performed only when Ext. FET is in full RdsON mode.
In order to prevent spurious short circuit detections due to an internal circuit voltage compression, the n-th OND
monitor circuit is masked by the VDH UV diagnosis assertion. During a VDH UV condition OND fault detection is
always prevented.
In order to prevent spurious short circuit detections due to a non-linear operation region, the n-th OND monitor
circuit is masked according to the internal n-th gate drive signal:
•
masking is removed after a programmable blanking time T_ond_blank from gate drive signal rising edge;
•
masking is re-activated soon after gate drive signal falling edge.
The T_ond_blank can be configured by dedicated SPI bits as follows:
Table 89. OND blanking time configuration bits
DS13546 - Rev 3
OND_BLANK2
OND_BLANK1
OND_BLANK0
0
0
0
T_ond_blank = 0.7 μs
0
0
1
T_ond_blank = 1 μs
0
1
0
T_ond_blank = 1.5 μs (Default)
0
1
1
T_ond_blank = 2 μs
1
0
0
T_ond_blank = 2.5 μs
Description
page 95/153
L9908
On State Diagnosis (OND)
Note:
OND_BLANK2
OND_BLANK1
OND_BLANK0
Description
1
0
1
T_ond_blank = 3.5 μs
1
1
0
T_ond_blank = 5 μs
1
1
1
T_ond_blank = 8 μs
The PWM ON time must be longer than T_ond_blank, else way the short circuit condition cannot be detected.
In order to remove glitches and increase the detection capability of the system also at low Duty Cycles a
cascaded filtering is introduced. Filtering action is developed by a digital up/down counter, incrementing the count
at fault present and decrementing it at fault absent cumulating detections all over PWM cycles.
The T_ond_flt can be configured by dedicated SPI bits as follows:
Table 90. OND filtering time configuration bits
OND_FLT1
OND_FLT0
Description
0
0
T_ond_flt= 1 μs
0
1
T_ond_flt = 2.5 μs
1
0
T_ond_flt = 4 μs (Default)
1
1
T_ond_flt = 8 μs
Figure 71. OND blanking and filtering (VDS_LSn example), multiple fault
DS13546 - Rev 3
page 96/153
L9908
On State Diagnosis (OND)
Figure 72. OND blanking and filtering (VDS_LSn example), single fault
Where:
1.
LSn gate drive rising edge → T_ond_blank is elapsed comparator output masking is released; VSLn-VSHn
> VDS_ond_th → LSn_STB comparator output is set to 1;T_ond_flt counter +1; LSn gate drive falling edge
→ comparator output masking is enabled → T_ond_flt counter freeze.
2.
LSn gate drive rising edge → T_ond_blank is elapsed comparator output masking is released; VSLn-VSHn
< VDS_ond_th → LSn_STB comparator output is set to 0; T_ond_flt counter -1; LSn gate drive falling edge
→ comparator output masking is enabled → T_ond_flt counter freeze.
The correct operation OND stage is safety relevant and then a self-check procedure is implemented.
Table 91. OND electrical characteristics
Symbol
Parameter
OND_th_lsb
VDS monitoring threshold step
Test Condition
-
Min Typ Max Unit
Notes
-
27
-
mV
Not subject to production test
-4.5
-
4.5
%
16x < VDS_HS/LH_TH < 3Fx
-6
-
6
%
Cx < VDS_HS/LH_TH < 16x
-10
-
10
%
6x < VDS_HS/LH_TH < Cx
-15
-
15
%
4x < VDS_HS/LH_TH < 6x
0.594 V < VDH
OND_th_acc1
VDS monitoring thresholds
accuracy 1
SHS_n < 1.7 V
0.594 V < SHS_nSLS_n < 1.7 V
0.324 V < VDH-
OND_th_acc2
VDS monitoring thresholds
accuracy 2
SHS_n < 0.594 V
0.324 V < SHS_nSLS_n < 0.594 V
0.162 V < VDH-
OND_th_acc3
VDS monitoring thresholds
accuracy 3
SHS_n < 0.324 V
0.162 V < SHS_nSLS_n < 0.324 V
0.081 V < VDH-
OND_th_acc4
VDS monitoring thresholds
accuracy 4
SHS_n < 0.162 V
0.081 V < SHS_nSLS_n < 0.162 V
DS13546 - Rev 3
page 97/153
L9908
Phase Voltage Feedback (PVF)
Symbol
Parameter
Test Condition
Min Typ Max Unit
Notes
VDH-SHS_n
VDS monitoring thresholds
accuracy 5
OND_th_acc5
≤ 0.081 V
-12
-
12
mV
OND Filtering Time accuracy
CLK_SSM_EN = 0 -15
-
15
%
-
T_ond_blank_acc OND Blanking Time accuracy
CLK_SSM_EN = 0 -15
-
15
%
-
SHS_n-SLS_n
0x < VDS_HS/LH_TH < 3x
≤ 0.081 V
T_ond_flt_acc
Note:
All parameters are guaranteed, and tested, in the voltage ranges reported above in Table 5 unless otherwise
specified. Where not specified the parametrical operating range equals the functional operating range.
5.16
Phase Voltage Feedback (PVF)
L9908 implements three symmetric hysteretic comparators to monitor the level each motor phase voltage. This
function allows a real time feedback on half bridges behavior in terms of phase voltage level and transition timing
and actual phase’s duty cycle.
Figure 73. Off State Diagnosis block diagram
Each phase voltage comparator converts the output phase voltage into a digital signal by comparing it against a
threshold proportional to VDH voltage so that:
VDH-SHS_n ≥ PVFn_th_h: PVFn is set to 1.
VDH-SHS_n ≤ PVFn_th_l: PVFn is set to 0.
PVFn_th_h and PVFn_th_l are referred to as a specific percentage of the VDH voltage and can be configured by
PVF_TH_CFG bits in the register GEN_CFG4, as follows:
Table 92. PVF threshold selection bits
PVF_TH_CFG
0
DS13546 - Rev 3
Description
VPVF_TH_H = VDH*0.75 (Default)
VPVF_TH_L = VDH*0.25
page 98/153
L9908
Phase Voltage Feedback (PVF)
PVF_TH_CFG
1
Description
VPVF_TH_H = VDH*0.6
VPVF_TH_L = VDH*0.4
Table 93. PVF electrical characteristics
Symbol
Min Typ Max Unit Notes
PPVF_th_acc
PVF thresholds accuracy
-6.5
-
6.5
%
-
PPVF_th_match
PVF thresholds matching
-8
-
8
%
-
PPVF_htol_dly
PVF high to low propagation delay
-
-
200
ns
-
PPVF_ltoh_dly
PVF low to high propagation delay
-
-
200
ns
-
PVF propagation delay matching (phase vs. phase)
-
10
30
ns
-
PVF propagation delay matching (single phase - rise to fall)
-
20
35
ns
-
PPVF_dly_match
PPVF_htol_ltoh_dly_match
Note:
Parameter
All parameters are guaranteed, and tested, in the voltage ranges reported above in Table 5 unless otherwise
specified. Where not specified the parametrical operating range equals the functional operating range.
Figure 74. Phase voltage feedback behavior
The state of PVF comparators is echoed into dedicated SPI readable registers PVFn_ECHO, in the register
GEN_STATUS3.
To save pin-count the phase comparator outputs are multiplexed to one single output pin CSO3/PVM.
The selection of which phase comparators output can be configured by means of a dedicated SPI bit set as
follows:
DS13546 - Rev 3
page 99/153
L9908
Actuation Timers (ACT)
Table 94. PVF output redirection selection bit
5.16.1
PVF_OUT_CFG0
PVF_OUT_CFG0
Description
0
0
PVF1 xor PVF2 xor PVF3 is output (Default)
0
1
PVF1 is output
1
0
PVF2 is output
1
1
PVF3 is output
CSO3 - PVF multiplexing
For pin saving purpose PVF and CSO3 outputs are multiplexed on the same pin and can be selected by
CSO3_DIS bit in the register SAFETY_RELEVANT2:
Table 95. CSO3-PVFn output multiplexing selection bits
CSO3_DIS
5.17
Description
0
CSO3/PVM pin used a CM3 output (Default)
1
CSO3/PVM pin used a PVFn output
Actuation Timers (ACT)
L9908 implements an additional built-in feature which measures cycle by cycle the on or the off time windows
applied to each phase either on INLn or on PVFn signals. This feature is performed by three dedicated 11-bit
accumulators which count the number of clock cycles (CLK/8) fitting the time window.
Figure 75. Actuation Timer simplified block diagram
To allow the maximum flexibility against the time window to be measured, either positive or negative, timers
can be configured by a proper SPI bit set to be run in negative or positive polarity so that the time is triggered
respectively by the falling or the rising of the reference signal and stopped by the opposite edge.
Table 96. Actuation Timers configuration bits
DS13546 - Rev 3
ACT_CFG1
ACT_CFG0
0
0
PVF Negative Polarity (Default)
0
1
PVF Positive Polarity
1
0
INL Negative Polarity
1
1
INL Positive Polarity
Description
page 100/153
L9908
Actuation Timers (ACT)
Figure 76. Actuation Timers timing diagram on ACT (positive & negative polarity)
The content of the count is stored into a dedicated 11bit SPI read-only register ACTn.
Reconstruction formula:
TON − OFF = ΔACT_LSB × DACTn
(24)
Where: DACTn is the digital word stored in ACTn and ∆ACT_LSB is the ACT counter quantization step.
Example:
DACTn = 10001010101 (binary) à 1109 (decimal)
ACT_CFG = 01
TON_PVF = 1109 *0.4 μs = 443.6 us ±50 ns
In case the measured time window will exceed the maximum count allowed the counter overflow is flagged by
setting to ‘1’ a dedicated SPI read-only register ACTn_OVF.
Note:
when ACT overflow condition is reached on n-th counter the ACTn value keeps the full-scale value until another
counting window is started or the disabling of ACT function.
The ACT function can be enabled according to the following SPI bits:
Table 97. Actuation Timers enable bits
ACT_EN
Description
0
ACT Disabled (Default)
1
ACT Enabled
Table 98. Actuation Timers electrical characteristics
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
Notes
ACT_res
ACT resolution
-
-
11
-
bits
Not subject to production test
ACT_lsb
ACT LSB
-
-
0.4
-
μs
Not subject to production test
ACT_in_acc
ACT accuracy
CLK_SSM_EN = 0
-50
-
50
μs
Not subject to production test
Note:
All parameters are guaranteed, and tested, in the voltage ranges reported above in Table 5 unless otherwise
specified. Where not specified the parametrical operating range equals the functional operating range.
Note:
Internal counter is a 14-bit counter with LSB equal to 50 ns. ACT readout and TSYNC configuration however are
available only through the internal counter 11MSB.
DS13546 - Rev 3
page 101/153
L9908
Ground Loss Monitor (GLM)
5.18
Ground Loss Monitor (GLM)
L9908 implements two ground reference pins, a Power Ground (PGND) dedicated as reference for the noisy,
high power gate supply circuitry (CP1, CP2) and a Signal Ground (SGND) dedicated to the low power internal
analog/digital circuitry.
For EMI robustness the GND pin is internally split in two GND reference PADs: GND_ANA (ground reference
for analog circuitry supplied from V3V3_ANA) and GND_DIG (ground reference for digital circuitry supplied by
V3V3_DIG), GND_ANA is connected to the ESD GND ring by means of a direct metal connection and bias the
substrate through SUB Plugs placed all around IC border.
GND_ANA and PGND are connected to the ESD GND by means of a standard ESD protection for ground pins
composed by a double couple of anti-parallel LV diodes.
Figure 77. Ground pins inter-connection
L9908 implements a monitoring unit to detect disconnection affecting ground references.
If VPGND-VGND_ANA ≥ VTH_GND occurs for an interval longer than T_glm_loss_flt filtering time, the
PGND_LOSS flag is set.
If VGND_DIG-VGND_ANA ≥ VTH_GND occurs for an interval longer than T_glm_loss_flt filtering time, the
DGND_LOSS flag is set.
If VGND_DIG-VPGND ≥ VTH_GND occurs for an interval longer than T_glm_loss_flt filtering time, the
AGND_LOSS flag is set.
The correct operation Ground Loss Monitor stage is safety relevant and then a self-check procedure is
implemented.
Table 99. GLM electrical characteristics
Symbol
GLM_th
T_glm_loss_flt
Parameter
GLM detection threshold VTH_GND
GLM filter time
Min
Typ
Max
Unit
0.24
0.4
0.55
V
1
1.25
1.5
ms
Notes
Digital Filter
Note:
All parameters are guaranteed, and tested, in the voltage ranges reported above in Table 5 unless otherwise
specified. Where not specified the parametrical operating range equals the functional operating range.
5.19
Temperature Monitor (OTM)
L9908 implements a monitoring unit of the average junction temperature able to detect excessive over-heating
conditions affecting the device.
DS13546 - Rev 3
page 102/153
L9908
Temperature Monitor (OTM)
Figure 78. Temperature monitor ADC characteristics
The temperature measurement data are stored in a dedicated register and can be retrieved by SPI readout of
TEMP_READ in the register GEN_TEMP_STATUS.
The temperature can be retrieved by the following formula:
T j ∘C = 1.37∘C × DTEMP_READ − 77.4∘C
(25)
Where: DTEMP_READ is the digital word stored in TEMP_READ.
The digitized temperature information is compared by two hysteresis comparators with selectable threshold based
on the following scheme:
If DTEMP ≥ DTEMP_WR_TH occurs for an interval longer than T_otm_wr_flt filtering time, the OTM_WR flag is
set. The error flag remains set until the failure condition is removed.
If DTEMP ≥ DTEMP_SD_TH (= 185deg.) occurs for an interval longer than T_otm_sd_flt filtering time, the
OTM_SD flag is set. The error flag remains set until the failure condition is removed and the flag is cleared by the
SPI command.
The thermal Warning threshold can be configured by the following SPI bit sets:
Table 100. Thermal warning configuration bits
TWN_CFG1
0
DS13546 - Rev 3
TWN_CFG0
0
Description
130 deg.
page 103/153
L9908
Serial Peripheral Interface (SPI)
TWN_CFG1
TWN_CFG0
Description
0
1
140 deg. (Default)
1
0
150 deg.
1
1
160 deg.
Figure 79. Junction temperature ranges
Temperature Range: Parametrical/Functional Range
L9908 is in NORMAL mode: Gate Driver Supply is active, Half Bridge Gate Drivers stage is enabled, monitoring
units are enabled and SPI registers are out of reset. No damage affects L9908 and no wrong operation takes
place. All static and dynamic parameters stay within specification limits.
Temperature Range: Critical OT Range
L9908 is set into SAFE- OFF mode: Gate Driver Supply is disabled, Half Bridge Gate Drivers stage is disabled.
No damage affects L9908 and no wrong operation takes place. Static and dynamic parameters may deviate from
specification limits.
Exposure to critical OT conditions for extended periods may affect device reliability.
Table 101. OTM electrical characteristics
Symbol
Min
Typ
Max
Unit
OTM detection threshold hysteresis
5
10
15
°C
Not subject to production test
T_otm_wr_flt
Thermal Warning filter time
10
20
30
μs
Digital Filter
T_otm_sd_flt
Thermal Shutdown filter time
7
13
17.5
μs
Digital Filter
OTM_readout_res
OTM Readout Resolution
-
8
-
-
Not subject to production test
OTM_readout_lsb
OTM Readout LSB
-
1.37
-
°C
Not subject to production test
OTM ADC conversion accuracy
-5
-
5
°C
Temperature Read out accuracy
OTM-sr
OTM ADC sample rate
-
-
1
kHz
Not subject to production test
T_otm_start_up
OTM ADC start up time
-
-
3
ms
Not subject to production test
OTM_th
OTM_acc
Note:
5.20
Parameter
Notes
All parameters are guaranteed, and tested, in the voltage ranges reported above in Table 5 unless otherwise
specified. Where not specified the parametrical operating range equals the functional operating range.
Serial Peripheral Interface (SPI)
L9908 implements a standard 4-pin Serial Peripheral Interface (SPI) to access both IC configuration and
diagnosis/status registers up to 10 MHz Baud Rate (up/down-stream).
DS13546 - Rev 3
page 104/153
L9908
Serial Peripheral Interface (SPI)
5.20.1
Protocol description
L9908 implement a SPI-slave interface based on a 32-bit protocol.
This slave interface then always requires a SPI-master device (ex. uC) which is responsible to generate the
selection and the synchronization signals (NCS, SCLK) necessary to the data transmission.
The interface supports star mode connections along with other SPI-slave devices while it does not support
daisy-chain mode connections (input data aren`t transmitted directly to output port).
Figure 80. SPI connection modes "a" star connection (supported) "b" daisy-chain connection (not
supported)
The data exchange has an out-of-frame structure: each MISO output frame is related to the previously transmitted
MOSI frame.
SPI-master can directly verify if the previous frame has been received and processed correctly.
NCS pin (chip select) is used by the SPI-master to enable/disable the data communication. Communication starts
with the NCS falling edge while is stopped with the NCS rising edge. As long as NCS is high any transition at the
SCLK and SDI pins (including glitches) is ignored and SDO is forced into a high impedance state.
SCLK pin (Synchronous Serial Clock) is used by the SPI-master to synchronize the data communication. Each
correct communication shall contain 32 SCLK pulses.
At each SCLK rising edge SDI and SDO data are updated respectively by SPI-master and L9908 (shift), at each
SCLK falling edge SDI and SDO data are sampled respectively by L9908 and SPI-master (capture). SCLK has to
be low during NCS transition.
SDI pin (Serial Data Input) is used by the SPI-master to deliver the 32-bit input frame to L9908. In MOSI
communication the first bit expected is MSB while the last is LSB.
SDO pin (Serial Data Output) is used by L9908 to transmit the 32-bit data output. In MISO communication the first
bit transmitted is MSB while the last is LSB.
Figure 81. SPI timing diagram
Table 102. SPI timing characteristics
Symbol
SPI_fclk
DS13546 - Rev 3
Parameter
Transfer Frequency
Test Condition
50% duty
cycle(1)
Min Typ Max Unit
-
10
10.2 MHz
page 105/153
L9908
Serial Peripheral Interface (SPI)
Symbol
Parameter
Test Condition
Min Typ Max Unit
SCLK to data at SDO is valid
SPI_tpcld_tsdo_trans Propagation delay
Cload_max = 200 pF Including
parasitics
-
-
100
ns
NCS=LOW to data at SDO active
Cload_max = 200 pF Inlcuding
parasitics
-
-
200
ns
SPI_tpchdz
NCS L/H to SDO at high impedance
Cload_max = 200 pF Including
parasitics
-
-
200
ns
SPI_tsclch
SCLK before NCS low
(2)
50
-
-
ns
SPI_thclcl
SCLK change L/H after NCS=LOW
(2)
130
-
-
ns
SPI_tsclcl
SCLK low before NCS high
(2)
50
-
-
ns
SCLK high after NCS high
(2)
50
-
-
ns
SDI input setup time
(2)
20
-
-
ns
SPI_thcld
SDI input hold time
(2)
-
-
20
ns
SPI_tonNCS
NCS min. high time
(2)
650
-
-
ns
SPI_tclh
Minimum Time SCLK=HIGH
(2)
45
-
-
ns
SPI_tcll
Minimum Time SCLK=LOW
(2)
45
-
-
ns
Input pin capacitance
(2)
-
-
30
pF
MISO output pin capacitance in tri-state
(2)
-
-
50
pF
SPI_tcsdv
SPI_thclch
SPI_tscld
SPI_Cin
SPI_Cout_hiz
1. SPI max frequency may be less depending on the total capacitive load or MCU timing requirements.
2. Not subject to production test, guaranteed by design.
Note:
DS13546 - Rev 3
All parameters are guaranteed, and tested, in the voltage ranges reported above in Table 5 unless otherwise
specified. Where not specified the parametrical operating range equals the functional operating range.
page 106/153
L9908
Serial Peripheral Interface (SPI)
5.20.2
Frame description
The 32-bit SPI frames content is divided as follows:
Table 103. MOSI - SPI frame description
Bit
31
30-23
22
21
20-5
4-0
MOSI
R/W
ADDRESS
RSV/TM
FC
DATA WRITE
CRC
MOSI Stream:
[31] R/W Flag. Selects if the current operation is a read (0) operation or write (1) operation.
[30-23] SPI register address
[22] Test Mode Flag
[21] Frame Counter
[20-5] Data Write
[4-0] CRC checksum generated by SPI-master
Table 104. MISO - SPI frame description
Bit
31
30-29
28-21
20-5
4-0
MISO
SPI ERR
IC ERR
ADDRESS FB
DATA READ
CRC
MISO Stream:
[31] SPI Error Flag. Provide information related to the previous stream.
[30-29] IC Error Flag. Provide information related to IC high level error.
[28-21] SPI register address feedback. Last received valid frame address feedback.
[20-5] Data Read. Data contents of SPI register addressed by last received valid frame.
[4-0] CRC checksum generated by SPI-slave
5.20.2.1
Write-Read operations
1st Frame: Write Access to R/W Register X
As the NCS rising edge is detected, if it is valid, the command is processed and the R/W register X is updated
with data Y. After the register X is updated correctly the output buffer is updated as well.
2nd Frame: Read Access
As the NCS falling edge is detected, the register X with data Y is started being shifted out on MISO bus. The
X register data remains unchanged as R/W bit is zero, the following MISO frame will be updated with the same
data.
The first SPI frame after an internal reset (i.e. INT_RST) will have a fixed content:
•
IC_ERR and SPI_ERR flag all 0
•
Address Feedback all = 0
•
Data all = 0
DS13546 - Rev 3
page 107/153
L9908
Serial Peripheral Interface (SPI)
Figure 82. SPI Write-Read operation
5.20.2.2
Read-Read operations
1st Frame: Read Access to Register X
As the NCS rising edge is detected, if it is valid, the command is processed but the R/W register X register data
remains unchanged as R/W bit is zero and the output buffer is updated with data Y1.
2nd Frame: Read Access to Register X
As the NCS falling edge is detected, the register X with data Y1 is started being shifted out on MISO bus. The X
register data remains unchanged as R/W bit is zero, the following MISO frame will be updated with the data Y2.
Figure 83. SPI Read-Read operation
5.20.2.3
Clear on Read Operations
1st Frame: Read Access to Register X
As the NCS rising edge is detected, if it is valid, the command is processed but the R/W register X register data
remains unchanged as R/W bit is zero and the output buffer is updated with data Y1. After the output buffer is
updated correctly the X register flags are cleared.
2nd Frame: Read Access to Register X As NCS falling edge is detected, the register X with data Y1 is started
being shifted out on MISO bus.
DS13546 - Rev 3
page 108/153
L9908
Serial Peripheral Interface (SPI)
Figure 84. SPI Clear on Read operation
DS13546 - Rev 3
page 109/153
L9908
Serial Peripheral Interface (SPI)
5.20.3
Frame monitoring
Correct SPI communication is safety relevant and then the following safety mechanism is implemented.
Cyclic Redundancy Check (CRC)
MISO/MOSI SPI data are protected with a 5-bit CRC using the following polynomial expression:
G x = x5 + x2 + 1
(26)
The initial value to be used is 11111 (0x1F).
CRC is calculated over bit 5-31 except bit 21 (Hamming distance of 3 over 26 bit data), MSB First.
Example:
Read register 0x4A command (data = 0)
Frame: [0 0100:1010 0 0 0000:0000:0000:0000 10001] (0x25000011)
Frame: [0 0100:1010 0 1 0000:0000:0000:0000 10001] (0x25200011)
CRC is 10001 independently on FC value.
Write 0xABCD to register 0xC7 command
Frame: [1 1100:0111 0 0 1010:1011:1100:1101 11000] (0xE39579B8)
Frame: [1 1100:0111 0 1 1010:1011:1100:1101 11000] (0xE3B579B8)
CRC is 11000b independently on FC value.
Frame Counter Check (FC)
A 1-bit frame counter is transmitted by the SPI-master within every MOSI frame to support the detection of
failures in the communication channel (ex. corrupted or missing frames). The initial value to be used is 0.
Clock Counter Check
L9908 implements two separate clock counters for the rising and the falling edges of SCLK clock to check the
length of the MOSI frame to be equal to 32. The clock counters reset is generated from the detection of a rising
edge of NCS.
5.20.4
Error handling
In case of an error either regarding the SPI word length (clock counter), frame counter bit value (FC) or wrong
CRC check, the SPI_ERR bit is set to ‘1’ and the frame is ignored by L9908. The SPI error bit always refers to the
previous SPI frame.
The register SPI_CMM_FAULT contains specific bits indicating which SPI fault occurred on the previous frame.
After reading, register value will be reset. Refer to the next section for details.
5.20.5
Register description
Legenda:
Safety Description:
•
NSR = Non-safety Relevant Register
•
SLR = Safety Latent Register
•
SSR = Safety Relevant Register
Operation Type:
•
RW = Read/Write
•
RO = Read Only
•
CR = Clear on Read
Reset Source:
•
A = INT_RST
•
B = INT_RST || CFG_RST
•
D = INT_RST (excluded CLK1_TIMEOUT)
Table 105. CHIPID
DS13546 - Rev 3
Register Name
Address
CHIPID
0x0
Field Name
UNUSED_9
Type
Bit Offset
Bit Width
Reset Value
Reset
RO
15
1
0x0
B
page 110/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Address
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_8
RO
14
1
0x0
B
UNUSED_7
RO
13
1
0x0
B
UNUSED_6
RO
12
1
0x0
B
UNUSED_5
RO
11
1
0x0
B
UNUSED_4
RO
10
1
0x0
B
UNUSED_3
RO
9
1
0x0
B
UNUSED_2
RO
8
1
0x0
B
UNUSED_1
RO
7
1
0x0
B
UNUSED_0
RO
6
1
0x0
B
METAL_ID
RO
3
3
0x0
B
SILICON_ID
RO
0
3
0x1
B
Table 106. GEN_CFG1
Register
Name
Address Field Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
15
1
0x0
B
RW
14
1
0x0
B
RW
13
1
0x0
B
RW
11
2
0x01
B
RW
8
3
0x0
B
RW
5
3
0x2
B
WDT_EN
GEN_CFG1
0x2
0: Watchdog disabled (Default)
1: Watchdog enabled
CLK_SSM_EN
0: Clock SSM Disabled (Default)
1: Clock SSM Enabled
CSM_OUT_RANGE_CFG
CSM_SSPV_PH_CFG
00: No synchronization
01: TSYNC based on Phase 1 (Default)
10: TSYNC based on Phase 2
11: TSYNC based on Phase 3
CSM_LP_CFG
000: No filtering (Default)
001: 91kHz
SLR
010: 37kHz
011: 17kHz
100: 8kHz
101: 4kHz
110: 2kHz
111: 1kHz
DTP_CFG
000: 0us - DTP Disabled
001: 0.25us
010: 0.35us
011: 0.5us
100: 1us - Default
101: 1.5us
DS13546 - Rev 3
page 111/153
L9908
Serial Peripheral Interface (SPI)
Register
Name
Address Field Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
4
1
0x0
B
RW
3
1
0x0
B
RW
2
1
0x0
B
RW
1
1
0x0
B
RW
0
1
0x0
B
110: 2us
111: 4us
SR_CRC_FAIL_REDIRECT_CFG
VBP_OV_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
VBP_UV_REDIRECT_CFG
SLR
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
VDH_OV_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
VDH_UV_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
Table 107. GEN_CFG2
Register Name
Address
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
RW
14
2
0x0
B
RW
12
2
0x2
B
VDS_HS_TH
RW
6
6
0x0
B
VDS_LS_TH
RW
0
6
0x0
B
ACT_CFG
00: PVF Negative Polarity (Default)
GEN_CFG2
0x3
01: PVF Positive Polarity
10: INL Negative Polarity
11: INL Positive Polarity
OFD_BLANK
00: T_ofd_blank = 10ms
01: T_ofd_blank = 25ms
10: T_ofd_blank = 50ms (Default)
SLR
11: T_ofd_blank = 100ms
Table 108. GE_CFG3
Register
Name
Address
Field Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
14
2
0x1
B
RW
13
1
0x0
B
TWN_CFG
00: 130deg.
GEN_CFG3
0x4
01: 140deg. (Default)
10: 150deg.
11: 160deg.
STP3_VGS_DIS
SLR
DS13546 - Rev 3
0: Shoot-through protection on FET Vgs enabled
(Default)
page 112/153
L9908
Serial Peripheral Interface (SPI)
Register
Name
Address
Field Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
12
1
0x0
B
RW
11
1
0x0
B
RW
10
1
0x0
B
RW
9
1
0x0
B
RW
8
1
0x0
B
RW
6
2
0x0
B
RW
5
1
0x0
B
RW
3
2
0x2
B
RW
0
3
0x2
B
1: Shoot-through protection on FET Vgs disabled
STP2_VGS_DIS
0: Shoot-through protection on FET Vgs enabled
(Default)
1: Shoot-through protection on FET Vgs disabled
STP1_VGS_DIS
0: Shoot-through protection on FET Vgs enabled
(Default)
1: Shoot-through protection on FET Vgs disabled
STP3_PWM_DIS
0: Shoot-through protection on PWM input enabled
(Default)
1: Shoot-through protection on PWM input disabled
STP2_PWM_DIS
0: Shoot-through protection on PWM input enabled
(Default)
1: Shoot-through protection on PWM input disabled
STP1_PWM_DIS
0: Shoot-through protection on PWM input enabled
(Default)
SLR
1: Shoot-through protection on PWM input disabled
UNUSED_0
BT1_DIS
0: Bootstrap Limiter 1 Enabled (Default)
1: Bootstrap Limiter 1 Disabled
OND_FLT
00: T_ond_flt = 1 μs
01: T_ond_flt = 2.5 μs
10: T_ond_flt = 4 μs (Default)
11: T_ond_flt = 8 μs
OND_BLANK
000: T_ond_blank = 0.7u
001: T_ond_blank = 1 μs
010: T_ond_blank = 1.5 μs (Default)
011: T_ond_blank = 2 μs
100: T_ond_blank = 2.5 μs
101: T_ond_blank = 3.5 μs
110: T_ond_blank = 5 μs
111: T_ond_blank = 8 μs
Table 109. GEN_CFG4
DS13546 - Rev 3
Register
Name
Address
GEN_CFG4
0x5
Field Name
PVF_OUT_CFG
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
14
2
0x0
B
page 113/153
L9908
Serial Peripheral Interface (SPI)
Register
Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
13
1
0x0
B
RW
12
1
0x0
B
RW
11
1
0x1
B
RW
6
5
0x1F
B
HB3_ACK
RW
5
1
0x1
B
HB2_ACK
RW
4
1
0x1
B
HB1_ACK
RW
3
1
0x1
B
RW
2
1
0x0
B
RW
1
1
0x0
B
RW
0
1
0x0
B
Address
Field Name
00: PVF1 xor PVF2 xor PVF3 is output (Default)
01: PVF1 is output
10: PVF2 is output
11: PVF3 is output
PVF_TH_CFG
0: VPVF_TH_H = VDH*0.75 (Default)
VPVF_TH_L = VDH*0.25
1: VPVF_TH_H = VDH*0.6
VPVF_TH_L = VDH*0.4
UNUSED_0
DRV_HIZ
0: Pre-drivers in NO high impedance
1: Pre-drivers in high impedance (Default)
SELF_TEST_CFG4
0: OND LS Self-Test Not Active
1: OND LS Self-Test Active (Default)
SELF_TEST_CFG3
0: OND HS Self-Test Not Active
1: OND HS Self-Test Active (Default)
SELF_TEST_CFG2
0: Supply Monitors Self-Test Not Active
1: Supply Monitors Self-Test Active (Default)
SLR
SELF_TEST_CFG1
0: SW Off Path Self-Test Not Active
1: SW Off Path Self-Test Active (Default)
SELF_TEST_CFG0
0: Clock Monitor Self-Test Not Active
1: Clock Monitor Self-Test Active (Default)
HB3_DIS
0: 3rd HS/LS drivers is enabled (Default)
1: 3rd HS/LS drivers is disabled
HB2_DIS
0: 2nd HS/LS drivers is enabled (Default)
1: 2nd HS/LS drivers is disabled
HB1_DIS
0: 1st HS/LS drivers is enabled (Default)
1: 1st HS/LS drivers is disabled
DS13546 - Rev 3
page 114/153
L9908
Serial Peripheral Interface (SPI)
Table 110. GEN_STATUS1
Register Name
Address
GEN_STATUS1
0x6
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
AGND_LOSS
CR
15
1
0x0
A
DGND_LOSS
CR
14
1
0x0
A
PGND_LOSS
CR
13
1
0x0
A
NVM_CRC_FAIL
RO
12
1
0x0
A
VDD_OV
CR
11
1
0x0
A
SELF_TEST_STATUS
RO
9
2
0x0
D
SR_CRC_FAIL
CR
8
1
0x0
A
CLK2_ERR
CR
7
1
0x0
A
UNUSED_0
RO
6
1
0x0
A
CLK1_ERR
CR
5
1
0x0
A
CLK2_TIMEOUT
CR
4
1
0x0
A
CLK1_TIMEOUT
CR
3
1
0x0
D
SAFE_STATE
RO
2
1
0x1
A
CFG_RST
CR
1
1
0x1
B
INT_RST
CR
0
1
0x1
A
Table 111. GEN_STATUS2
Register Name
Address
GEN_STATUS2
0x7
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
INL3_ECHO
RO
15
1
0x0
A
INL2_ECHO
RO
14
1
0x0
A
INL1_ECHO
RO
13
1
0x0
A
INH3_ECHO
RO
12
1
0x0
A
INH2_ECHO
RO
11
1
0x0
A
INH1_ECHO
RO
10
1
0x0
A
NDIS_ECHO
RO
9
1
0x1
A
EN_BR_ECHO
RO
8
1
0x0
A
VBP_OV
CR
7
1
0x0
A
VBP_UV
CR
6
1
0x0
A
VDH_OV
CR
5
1
0x0
A
VDH_UV
CR
4
1
0x0
A
VCP_OV
CR
3
1
0x0
A
VCP_UV
CR
2
1
0x0
A
VPRE_OV
CR
1
1
0x0
A
VPRE_UV
CR
0
1
0x0
A
Table 112. GEN_STATUS3
Register Name
Address
GEN_STATUS3
0x8
NSR
DS13546 - Rev 3
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_4
RO
15
1
0x0
A
UNUSED_3
RO
14
1
0x0
A
page 115/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Address
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
CP2_EN_ECHO
RO
13
1
0x1
A
CP1_EN_ECHO
RO
12
1
0x1
A
HB3_EN_ECHO
RO
11
1
0x1
A
HB2_EN_ECHO
RO
10
1
0x1
A
HB1_EN_ECHO
RO
9
1
0x1
A
UNUSED_0
RO
6
3
0x0
A
RO
3
3
0x0
A
PVF3_ECHO
RO
2
1
0x0
A
PVF2_ECHO
RO
1
1
0x0
A
PVF1_ECHO
RO
0
1
0x0
A
OPERATION_MODE
000: RESET Mode
001: NVM Read Mode
NSR
010: SAFE OFF Mode
011: NORMAL Mode
100: CFG Mode
101: SELF TEST Mode
110: RESET Mode
111: RESET Mode
Table 113. GEN_TEMP_STATUS
Register Name
Address
GEN_TEMP_STATUS
0x9
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_5
RO
15
1
0x0
A
UNUSED_4
RO
14
1
0x0
A
UNUSED_3
RO
13
1
0x0
A
UNUSED_2
RO
12
1
0x0
A
UNUSED_1
RO
11
1
0x0
A
UNUSED_0
RO
10
1
0x0
A
OTM_SD
CR
9
1
0x0
A
OTM_WR
CR
8
1
0x0
A
TEMP_READ
RO
0
8
0x0
A
Table 114. SW_RESET
Register Name
Address
SW_RESET
0xA
NSR
DS13546 - Rev 3
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_7
RO
15
1
0x0
A
UNUSED_6
RO
14
1
0x0
A
UNUSED_5
RO
13
1
0x0
A
UNUSED_4
RO
12
1
0x0
A
UNUSED_3
RO
11
1
0x0
A
UNUSED_2
RO
10
1
0x0
A
UNUSED_1
RO
9
1
0x0
A
UNUSED_0
RO
8
1
0x0
A
page 116/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Address
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
RW
0
8
0x0
A
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_2
RO
15
1
0x0
A
UNUSED_1
RO
14
1
0x0
A
RW
12
2
0x1
A
RW
10
2
0x3
A
RW
8
2
0x1
A
WDT_GRAY
RO
4
4
0x0
A
WDT_BINARY
RW
0
4
0x0
A
SW_RESET_KEY
NSR
0xCC: SW Reset Activation
Table 115. WDT_CFG_CMD
Register Name
Address
WDT_CFG_CMD
0xB
Field Name
WDT_RESET
00: NO Reset
01: NO Reset (Default)
10: Reset
11: NO Reset
WDT_FAIL_COUNT_CFG
00: 1
01: 1
NSR
10: 2
11: 3 (Default)
WDT_OVF_CFG
00: 11.26 ms
01: 22.52 ms (Default)
10: 45.04 ms
11: 90.11 ms
Table 116. WDT_STATUS
Register Name
Address
WDT_STATUS
0xC
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_4
RO
15
1
0x0
A
UNUSED_3
RO
14
1
0x0
A
UNUSED_2
RO
13
1
0x0
A
UNUSED_1
RO
12
1
0x0
A
UNUSED_0
RO
11
1
0x0
A
WDT_FAIL_COUNT_STATUS
RO
9
2
0x0
A
WDT_OVF_STATUS
RO
3
6
0x0
A
WD_ON_STATUS
RO
2
1
0x0
A
WDT_DATA_FAIL
RO
1
1
0x0
A
WDT_OVF_FAIL
RO
0
1
0x0
A
Table 117. BIST_KEY
DS13546 - Rev 3
Register Name
Address
BIST_KEY
0xD
Field Name
UNUSED_7
Type Bit Offset Bit Width Reset Value Reset
RO
15
1
0x0
B
page 117/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Address
NSR
Field Name
Type Bit Offset Bit Width Reset Value Reset
UNUSED_6
RO
14
1
0x0
B
UNUSED_5
RO
13
1
0x0
B
UNUSED_4
RO
12
1
0x0
B
UNUSED_3
RO
11
1
0x0
B
UNUSED_2
RO
10
1
0x0
B
UNUSED_1
RO
9
1
0x0
B
UNUSED_0
RO
8
1
0x0
B
RW
0
8
0x0
B
BIST_KEY
0x55 --> 0x33 SELF TEST Mode Access
Table 118. CFG_EN_UNLOCK
Register Name
Address
CFG_EN_UNLOCK
0xE
NSR
Field Name
Type Bit Offset Bit Width Reset Value Reset
UNUSED_7
RO
15
1
0x0
B
UNUSED_6
RO
14
1
0x0
B
UNUSED_5
RO
13
1
0x0
B
UNUSED_4
RO
12
1
0x0
B
UNUSED_3
RO
11
1
0x0
B
UNUSED_2
RO
10
1
0x0
B
UNUSED_1
RO
9
1
0x0
B
UNUSED_0
RO
8
1
0x0
B
RW
0
8
0x0
B
CFG_EN_UNLOCK
0x55 --> 0x33: CONFIG Mode Access
0xAA: CONFIG Mode Exit
Table 119. SAFETY_RELEVANT1
Register Name
Address
Field Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
15
1
0x0
B
RW
13
2
0x0
B
RW
11
2
0x0
B
RW
9
2
0x0
B
FS_FLAG_CFG
SAFETY_RELEVANT1
0x10
0: Push-pull (Default)
1: Open-drain
UNUSED_0
VBP_OV_REACT_CFG
00: Full SW Off – disable all HB drivers
and CPs, device is sent in SAFE-OFF mode
(Default)
SSR
01: Reduced Operation Mode – disable
failing HB only, device remains in NORMAL
mode
10: Flag only – down-rate fault to simple
warning, device remains in NORMAL mode
11: Flag only – down-rate fault to simple
warning, device remains in NORMAL mode
VBP_UV_REACT_CFG
DS13546 - Rev 3
page 118/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
VDH_OV_REACT_CFG
RW
7
2
0x0
B
VDH_UV_REACT_CFG
RW
5
2
0x0
B
CRC
RW
0
5
0x17
B
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
15
1
0x0
B
RW
14
1
0x0
B
RW
13
1
0x0
B
RW
12
1
0x0
B
RW
10
2
0x0
B
RW
7
3
0x7
B
RW
5
2
0x0
B
RW
0
5
0x17
B
Address
SSR
Field Name
Table 120. SAFETY_RELEVANT2
Register Name
Address
Field Name
CSO3_DIS
SAFETY_RELEVANT2
0x11
0: CSO3/PVM pin used a CM3 output
(Default)
1: CSO3/PVM pin used a PVFn output
CS3_DIS
0: current monitor enabled (Default)
1: current monitor disabled
CS2_DIS
0: current monitor enabled (Default)
1: current monitor disabled
CS1_DIS
0: current monitor enabled (Default)
1: current monitor disabled
VDH_FLT_CFG
00: 12.25 μs (Defaults)
01: 25 μs
10: 50 μs
11: 100 μs
SSR
VDH_OV_CFG
000: 12 V Systems 1
001: 12 V Systems 2
010: 24 V Systems 1
011: 24 V Systems 2
100: 48 V Systems 1
101: 48 V Systems 2
110: 48 V Systems 3
111: 48 V Systems 4 (Defaults)
VDH_UV_CFG
00: 12 V Systems (Defaults)
01: 24 V Systems
10: 48 V Systems
11: VDH UV Disabled
CRC
DS13546 - Rev 3
page 119/153
L9908
Serial Peripheral Interface (SPI)
Table 121. SAFETY_RELEVANT3
Register Name
Address
SAFETY_RELEVANT3
0x12
Field Name
Type Bit Offset Bit Width Reset Value Reset
CP2_DIS
0: Charge Pump 2 Enabled (Default)
RW
15
1
0x0
B
RW
14
1
0x0
B
UNUSED_2
RW
13
1
0x0
B
UNUSED_1
RW
12
1
0x0
B
UNUSED_0
RW
11
1
0x0
B
RW
9
2
0x0
B
RW
7
2
0x0
B
RW
5
2
0x0
B
RW
0
5
0x17
B
1: Charge Pump 2 Disabled
CP1_DIS
0: Charge Pump 1 Enabled (Default)
1: Charge Pump 1 Disabled
VBP_FLT_CFG
00: 12.25 μs (Defaults)
01: 25 μs
10: 50 μs
11: 100 μs
SSR
VBP_OV_CFG
00: 12 V Systems 1
01: 12 V Systems 2
10: 24 V Systems 1
11: 24 V Systems 2 (Defaults)
VBP_UV_CFG
00: 12 V Systems (Defaults)
01: 24 V Systems
10: 48 V Systems
11: VBP UV Disabled
CRC
Table 122. CH1_STATUS1
Register Name
Address
CH1_STATUS1
0x20
NSR
DS13546 - Rev 3
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_7
RO
15
1
0x0
A
UNUSED_6
RO
14
1
0x0
A
UNUSED_5
RO
13
1
0x0
A
UNUSED_4
RO
12
1
0x0
A
UNUSED_3
RO
11
1
0x0
A
UNUSED_2
RO
10
1
0x0
A
LS1_OFF
RO
9
1
0x0
A
HS1_OFF
RO
8
1
0x0
A
LS1_STB
CR
7
1
0x0
A
HS1_STG
CR
6
1
0x0
A
LS1_OFD
RO
5
1
0x0
A
HS1_OFD
RO
4
1
0x0
A
UNUSED_1
CR
3
1
0x0
A
page 120/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Address
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
STP_VGS_1
CR
2
1
0x0
A
STP_PWM_1
CR
1
1
0x0
A
UNUSED_0
RO
0
1
0x0
A
Table 123. CH1_STATUS2
Register Name
Address
CH1_STATUS2
0x21
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_0
RO
15
1
0x0
A
CM1_READ
RO
0
15
0x0
A
Table 124. CH1_CFG1
Register
Name
Address
CH1_CFG1
0x22
Field Name
UNUSED_1
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
11
5
0x0
B
RW
9
2
0x0
B
RW
8
1
0x0
B
RW
7
1
0x0
B
RW
6
1
0x0
B
RO
15
1
0x0
A
RW
4
1
0x0
B
RW
2
2
0x0
B
RW
0
2
0x0
B
OFD1_EN
00: Off State Diagnosis disabled (Default)
01: Pull-up current enabled, Pull-down current disabled
10: Pull-down current enabled, Pull-up current disabled
11: Off State Diagnosis disabled
OND1_DIS
0: ON State diagnosis enabled on HS and LS (Default)
1: ON State diagnosis disabled on HS and LS
LS1_STB_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
HS1_STG_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
SLR
1: Fault redirection masked
UNUSED_0
STP_VGS_1_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
STP1_VGS_CFG
00: 0.2 μs (Defaults)
01: 0.5 μs
10: 1 μs
11: 1.5 μs
STP1_PWM_CFG
00: 0.2 μs (Defaults)
01: 0.5 μs
10: 1 μs
11: 1.5 μs
DS13546 - Rev 3
page 121/153
L9908
Serial Peripheral Interface (SPI)
Table 125. CH1_CFG2
Register Name Address
CH1_CFG2
0x23
Field Name
Type Bit Offset Bit Width
UNUSED
Reset
Value
Reset
RW
11
5
0x0
B
RW
9
2
0x0
B
RW
8
1
0x0
B
RW
5
3
0x0
B
RW
2
3
0x5
B
RW
0
2
0x3
B
CSM1_SYNC_COUNT_CFG
00: 16Tclk (Default)
01: 24Tclk
10: 32Tclk
11: 40Tclk
UNUSED_0
CSM1_SAMPLE_CFG
000: Free running – No T&H (Default)
001: T&H 1st data conversion from triggering
010: T&H 2nd data conversion from triggering
011: T&H 3rd data conversion from triggering
100: T&H 4th data conversion from triggering
101: T&H 5th data conversion from triggering
110: T&H 6th data conversion from triggering
SLR
111: T&H 7th data conversion from triggering
CSM1_IN_RANGE_CFG
000: VIN_MAX = ±7 mV
001: VIN _MAX =±18 mV
010: VIN _MAX =±36 mV
011: VIN_MAX = ±90 mV
100: VIN_MAX = ±160 mV
101: VIN_MAX = ±300 mV (Default)
110: Reserved
111: Reserved
CSM1_OFS
00: 0LSB DAC
01: 90LSB DAC
10: 1024LSB DAC
11: 1024LSB DAC (Default)
Table 126. CH1_CFG3
Register Name
Address
CH1_CFG3
0x24
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_3
RW
15
1
0x0
B
UNUSED_2
RW
14
1
0x0
B
UNUSED_1
RW
13
1
0x0
B
UNUSED_0
RW
12
1
0x0
B
RW
11
1
0x0
B
RW
0
11
0x0
B
ACT1_EN
0: ACT Disabled (Default)
1: ACT Enabled
TSYNC1_CFG
DS13546 - Rev 3
page 122/153
L9908
Serial Peripheral Interface (SPI)
Table 127. CH1_SAFETY_RELEVANT
Register Name
Address
CH1_SAFETY_RELEVANT
0x25
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
UNUSED_4
RW
15
1
0x0
B
UNUSED_3
RW
14
1
0x0
B
UNUSED_2
RW
13
1
0x0
B
RW
11
2
0x0
B
UNUSED_1
RW
10
1
0x0
B
UNUSED_0
RW
9
1
0x0
B
LS1_STB_REACT_CFG
RW
7
2
0x0
B
HS1_STG_REACT_CFG
RW
5
2
0x0
B
CRC
RW
0
5
0x17
B
Field Name
STP_VGS_1_REACT_CFG
00: Full SW Off – disable all HB drivers
and CPs, device is sent in SAFE-OFF
mode (Default)
01: Reduced Operation Mode – disable
failing HB only, device is remain in
NORMAL mode
10: Flag only – down-rate fault to simple
warning, device is remain in NORMAL
mode
SRR
11: Flag only – down-rate fault to simple
warning, device is remain in NORMAL
mode
Table 128. CH1_ACT
Register Name
Address
CH1_ACT
0x26
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_3
RO
15
1
0x0
A
UNUSED_2
RO
14
1
0x0
A
UNUSED_1
RO
13
1
0x0
A
UNUSED_0
RO
12
1
0x0
A
ACT1_OVF
RO
11
1
0x0
A
ACT1
RO
0
11
0x0
A
Table 129. CH2_STATUS1
Register Name
Address
CH2_STATUS1
0x28
NSR
DS13546 - Rev 3
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_7
RO
15
1
0x0
A
UNUSED_6
RO
14
1
0x0
A
UNUSED_5
RO
13
1
0x0
A
UNUSED_4
RO
12
1
0x0
A
UNUSED_3
RO
11
1
0x0
A
UNUSED_2
RO
10
1
0x0
A
LS2_OFF
RO
9
1
0x0
A
HS2_OFF
RO
8
1
0x0
A
LS2_STB
CR
7
1
0x0
A
page 123/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Address
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
HS2_STG
CR
6
1
0x0
A
LS2_OFD
RO
5
1
0x0
A
HS2_OFD
RO
4
1
0x0
A
UNUSED_1
CR
3
1
0x0
A
STP_VGS_2
CR
2
1
0x0
A
STP_PWM_2
CR
1
1
0x0
A
UNUSED_0
RO
0
1
0x0
A
Table 130. CH2_STATUS2
Register Name
Address
CH2_STATUS2
0x29
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_0
RO
15
1
0x0
A
CM2_READ
RO
0
15
0x0
A
Table 131. CH2_CFG1
Register
Name
Address
CH2_CFG1
0x2A
Field Name
UNUSED_1
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
11
5
0x0
B
RW
9
2
0x0
B
RW
8
1
0x0
B
RW
7
1
0x0
B
RW
6
1
0x0
B
RO
15
1
0x0
A
RW
4
1
0x0
B
RW
2
2
0x0
B
RW
0
2
0x0
B
OFD2_EN
00: Off State Diagnosis disabled (Default)
01: Pull-up current enabled, Pull-down current disabled
10: Pull-down current enabled, Pull-up current disabled
11: Off State Diagnosis disabled
OND2_DIS
0: ON State diagnosis enabled on HS and LS (Default)
1: ON State diagnosis disabled on HS and LS
LS2_STB_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
HS2_STG_REDIRECT_CFG
SLR
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
UNUSED_0
STP_VGS_2_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
STP2_VGS_CFG
00: 0.2 μs (Defaults)
01: 0.5 μs
10: 1 μs
11: 1.5 μs
STP2_PWM_CFG
00: 0.2 μs (Defaults)
DS13546 - Rev 3
page 124/153
L9908
Serial Peripheral Interface (SPI)
Register
Name
Address
Field Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
01: 0.5 μs
SLR
10: 1 μs
11: 1.5 μs
Table 132. CH2_CFG2
Register Name Address
CH2_CFG2
0x2B
Field Name
Type Bit Offset Bit Width
UNUSED
Reset
Value
Reset
RW
11
5
0x0
B
RW
9
2
0x0
B
RW
8
1
0x0
B
RW
5
3
0x0
B
RW
2
3
0x5
B
RW
0
2
0x3
B
CSM2_SYNC_COUNT_CFG
00: 16Tclk (Default)
01: 24Tclk
10: 32Tclk
11: 40Tclk
UNUSED_0
CSM2_SAMPLE_CFG
000: Free running – No T&H (Default)
001: T&H 1st data conversion from triggering
010: T&H 2nd data conversion from triggering
011: T&H 3rd data conversion from triggering
100: T&H 4th data conversion from triggering
101: T&H 5th data conversion from triggering
110: T&H 6th data conversion from triggering
SLR
111: T&H 7th data conversion from triggering
CSM2_IN_RANGE_CFG
000: VIN_MAX = ±7mV
001: VIN _MAX = ±18 mV
010: VIN _MAX = ±36 mV
011: VIN_MAX = ±90 mV
100: VIN_MAX = ±160 mV
101: VIN_MAX = ±300 mV (Default)
110: Reserved
111: Reserved
CSM2_OFS
00: 0LSB DAC
01: 90LSB DAC
10: 1024LSB DAC
11: 1024LSB DAC (Default)
Table 133. CH2_CFG3
Register Name
Address
CH2_CFG3
0x2C
NSR
DS13546 - Rev 3
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_3
RW
15
1
0x0
B
UNUSED_2
RW
14
1
0x0
B
page 125/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Address
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_1
RW
13
1
0x0
B
UNUSED_0
RW
12
1
0x0
B
RW
11
1
0x0
B
RW
0
11
0x0
B
ACT2_EN
NSR
0: ACT Disabled (Default)
1: ACT Enabled
TSYNC2_CFG
Table 134. CH2_SAFETY_RELEVANT
Register Name
Address
CH2_SAFETY_RELEVANT
0x2D
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
UNUSED_4
RW
15
1
0x0
B
UNUSED_3
RW
14
1
0x0
B
UNUSED_2
RW
13
1
0x0
B
RW
11
2
0x0
B
UNUSED_1
RW
10
1
0x0
B
UNUSED_0
RW
9
1
0x0
B
LS2_STB_REACT_CFG
RW
7
2
0x0
B
HS2_STG_REACT_CFG
RW
5
2
0x0
B
CRC
RW
0
5
0x17
B
Field Name
STP_VGS_2_REACT_CFG
00: Full SW Off – disable all HB drivers
and CPs, device is sent in SAFE-OFF
mode (Default)
01: Reduced Operation Mode – disable
failing HB only, device remains in
NORMAL mode
10: Flag only – down-rate fault to simple
warning, device remains in NORMAL
mode
SRR
11: Flag only – down-rate fault to simple
warning, device remains in NORMAL
mode
Table 135. CH2_ACT
Register Name
Address
CH2_ACT
0x2E
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_3
RO
15
1
0x0
A
UNUSED_2
RO
14
1
0x0
A
UNUSED_1
RO
13
1
0x0
A
UNUSED_0
RO
12
1
0x0
A
ACT2_OVF
RO
11
1
0x0
A
ACT2
RO
0
11
0x0
A
Table 136. CH3_STATUS1
DS13546 - Rev 3
Register Name
Address
CH3_STATUS1
0x30
Field Name
UNUSED_7
Type
Bit Offset
Bit Width
Reset Value
Reset
RO
15
1
0x0
A
page 126/153
L9908
Serial Peripheral Interface (SPI)
Register Name
Address
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_6
RO
14
1
0x0
A
UNUSED_5
RO
13
1
0x0
A
UNUSED_4
RO
12
1
0x0
A
UNUSED_3
RO
11
1
0x0
A
UNUSED_2
RO
10
1
0x0
A
LS3_OFF
RO
9
1
0x0
A
HS3_OFF
RO
8
1
0x0
A
LS3_STB
CR
7
1
0x0
A
HS3_STG
CR
6
1
0x0
A
LS3_OFD
RO
5
1
0x0
A
HS3_OFD
RO
4
1
0x0
A
UNUSED_1
CR
3
1
0x0
A
STP_VGS_3
CR
2
1
0x0
A
STP_PWM_3
CR
1
1
0x0
A
UNUSED_0
RO
0
1
0x0
A
Table 137. CH3_STATUS2
Register Name
Address
CH3_STATUS2
0x31
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_0
RO
15
1
0x0
A
CM3_READ
RO
0
15
0x0
A
Table 138. CH3_CFG1
Register
Name
Address
CH3_CFG1
0x32
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
11
5
0x0
B
RW
9
2
0x0
B
RW
8
1
0x0
B
RW
7
1
0x0
B
RW
6
1
0x0
B
UNUSED_0
RO
15
1
0x0
A
STP_VGS_3_REDIRECT_CFG
RW
4
1
0x0
B
Field Name
UNUSED_1
OFD3_EN
00: Off State Diagnosis disabled (Default)
01: Pull-up current enabled, Pull-down current disabled
10: Pull-down current enabled, Pull-up current disabled
11: Off State Diagnosis disabled
OND3_DIS
0: ON State diagnosis enabled on HS and LS (Default)
1: ON State diagnosis disabled on HS and LS
SLR
LS3_STB_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
HS3_STG_REDIRECT_CFG
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
DS13546 - Rev 3
page 127/153
L9908
Serial Peripheral Interface (SPI)
Register
Name
Address
Field Name
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
RW
2
2
0x0
B
RW
0
2
0x0
B
0: Fault redirected on FS_FLAG/IC ERR (Default)
1: Fault redirection masked
STP3_VGS_CFG
00: 0.2 μs (Defaults)
01: 0.5 μs
10: 1 μs
SLR
11: 1.5 μs
STP3_PWM_CFG
00: 0.2 μs (Defaults)
01: 0.5 μs
10: 1 μs
11: 1.5 μs
Table 139. CH3_CFG2
Register Name Address
CH3_CFG2
0x33
Field Name
UNUSED
Type Bit Offset Bit Width
Reset
Value
Reset
RW
11
5
0x0
B
RW
9
2
0x0
B
RW
8
1
0x0
B
RW
5
3
0x0
B
RW
2
3
0x5
B
RW
0
2
0x3
B
CSM3_SYNC_COUNT_CFG
00: 16Tclk (Default)
01: 24Tclk
10: 32Tclk
11: 40Tclk
UNUSED_0
CSM3_SAMPLE_CFG
000: Free running – No T&H (Default)
001: T&H 1st data conversion from triggering
010: T&H 2nd data conversion from triggering
011: T&H 3rd data conversion from triggering
100: T&H 4th data conversion from triggering
SLR
101: T&H 5th data conversion from triggering
110: T&H 6th data conversion from triggering
111: T&H 7th data conversion from triggering
CSM3_IN_RANGE_CFG
000: VIN_MAX = ±7 mV
001: VIN _MAX = ±18 mV
010: VIN _MAX = ±36 mV
011: VIN_MAX = ±90 mV
100: VIN_MAX = ±160 mV
101: VIN_MAX = ±300 mV (Default)
110: Reserved
111: Reserved
CSM3_OFS
00: 0LSB DAC
DS13546 - Rev 3
page 128/153
L9908
Serial Peripheral Interface (SPI)
Register Name Address
Field Name
Type Bit Offset Bit Width
Reset
Value
Reset
0
0
01: 90LSB DAC
10: 1024LSB DAC
SLR
11: 1024LSB DAC (Default)
0
0
0
0
Table 140. CH3_CFG3
Register Name
Address
CH3_CFG3
0x34
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_3
RW
15
1
0x0
B
UNUSED_2
RW
14
1
0x0
B
UNUSED_1
RW
13
1
0x0
B
UNUSED_0
RW
12
1
0x0
B
RW
11
1
0x0
B
RW
0
11
0x0
B
ACT3_EN
0: ACT Disabled (Default)
1: ACT Enabled
TSYNC3_CFG
Table 141. CH3_SAFETY_RELEVANT
Register Name
Address
CH3_SAFETY_RELEVANT
0x35
Type
Bit
Offset
Bit
Width
Reset
Value
Reset
UNUSED_4
RW
15
1
0x0
B
UNUSED_3
RW
14
1
0x0
B
UNUSED_2
RW
13
1
0x0
B
RW
11
2
0x0
B
UNUSED_1
RW
10
1
0x0
B
UNUSED_0
RW
9
1
0x0
B
LS3_STB_REACT_CFG
RW
7
2
0x0
B
HS3_STG_REACT_CFG
RW
5
2
0x0
B
CRC
RW
0
5
0x17
B
Field Name
STP_VGS_3_REACT_CFG
00: Full SW Off – disable all HB drivers
and CPs, device is sent in SAFE-OFF
mode (Default)
01: Reduced Operation Mode – disable
failing HB only, device remains in
NORMAL mode
SRR
10: Flag only – down-rate fault to simple
warning, device remains in NORMAL
mode
11: Flag only – down-rate fault to simple
warning, device remains in NORMAL
mode
DS13546 - Rev 3
page 129/153
L9908
Window Watchdog Timer (WTD)
Table 142. CH3_ACT
Register Name
Address
CH3_ACT
0x36
NSR
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_3
RO
15
1
0x0
A
UNUSED_2
RO
14
1
0x0
A
UNUSED_1
RO
13
1
0x0
A
UNUSED_0
RO
12
1
0x0
A
ACT3_OVF
RO
11
1
0x0
A
ACT3
RO
0
11
0x0
A
Table 143. SPI_CMM_FAULT
Register Name
Address
SPI_CMM_FAULT
0xFD
Field Name
Type
Bit Offset
Bit Width
Reset Value
Reset
UNUSED_11
RO
15
1
0x0
A
UNUSED_10
RO
14
1
0x0
A
UNUSED_9
RO
13
1
0x0
A
CR
12
1
0x0
A
CR
11
1
0x0
A
CR
10
1
0x0
A
CR
9
1
0x0
A
UNUSED_8
RO
8
1
0x0
A
UNUSED_7
RO
7
1
0x0
A
UNUSED_6
RO
6
1
0x0
A
UNUSED_5
RO
5
1
0x0
A
UNUSED_4
RO
4
1
0x0
A
UNUSED_3
RO
3
1
0x0
A
UNUSED_2
RO
2
1
0x0
A
UNUSED_1
RO
1
1
0x0
A
UNUSED_0
RO
0
1
0x0
A
FCNTERR
Wrong Frame Counter bit
CRCERR
Wrong CRC check value
SHORTERR
Previous SPI frame length32 bit
Window Watchdog Timer (WTD)
L9908 implements a watchdog timer function to ensure a safe SPI communication with μC in case of corrupted or
lost SPI communication.
DS13546 - Rev 3
page 130/153
L9908
Window Watchdog Timer (WTD)
Figure 85. Watchdog Timer simplified block diagram
Watchdog timer function can be enabled by the SPI signal WDT_EN in the register GEN_CFG1:
Table 144. Watchdog enable bit
WDT_EN
Description
0
Watchdog disabled (Default)
1
Watchdog enabled
Once enabled, WDT_EN can be reset to disable only by INT_RST = 0 or CFG_RST = 0.
Activation status of WDT is also stored in the SPI read only register WD_ON_STATUS: WD_ON_STATUS = 0
WDT is not active, WD_ON_STATUS = 1 WDT is active.
As soon as the watchdog is enabled the overflow counter is started thus defining the available refresh window
Twdt_ovf which length is defined by the SPI register WDT_OVF_CFG.
Table 145. Watchdog configuration table for WDT overflow timer
WDT_OVF_CFG1
WDT_OVF_CFG0
0
0
11.26 ms
0
1
22.52 ms (Default)
1
0
45.04 ms
1
1
90.11 ms
Description
The WDT overflow counter status can be accessed through the dedicated SPI read only register
WDT_OVF_STATUS.
The counter value in seconds can be retrieved by the following reconstruction formula:
TWTD_OVF − STATUS = ΔWTD_OVF_LSB × DWTD_OVF_STATUS
(27)
Where: DWDT_OVF is the digital word stored in WDT_OVF_STATUS and ∆WDT_OVF_LSB is the counter LSB as
defined in Table 146.
Table 146. WDT overflow timer LSB
WDT_OVF_CFG
DS13546 - Rev 3
Description
00
0.2048 ms
01
0.4096 ms (Default)
10
0.8192 ms
page 131/153
L9908
Window Watchdog Timer (WTD)
WDT_OVF_CFG
11
Description
1.6384 ms
Reprogramming of WDT_OVF_CFG configuration is possible only while WDT_EN = 0
Table 147. WDT overflow counter accuracy
Symbol
WDT_ovf_acc
Parameter
WDT overflow counter accuracy
Min
Typ
Max
Unit
-10
-
10
%
Within this window the watchdog expects a refresh pulse to reset the overflow counter and restart a new window:
if refresh is missed before the overflow counter is elapsed the error flag WDT_OVF_Fail is set and L9908 is sent
to safe state. The flag remains set until the WDT is reset by the SPI command or re-enabled after a power-on
sequence.
Figure 86. WDT Operation – Overflow timer failure
The refresh of the overflow counter has to be performed by the uC through a dedicated SPI frame including the
4-bit watchdog refresh command. The watchdog circuitry compares the received watchdog refresh command with
an internal look-up table and answers with a corresponding 4-bit Gray code in the next SPI MISO frame.
Table 148. Watchdog Binary to Gray answer conversion
Binary (μC) → Gray (L9908) Binary → (μC) → Gray (L9908) Binary (μC) → Gray (L9908) Binary (μC) → Gray (L9908)
0x0 (0000) → 0x0 (0000)
0x4 (0100) → 0x6 (0110)
0x8 (1000) → 0xC (1100)
0xC (1100) → 0xA (1010)
0x1 (0001) → 0x1 (0001)
0x5 (0101) → 0x7 (0111)
0x9 (1001) → 0xD (1101)
0xD (1101) → 0xB (1011)
0x2 (0010) → 0x3 (0011)
0x6 (0110) → 0x5 (0101)
0xA (1010) → 0xF (1111)
0xE (1110) → 0x9 (1001)
0x3 (0011) → 0x2 (0010)
0x7 (0111) → 0x4 (0100)
0xB (1011) → 0xE (1110)
0xF (1111) → 0x8 (1000)
The expected watchdog command order starts with number 0x0 (0000) and is incremented by 1 at each refresh
window if the command is correctly interpreted and no failure is detected.
Once command number 0xF (1111) is reached the sequence restarts with number 0x0 (0000).
DS13546 - Rev 3
page 132/153
L9908
Window Watchdog Timer (WTD)
Figure 87. Watchdog command order sequence
In case of a wrong WDT data command (command different from the expected sequence order), the watchdog
word fail counter is incremented by 1. With the next valid watchdog data command the fail counter is decreased
by 1. If the failure counter reaches the failure limit defined in the SPI register WDT_FAIL_COUNT_CFG the
watchdog fail flag WDT_DATA_fail is set and L9908 is sent to safe state.
The fail counter limit can be programmed by the following SPI bit set:
Table 149. Watchdog configuration table for WDT data fail counter
WDT_FAIL_COUNT_CFG1
WDT_FAIL_COUNT_CFG0
0
0
1
0
1
1
1
0
2
1
1
3 (Default)
Description
The information about the number of encountered WDT data failures is stored in the dedicated SPI register
WDT_FAIL_COUNT_STATUS.
DS13546 - Rev 3
page 133/153
L9908
Window Watchdog Timer (WTD)
Figure 88. WDT Operation – Word sequence failure
In case of failure (WDT_OVF_fail =1 or WDT_DATA_fail =1) the WDT can be reset by setting to10 the SPI
register command WDT_RESET.
Table 150. Watchdog RESET bits
Note:
DS13546 - Rev 3
WDT_RST1
WDT_RST0
0
0
NO Reset
0
1
NO Reset (Default)
Description
1
0
Reset
1
1
NO Reset
This command is processed by the logic only if a failure is detected (WDT_OVF_fail = 1 or WDT_DATA_fail = 1).
The WDT_RESET doesn’t reset the WDT_EN bit but only the error flag: µC needs to refresh the WDT properly
afterwards.
page 134/153
L9908
Window Watchdog Timer (WTD)
Figure 89. WDT Operation – WDT Reset after overflow timer failure
DS13546 - Rev 3
page 135/153
L9908
Application circuit
6
Application circuit
6.1
12 V/24 V systems
Figure 90. Application circuit, 12 V/24 V systems
DS13546 - Rev 3
page 136/153
L9908
48 V systems
6.2
48 V systems
Figure 91. Application circuit, 48 V systems
6.3
Bill of materials
The following table summarizes the suggested BOM for both systems shown on Figure 90 and Figure 91.
Table 151. Application circuit - BOM
Component Min Typ Max Unit
DS13546 - Rev 3
Minimum requirement
12 V systems
24 V systems 48 V systems
50 V
100 V
Comment
CBR1
-
390
-
nF
CBSn
-
1
-
μF
25 V
CCSO1
-
220
-
pF
6.3 V
CCSO2
-
220
-
pF
6.3 V
CCSO3
-
220
-
pF
6.3 V
CDC1
-
10
-
nF
6.3 V
Max tolerance ±5% to be mounted
close to RDC
CDC2
-
10
-
nF
6.3 V
Max tolerance ±5% to be mounted
close to RDC
CDCd
-
220
-
nF
6.3 V
To be mounted close to pin
With RCSO1,2,3, is mandatory for
CSO signal stability
page 137/153
L9908
Bill of materials
Component Min Typ Max Unit
DS13546 - Rev 3
Minimum requirement
12 V systems
24 V systems 48 V systems
Comment
CFLY1
-
1
-
μF
50 V
100 V
-
CFLY2
-
1
-
μF
50 V
100 V
-
CGHSn
-
-
-
16 V
Optional
CGLSn
-
-
-
16 V
Optional
CHB1n
-
100
-
nF
50 V
100 V
-
CHB2n
-
220
-
μF
50 V
100 V
-
CINHn
-
10
-
pF
6.3 V
Optional
CINLn
-
10
-
pF
6.3 V
Optional
CS1n
-
10
-
nF
6.3 V
Max tolerance ±5% to be mounted
close to RSHUNTn
CS2n
-
10
-
nF
6.3 V
Max tolerance ±5% to be mounted
close to RSHUNTn
CSdn
-
220
-
nF
6.3 V
To be mounted close to pin
CVBAT1
-
100
-
nF
50 V
100 V
-
CVBAT2
-
10
-
μF
50 V
100 V
-
CVBP1
-
1
-
μF
50 V
100 V
16 V
-
CVBP2
-
100
-
nF
50 V
100 V
16 V
To be mounted close to pin
CVBP3
-
100
-
nF
50 V
-
CVDD1
-
1
-
μF
6.3 V
-
CVDD2
-
100
-
nF
6.3 V
To be mounted close to pin
CVDH1
-
100
-
nF
50 V
100 V
To be mounted close to pin
CVDH2
-
1
-
μF
50 V
100 V
-
CVIO1
-
1
-
μF
6.3 V
-
CVIO2
-
100
-
nF
6.3 V
To be mounted close to pin
CVPRE1
-
4.7
6.8
μF
16 V
Max tolerance ±20%
CVPRE1
-
4.7
6.8
μF
CVPRE2
-
100
-
nF
D1
-
-
-
SMA6T39AY
SMA6T56AY
D2
-
-
-
Short
SMA6T6V7AY
DBR1
-
-
-
-
STPS3L60
-
DBR2
-
-
-
-
STPS0520Z
-
RVBP1
-
22
-
kΩ
-
-
RVBP2
-
22
-
kΩ
-
-
RBR1
-
1
-
kΩ
-
-
RBR2
-
39
-
kΩ
-
-
RBR3
-
22
-
kΩ
-
-
RCSO1
-
1
-
kΩ
-
RCSO2
-
1
-
kΩ
-
n.a.
n.a.
16 V
Max tolerance ±20%
16 V
To be mounted close to pin
n.a.
-
With CCSO1,2,3, is mandatory for
CSO signal stability
page 138/153
L9908
Layout guidelines
Component Min Typ Max Unit
6.4
Minimum requirement
12 V systems
Comment
24 V systems 48 V systems
With CCSO1,2,3, is mandatory for
CSO signal stability
RCSO3
-
1
-
kΩ
-
RDC
-
4
-
mΩ
WSL10204L000FEA
REN_BR
-
100
-
Ω
-
Optional
RFS_FLAG
-
100
-
Ω
-
Optional
RGHS1n
-
47
-
Ω
-
-
RGHS2n
-
100
-
kΩ
-
-
RGLS1n
-
47
-
Ω
-
-
RGLS2n
-
100
-
kΩ
-
-
RINHn
-
100
-
Ω
-
Optional
RINLn
-
100
-
Ω
-
Optional
RNCS
-
100
-
Ω
-
Optional
RNDIS
-
100
-
Ω
-
Optional
RSCLK
-
100
-
Ω
-
Optional
RSDI
-
100
-
Ω
-
Optional
RSDO
-
100
-
Ω
-
Optional
RSHUNTn
-
4
-
mΩ
WSL10204L000FEA
TBR1
-
-
-
-
TBR2
-
-
-
-
BCP56-16
-
TVBP1
-
-
-
-
BCP56-16
-
THSn
-
-
-
-
STL225N6F7AG
STD105N10F7AG
-
TLSn
-
-
-
-
STL225N6F7AG
STD105N10F7AG
-
STL225N6F7AG
STH275N8F7
-
-
Layout guidelines
The following layout guidelines apply to any of the above shown application circuits.
•
Three separated bulk capacitors CHB1 should be used - one per half bridge.
•
Three separated ceramic capacitors CHB2 should be used - one per half bridge.
•
Each of the 3 bulk capacitors CHB1 and each of the 3 ceramic capacitors CHB2 should be assigned to one
of the half bridges and should be placed very close to it.
•
The components within one half bridge should be placed close to each other to reduce stray inductance to
a minimum: high-side MOSFET, low-side MOSFET, bulk capacitor CHB1, ceramic capacitor CHB2 and the
shunt resistor RSHUNT form a loop that should be as small and tight as possible. The traces should be short
and wide.
•
The three half bridges can be separated; however, when there is one common GND referenced shunt
resistor (RDC) for the three half bridges the sources of all low-side MOSFETs should be close to each other
and close to the common shunt resistor.
•
Additional R-C snubber circuits can be placed to attenuate/suppress oscillations during switching of the
MOSFETs, there may be one or two snubber circuits per half bridge and components must be low inductive
in terms of routing and packaging (ceramic capacitors).
•
The exposed pad on the backside of the package shall be connected to GND.
DS13546 - Rev 3
page 139/153
L9908
Package information
7
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
7.1
TQFP48 (7x7x1 mm exp. pad down) package information
Figure 92. TQFP48 (7x7x1 mm exp. pad down) package outline
θ2
θ1
θ
θ3
DS13546 - Rev 3
page 140/153
L9908
TQFP48 (7x7x1 mm exp. pad down) package information
Table 152. TQFP48 (7x7x1 mm exp. pad down) package mechanical data
Symbol
Dimensions in mm
Min.
Typ.
Max.
ɵ
0°
3.5°
7°
ɵ1
0°
-
-
ɵ2
10°
12°
12°
ɵ3
10°
12°
12°
A
-
-
1.20
A1
0.05
-
0.15
A2
0.95
1.00
1.05
b
0.17
0.22
0.27
c
0.09
-
0.20
D
9.00
D1
7.00
D2
-
-
5.51
D3
3.70
-
-
e
-
0.50
-
E
9.00
E1
7.00
E2
-
-
5.51
E3
3.70
-
-
L
0.45
0.60
0.75
L1
1.00
N
48
R1
0.08
-
-
R2
0.08
-
0.2
S
0.2
-
-
Tolerance of form and position
DS13546 - Rev 3
aaa
-
0.20
-
bbb
-
0.20
-
ccc
-
0.08
-
ddd
-
0.08
-
page 141/153
L9908
TQFP48 (7x7x1 mm exp. pad down) PCB landpattern
7.2
TQFP48 (7x7x1 mm exp. pad down) PCB landpattern
Figure 93. Suggested PCB landpattern
DS13546 - Rev 3
page 142/153
L9908
Revision history
Table 153. Document revision history
Date
Version
16-Nov-2020
1
Changes
Initial release.
Updated:
•
03-Mar-2021
2
Section 5.9 Internal clock;
•
Section 5.13.1 A/D conversion;
•
Section 5.13.2.3 Digital format current information
•
Section 5.13.3.1 Analog format current information;
•
Section 5.13.4 Current monitor A/D - D/A chain;
•
Table 12. VDD monitor electrical characteristics;
•
Table 36. Clock spread spectrum electrical characteristics;
•
Table 42. Motor battery monitor electrical characteristics;
•
Table 44. Pre-regulation stage electrical characteristics;
•
Table 48. VBP monitor electrical characteristics;
•
Table 51. Charge pump 2 electrical characteristics;
•
Table 53. Bootstrap Limiter 1 electrical characteristics;
•
Table 54. VCP Monitor electrical characteristics;
•
Table 70. Current Monitor Input characteristics;
•
Table 79. Current monitor`s analog output characteristics
•
Table 87. OFD electrical characteristics;
•
Table 91. OND electrical characteristics;
•
Table 93. PVF electrical characteristics.
Removed "Restricted" watermark.
Added Section 7.2 TQFP48 (7x7x1 mm exp. pad down) PCB landpattern.
Updated:
28-Mar-2022
DS13546 - Rev 3
3
•
Section 5.11.4 Supply distribution stage;
•
Section 5.12 Half bridges gate drivers;
•
Section 5.12.3 Shoot-Through Protection (STP);
•
Section 5.13.1 A/D conversion;
•
Section 6.3 Bill of materials;
•
Table 9. Quiescent current consumption in reset mode;
•
Table 10. Mean current consumptions in normal mode;
•
Table 44. Pre-regulation stage electrical characteristics;
•
Table 53. Bootstrap Limiter 1 electrical characteristics;
•
Table 54. VCP Monitor electrical characteristics;
•
Table 58. Pre-driver timings;
•
Table 60. VGS monitor electrical characteristics;
•
Table 76. Current monitors A/D auto-triggering latency;
•
Table 80. Current monitors A/D - D/A auto-triggering latency;
•
Table 93. PVF electrical characteristics;
•
Table 127. CH1_SAFETY_RELEVANT;
•
Table 152. TQFP48 (7x7x1 mm exp. pad down) package mechanical
data;
•
Figure 7. Damage protected activation simplified structure;
•
Figure 10. Internal reset logic simplified block diagram;
•
Figure 23. Power-Up diagram;
•
Figure 26. Ext. FET gate supply simplified block diagram;
•
Figure 39. VGS Monitor operative ranges;
•
Figure 65. OFF State Diagnosis simplified block diagram;
•
Figure 66. OFD currents in motor phases;
page 143/153
L9908
Date
Version
Changes
•
Figure 68. OFD Masking and deglitch filtering - LSn_OFD Example;
•
Figure 69. OFD Masking and deglitch filtering - LSn_OFD Example with
multiple glitches;
•
Figure 77. Ground pins inter-connection;
•
Figure 79. Junction temperature ranges;
•
Figure 90. Application circuit, 12 V/24 V systems;
•
Figure 91. Application circuit, 48 V systems.
Minor text changes in:
DS13546 - Rev 3
•
Section 5.4 Configuration mode;
•
Section 5.6.4 Gate driver supply enable logic.
page 144/153
L9908
Contents
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1
Maximum Operating Range (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1
Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2
Parametrical Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
Absolute Maximum Ratings (AMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3
ESD resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4
Temperature ranges and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4
Functional safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.1
4.2
5
Safe states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.1
SAFE-OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2
SAFE-DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3
SAFE-HIZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Safe state activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.1
Internal supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1
VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2
Internal supply monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.3
VDD monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2
Internal resets (INT_RST, CFG_RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3
Device operation state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4
Configuration mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.1
5.5
Self-test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5.1
5.6
DS13546 - Rev 3
Configuration mode activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Self-test activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Fault Handling Management (FHM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.1
FHC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6.2
Fault reaction scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6.3
Half bridges disable logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
page 145/153
L9908
Contents
5.6.4
Gate driver supply enable logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.7
Power-Up sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.8
Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.9
5.8.1
VIO power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8.2
Digital Input (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8.3
Digital Output (DO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.9.1
Spread Spectrum Modulation (SSM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.9.2
Internal Clock Monitor (ICM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.10
Motor Battery Monitor (MBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.11
Gate driver supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.12
5.13
5.11.1
Pre-regulation stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.11.2
VBP monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.11.3
VPRE monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.11.4
Supply distribution stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.11.5
VCP monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Half bridges gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.12.1
Ext. FET VGS monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.12.2
Dead Time Protection (DTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.12.3
Shoot-Through Protection (STP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Current monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.13.1
A/D conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.13.2
Digital signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.13.3
D/A conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.13.4
Current monitor A/D - D/A chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.14
Off State Diagnosis (OFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.15
On State Diagnosis (OND). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.16
Phase Voltage Feedback (PVF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.16.1
CSO3 - PVF multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.17
Actuation Timers (ACT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.18
Ground Loss Monitor (GLM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.19
Temperature Monitor (OTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DS13546 - Rev 3
page 146/153
L9908
Contents
5.20
5.21
6
7
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.20.1
Protocol description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.20.2
Frame description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.20.3
Frame monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.20.4
Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.20.5
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Window Watchdog Timer (WTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1
12 V/24 V systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2
48 V systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.4
Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.1
TQFP48 (7x7x1 mm exp. pad down) package information . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2
TQFP48 (7x7x1 mm exp. pad down) PCB landpattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DS13546 - Rev 3
page 147/153
L9908
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Pin list description . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety related digital input pins functional partitioning . . .
NDIS and EN_BR electrical characteristics . . . . . . . . . .
Functional operating conditions . . . . . . . . . . . . . . . . . .
Parametrical operating conditions . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . .
ESD resistivity (pin level) . . . . . . . . . . . . . . . . . . . . . .
Temperature ranges and thermal data . . . . . . . . . . . . .
Quiescent current consumption in reset mode . . . . . . . .
Mean current consumptions in normal mode . . . . . . . . .
Internal power supply electrical characteristics. . . . . . . .
VDD monitor electrical characteristics. . . . . . . . . . . . . .
SW reset activation register. . . . . . . . . . . . . . . . . . . . .
Internal resets sources and filtering . . . . . . . . . . . . . . .
Power up/down timings. . . . . . . . . . . . . . . . . . . . . . . .
Operation mode status bits . . . . . . . . . . . . . . . . . . . . .
Device operation modes summary . . . . . . . . . . . . . . . .
CONFIG mode activation register. . . . . . . . . . . . . . . . .
CFG timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Self-test selection bits. . . . . . . . . . . . . . . . . . . . . . . . .
Self-test mode activation register . . . . . . . . . . . . . . . . .
Self-test procedure status bits . . . . . . . . . . . . . . . . . . .
Self-test timings and timeout . . . . . . . . . . . . . . . . . . . .
Fault summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault Reaction Configuration bits . . . . . . . . . . . . . . . . .
Internal Managed Faults reaction details . . . . . . . . . . . .
Fault output redirection configuration bit . . . . . . . . . . . .
IC ERR status bits . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault output redirection configuration bit . . . . . . . . . . . .
EN_BR minimum t_off time . . . . . . . . . . . . . . . . . . . . .
Digital input pins functional partitioning . . . . . . . . . . . . .
Digital input electrical characteristics (Control Loop Pins)
Digital output pins functional partitioning . . . . . . . . . . . .
Digital output electrical characteristics . . . . . . . . . . . . .
Internal clock electrical characteristics . . . . . . . . . . . . .
Clock spread spectrum electrical characteristics . . . . . .
Clock spread spectrum enable bit . . . . . . . . . . . . . . . .
Internal clock monitor electrical characteristics. . . . . . . .
Motor battery monitor UV threshold configuration bits . . .
Motor battery monitor OV threshold configuration bits . . .
Motor battery monitor filtering configuration bits . . . . . . .
Motor battery monitor electrical characteristics. . . . . . . .
Charge pump 1 enable bit . . . . . . . . . . . . . . . . . . . . . .
Pre-regulation stage electrical characteristics . . . . . . . .
VBP monitor UV threshold configuration bits . . . . . . . . .
VBP monitor OV threshold configuration bits . . . . . . . . .
VBP monitor filtering configuration bits . . . . . . . . . . . . .
VBP monitor electrical characteristics . . . . . . . . . . . . . .
VPRE Monitor electrical characteristics. . . . . . . . . . . . .
Charge pump 2 enable bit . . . . . . . . . . . . . . . . . . . . . .
Charge pump 2 electrical characteristics . . . . . . . . . . . .
Bootstrap limiter 1 disable bit. . . . . . . . . . . . . . . . . . . .
DS13546 - Rev 3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
. 6
. 6
. 7
10
10
14
14
16
16
21
22
24
24
27
28
28
29
29
30
30
31
31
32
33
34
34
34
35
36
43
44
44
44
45
45
45
45
46
46
46
47
49
49
51
51
51
52
54
55
55
56
page 148/153
L9908
List of tables
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Bootstrap Limiter 1 electrical characteristics . . . . . . . . . . . . . . . . . .
VCP Monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . .
n-th Half Bridge pre-drivers disable mode bit . . . . . . . . . . . . . . . . . .
Pre-drivers HIZ mode enable bit. . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-drivers behavior truth table . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-driver timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-drivers electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . .
VGS monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . .
Dead Time Protection configuration bits . . . . . . . . . . . . . . . . . . . . .
Dead Time Protection accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shoot-Through Protection on PWM inputs enable bit . . . . . . . . . . . .
Shoot-Through Protection on Ext. FET VGS enable bit . . . . . . . . . . .
Shoot-Through Protection on PWM inputs filtering configuration bits. .
Shoot-Through Protection on Ext. FET VGS filtering configuration bits
Shoot-Through Protection accuracy . . . . . . . . . . . . . . . . . . . . . . . .
n-th Current Monitor Channel enable bit . . . . . . . . . . . . . . . . . . . . .
Current Monitor input range configuration bit . . . . . . . . . . . . . . . . . .
Current Monitor Input characteristics . . . . . . . . . . . . . . . . . . . . . . .
Command edge triggering configuration bits . . . . . . . . . . . . . . . . . .
Synchronization counter configuration bits. . . . . . . . . . . . . . . . . . . .
Current monitors LP filtering configuration bits . . . . . . . . . . . . . . . . .
Current monitors sampling configuration bits . . . . . . . . . . . . . . . . . .
Digital format current information LSB. . . . . . . . . . . . . . . . . . . . . . .
Current monitors A/D auto-triggering latency . . . . . . . . . . . . . . . . . .
Current monitors output offset configuration bits. . . . . . . . . . . . . . . .
Current monitors output gain configuration . . . . . . . . . . . . . . . . . . .
Current monitor`s analog output characteristics . . . . . . . . . . . . . . . .
Current monitors A/D - D/A auto-triggering latency . . . . . . . . . . . . . .
CSM gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current monitor A/D - D/A total error. . . . . . . . . . . . . . . . . . . . . . . .
Current monitor chain noise performance . . . . . . . . . . . . . . . . . . . .
OFD enable bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OFD fault detection table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OFD blanking time configuration bits . . . . . . . . . . . . . . . . . . . . . . .
OFD electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OND enable bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OND blanking time configuration bits . . . . . . . . . . . . . . . . . . . . . . .
OND filtering time configuration bits . . . . . . . . . . . . . . . . . . . . . . . .
OND electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PVF threshold selection bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PVF electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PVF output redirection selection bit . . . . . . . . . . . . . . . . . . . . . . . .
CSO3-PVFn output multiplexing selection bits . . . . . . . . . . . . . . . . .
Actuation Timers configuration bits . . . . . . . . . . . . . . . . . . . . . . . . .
Actuation Timers enable bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actuation Timers electrical characteristics . . . . . . . . . . . . . . . . . . . .
GLM electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal warning configuration bits . . . . . . . . . . . . . . . . . . . . . . . . .
OTM electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MOSI - SPI frame description . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MISO - SPI frame description . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHIPID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GEN_CFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS13546 - Rev 3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 57
. 58
. 60
. 60
. 61
. 61
. 63
. 66
. 67
. 68
. 69
. 70
. 70
. 70
. 70
. 71
. 72
. 73
. 76
. 78
. 79
. 82
. 85
. 86
. 86
. 87
. 87
. 88
. 89
. 89
. 89
. 91
. 91
. 93
. 94
. 94
. 95
. 96
. 97
. 98
. 99
100
100
100
101
101
102
103
104
105
107
107
.110
.111
page 149/153
L9908
List of tables
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.
Table 147.
Table 148.
Table 149.
Table 150.
Table 151.
Table 152.
Table 153.
GEN_CFG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GE_CFG3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GEN_CFG4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GEN_STATUS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GEN_STATUS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GEN_STATUS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GEN_TEMP_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SW_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WDT_CFG_CMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WDT_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BIST_KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CFG_EN_UNLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SAFETY_RELEVANT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SAFETY_RELEVANT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SAFETY_RELEVANT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH1_STATUS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH1_STATUS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH1_CFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH1_CFG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH1_CFG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH1_SAFETY_RELEVANT. . . . . . . . . . . . . . . . . . . . . . . . . .
CH1_ACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH2_STATUS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH2_STATUS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH2_CFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH2_CFG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH2_CFG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH2_SAFETY_RELEVANT. . . . . . . . . . . . . . . . . . . . . . . . . .
CH2_ACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH3_STATUS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH3_STATUS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH3_CFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH3_CFG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH3_CFG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CH3_SAFETY_RELEVANT. . . . . . . . . . . . . . . . . . . . . . . . . .
CH3_ACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI_CMM_FAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog enable bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog configuration table for WDT overflow timer . . . . . . . .
WDT overflow timer LSB. . . . . . . . . . . . . . . . . . . . . . . . . . . .
WDT overflow counter accuracy. . . . . . . . . . . . . . . . . . . . . . .
Watchdog Binary to Gray answer conversion. . . . . . . . . . . . . .
Watchdog configuration table for WDT data fail counter . . . . . .
Watchdog RESET bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit - BOM. . . . . . . . . . . . . . . . . . . . . . . . . . . .
TQFP48 (7x7x1 mm exp. pad down) package mechanical data .
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS13546 - Rev 3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.112
.112
.113
.115
.115
.115
.116
.116
.117
.117
.117
.118
.118
.119
120
120
121
121
122
122
123
123
123
124
124
125
125
126
126
126
127
127
128
129
129
130
130
131
131
131
132
132
133
134
137
141
143
page 150/153
L9908
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
DS13546 - Rev 3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin connection diagram (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin voltage ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 V pulse scenario - applicative condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2s2p PCB with thermal vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safe states activation paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Damage protected activation simplified structure. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal supply operative range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDD functional ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal reset logic simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device operational state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CONFIG mode state machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Self-test mode state machine (NORMAL MODE) . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault output redirection logic simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . .
Shutdown fault - Transient fault timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shutdown fault - Permanent fault timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Auto-retry faults - Transient fault timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Auto-retry faults - Permanent fault timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reduced operation fault - Transient fault timing diagram . . . . . . . . . . . . . . . . . . . . . .
Reduced operation fault - Permanent fault timing diagram . . . . . . . . . . . . . . . . . . . . .
Warning - Transient fault timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Warning - Permanent fault timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-Up diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended Power-Up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDH operative range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ext. FET gate supply simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VBP functional ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VPRE monitor boot masking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VPRE operative ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BT1 behavior timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VCP UV boot masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VCP operative range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-drivers Disable mode behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-drivers HIZ mode behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-drivers delay characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-drivers rise/fall time characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ext. FET Turn-on/off simplified behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-driver peak output current limitation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VGS Monitor operative ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dead Time Protection functional operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interlocking protection on PWM inputs: functional operation . . . . . . . . . . . . . . . . . . . .
Shoot-Through diagnosis on PWM inputs: functional operation . . . . . . . . . . . . . . . . . .
Shoot-through protection on Ext. FET Vgs functional operation . . . . . . . . . . . . . . . . . .
n-th Current Monitor Channel simplified block diagram. . . . . . . . . . . . . . . . . . . . . . . .
External Shunts Configurations a) DC-Link, b) 2xSingle Leg + DC-Link, c) 3xSingle Leg
A/D Conversion simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Monitor input dynamic timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current monitor input CMRR - Positive Common Mode input voltage . . . . . . . . . . . . . .
Current monitor input CMRR - Negative Common Mode input voltage . . . . . . . . . . . . .
Command edge triggering timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Auto-triggering timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital signal processing simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 4
. 7
. 9
15
19
20
22
23
25
26
29
31
35
36
36
37
37
38
39
39
40
42
43
48
48
53
54
55
57
58
59
60
61
62
63
65
66
67
67
68
69
69
71
71
72
74
75
75
77
78
78
page 151/153
L9908
List of figures
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
DS13546 - Rev 3
Digital LP filtering simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Free running sampling timing diagram - non-zero current + auto-triggering . . . . . . . . . . . . . . . . .
Free running sampling timing diagram - non-zero current + auto-triggering, latency to CSOn . . . .
Free running sampling timing diagram - non-zero current + command edge-triggering . . . . . . . . .
Free running sampling timing diagram - zero current (offset) + auto-triggering. . . . . . . . . . . . . . .
Free running sampling timing diagram - zero current (offset) + command edge-triggering . . . . . . .
T&H sampling timing diagram - non-zero current + auto-triggering. . . . . . . . . . . . . . . . . . . . . . .
T&H sampling timing diagram - zero current (offset) + auto-triggering . . . . . . . . . . . . . . . . . . . .
T&H sampling timing diagram - non-zero current + command edge-triggering . . . . . . . . . . . . . . .
T&H sampling timing diagram - zero current (offset) + command edge-triggering. . . . . . . . . . . . .
D/A conversion simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A/D-D/A chain accuracy block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OFF State Diagnosis simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OFD currents in motor phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OFD enabling and masking time start - IPU example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OFD Masking and deglitch filtering - LSn_OFD Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OFD Masking and deglitch filtering - LSn_OFD Example with multiple glitches . . . . . . . . . . . . . .
ON State Diagnosis simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OND blanking and filtering (VDS_LSn example), multiple fault . . . . . . . . . . . . . . . . . . . . . . . . .
OND blanking and filtering (VDS_LSn example), single fault. . . . . . . . . . . . . . . . . . . . . . . . . . .
Off State Diagnosis block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase voltage feedback behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actuation Timer simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actuation Timers timing diagram on ACT (positive & negative polarity). . . . . . . . . . . . . . . . . . . .
Ground pins inter-connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature monitor ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Junction temperature ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI connection modes "a" star connection (supported) "b" daisy-chain connection (not supported)
SPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Write-Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Read-Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Clear on Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer simplified block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WDT Operation – Overflow timer failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog command order sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WDT Operation – Word sequence failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WDT Operation – WDT Reset after overflow timer failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit, 12 V/24 V systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit, 48 V systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TQFP48 (7x7x1 mm exp. pad down) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Suggested PCB landpattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 79
. 80
. 80
. 81
. 81
. 82
. 83
. 84
. 84
. 85
. 86
. 88
. 90
. 92
. 92
. 93
. 93
. 95
. 96
. 97
. 98
. 99
100
101
102
103
104
105
105
108
108
109
131
132
133
134
135
136
137
140
142
page 152/153
L9908
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS13546 - Rev 3
page 153/153