L9960 L9960T
Automotive Single/Dual H-Bridge, SPI programmable DC Brushed
Motor Driver
Datasheet - production data
Short circuit and programmable thermal
warning and shutdown thresholds
Open Load diagnosis in ON condition
All I/O pins can withstand up to 19 V
SPI interface for configuration and diagnosis
Two independent enable/disable pins NDIS
and DIS and SOPC (Switch-off Path Check)
available
GAPGPS00337
PowerSSO-36
Spread Spectrum function for EMI reduction
Features
AEC-Q100 qualified
Available in single (L9960) and Twin (L9960T)
option, both in PSSO36 package
Flexible driving strategy via configurable pins
PWM/DIR (IN1/IN2)
Description
RDSon < 400 mΩ (full path at Tj =150° C)
Input switching frequency up to 20 kHz
The device is an integrated H-Bridge for resistive
and inductive loads for automotive applications.
Target application includes throttle control
actuators, exhaust gas recirculation control
valves and general purpose DC motors such as
turbo, flap control and electric pumps.
Built in charge pump supporting 100% duty
cycle
The driving strategy is enhanced by configurable
PWM / DIR pins and IN1/IN2.
Logic levels compatible to 3.3 V and 5 V
The H-Bridge contains integrated free-wheel
diodes. In case of freewheeling condition, the
low-side only is switched on in parallel of its diode
to reduce power dissipation.
Operating battery supply voltage from 4.5 V up
to 28 V
Operating VDD5 supply voltage from 4.5 V to
5.5 V
Monitoring of VDD5 supply voltage with
bidirectional switch-off pin
Current limitation SPI-adjustable in four steps.
Output stage current limitation with
dependence on temperature
2 Programmable voltage and current slew rate
control
The integrated Serial Peripheral Interface (SPI)
makes it possible to adjust device parameters, to
control all operating modes and read out
diagnostic information.
Table 1. Device summary
Order code
Package
L9960
L9960TR
L9960T
Tube
PowerSSO-36
L9960T-TR
February 2021
This is information on a product in full production.
Packing
Tape and Reel
Tube
Tape and Reel
DS11115 Rev 10
1/95
www.st.com
Contents
L9960, L9960T
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1
2
3
4
Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
General electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
Thermal ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3
Range of functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1
4.2
Device supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.1
Functional State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2
Vps power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3
VDD5 regulated voltage supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.4
VDDIO voltage supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.5
Device supply electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 27
Power on reset (POR) and SW reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1
Power on reset (POR) electrical characteristics . . . . . . . . . . . . . . . . . . 29
4.3
System clock electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4
Hardware self check (HWSC) and LBIST . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5
2/95
PowerSSO36 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4.1
HWSC test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.2
HWSC/LBIST electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 32
Digital input controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.1
Bridge functional modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2
Disable inputs DIS and NDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.3
Control inputs DIR and PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.4
Digital inputs control electrical characteristics . . . . . . . . . . . . . . . . . . . . 41
DS11115 Rev 10
L9960, L9960T
4.6
4.7
4.8
4.9
5
Contents
Driver configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.1
Slew rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.2
Current slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.3
Voltage slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6.4
Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Driver protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7.1
Over-temperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7.2
Over-temperature monitoring electrical characteristics . . . . . . . . . . . . . 56
4.7.3
Short-circuit to battery: over-current detection in low-side transistors . . 57
4.7.4
Short-circuit to ground: over-current detection in high-side transistor . . 58
4.7.5
Load in short-circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7.6
Over-current detection electrical characteristics . . . . . . . . . . . . . . . . . . 59
Diagnostics and registers descriptions in case of validity bit configuration 60
4.8.1
Diagnostic Reset strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.8.2
Diagnostic reset bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8.3
Global Failure Bit NGFAIL definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8.4
Diagnostic of "Over-current" in on-state . . . . . . . . . . . . . . . . . . . . . . . . 65
4.8.5
Diagnostic of "Open Load" in on-state . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8.6
On-state diagnostics electrical characteristics . . . . . . . . . . . . . . . . . . . . 70
4.8.7
Off-state diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.8.8
Off-state diagnostic electrical characteristics . . . . . . . . . . . . . . . . . . . . . 73
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9.1
Protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.9.2
SPI command and response words format . . . . . . . . . . . . . . . . . . . . . . 75
4.9.3
Read ASIC traceability number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.9.4
Read Logic HW version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.9.5
Parity bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.9.6
SPI communication mode (Parallel and Daisy chain mode) . . . . . . . . . 79
4.9.7
Communication check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9.8
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1
PowerSSO-36 (exposed pad) package mechanical data . . . . . . . . . . . . . 89
6
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DS11115 Rev 10
3/95
3
List of tables
L9960, L9960T
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
4/95
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin definition (PSSO36twin die) and function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Application circuit - BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Thermal ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Range of functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Bridge output drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
VPS_UV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VPS_UV_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VPS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
UV_PROT_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
UV_PROT_EN_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
UV_WIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
UV_WIN_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
UV_CNT_REACHED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
VDD_UV_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
VDD_UV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
VDD_OV_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
VDD_OV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
VDD_OV_L[2:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
VDD5 voltage monitoring Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Device supply electrical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SW reset [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
POR status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
POR electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
System clock electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
NSPREAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
NSPREAD_echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
HWSC/LBIST Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
HWSC/LBIST_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
HWSC/LBIST electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VVL_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
VVL_MODE echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
TVVL[3:0] (µs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
TVVL_echo[3:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
BRIDGE_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
NDIS_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DIS_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Normal mode H-bridge input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
IN1/IN2 mode H-bridge input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
VVL mode H-bridge input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TSW_low_current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TSW_low_current_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Digital inputs control electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Range current slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ISR_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DS11115 Rev 10
L9960, L9960T
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
List of tables
VSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Voltage slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
VSR_echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
NOSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
NOSR_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
TDSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
TDSR_ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ILIM_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CL[1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CL_echo[1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
OTwarn_thr_var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
OTwarn_thr_var_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
OTsd_thr_var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
OTsd_thr_var_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
NOTSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
NOTSD_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
OTWARN_TSEC_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
OTWARN_TSEC_EN_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
OTWARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
OTWARN_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Over-temperature monitoring electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Over-current detection electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
DIAG_CLR_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
DIAG_CLR_EN_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Status bits description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Diagnostics bits description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
NGFAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Diagnostic of "Over-current" in on-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Error_count[3:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
TDIAG1 (µs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
TDIAG1_echo[2:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
OL_ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
OL_ON_STATUS [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Open Load in ON-state electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
TRIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DIAG_OFF[2:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Off-state diagnostic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
SPI command word format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
SPI response word format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Supplier ID code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Silicon version identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Wafer coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Traceability code and wafer number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
CC_latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Config_CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Config_CC_state_echo7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Electrical characteristics serial data output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
SPI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
SPI communication command and answer words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
SPI communication configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
PowerSSO-36 (exposed pad) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . 90
DS11115 Rev 10
5/95
6
List of tables
L9960, L9960T
Table 101. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6/95
DS11115 Rev 10
L9960, L9960T
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Block diagram for L9960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin connection of L9960 version (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin connection of L9960T version (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Example of VDD5 slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
External power supply circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Battery voltage monitoring – case1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Battery voltage monitoring – case2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
VDD5 under voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
VDD5 over voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
POR timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
HWSC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
HWSC state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Bridge STATE diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Bridge STATE diagram in VVL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Bridge STATE diagram in IN1/IN2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 cases of high-side/low-side activation (normal mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 cases of high-side/low-side activation (IN1/IN2 mode) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Ideal waveforms of switching with slew rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tdiag2 blanking time depends on the Vps voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Slew rate switching strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Current limitation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Effect of the temperature diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Thermal current limitation adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Example of low-side transistor low impedance short circuit to battery (I < Ioc_ls) . . . . . . . . 57
Over-current detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Example of correct Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Example of NO Overcurrent detection by Tdiag2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Current diagnostic state diagram for each MOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Open load timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Structure and detection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Open load off state diagnosis diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
SPI SDO update at 2nd SPI command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
SPI SDO is clocked on SCLK rising edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
In case of no SCLK edge when NCS=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Wafer XY coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Daisy chain operation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
PowerSSO-36 (exposed pad) package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 89
DS11115 Rev 10
7/95
7
Block diagram and pin description
L9960, L9960T
1
Block diagram and pin description
1.1
Block diagram
Figure 1. Block diagram for L9960
CP
VPS
GND
Under -voltage
detect ion
DIR
PWM
DIS
NDIS
Under -voltage detect ion
Over -voltage detection
Direction /
Phase
control
Disable
block 1
VDDIO
NCS
SCLK
SDI
SDO
SPI
INTERFACE
CONTROL LOGIC
VDD5
Charge pump +
Voltage clamp
GATE DRIVERS
Protections :
- SC to GND
- SC to battery
- SC of the load
- Over -temperature
- Undervoltage
Current limitation
monitoring
OUT1
Slew rate
& dead
Time
adjustment
Current sense &
Feedback circuit
OUT2
Diagnosis :
- Under -voltage
- Over -current LS
- Over -current HS
- Over -temperature
shutdown
- Disable pin status
- Current limitation
- Current limitation
reduction
- OL in OFF state
PGND
GAPGPS02311
8/95
DS11115 Rev 10
L9960, L9960T
Block diagram and pin description
1.2
Pin description
1.2.1
PowerSSO36 package
Figure 2. Pin connection of L9960 version (top view)
PGND1
1
36
OUT2A
SCLK1
2
35
NCS1
SDI1
3
34
DIS1
SDO1
4
33
CP1
OUT1A
5
32
VS1
OUT1A
6
31
VS1
NDIS1
7
30
IN2A
AGND1
8
29
IN1A
VDD5
9
28
NC
NC
10
27
VDDIO
NC
11
26
NC
NC
12
25
NC
NC
13
24
NC
NC
14
23
NC
NC
15
22
NC
NC
16
21
NC
NC
17
20
NC
NC
18
19
NC
GAPGPS02651
Figure 3. Pin connection of L9960T version (top view)
PGND1
1
36
OUT2A
SCLK1
2
35
NCS1
SDI1
3
34
DIS1
SDO1
4
33
CP1
OUT1A
5
32
VS1
OUT1A
6
31
VS1
NDIS1
7
30
IN2A
AGND1
8
29
IN1A
VDD5
9
28
NC
NC
10
27
VDDIO
IN1B
11
26
AGND2
IN2B
12
25
NDIS2
VS2
13
24
OUT1B
VS2
14
23
OUT1B
CP2
15
22
SDO2
DIS2
16
21
SDI2
NCS2
17
20
SCLK2
OUT2B
18
19
PGND2
GAPGPS02307
DS11115 Rev 10
9/95
94
Block diagram and pin description
L9960, L9960T
Table 2. Pin definition (PSSO36twin die) and function
Pin # Pin name
I/O
Type
1
PGND1
Power Ground
2
SCLK1
SPI Serial Clock Input (internal pull-up)
I
3
SDI1
SPI Data In Input (internal pull-up)
I
4
SDO1
SPI Serial Data Out. Tri-state output buffer, Transfers data to the µC
O
OUT1A
Output of DMOS half bridge 1 [device A]
O
7
NDIS1
Bidirectional Enable pin: open drain output pulled low in case of VDD
over/under voltage. If the input is pulled low OUT 1-2 go to tri-state.
I/O
8
AGND1
Analog Ground pin
9
VDD5
10
NC
11(1)
IN1B
Input Half Bridge 1 (internal pull-down) [device B]. Acting as PWM at
power-up, can be configured to IN1 via SPI frame
I
12(1)
IN2B
Input Half Bridge 2 (internal pull-down) [device B]. Acting as DIR at
power-up, can be configured as IN2 via SPI frame.
I
VS2
Power supply voltage for Power Stages (external reverse protection
required)
I
15(1)
CP2
Tank capacitor for Charge Pump output
O
16(1)
DIS2
Disable pin: if it is pulled high Out1-2 are in tri-state (internal pull-up)
I
17(1)
NCS2
SPI Chip Select Input (internal pull-up)
I
O
5
6
13(1)
(1)
14
GND
Regulated 5V supply
GND
I
Not connected pin
(1)
OUT2B
Output of DMOS half bridge 2 [device B]
(1)
19
PGND2
Power Ground
20(1)
SCLK2
SPI Serial Clock Input (internal pull-up)
I
18
GND
(1)
SDI2
SPI Data In Input (internal pull-up).
I
(1)
SDO2
SPI Serial Data Out
O
21
22
23(1)
O
OUT1B
Output of DMOS half bridge 1 [device B]. multi-bonding
25(1)
NDIS2
Bidirectional Enable pin: open drain output pulled low in case of VDD
over/under voltage. If the input is pulled low OUT 1-2 go to tri-state.
26(1)
AGND2
Analog Ground pin
27
VDDIO
Regulated 3.3/5V supply for SDO output buffer
I
28
NC
Not connected pin
-
29
IN1A
Input Half Bridge 1 (internal pull-down) [device A]. Acting as PWM at
power-up, can be configured to IN1 via SPI
I
30
IN2A
Input Half Bridge 2 (internal pull-down) [device A]. Acting as DIR at
power-up, can be configured as IN2 via SPI.
I
24(1)
10/95
Function
DS11115 Rev 10
I/O
GND
L9960, L9960T
Block diagram and pin description
Table 2. Pin definition (PSSO36twin die) and function (continued)
Pin # Pin name
31
Function
I/O
Type
VS1
Power supply voltage for Power Stages (external reverse protection
required)
I
33
CP1
Charge Pump output
O
34
DIS1
Disable pin: if it is pulled high Out1-2 are in tri-state (internal pull-up)
I
35
NCS1
SPI Chip Select Input (internal pull-up)
I
36
OUT2A
Output of DMOS half bridge 2 [device A]. multi-bonding
O
EP
AGND1
Exposed Pad connected to PCB Ground
32
1. For L9960 version in PSSO36, the pins from 11 to 26 are not connected.
DS11115 Rev 10
11/95
94
Application description
2
L9960, L9960T
Application description
The L9960 is dedicated to be part of an H-Bridge module for automotive applications. It can
be used in all the applications requiring an H-Bridge power stage configuration in order to
drive DC motors or bi-directional solenoid-controlled actuators. Device configurability allows
to choose the best current or voltage slew rate for the optimization of motor control and
noise suppression.
Typical applications are:
Electronic throttle control;
Exhaust gas recirculation (EGR) or waste flap control;
Swirl actuator control;
Electric pumps, motor control and auxiliaries;
Generic DC or Stepper motors driving.
The module is implemented with a microcontroller, an input filter (fulfillment of the EMC/EMI
requirements) and an over-voltage protection diode (optional).
2.1
Application circuit
Figure 4. Application circuit
12/95
DS11115 Rev 10
L9960, L9960T
2.2
Application description
Bill of materials
Table 3. Application circuit - BOM
Component
Requirement
Comment
50 V
CVBP1
CVBP2
To be mounted close
to the pin
50 V
CVDD1
Min
Typ
Max
Unit
-
100
-
μF
-
1
-
μF
-
10
-
μF
CVDD2
To be mounted close
to the pin
-
100
-
nF
CVDDIO
To be mounted close
to the pin
-
100
-
nF
CCP
To be mounted close
to the pin
-
100
-
nF
To be mounted close
to the pin
Values as big as
possible (max 47 nF)
are recommended if
Open Load in OFF
detection is disturbed
10
-
47
nF
To be mounted close
to the pin
Values as big as
possible (max 47 nF)
are recommended if
Open Load in OFF
detection is disturbed
10
-
47
nF
Rpd_NDIS
-
10
-
KΩ
Rpu_DIS
-
10
-
KΩ
-
-
-
-
-
-
-
-
COUT1
COUT2
D1
STPS5L60S
D2
SMA6T33AY
Clamp max: 35 V
DS11115 Rev 10
13/95
94
General electrical characteristics
L9960, L9960T
3
General electrical characteristics
3.1
Absolute maximum ratings
Warning:
Warning: stressing the device above the rating listed in the
“Absolute maximum ratings” table may cause permanent
damage to the device. These are stress ratings only and
operation of the device at these or any other conditions
above those indicated in the operating sections of this
specification is not implied. Exposure to the absolute
maximum ratings conditions for extended periods may affect
the device reliability.
Table 4. Absolute maximum ratings
Symbol
Parameter
Condition
Min
Max
Unit
Vps
Supply voltage
Continuous
-1
40
V
Vout1,2
Output voltage
Continuous. OUT is limited by VPS
-1
40
V
VDD5
Logic supply voltage
0 V < Vps < 40 V
-0.3
19
V
VDDIO
SDO supply voltage
0V 7 V
-
-
400
Tj = 25 °C to 170 °C,
Tcase 140 °C
Iout = 7.5 A; Vps > 7 V
-
-
450
Unit
mΩ
Vbd_h
Body diode forward voltage
drop High-side transistor
Idiode = 9A
-
2
3
V
Vbd_l
Body diode forward voltage
drop Low-side transistor
Idiode = 9A
-
2
3
V
16/95
DS11115 Rev 10
L9960, L9960T
3.5
General electrical characteristics
Timing characteristics
Table 8. Timing characteristics
Symbol
Tdon
Tdoff
Td
Trise_L
Tfall_L
Parameter
Delay time for switch-on
Delay time for switch-off
Delay time: symmetry
Condition
Min.
Typ.
Max.
Unit
Rload 6 Ω, ISR = 1; VSR = 1
PWM edge 10%,
TSW_low_current = 0,
Vout (or 10% Iout)
-
-
10.5
µs
Rload 6 Ω, ISR = 0; VSR = 0
PWM edge 10%,
TSW_low_current = 0,
Vout (or 10% Iout)
-
-
11.5
µs
NOSR mode:
PWM edge 10%,
TSW_low_current = 0,
Vout (or 10% Iout)
-
-
7
µs
Rload 6 Ω, ISR = 1; VSR = 1
PWM edge 90%,
TSW_low_current = 0,
Vout (or 90% Iout)
-
-
12
µs
Rload 6 Ω, ISR = 0; VSR = 0
PWM edge 90%,
TSW_low_current = 0,
Vout (or 90% Iout)
-
-
13
µs
NOSR mode
PWM edge 90%,
TSW_low_current = 0,
Vout (or 90% Iout)
-
-
5.5
µs
|Tdon-Tdoff| NOSR mode
-
-
5
µs
|Tdon-Tdoff| ISR/VSR mode
2
-
8
µs
0.04
-
0.5
µs
5
-
10
µs
Low-side transistor rise time Non selectable by SPI
Low-side transistor fall time 10%-90% Vout , Iload = 3 A
DS11115 Rev 10
17/95
94
Functional description
L9960, L9960T
4
Functional description
4.1
Device supply
The L9960 is supplied through 3 pins connected to 3 different external voltage supply
sources:
4.1.1
VPS, battery voltage to supply the bridge,
VDD5, 5 V regulated voltage to supply chip digital I/O's,
VDDIO, the supplying SDO output buffer voltage.
Functional State
Following functional states are defined for L9960:
Normal Mode
–
Tri-state
–
supply voltages are present and no failure. H-bridge is driven by the selected
driving control mode (PWM/DIR, IN1/IN2) and it is configurable via SPI (i.e slew
rate, current limitation and overcurrent thresholds, OT warning thresholds).
H-bridge gate drivers are disabled due to a fault independently from PWM signal
(IN1 or IN2). Once the fault condition is disappeared, L9960 restarts working
without dedicated fault recovery procedure.
Disabled
–
H-bridge is disabled due to a fault condition and it is necessary to execute the
dedicated procedure to initialize the device (please review the below table for the
dedicated procedure for each fault). In case the fault is related to an overvoltage
or undervoltage on VDD5, the H-bridge is set to tri-state with NDIS low.
Note:
Please review the dedicated Section 4.8.1: Diagnostic Reset strategy in application note.
4.1.2
Vps power supply
VPS pin is the power supply of the H-bridge. A filter could be implemented, mainly to fulfill
the EMC requirements, and an over-voltage protection diode can also be added (optional).
Figure 6. External power supply circuitry
Controlled by MCU
Battery
Voltage
OPTIONAL
OPTIONAL
GAPGPS02312
18/95
DS11115 Rev 10
L9960, L9960T
Functional description
Tri-state mode power consumption
Depending on the error detection affecting L9960, the bridge is switched to tri-state. In this
status the output leakage current is less than "Iout" (refer to Table 23) on the overall range
of functionality (Vps and temperature ranges).
Normal and VVL modes power consumption
In normal and VVL modes, the current consumption on Vps is mainly based on the output
current delivered to the load and the High-Side Power MOS supply consumption.
Battery voltage monitoring
The Vps voltage is monitored internally to detect undervoltage conditions on power supply
line.
When Vps decreases below the under-voltage threshold "Vps_uv" longer than a filter
"Tvps_uv", the bridge is disabled (SPI communication is still working).
The filtering time "Tvps_uv" is implemented to avoid unwanted detection due to parasitic
glitches when Vps increases as well as decreases.
As soon as the voltage rises again above the Vps under-voltage threshold (hysteresis
implemented), the bridge is switched back to normal mode driven by DIR and PWM levels
(or IN1/IN2). All the settings are kept as before the under-voltage event. No PWM toggle is
necessary to restart the H-bridge if the condition is disappeared.
The Vps voltage monitoring information is readable via SPI by VPS_UV bit which is not
latched.
Table 9. VPS_UV
Bit status
Description
Condition
0
Vps > Vps_uv longer than Tvps_uv
Default value
1
Vps < Vps_uv longer than Tvps_uv
-
The info is available in position R0 of the answer frame 8a.
The information is also readable by VPS_UV_REG bit which is latched.
Table 10. VPS_UV_REG
Bit status
Description
Condition
0
latched Vps > Vps_uv longer than Tvps_uv
Default value
1
latched Vps < Vps_uv longer than Tvps_uv
-
The info is available in position R5 of the answer frame 8a.
DS11115 Rev 10
19/95
94
Functional description
L9960, L9960T
Battery voltage monitoring electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 11. VPS electrical characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
Vs_clamp_neg
Negative clamp on
VPS battery line
-3 A from VPS, 3 ms
-2.5
-
-0.5
V
Vps_uv_off
Vps under-voltage
threshold
Vps decreasing
3.7
-
4.2
V
Vps_uv_on
Vps under-voltage
threshold
Vps increasing
4.2
-
4.7
V
Vps_uv_hys
Vps under-voltage
hysteresis
-
0.1
-
1
V
1
-
3
µs
Tvps_uv
Vps under-voltage
filtering time
Digital filter
(guaranteed by scan)
Undervoltage protection
A counter is implemented to measure if two consecutive Vps under-voltage events occur
within a fixed time frame, defined by the parameter (UV_WIN), which is programmable via SPI
in two different values: 20 or 40 µs; if it happens, a specific bit named “UV_CNT_REACHED”
is set to 1 and the bridge is disabled.
The “UV_PROT_EN” bit is used to enable the counter UV_WIN and an echo answer is
available. In the tables below, the configuration and functions for each of these parameters
are shown:
Table 12. UV_PROT_EN
Bit status
Note:
Description
0
Counter and disabling protection are not enabled
1
Counter and disabling protection are enabled
Condition
Reset value
-
(-) available in position D3 of the SPI command frame 4.
Table 13. UV_PROT_EN_echo
Bit status
Note:
20/95
Description
0
Echo counter and disabling protection not enabled
1
Echo counter and disabling protection enabled
(-) available in position R3 of the SPI answer frame 7b.
DS11115 Rev 10
Condition
Reset value
-
L9960, L9960T
Functional description
Table 14. UV_WIN
Bit status
Note:
Description
Condition
0
UV_WIN window is set to 20 µs
Reset value
1
UV_WIN window is set to 40 µs
-
(-) available in position D0 of the SPI command frame 4.
Table 15. UV_WIN_echo
Bit status
Note:
Description
Condition
0
Echo: UV_WIN window is set to 20 µs
Reset value
1
Echo: UV_WIN window is set to 40 µs
-
(-) available in position R0 of the SPI answer frame 7b.
Table 16. UV_CNT_REACHED
Bit status
Note:
Description
Condition
0
No VS under voltage events closer than UV_WIN
Default Value
1
Two VS under voltage events closer than UV_WIN
-
(-) available in position R5 of the SPI answer frame 8c.
If this UV protection option is not enabled, an indefinite number of consecutive battery
under-voltage events can occur with the only action taken by the device to disable the
bridge, when the battery level is below “vps_uv threshold”.
Figure 7 and Figure 8 show the cases of VPS UV events greater or smaller than 2 in the
time frame defined by UV_WIN.
Case 1 (no enabled protection)
The first VPS transition under the VPs_uv_off threshold is disregarded, due to the event
duration less than Tvps_uv.
After the second UV transition on Vps, the bridge is put in tri-state. As the protection has not
been enabled via UV_PROT bit, the H-bridge keeps on switching between On-state and tri-state.
Figure 7. Battery voltage monitoring – case1
T < Tvps _uv
Tvps _uv
Tvps _uv
Tvps _uv
Tvps _uv
Vps
Vps _uv _hys
Vps _uv _off
‘’VPS _UV’’
BRIDGE
STATE
ON-STATE
TRI-STATE
ON-STATE
TRI-STATE
ON-STATE
T > UV_WIN or UV_PROT not
enabled
‘’UV _CNT_REACHED’’
GAPGPS02313
DS11115 Rev 10
21/95
94
Functional description
L9960, L9960T
Figure 8. Battery voltage monitoring – case2
T < Tvps _uv
Tvps _uv
Tvps _uv
Vps
Vps _uv _off
Vps _uv _hys
‘’VPS _UV’’
BRIDGE
STATE
ON-STATE
TRISTATE ON-STATE
DISABLE
T < UV_WIN
UV_CNT_REACHED
GAPGPS02314
Case 2
In this scenario, after the second UV transition on VPS, with the enabled protection via
UV_PROT set to 1, if two UV events occur by the UV_WIN timeframe expiration, the Hbridge is set in Disable condition consequently.
4.1.3
VDD5 regulated voltage supply
The VDD5 Input voltage is provided by an external power supply, supplying the
corresponding L9960 digital I/O's.
When VDD5 is not supplied, there is only a small leakage current sank from VPS, see
parametric table with condition VDD5 Vdd_uv longer than Tvdd_uv1
Default Value
1
Latched Vdd < Vdd_uv longer than Tvdd_uv1
-
(-) available in position R1 of the SPI answer frame 8a.
Table 18. VDD_UV
Bit status
Note:
Description
Condition
0
Vdd > Vdd_uv longer than Tvdd_uv1
Default Value
1
Vdd < Vdd_uv longer than Tvdd_uv1
-
(-) available in position R0 of the SPI answer frame 12b.
Figure 9. VDD5 under voltage monitoring
Tvdd _uv 1
Tvdd _uv 1
T < T vdd_uv1
Vdd
Vdd _uv _th
Vdd _uv _hys
Tvdd _uv 2
VDD_UV
BRIDGE
STATE
DISABLE
ON-STATE
ON-STATE
T > Thold _ndis
NDIS
VDD_UV
filter 2.6ms
UV_DIS
delay 500ms
UV_DIS_filtered
GAPGPS02315
VDD5 over-voltage protection
Although the VDD5 input pin and all I/O's withstand up to 19 V, an over-voltage circuitry is
implemented to ensure that the bridge is kept in disable condition when VDD5 voltage is
higher than the VDD5 over-voltage threshold (VDD5_ov_th) for duration longer than
"TVDD5_ov”.
This VDD5 over-voltage condition is also feedbacked directly to NDIS pin, by pulling NDIS
to LOW after the filter time “TVDD5_ov ”.
The NDIS pin is released when VDD5 voltage decreases below the "VDD5_ov_th"
threshold and wait hysteresis as well as TVDD5_ov filtering implemented + Thold_ndis
filter time are expired.
The information is readable via 2 diagnostics bits called VDD5_OV_REG (latched) and
VDD_OV (unlatched).
DS11115 Rev 10
23/95
94
Functional description
L9960, L9960T
Table 19. VDD_OV_REG
Bit status
Note:
Description
Condition
0
Latched Vdd < Vdd_ov_th longer than Tvdd_ov
Default Value
1
Latched Vdd > Vdd_ov_th longer than Tvdd_ov
-
(-) available in position R2 of the SPI answer frame 8a.
Table 20. VDD_OV
Bit status
Note:
Description
Condition
0
Vdd < Vdd_ov_th longer than Tvdd_ov
Default value
1
Vdd > Vdd_ov_th longer than Tvdd_ov
-
(-) available in position R1 of the SPI answer frame 12b.
In case of VDD5 over-voltage condition, the bridge is kept in disable until the over-voltage
condition is removed (hysteresis as well as TVDD5_ov filtering implemented).
Figure 10. VDD5 over voltage monitoring
T < Tvdd _ov
Vdd _ov_hys
Vdd _ov_th
Vdd
T < Tvdd _ov
Tvdd _ov
VDD_OV
BRIDGE
STATE
DISABLE
ON-STATE
ON-STATE
NDIS
VDD_OV
Filter 2.6ms
OV_DIS
T > Thold _ndis
GAPGPS02316
This information is filtered, and reported in NGFAIL (Global Failure Bit NGFAIL definition on
page 64).
A counter is available to inform about the overvoltage event length (guaranteed by scan).
The counter starts as soon as VDD5_OV event occurs.
The counter stops for the following conditions:
when its max value was reached,
when the VDD5_OV condition is removed.
The VDD5_OV length information is readable in a latched 3 bits word called VDD5_OV_L.
These 3 bits define the time range of the current counter value, according to the following
table:
24/95
DS11115 Rev 10
L9960, L9960T
Functional description
Table 21. VDD_OV_L[2:0]
Note:
Bit status
min
max
Condition
000
not used
-
-
001
No VDD_OV event
-
default value
010
T_vdd_ov
10 ms
-
011
10 ms
30 ms
-
100
30 ms
100 ms
-
101
100 ms
300 ms
-
110
300 ms
1000 ms
-
111
1000 ms
-
-
(-) available in positions R11/R10/R9 of the SPI answer frame 12a.
A new VDD5_OV event overwrites the previous VDD5_OV length, except if the new
event length is shorter than the value defined in VDD5_OV_L.
A reading of VDD5_OV_L through SPI clears the current value; if an event is still
present when SPI reading occurs, the counter restarts counting until VDD5_OV
condition is removed or the counter itself has reached its max value.
DS11115 Rev 10
25/95
94
Functional description
L9960, L9960T
VDD5 voltage monitoring electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 22. VDD5 voltage monitoring Electrical characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
4.45
-
4.7
V
VDD5_uv_th
VDD5 decreasing
VDD5 under-voltage detection threshold Valid for the extended
range of temperature (1)
VDD5_uv_hys
VDD5 under-voltage hysteresis
VDD5 increasing
10
-
50
mV
TVDD5_uv1
VDD5 under-voltage filtering time for
bridge switched to Tri-state
Vpor < VDD5 <
VDD5_uv_off
Digital filter (guaranteed
through scan)
2
-
3.25
ms
TVDD5_uv2
VDD5 under-voltage filtering time for
NDIS pin pulled to ”LOW” level
VDD5 decreasing
Digital filter (guaranteed
through scan)
415
-
625
ms
VDD5_ov_th
VDD5 over-voltage detection threshold
VDD5 increasing
Valid for the extended
range of temperature
5.2
-
5.55
V
VDD5 over-voltage filtering time
VDD5 increasing
Digital filter (guaranteed
through scan)
2
-
3.25
ms
VDD5 decreasing
10
-
50
mV
NDIS output ON state threshold
On Load current = 5 mA
0
-
0.4
V
NDIS Hold time
Minimum time before
releasing NDIS after fault
disappearance
(guaranteed through scan)
2
-
3.25
ms
TVDD5_ov
VDD5_ov_hys VDD5 over-voltage hysteresis
NDIS_VOL
Thold_ndis
1.
Extended range of temperature (150, 170 °C)
4.1.4
VDDIO voltage supply
In order to ensure a full compatibility with 5 V and 3.3V MCU peripherals, a pin VDDIO is
dedicated to supply the output buffer of SDO.
The overall current consumption on VDDIO is "IVDDIO".
26/95
DS11115 Rev 10
L9960, L9960T
4.1.5
Functional description
Device supply electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 23. Device supply electrical characteristic
Symbol
Ips
Iout
Icc
IVDDIO
4.2
Parameter
Power supply current
Condition
Min.
Typ.
Max.
Unit
VDD5 < 0.7 V; Vps < 16 V
Tj < 85 °C; L9960
-
10
40
µA
VDD5 < 0.7 V; Vps 16 V
Tj > 85 °C; L9960
-
-
180
µA
FPWM = 0; Iout = 0
(L9960, L9960T)
-
-
5
mA
For FPWM=20 kHz; Iout = 0
(L9960)
-
-
5
mA
For FPWM = 20 kHz; Iout = 0
(L9960T)
-
-
10
mA
-100
-
100
µA
VDD5 >VDD5_uv_on
FPWM = 0, for L9960
for L9960T
-
-
9
18
FPWM = 20 kHz
for L9960
for L9960T
-
-
9
18
SDO not connected (L9960)
for L9960T
-
-
1
2
Bridge in tri-state
All current sources switched OFF
Leakage current on output
Measured between OUT1 and
OUT2
Logic-supply current
SPI controller current
consumption on VDDIO
mA
mA
Power on reset (POR) and SW reset
POR is a low active internal reset signal, leading the H-bridge in tri-state. It is released in
case the VDD5 is higher than the POR threshold (hysteresis implemented). The POR
input has a hysteresis to avoid unstable behaviors during ramp up and down of VDD5.
The POR is active for VDD5 from 0V to [Vpor + Vpor_hys] (POR threshold + hysteresis).
When RESET state is active, the bridge is switched to tri-state.
When VDD5 voltage increases above the POR (Power On Reset) threshold (hysteresis
implemented), the L9960 starts with all the settings reset to their default values.
In Figure 11 is shown an example of POR timing diagram.
At point 1, due to a POR condition on VDD5 supply, the POR signal is set to low and it is
released after 300 µs. L9960 is in disable state and the LBIST+HWSC (condition 2) is
DS11115 Rev 10
27/95
94
Functional description
L9960, L9960T
executed by application SW by HWSC/LBIST Trigger bit. If passed the H-bridge switches
to Normal Mode after the first PWM transition.
At point 4 is shown the case, in which a SW reset is enabled by µC, with no impact on
internal POR signal.
Figure 11. POR timing diagram
1
Vdd < Vdd_por threshold
POR
4
SW reset
enable by
SW
300us before the
release of the POR
2
BIST
trigger by
SW
3
PWM
L9960
STATE
Reset state (~300us)
Tri-state
LBIST+
HWSC
DI
Normal state
Reset state
Tri-state
LBIST+
HWSC
Normal state
BIST + HWSC : 4.5ms
NDIS
driven by
L9960
time
GAPGPS02317
The SW reset configuration comes into a 2-bit register
Table 24. SW reset [1:0]
Bit status
01
Description
SW reset command
-
All except 01 no action
Note:
Condition
-
(-) available in positions D10/D9 of the SPI command frame 2.
The SW reset lasts 2-clock periods.
The device goes back to RESET state immediately in case of POR condition on VDD5 or in
case of SW reset.
This reset is asynchronous, with a synchronous release.
After a POR condition on VDD5 or a SW reset, the register bit called “POR” is set to “1”; it is
cleared by read back via SPI.
Once cleared, this bit indicates a further Power On Reset.
Table 25. POR status
Bit status
Note:
28/95
Description
0
After SPI reading (not submitted to DIAG_CLR_EN)
1
after Power On Reset
(-) available in the R11 bit position in SPI answer frame 7e.
DS11115 Rev 10
Condition
Default value
L9960, L9960T
4.2.1
Functional description
Power on reset (POR) electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 26. POR electrical characteristics
Symbol
Parameter
Condition
Min.
Max.
Unit
3
3.7
V
Vpor
POR threshold
VDD5 decreasing
Vpor_hys
POR hysteresis
For VDD5 increasing, Bridge is switched
ON at VDD5_uv_off+VDD5_uv_hys or
(Vpor + Vpor_hys)
0.1
0.3
V
POR filtering time
VDD5 decreasing
Analog filtering (guaranteed by design)
0.01
4
µs
Td_pow
Power-on delay time
DIR = PWM = NDIS = 1 / DIS = 0
(guaranteed by scan)
-
300
µs
Vpor_int
POR threshold on
internal regulator
-
1
3
V
Tpor
4.3
System clock electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 27. System clock electrical characteristics
Symbol
Fclock
Parameter
Condition
Internal System clock
±10% accuracy
Min.
4.5
Typ
5
Max. Unit
5.5
MHz
A Spread Spectrum function can be an optional solution to reach EMC performance. The effect
is a reduction on emission peak values by spreading the energy in the frequency domain.
Table 28. NSPREAD
Bit status
Note:
Description
Condition
0
Spread Spectrum Activate
Reset value
1
Spread Spectrum Disable
-
(-) available in the R2 position in SPI answer frame 4.
A register report the echo of NSPREAD Config: "NSPREAD echo"
Table 29. NSPREAD_echo
Bit status
Note:
Description
Condition
0
echo Spread Spectrum Activate
Default value
1
echo Spread Spectrum Disable
-
(-) available in the R2 position of the SPI answer frame 7b.
DS11115 Rev 10
29/95
94
Functional description
4.4
L9960, L9960T
Hardware self check (HWSC) and LBIST
The target of the hardware self check is to check the proper function of the VDD5 over
voltage detection. Due to the fact that over voltage is impossible in a proper working ECU, it
is necessary to simulate an over voltage situation, by changing the over voltage threshold
during HWSC/LBIST test.
The target of the LBIST is to cover the disable path of the device, for safety aspects.
As long as the HWSC/LBIST has not been performed (indicated by the signal
HWSC/LBIST_done = "0") the bridge outputs remain disabled in tri-state.
The start condition for the HWSC/LBIST is triggered by a SPI bit “HWSC/LBIST Trigger”. It
is considered as a valid command only after a POR or a SW reset or a failed HWSC/BIST. If
passed, it cannot be triggered again and the SPI answer remains the same.
HWSC/LBIST can be re-triggered only in case of FAIL result, or SW reset.
Table 30. HWSC/LBIST Trigger
Bit status
Description
0
HWSC/LBIST not requested
1
request for HWSC/LBIST
Condition
Reset value
-
Note:
(-) available in the D8 position in SPI command frame 2, please refer to Application Note for
MISO response in case of SW reset and for HWSC trigger.
4.4.1
HWSC test procedure
Once the HWSC is started, the reference voltage of the VDD5 over-voltage comparator is
reduced to the lower value "VDD5_ov_hwsc", by the signal o_VDD5_ov_ref, as shown in
the Figure 12 below.
At the same time, the filters “Thwsc_fil”, “Thwsc_ref” and “Thwsc_dur” are started.
"Thwsc_dur" indicates the duration of the LBIST test.
"Thwsc_dur" indicates the duration of the dynamical adjustment of the VDD overvoltage
threshold.
In case the VDD5 over-voltage comparator indicates an over voltage condition when the
filter time “Thwsc_fil” has expired the HWSC status bits indicate that the test has
successfully passed.
In case the VDD5 over-voltage indicates no over voltage condition when the filter time
“Thwsc_fil” has expired the HWSC status bits are set to indicate that the test has failed.
In case the filter time Thwsc_fil is not yet fully expired at the end of “Thwsc_ref” (e.g. due
to several restarts of “Thwsc_fil”) the HWSC status bits are set to indicate that the test has
failed.
After “Thwsc_ref” has expired, the reduced VDD5 over-voltage comparator reference
voltage returns back to the VDD5 over voltage disable threshold “Vdd_ov_th”.
tHWSC is re-triggered with every transition of the VDD5 OV comparator from "0" to "1"
In Figure 12 "o_VDD5_ov_ref" is an internal signal which controls the reduction of the
VDD5 over voltage threshold.
30/95
DS11115 Rev 10
L9960, L9960T
Functional description
Figure 12. HWSC timing diagram
HWSC
trigger
tHWSC_DUR
tHWSC_REF
O_vdd_ov_ref
VDD_OV_th
VVDD5
VDD_OV_HWSC
i_vdd_ov
tHWSCrestarted
Thwsc_fil
HWSC_DONE
0
0
1
HWSC_DIS
1
0
0
HWSC not done
HWSC failed
GAPGPS02318
HWSC passed
HWSC done
& passed
Stop conditions for HWSC test
The HWSC is stopped by one of the following conditions:
HWSC duration time “Thwsc_dur” has expired
in case of a reset condition (RESET active)
Once the HWSC duration time “Thwsc_dur” has expired the internal signal HWSC_done is
set to "1", independently of the HWSC result.
HWSC failed
In case the HWSC has failed or is not done, all outputs are disabled.
HWSC is not done if it was not triggered or if is not finished (“Thwsc_dur” not expired)
Result of HWSC/LBIST test
HWSC/LBIST test status (3 bits) is requested by SPI command "states request 1":
Table 31. HWSC/LBIST_status
Bit status (b2 b1 b0)
Note:
Description
0xx
HWSC/LBIST not done
100
HWSC/LBIST done - HWSC FAIL/LBIST FAIL
101
HWSC/LBIST done - HWSC running/LBIST PASS
110
HWSC/LBIST done - HWSC FAIL/LBIST PASS
111
HWSC/LBIST done - HWSC PASS/LBIST PASS
Condition
Default value
(-) available in the R8/R7/R6 positions in SPI answer frame 8a.
DS11115 Rev 10
31/95
94
Functional description
L9960, L9960T
Figure 13. HWSC state diagram
state before HWSC executed
HWSC ongoing
HWSC done
- (N)_HWSC_RQ = („0") / „1"
(SW_REQUEST)
POR
3
HWSC_done = „1"
HWSC_pass = „0"
HWSC failed
1
2
HWSC_done = „0"
HWSC_pass = „0"
(N)_HWSC_RQ = („0") / „1"
HWSC_done = „0"
HWSC_pass = „X"
HWSC passed
4
HWSC_done = „1"
HWSC_pass = „1"
(N)_HWSC_RQ = („0") / „1"
(SW_REQUEST)
GAPGPS02319
4.4.2
HWSC/LBIST electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 32. HWSC/LBIST electrical characteristics
Pos.
Symbol
6.1
VDD5_ov_hw
Parameter
Condition
VDD5 over-voltage disable
threshold in HWSC mode
-
Analog settling time for changing
in HWSC mode and back
Settling time for changing the
VDD5 overvoltage disable
threshold
includes analog filter time tA_FIL,
(guaranteed by design)
HWSC duration time
Min. Max. Unit
3.7
4.2
V
0
10
µs
(guaranteed through scan)
100
160
µs
6.2
Thwsc_ch_ov
6.3
Thwsc_dur
6.4
Thwsc_fil
HWSC filter time
(guaranteed through scan)
40
70
µs
6.5
Thwsc_ref
HWSC reference time
(guaranteed through scan)
80
130
µs
6.6
-
LBIST coverage for the disable
path
(design info)
95
-
%
6.7
LBIST_dur
LBIST duration at start-up
(guaranteed through scan)
-
4.34
ms
32/95
DS11115 Rev 10
L9960, L9960T
4.5
Functional description
Digital input controls
All the digital inputs and outputs of the L9960 must be compatible with 3.3V and 5V CMOS
technologies, but must also withstand up to 19V.
Bridge functional modes
Three functional modes are available on L9960, listed below:
Normal mode (via PWM / DIR)
VVL
IN1 / IN2
Normal mode
L9960 is in Normal Mode when the PWM / DIR control interface is selected.
In the below example it is showed the case of LS active freewheeling.
Figure 14. Bridge STATE diagram
NDIS
NORMAL
MODE
4.5.1
DIS
DIR
PWM
BRIDGE
STATE
Forward
Free
Wheeling
Reverse
Free
Wheeling
Forward
HS0 command
LS0 command
HS1 command
LS1 command
GAPGPS02320
VVL mode
VVL mode is programmed through a dedicated SPI command “VVL mode” (configuration
3). This mode is used to drive valves in Forward or Reverse mode.
DS11115 Rev 10
33/95
94
Functional description
L9960, L9960T
Figure 15. Bridge STATE diagram in VVL mode
VVL
MODE
NDIS
DIS
DIR
PWM
BRIDGE
STATE
Free
Tri
Wheeling state
Forward
Reverse
Free
Tri
Wheeling state
Tvvl
Tvvl
Forward
GAPGPS02321
Programming the bridge in normal or VVL mode is performed through dedicated SPI
command to setup the MODE configuration bit:
Table 33. VVL_MODE
Bit status
Note:
Description
0
No VVL mode
1
VVL mode
Condition
Reset value
-
(-) available in the D10 bit position in SPI command frame 5.
The status of the VVL is echoed through a SPI configuration request
Table 34. VVL_MODE echo
Bit status
Note:
Description
0
No VVL mode
1
VVL mode
Condition
Reset value
-
(-) available in the R11 bit position in SPI answer frame 7c.
In VVL mode, once PWM is set to LOW, the bridge is put in tri-state after a programmable
time “Tvvl” from 0us to 26ms by the register defined below.
Table 35. TVVL[3:0] (µs)
4 bits combination
34/95
Description
0000
0
0001
6.4
0010
12.6
Condition
Not to be used
if IN1/IN2
interface is
selected
0011
24.8
0100
50.4
-
0101
100
-
0110
200
-
0111
400
-
DS11115 Rev 10
L9960, L9960T
Functional description
Table 35. TVVL[3:0] (µs) (continued)
4 bits combination
Note:
Description
Condition
1000
800
-
1001
1600
-
1010
3200
-
1011
6500
-
1100
13000
-
1101
26000
-
1111
26000
Reset value
(-) available in the D9/D8/D7/D6 bit position in SPI command frame 5.
VVL mode is deactivated (no tri-state phase) when the current limitation is active
The status of the TVVL is echoed through a SPI configuration request
Table 36. TVVL_echo[3:0]
Note:
4 bits Status combination
Description
Condition
0000
0
0001
6.4
0010
12.6
0011
24.8
0100
50.4
-
0101
100
-
Not to be used if IN1/IN2 interface is selected
0110
200
-
0111
400
-
1000
800
-
1001
1600
-
1010
3200
-
1011
6500
-
1100
13000
-
1101
26000
-
1111
26000
Default value
(-) available in the R10/R9/R8/R7 bit position in SPI answer frame 7c.
IN1_IN2 mode
This mode changes the meaning of PWM/DIR and allows driving directly the half-bridge.
To enable this mode it is necessary:
Note:
1.
Program a dedicated SPI register (configuration2: IN1_IN2_if) set to '1'.
2.
PWM/DIR (IN1/IN2) inputs must be low to latch and apply the configuration (see Note).
In order to set back the default driving control mode (PWM/DIR) the same procedure has to
be followed: the SPI command bit IN1_IN2_if bit has to be set to '0' and IN1=IN2 has to be
set to '0' to latch and apply the configuration.
DS11115 Rev 10
35/95
94
Functional description
L9960, L9960T
Status of the SPI register (IN1_IN2_if) and its internally latched version are available
through SPI (configuration request 2: “(IN1_IN2_if)” echo and "IN1_IN2_if_latched_echo")
Figure 16. Bridge STATE diagram in IN1/IN2 mode
N DIS
DIS
IN1 IN2 MODE
PWM (IN1)
DIR (IN2)
HS Free
Wheeling
Reverse
LS Free
Wheeling Forward
HS Free
Wheeling
GAPGPS02322
4.5.2
Disable inputs DIS and NDIS
The pin DIS is internally pulled-up and high active.
When DIS is active (set to HIGH), the bridge is set to disabled independently from the
internal clock (asynchronous switch-off path), whatever the state of the DIR and PWM
inputs. All the data stored in SPI registers are not reset and SPI communication with the
MCU is still possible.
When DIS is inactive (set to LOW) and NDIS is active (set to HIGH), the bridge is controlled
by the DIR and PWM inputs, synchronously. After DIS or NDIS release, the bridge waits for
the next PWM rising edge before being released from disable (see Note).
The pin NDIS is internally pulled down and high active.
When NDIS is inactive (set to LOW) either by NDIS pin or by protection schemes, the bridge
is set disabled independently from the internal clock (asynchronous switch-off path),
whatever the state of the DIR and PWM inputs. All the data stored in SPI registers are not
reset and SPI communication with the MCU is still possible.
The “real-time” state of the bridge is a bit called "BRIDGE_EN". It reflects the disabling of
the bridge, (including disabling by internal protection schemes), and not the tri-state linked
to VVL mode activation.
Note:
In case of IN1/IN2 mode, a rising edge either on IN1 or on IN2 is valid to release the disable
mode. A minimum delay of 1us is suggested to be applied between DIS fall edge and rising
edge on driving control pins.
Table 37. BRIDGE_EN
Bit status
36/95
Description
Condition
0
Bridge disabled
Default value
1
Bridge Enabled
-
DS11115 Rev 10
L9960, L9960T
Note:
Functional description
(-) available in the R9 bit position in SPI answer frame 8a.
The µC should be able to perform a SOPC (Switch-off path check). For that purpose, the
status of each disable line is also provided through SPI status of the followings pins: NDIS,
DIS, VDD5_OV, VDD5_UV.
The status of NDIS and DIS can be monitored by 2 SPI registers:
Table 38. NDIS_status
Bit status
Note:
Description
Condition
0
NDIS pin = '0'
-
1
NDIS pin = '1'
-
(-) available in the R11 bit position in SPI answer frame 8a.
Table 39. DIS_status
Bit status
Description
Condition
0
DIS pin = '0'
-
1
DIS pin = '1'
-
Note:
(-) available in the R10 bit position in SPI answer frame 8a.
4.5.3
Control inputs DIR and PWM
The pins DIR and PWM are internally pulled down. In normal mode, the bridge is controlled
by these two inputs according to the following table:
Table 40. Normal mode H-bridge input
Note:
DIR
PWM
OUT1_HS
OUT1_LS
OUT2_HS
OUT2_LS
Condition
1
1
1
0
0
1
Forward
0
1
0
1
1
0
Reverse
x
0
0
1
0
1
Freewheeling
A minimum pulse width of 1 µs has to be guaranteed on driving control pins PWM/DIR for
the relative command acknlowdgement by internal logic.
In IN1/IN2 mode, the bridge is controlled by these two inputs according to the table below:
Table 41. IN1/IN2 mode H-bridge input
Inputs
Outputs (MOS Driver)
Condition
IN2 (DIR)
IN1 (PWM)
OUT1_HS
OUT1_LS
OUT2_HS
OUT2_LS
0
0
0
1
0
1
LS Freewheeling
0
1
1
0
0
1
Forward
DS11115 Rev 10
37/95
94
Functional description
L9960, L9960T
Table 41. IN1/IN2 mode H-bridge input (continued)
Inputs
Outputs (MOS Driver)
Condition
IN2 (DIR)
IN1 (PWM)
OUT1_HS
OUT1_LS
OUT2_HS
OUT2_LS
1
0
0
1
1
0
Reverse
1
1
1
0
1
0
HS Freewheeling(1)
1. It is advised against using this recirculation option in IN1/IN2 mode as L9960 is not safely protected against
external failures (i.e SCG). For IN1/IN2 mode only it is advised to recirculate (active freewheeling) on
low-side drivers only.
Note:
A minimum pulse width of 1 µs has to be guaranteed on driving control pins PWM/DIR for
the relative command acknlowdgement by internal logic.
In VVL mode, the bridge is controlled by these two inputs and according to the VVL status
as described in the table below:
Table 42. VVL mode H-bridge input
DIR
PWM
VVL phase
OUT1_HS
OUT1_LS
OUT2_HS
OUT2_LS
Condition
1
1
1
0
0
1
Forward
0
1
no active
with PWM=1
0
1
1
0
Reverse
x
0
T < TVVL
0
1
0
1
Freewheeling
x
0
T > TVVL
0
0
0
0
Tri-state
A specific dead-time “TSW“ is implemented between high-side and low-side transistors
switching to avoid cross-conduction. It applies when switching from on-state to freewheeling
state and viceversa, regardless of the actual way to drive the H-bridge (PWD/DIR or
IN1/IN2). The total delay may be related to the switching Current slew rate selected by SPI.
The dead time is managed in the digital design, using analog feedback information from the
gate driver.
Table 43. TSW_low_current
Bit config
Description
0
Tsw activated on i_gate_fb only
1
Tsw activated on the last event between i_gate_fb or i_out_on
Condition
Reset value
In order to avoid h-bridge misbehavior, it is strongly recommended to avoid working with
default settings: TSW_low_current = 0 is the only configuration allowed for all the
applications.
POR, BIST/HWSC and SW reset commands overwrite the configuration
TSW_low_current=0, so the application SW shall take care of resuming
TSW_low_current=1.
The bit TSW_low_current_echo is available for reading on the Configuration Request 1
register, for eventual runtime configuration check
Note:
38/95
(-) available in the D2 bit position in SPI command frame 3.
DS11115 Rev 10
L9960, L9960T
Functional description
A register report the echo of Tsw_low_current Config: "Tsw_low_current echo"
Table 44. TSW_low_current_echo
Bit status
Note:
Description
Condition
0
echo Tsw activated on i_gate_fb only
-
1
echo Tsw activated on the last event between i_gate_fb or i_out_on
Default value
(-) available in the R3 bit position in SPI answer frame 7a.
By convention (normal mode), for DIR=1, the current flows from OUT1 to OUT2, for
DIR = 0, the current flows from OUT2 to OUT1.
Figure 17. 4 cases of high-side/low-side activation (normal mode)
HS1
HS2
OUT1
OUT2
LS1
OUT2
LS2
DIR=1; PWM=1 (Forward)
OUT1
OUT1
OUT2
DIR=0; PWM=1 (Reverse)
DIR=1; PWM=0 (Freewheeling LS)
OUT1
OUT2
DIR=0; PWM=0 (Freewheeling LS)
GAPGPS02334
If IN1/IN2 mode is selected the convention is the following:
IN1=1, IN2=0 -> OUT1=1, OUT2=0 (Forward)
IN1=0, IN2=1 -> OUT1=0, OUT2=1 (Reverse)
IN1=0, IN2=0 -> OUT1=0, OUT2=0 (Freewheeling Low-Side)
IN1=1, IN2=1 -> OUT1=1, OUT2=1 (Freewheeling High-Side)
DS11115 Rev 10
39/95
94
Functional description
L9960, L9960T
Figure 18. 4 cases of high-side/low-side activation (IN1/IN2 mode)
VPS
VPS
T1
T2
T2
T1
M
M
T3
T4
T3
T4
IN1 = 0 , IN2 =1
Reverse , T2 and T3 active
IN1 = 1 , IN2 = 0
Forward, T1 and T4 active
VPS
VPS
T2
T1
T2
T1
M
M
T3
T4
IN1 = 0 , IN2 = 0
LS Freewheeling via T3 to T4
T3
T4
IN1 = 1 , IN2 = 1
HS Freewheeling via T2 to T1
Note: Please refer to warning message.
GAPGPS02335
An active freewheeling is automatically set, at the end of the dead time, which means that
the power transistor in parallel to the internal freewheeling diode is switched on during
freewheeling phase.
This should lead to a power dissipation decrease when driving inductive loads.
Warning:
In case of current limitation event in IN1/IN2 mode, the
freewheeling is automatically set back to LS drivers.
It is advised against selecting the HS recirculation in IN1/IN2
mode as L9960 is not safely protected against external failures
(i.e SCG).
For IN1/IN2 mode it is advised to recirculate (active
freewheeling) on low-side drivers only.
For PWM mode the recirculation is set by design on LS
drivers only.
40/95
DS11115 Rev 10
L9960, L9960T
4.5.4
Functional description
Digital inputs control electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 45. Digital inputs control electrical characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
Vih
Digital input voltage HIGH (NDIS,
DIS, DIR, PWM)
Valid for the extended
range of temperature
(note(1))
1.75
-
VDD5
+0.3
V
Vil
Digital input voltage LOW (NDIS,
DIS, DIR, PWM)
Valid for the extended
range of temperature
-0.3
-
0.75
V
Vihys
Hysteresis of digital input voltage
(NDIS, DIS, DIR, PWM)
100
-
1000
mV
-100
-
-30
Vin = 5 V no back supply
vs. the inputs allowed
-5
-
5
Vin = 19 V
Device is kept in tri-state
-50
-
130
3 V < Vin < 5.5 V
(Iinh_NDIS
VDD5>VDD5_UV)
30
-
100
Vin = 19 V Device stays in
normal state
(Iinh_NDIS
VDD5>VDD5_UV)
30
-
100
Vin < 0.75V
(Iinh_NDIS
VDD5>VDD5_UV)
-5
-
+90
TVVL accuracy
-
-25
-
+25
%
Dead time between active MOS
switched OFF to freewheel MOS
switched ON
Valid for the extended
range of temperature
(guaranteed by scan)
1.8
2
2.5
us
Tsw_sr
Dead time between freewheel MOS
switched OFF to active MOS
switched ON
Including freewheeling
MOS Slew Rate delay
Valid for the extended
range of temperature
(guaranteed by scan)
4.1
4.6
5.1
us
Td_dis
NDIS/DIS delay time
DIS / NDIS 90% OUTx
@ Iout = 3 A
Analog delay at turn-off
-
-
5
µs
DIS asynchronous filtering
Analog EMC filtering
(guaranteed by design)
0.2
-
1
µs
Vin = 0 V
Iinl
Iinh
Tvvl_acc
TSW
Td_filter
Input current source for DIS
Input current sink for:
NDIS / DIR / PWM
µA
µA
µA
1. Extended range of temperature (150, 170°C).
DS11115 Rev 10
41/95
94
Functional description
4.6
L9960, L9960T
Driver configuration
The following features of the driver stage are configurable by SPI allowing to better fit it to
the application requirements and also to the type of load.
4.6.1
Slew rate control
Current limitation thresholds
Overcurrent thresholds
Thermal warning and Shutdown thresholds
Slew rate control
The slew rate of each high side power transistor of the bridge is controlled either during turnon and turn-off (current and voltage slew rate). The same setting is applied for both
switching phases. Moreover, the slew rate is configurable by SPI in order to get the best
trade-off between conducted/radiated EMI and power dissipation during switching.
The overall delay implemented between high-side and low-side transistor switching is
adjusted automatically to avoid any cross-conduction through one half-bridge in all
conditions (Tsw).
4.6.2
Current slew rate
The current slew rate can be set in real time by SPI.
The corresponding read/write bit is "ISR".
No external component is needed to select the current slew rate range.
Table 46. ISR
Bit config
Note:
Description
0
see table below
1
default value see table
Condition
Reset value
(-) available in the D7 bit position in SPI command frame 3.
Current slew rate depends upon the ISR/NOSR configuration also on the following bits and
conditions (ILIM_REG, overcurrent or Tj) as defined in the table below.
Table 47. Range current slew rate
42/95
Range/ condition
ISR
TDSR
NOSR
Comment
SLOW
0
X
0
Slow DI/DT
FAST
1
X
0
Fast DI/DT
SR disabled if ILIM_REG = 1
Or NOC=0
X
X
X
Slew rate disabled if tj > Otwam
X
1
X
Slew rate disabled
X
X
1
DS11115 Rev 10
current slew rate not
controlled
L9960, L9960T
Functional description
The current SR setting is reported by bit "ISR_echo"
Table 48. ISR_echo
Bit status
Description
Condition
0
echo ISR SLOW config
-
1
echo ISR FAST config
Default value
Note:
(-) available in the R8 bit position in SPI answer frame 7a.
4.6.3
Voltage slew rate
The voltage slew rate on HS FETs can be set in real time by SPI.
The corresponding read/write bit is "VSR". Only the power transistors not used for
freewheeling are adjustable, the two others are controlled with a preset slew rate.
Table 49. VSR
Bit status
Note:
Description
0
see table below
1
default value see table
Condition
Reset value
(-) available in the R6 bit position in SPI command frame 3.
Voltage Slew rate depends upon the VSR/NOSR bit configuration also on the following
bit/conditions (ILIM_REG, overcurrent or Tj (and TDSR)) as defined in the table below.
Table 50. Voltage slew rate
Range/ condition
VSR
TDSR
NOSR
Condition
SLOW
0
X
0
Slow dV/dT
FAST (Default at POR)
1
X
0
Fast dV/dT
SR disabled if ILIM_REG = 1
Or NOC = 0
X
X
X
Very fast dv/dt
Slew rate disabled if
tj > OTwam
X
1
X
Very fast dv/dt
Slew rate disabled
X
X
1
Very fast dv/dt
The voltage SR setting is reported by bit "VSR_echo".
Table 51. VSR_echo
Bit status
Note:
Description
Condition
0
echo VSR SLOW config
-
1
echo VSR FAST config
Default value
(-) available in the R7 bit position in SPI answer frame 7a.
DS11115 Rev 10
43/95
94
Functional description
L9960, L9960T
The current slew rate control can be disabled and the voltage slew rate can be overwritten
by a faster SR when Tj > OTwarn, ILIM_REG = 1, NOC = 0 or NOSR bit is set.
Table 52. NOSR
Bit status
Note:
Description
0
NOSR mode NOT allowed
1
NOSR mode allowed
Condition
Reset value
-
(-) available in the D8 bit position in SPI command frame 3.
The NOST configuration is reported by bit "NOSR_echo"
Table 53. NOSR_echo
Bit status
Note:
Description
0
Echo NOSR mode NOT allowed
1
Echo NOSR mode allowed
Condition
Default value
-
(-) available in the R9 bit position in SPI answer frame 7a.
Temperature Dependent Slew Rate: When Tj > OTwarn and in case TDSR=1 (TDSR bit
configuration defined below), the current and voltage slew rates are automatically switched
from current configuration mode (SLOW or FAST) to the very fast configuration. In case
TDSR='0' the current SR mode is kept as selected during OTwarn condition.
Table 54. TDSR
Bit status
Note:
Description
0
TDSR mode NOT allowed condition
1
TDSR mode allowed
Condition
Default value
-
(-) available in the D10 bit position in SPI command frame 6.
The TDSR configuration is reported by bit "TDSR_ECHO"
Table 55. TDSR_ECHO
Bit status
44/95
Description
0
TDSR mode NOT allowed condition
1
TDSR mode allowed
DS11115 Rev 10
Condition
Default value
-
L9960, L9960T
Functional description
The ideal switching waveforms generated by an inductive load operating in switching mode
are described in the following figure. The Initial state of the bridge shown in the figure
corresponds to a freewheeling phase.
Figure 19. Ideal waveforms of switching with slew rate control
OFF
HSideMOS
GateDrive
TURN-ON
ON
TURN-OFF
OFF
(Initial
Conditions)
IB
I gate
I CP1
IA
I S1
V C,Miller
(RDSON min.)
I S2
IB
IA
I CP2
Vcharge_pump
V gate_fb
V gate_fb
V gate_source
VS/R_th
V drain_source
I ds
Vout_on
ILoad=Vps/R* DC
V out
I diode
A
1
2
B
B
3
4
5
6
7
A
8
9
10
ZOOM
VMOS
Vbat
Toverlap
I load
IOUT
GAPGPS02336
There are two phases during each turn-on and turn-off, in which the output slew-rate is
controlled: current slope control for phase A, and voltage slope control for phase B (phase
A and B refer to Figure 19).
During phase A (current slope control), a constant gate current IA results in a defined
dIout/dt due to the transconductance of the output stage (no closed loop control).
DS11115 Rev 10
45/95
94
Functional description
L9960, L9960T
During phase B (voltage slope control), a constant gate current IB results in a defined
dVMOS/dt due to the Miller capacitance of the output stage. VS/R_th is the threshold
voltage for the voltage comparator connected to the output. VL is the low voltage of the
transistor.
4.6.4
Current limitation
A chopper current limitation is integrated in the L9960. This current limitation is used during
transient phases (for instance, fast move of the throttle) or in case of stalled motor shaft,
mainly to protect the actuator and also reduce the power dissipation inside the L9960.
When the current reaches the current limitation threshold, the information is stored and
latched in a bit called "ILIM_REG". This bit can be reset by the three methods defined
previously (SPI, DIS, RESET).
Table 56. ILIM_REG
Bit status
Note:
Description
0
Latched I < Ilim_H and Toff > Toffmin
1
Latched I > Ilim_H and Tdiag2 expired
Condition
default value
-
(-) available in the R3 bit position in SPI answer frame 8a.
The current limitation strategy is based on one threshold with hysteresis that leads to a
controlled current ripple.
As soon as current reaches ILIMH threshold (TlimH filter expiration) L9960 switches to
NOSR mode, the internal SR control (very fast SR), and the ILIM_REG bit in ON-Diagnosis
will be set to "1". Tdiag2 timing starts and overcurrent control is now enabled.
The Tdiag2 timing is used to ensure short circuit detection: in case current reaches Ioc
threshold (Toc filter implemented) before Tdiag2 expiration, the device will set the relative OVC
diagnosis bits (OCH0,OCH1,OCL0,OCL1) according to the 4 MOS overcurrent thresholds data.
L9960 is put in Tristate due to an "overcurrent" event that has been detected on at least one
MOS.
In case of NO OVC detection (no Ioc threshold reached) at the end of the Tdiag2 timing, the
device takes the control, deactivates the VVL mode (if selected), and enters current
limitation. The HS driver is switched off and it is forced an active freewheeling phase on both
LS drivers that decreases current during t_off_min. This timing is used to assure a
minimum recirculation time, to avoid any switch-on of the HS driver regardless of the
PWM="1" user command (T-off-min timing will be also triggered by any possible falling
edge on PWM before the end of Tdiag2 timing, since PWM information is still being
analyzed).
The value of the blanking time depends on a Vps threshold Vps_norm.
If VPS crosses the Vps_norm threshold while Tdiag2 has already started, its value is not
affected.
46/95
DS11115 Rev 10
L9960, L9960T
Functional description
Figure 20. Tdiag2 blanking time depends on the Vps voltage
VPS
Vps_norm
Vps_norm_hyst
Tdiag2
increase
Tdiag2
min
Tdiag2
increase
GAPGPS02338
During the active freewheeling phase, the current continues decreasing down to I_lim_L
threshold (with TlimL filter time implemented).
ILIM_REG diagnosis bit is set to "0" as soon as current goes below I_lim_L+hyst.
After current is below I_lim_L threshold during at least TlimL and t_off_min is elapsed,
L9960 exits CURRENT_LIMITATION (still with NOSR active).
The programmed VSR and ISR are set back if I < I_LIM_L and PWM='0'.
When IN1-IN2 mode, VSR and ISR are set back if I < I_LIM_L and IN1 (or IN2)='0',
depending on the toggling pin.
Figure 21. Slew rate switching strategy
ILS
t_off_min tempo is started at each HS switch-OFF while in NOSR mode
(end of blanking OR PWM falling edge)
I_lim_H
I_lim_L
0
Once I > I_lim_H,
we start blanking
and go to NOSR
mode
t_off_min
t_off_min
t
PWM
Tdiag2
Ignored
(toff_min)
Tdiag2
BLANKING
ILIM_REG
Once (I < I_lim_L)
AND after
t_off_min,
we leave current
limitation
When (I < I_lim_L)
AND i_pwm = ‘0’,
we go back to normal SR
(otherwise we remain in NOSR
mode) and toff_minisnot
applied
continued
(SV OC diag)
CURRENT_LIM
SLEW RATE SSR/FSR
NOSR
SSR/FSR
SSR: Slow Slew Rate
FSR: Fast Slew Rate
NOSR: Increase Slew Rate
Note:
- Current limitation state is reached when I > I_lim_H at the end of blanking (MOS is switched-OFF by the
device, user looses control). This information is latched in ILIM_REG SPI bit. When toff_min is started due to PWM
falling edge in FSR, the ILIM_REG SPI bit is not set (MOS is switched-OFF by user).
- PWM control remains active during blanking (user can switch-off)
GAPGPS02339
DS11115 Rev 10
47/95
94
Functional description
L9960, L9960T
Figure 22. Current limitation schemes
Fpwm = 1kHz --> MOS switching period is
determined by current limitation conditions
ILoad
Tdiag2 Toffmin Tdiag2 Toffmin
Ilim_H
Ilim_L
Tliml
Tliml
MOS
PWM
time
ILoad
Tdiag2
Fpwm = 10 kHz -> MOS switching period
corresponds to PWM switching period
Tdiag2
Ilim_H
Ilim_L
Toffmin
MOS
PWM
time
GAPGPS02340
Note:
See also Figure 21: Slew rate switching strategy.
The high threshold "Ilim_H" of the current limit is selectable by SPI through the bits called
"CL[1:0]". Four current limits are available to fulfill the transient current requirements of the
application. The default value is set to Range 1.
The low threshold "Ilim_L" is based on the high threshold (Ilim_L = Ilim_H – 0.5 (TYP)).
48/95
DS11115 Rev 10
L9960, L9960T
Functional description
Table 57. CL[1:0]
2 bits combination
Note:
Description
Condition
00
Range 0
-
01
Range 1
reset value
10
Range 2
-
11
Range 3
-
(-) available in the R10,R9 bit positions in SPI command frame 3.
A register report the echo of CL[1:0] configuration register: "CL_echo[1:0]"
Table 58. CL_echo[1:0]
2 bits status combination
Note:
Description
Condition
00
Echo Range 0 config
-
01
Echo Range 1 config
reset value
10
Echo Range 2 config
-
11
Echo Range 3 config
-
(-) available in the R11,R10 bit position in SPI answer frame 7a.
Effect of the temperature
Figure 23. Effect of the temperature diagram
Ilim
Ilim_range_3
A
B
Tsecure
C
Ilim_range_2
A
Ilim_reduction_range_3
= Ilim_Tsd3
C
Ilim_range_1
A
Ilim_reduction_range_2
= Ilim_Tsd2
C
Ilim_range_0
D
A
D
Ilim_reduction_range_1
= Ilim_Tsd1
C
D
Ilim_reduction_range_0
= Ilim_Tsd0
D
OTwarn
OTsd
Temp
GAPGPS02652
DS11115 Rev 10
49/95
94
Functional description
L9960, L9960T
In order to take into account the junction temperature increase, the current limitation
threshold is dynamically adjusted.
Below a junction temperature of "OTwarn", the current limit "Ilim_H" linearly decreases from
dot A to dot B like as showed in Figure 24: Thermal current limitation adjustment.
When Tj exceeds OTwarn, then the Ilim_H is automatically decreased, proportionally with
temperature, down to Ilim_Tsd (dot C on Figure 24) in order to reduce the power dissipation
and preserve the device.
If, in case of a lower power dissipation, the junction temperature decreases below OTwarn_
hyst, then the Ilim_H consequently would increase staying always on C-B or B-A line.
It is possible changing the OTwarn and OTsd thresholds via SPI, and reading the ECHO
response as showed in the following tables.
Table 59. OTwarn_thr_var
Note:
Bit status
Description
Condition
000
0
Default value, Otwarn (150,
170) °C
001
-5
-
010
not allowed
-
011
not allowed
-
100
+5
-
101
+10
-
110
+15
-
111
+20
-
(-) available in the R6,R5,R4 bit position in SPI command frame 4.
Table 60. OTwarn_thr_var_echo
Note:
50/95
Bit status
Description
Condition
000
0
Default value, Otwarn (150,
170) °C
001
-5
-
010
not allowed
-
011
not allowed
-
100
+5
-
101
+10
-
110
+15
-
111
+20
-
(-) available in the R6,R5,R4 bit position in SPI answer frame 7b.
DS11115 Rev 10
L9960, L9960T
Functional description
Table 61. OTsd_thr_var
Note:
Bit status
Description
Condition
000
0
Default value, Otsd (170, 200) °C
001
-5
-
010
-10
-
011
-15
-
100
+5
-
101
+10
-
110
+15
-
111
+20
-
(-) available in the R9,R8,R7 bit position in SPI command frame 4.
Table 62. OTsd_thr_var_echo
Note:
Bit status
Description
Condition
000
0
Default value
001
-5
-
010
-10
-
011
-15
-
100
+5
-
101
+10
-
110
+15
-
111
+20
-
(-) available in the R9,R8,R7 bit position in SPI answer frame 7b.
DS11115 Rev 10
51/95
94
Functional description
L9960, L9960T
Table 63. Electrical characteristics
Symbol
Ilim_H
Ilim_Tsd3
Ilim_Tsd2
Ilim_Tsd1
Parameter
Min.
Typ.
Max.
Unit
Current limitation high
threshold
Tj = -40°C
Point A
3.4
4.5
5.6
A
CL1:0 = 00 / range 0
Tj = Otwarn
Point B
3.2
4.3
5.4
A
Current limitation high
threshold
Tj = -40°C
Point A
5.4
7
8.6
A
CL1:0 = 01 / range 1
Tj = Otwarn
Point B
5.1
6.6
8.2
A
Current limitation high
threshold
Tj = -40°C
Point A
6.4
8.3
10.2
A
CL1:0 = 10 / range 2
Tj = Otwarn
Point B
6.1
7.9
9.7
A
Current limitation high
threshold
Tj = -40°C
Point A
8.8
10.7
12.8
A
CL1:0 = 11 / range 3
Tj = Otwarn Point B
8.1
10.1
12.2
A
Current limitation high
threshold
Tj = Otsd
Point C
1.25
2.5
3.75
Above OTsd
CL1:0 = 11 / range 3
CL1:0 = 10 / range 2
0.97
1.95
2.92
CL1:0 = 01 / range 1
0.83
1.65
2.48
CL1:0 = 00 / range 0
0.54
1.08
1.62
Tj = -40 °C to
Tj = Otwarn; Segment AB
(range 1 and range 2)
0.35
0.5
0.8
A
Tj ≤ 25 °C
range 0 and range 3
0.35
0.5
0.88
A
Tj > 25 °C to Tj = Otwarn;
Segment AB; range 0 and range 3
0.35
0.5
0.8
A
Current limitation high
threshold
Ilim_Tsd0
Ihyst
Condition
Current hysteresis
A
Toffmin
Current limitation delay time
Digital delay (guaranteed
through scan)
30
-
45
µs
Toverlap
VMOS high and Iout low
overlapping time
Guaranteed by design
0
-
5
µs
Vps > Vps_norm
Digital filter (guaranteed through
scan)
10
-
15
µs
Vps < Vps_norm
Digital filter (guaranteed through
scan)
15
-
20
µs
-
8.9
-
9.6
V
Tdiag2
Vps_norm
52/95
Blanking time
Beside this Vps threshold the
blanking time is low
DS11115 Rev 10
L9960, L9960T
Functional description
Table 63. Electrical characteristics (continued)
Symbol
Parameter
Below Vps norm –
Vps_norm_hyst Vps_norm_hyst threshold
blanking time increase
Tlimh
High current limitation
threshold filtering time
Tliml
Low current limitation
threshold filtering time
SlowDI/DT
FastDI/DT
SlowDV/DT
FastDV/DT
VFastDV/DT
Condition
-
Digital anti glitch filters
(guaranteed through scan)
Measured between 20% and
Slow current slew rate on HS
80% of the output current.
drivers
(Following limits are related to
SR measured with VPS at 16 V
Fast current slew rate on HS and with resistive load (6 Ω).
SR are referred to HS drivers
drivers
only). (1)
Slow current slew rate on HS
drivers
Measured between 20% and
80% of the output voltage.
Fast current slew rate on HS (Following limits are related to
drivers
SR measured with VPS at 16 V
and pure resistive load (6 Ω).
Very fast voltage slew rate on SR are valid for HS drivers only.)
HS drivers
Min.
Typ.
Max.
Unit
0.001
0.1
0.2
V
0.1
0.55
1
µs
1
2
3
µs
0.3
0.6
0.9
A/µs
1
2
3
A/µs
2
4
7
V/µs
5
10
17
V/µs
16
20
30
V/µs
1. Application note will include SR trend with different battery voltage and resistive/inductive load.
DS11115 Rev 10
53/95
94
Functional description
L9960, L9960T
4.7
Driver protections
4.7.1
Over-temperature protection
In case of over-temperature detection (Tj > OTsd), the bridge is disabled. The information is
stored on both latched and unlatched bits called NOTSD_REG and NOTSD.
This bit can be reset by the three different ways. The real-time status of over-temperature is
indicated in a bit called NOTSD.
A double flag strategy is implemented: NOTSD indicates real time status, NOTSD_REG
latches the fault until cleared.
Table 64. NOTSD
Note:
Bit status
Description
Bridge state
Condition
0
Tj>Otsd
Disabled
-
1
TjOtsd
Disabled
-
1
Latched if Tj OTwarn
-
(-) available in the R4 bit position in SPI answer frame 8b.
Table 69. OTWARN_REG
Bit status
Description
Comment
0
Latched if Tj < OTwarn
Default value
1
Latched if Tj > OTwarn
-
Note:
(-) available in the R5 bit position in SPI answer frame 8a.
4.7.2
Over-temperature monitoring electrical characteristics
Table 70. Over-temperature monitoring electrical characteristics
Symbol
OTwarn
OTsd
OThyst
56/95
Parameter
Over-temperature warning
Over-temperature shut-down
threshold
Over-temperature hysteresis
Condition
Min.
Typ.
Max.
Unit
OTwarn_thr_var set to 000
(default value)
150
-
170
°C
OTwarn_thr_var set to 001
145
-
165
°C
OTwarn_thr_var set to 100
155
-
175
°C
OTwarn_thr_var set to 101
160
-
180
°C
OTwarn_thr_var set to 110
165
-
185
°C
OTwarn_thr_var set to 111
170
-
190
°C
OTsd_thr_var set to 000
(default value)
170
-
200
°C
OTsd_thr_var set to 001
165
-
195
°C
OTsd_thr_var set to 010
160
-
190
°C
OTsd_thr_var set to 011
155
-
185
°C
OTsd_thr_var set to 100
175
-
205
°C
OTsd_thr_var set to 101
180
-
210
°C
OTsd_thr_var set to 110
185
-
215
°C
OTsd_thr_var set to 111
190
-
222
°C
0
-
5
°C
Applicable for OTwarn and
OTsd
DS11115 Rev 10
L9960, L9960T
Functional description
Table 70. Over-temperature monitoring electrical characteristics (continued)
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
TTSD
Over-temperature filtering
time
Guaranteed by clock
measurement
1.7
2
2.3
µs
Tsecure
Time out to decrease Ilim
Guaranteed through scan
1.5
-
2
s
Tsdoff
Over-temperature shutdown
release time
Filter on OTSD release
(guaranteed through scan)
90
100
110
ms
OTsdOTwarn
Rang of temperature
dependent current reduction
-
20
-
-
°C
Tj_range
Junction temperature analog
output range
-
125
-
190
°C
Tj_acc
Junction temperature analog
output accuracy
Guaranteed through scan
-
-
3
°C
1
-
3
µs
TOT_warn
4.7.3
Temperature warning filtering
time
Short-circuit to battery: over-current detection in low-side transistors
Figure 25. Example of low-side transistor low impedance short circuit to battery
(I < Ioc_ls)
Battery
current
Rshort
OFF
OUT1
OFF
DC
motor
ON
OUT2
OFF
GND
GAPGPS02344
The low-side transistors are protected against over-current due to an output short-circuited
to battery. When a low-side transistor is switched on, the current is monitored and if the lowside over-current threshold "Ioc_ls" is overtaken for duration longer than "Toc_ls", the
bridge is switched to disable. This information is stored and latched in bits called "OCL_x".
The bits "OCL_x" are reset and the bridge is released when diagnostics is read by SPI (if
DIAG_CLR_EN=1 only), or by DIS level change (falling edge) or by RESET.
DS11115 Rev 10
57/95
94
Functional description
4.7.4
L9960, L9960T
Short-circuit to ground: over-current detection in high-side transistor
The high-side transistors are protected against over-current due to an output short-circuited
to ground. When a high-side transistor is switched on, the current is monitored and if the
high-side over-current threshold "Ioc_hs" is overtaken for duration longer than "Toc_hs",
the bridge is switched to tri-state. This information is stored and latched in bits called
"OCH_x".
The bits "OCH_x" are reset and the bridge is released when diagnostics is read by SPI if
DIAG_CLR_EN=1, or by DIS level change (falling edge) or by RESET.
The low-side and high-side over-current thresholds, in case of current limitation on low-side
transistors, are respecting the following conditions:
Itrack_ls = Ioc_ls - Ilim_H
Itrack_hs = Ioc_hs - Ilim_H
Itrack_ls and Itrack_hs are defined as follows:
In forward condition, the reference for tracking is Ilim_H (threshold is referred to LS1)
–
Itrack(HS0) = Ioc(HS0) - Ilim_H(LS1)
–
Itrack(LS1) = Ioc(LS1) - Ilim_H(LS1)
In reverse condition, the reference for tracking is Ilim_H (threshold is referred to LS0)
–
Itrack(HS1) = Ioc(HS1) - Ilim_H(LS0)
–
Itrack(LS0) = Ioc(LS0) - Ilim_H(LS0)
Figure 26. Over-current detection
Toc _x
ILoad
Ioc _x
Itrack _x
Tracking
current
Tlimh + Tb
Ilim _H
Ilim _L
Over-current
detection Î Bridge in tri-state
time
GAPGPS02345
4.7.5
Load in short-circuit
In order to discriminate between the short circuit of an output to GND and the load in short
circuit, a current detection threshold is available for all 4 MOS transistors of the bridge:
58/95
for the 2 freewheeling transistors, Ilim_H current detection threshold is used,
for the 2 other transistors, a current detection threshold called Ion_th = Ilim_H is
implemented.
Ion_th only follows AC slope when the temperature is changing
Bits are to be stored when validity bit is set.
DS11115 Rev 10
L9960, L9960T
4.7.6
Functional description
Over-current detection electrical characteristics
Parameters are specified at 2 temperatures -40°C and +150°C;
for temperatures between -40°C and +170°C, the current values are interpolated.
Table 71. Over-current detection electrical characteristics
Symbol
Ioc_ls
Ioc_hs
Parameter
Condition
Min.
Typ.
Max.
Unit
Over-current threshold
CL1:0 = 00 / range 0
Tj = -40°C
5.4
7
8.6
Tj = 150°C
5.2
6.8
8.4
Over-current threshold
CL1:0 = 01 / range 1
Tj = -40°C
7.4
9.5
11.6
Tj = 150°C
7.1
9.2
11.2
Over-current threshold
CL1:0 = 10 / range 2
Tj = -40°C
8.4
10.8
13.2
Tj = 150°C
8.1
10.4
12.7
Tj = 150°C
9.8
12.1
14.3
A
Tj = -40°C for Ioc_ls
10.4
12.6
15.8
A
Tj = -40°C for Ioc_hs
10.4
12.6
14.9
A
2
2.5
5
A
Over-current threshold
CL1:0 = 11 / range 3
A
A
A
Itrack_ls
Itrack_hs
Tracking current for
CL1:0 10 & 11
-
Itrack_ls
Itrack_hs
Tracking Current for CL1:0 =10
Tj ≤ 25 °C
1.8
2.5
5
A
Tracking Current for CL1:0 =10
Tj = 150 °C
2
2.5
5
A
Itrack_ls
Tracking current for CL1:0 = 11
-
1.6
1.9
5
A
Tracking current for CL1:0 = 11
Tj ≤ 25 °C
1.1
1.9
5
A
Tracking current for CL1:0 = 11
Tj = 150 °C
1.6
1.9
5
A
Low-side & high-side overcurrent detection filtering time
-40°C Tj 150°C
Digital filter (guaranteed
through scan)
1
-
2
µs
Itrack_hs
Toc_ls
Toc_hs
Ioc_on
Non-Freewheeling MOS LSC
threshold
CL1:0 = 11 / range 0
Tj = -40°C
3.4
-
5.6
Tj = 150°C
3.2
-
5.4
Non-Freewheeling MOS LSC
threshold
CL1:0 = 11 / range 1
Tj = -40°C
5.4
-
8.6
Tj = 150°C
5.1
-
8.2
Non-Freewheeling MOS LSC
threshold
CL1:0 = 11 / range 2
Tj = -40°C
6.4
-
10.2
Tj = 150°C
6.1
-
9.7
Non-Freewheeling MOS LSC
threshold
CL1:0 = 11 / range 3
Tj = -40°C
8.8
-
12.8
Tj = 150°C
8.1
-
12.2
DS11115 Rev 10
A
A
A
A
59/95
94
Functional description
L9960, L9960T
Table 71. Over-current detection electrical characteristics (continued)
Symbol
Parameter
Tionh
Ion threshold filtering time
Tionl
Ihyst
4.8
Current hysteresis on Ion
Condition
Min.
Typ.
Max.
Unit
Digital anti glitch filters on
rising edge (guaranteed
through scan)
1
2
3
µs
Digital anti glitch filters on
falling edge (guaranteed
through scan)
1
2
3
µs
Tj = -40°C to +150°
0.4
0.5
0.6
A
Diagnostics and registers descriptions in case of validity bit
configuration
A detailed diagnostic of the H-bridge is available through SPI communication.
The diagnostic words are used to report the following information:
H-Bridge failures,
H-bridge functional status,
H-bridge HWSC test result.
A detailed diagnostic is performed using a validity concept. The concept of the validity of the
diagnostic is to provide the information “diagnostic done” OR “diagnostic NOT done”.
4.8.1
Diagnostic Reset strategy
When diagnosis bits are latched, they can only be released by one of the following
conditions:
Transition from "Disable" (High) to "Enable" (Low) on DIS pin,
Diagnostic register read by SPI (see details on each failure release) depending on
"DIAG_CLR_EN" bit status,
Reset condition.
Usually, when the diagnostic register is reset, the bridge is switched back to normal mode
driven by DIR and PWM or IN1 and IN2. All the settings are kept as before the failure. In
case of SPI read, no additional action on DIS is needed.
When the diagnosis is combined with a protection of the driver (driver put into tri-state), a
reading by spi clears the diagnosis, but the bridge is released only at the next PWM rising
edge event.
60/95
DS11115 Rev 10
L9960, L9960T
4.8.2
Functional description
Diagnostic reset bit
In case of "DIAG_CLR_EN" set to HIGH (RESET value), all the bits of the diagnostic
register can be cleared by the three possibilities described in the previous section.
In case of "DIAG_CLR_EN" set to LOW, the SPI diagnostics reading doesn't clear the flag
for diagnostics flags bits reported in Table 72. Therefore, the bridge is kept in disable state
until a transition from "high" to "low" on DIS pin or RESET condition.
Table 72. DIAG_CLR_EN
Bit config
Note:
Description
0
OC and OT diagnostic status bits not cleared by SPI reading
1
Clear of diagnostic status bits by SPI reading
Comment
Reset value
(-) available in the R0 bit position in SPI command frame 3.
A register reports the echo of DIAG_CLR_EN configuration regsiter: "DIAG_CLR_EN_echo"
Table 73. DIAG_CLR_EN_echo
Bit config
Note:
Description
0
OC and OT diagnostic status bits not cleared by SPI
1
Clear of diagnostic status bits by SPI reading
Comment
Default value
(-) available in the 1st bit position in SPI answer frame 7a.
If a new diagnostic occurs simultaneously with diagnostic register reset, this new diagnostic
becomes the new status of the diagnostic register (new information must not be lost).
Known limitation:
This diagnostic reset strategy has a limitation: if the SPI transfer is not correct (for example
only 15 clock periods instead of 16) and the diagnostic register has already been cleared, if
the failure is no more present, the information is lost (it has not been transferred to the
µcontroller).
DS11115 Rev 10
61/95
94
Functional description
L9960, L9960T
Status bits description
Note:
usually status bits information is not impacted by any SPI communication, whatever the
“DIAG_CLR_EN” state is.
Table 74. Status bits description
Name
Description
SPI read impact
Config_CC_state_echo Echo of programmed the Communication Check
CL[1:0]
No
Echo of the programmed Current Limitation Range
No
Echo of the programmed Increased Slew Rate
No
ISR echo
Echo of the programmed Current Slew Rate range
No
VSR echo
Echo of the programmed Voltage Slew Rate
No
DIAG_CLR_EN echo
Echo of the programmed DIAG_CLR_EN bit
No
Echo of the programmed VVL mode
No
Echo of the programmed freewheel duration in VVL mode
No
ASSP Name
No
Silicon Version
No
Echo of the programmed Spread Spectrum mode
No
NOSR echo
VVL_MODE echo
TVVL[3:0]
ASSP Name[9:0]
Silicon Version[3:0]
NSPREAD echo
TSW_low_current_echo Echo of the programmed Cross- condition improve mode
No
I[23:0]
Echo of tracking part number
No
ASSP
Echo of ASSP device
No
Echo of digital tracking version
No
Echo of programmed TDIAG1 validation time
No
Code version[7:0]
TDIAG1[2:0]
Table 75. Diagnostics bits description
Name
Description
POR
value
Bit
State
DIAG_CLR_E
N impact
Hbridge
state
reported
in
NGFAIL
DIAG_OFF[2:0]
Off-state diagnostic (openload, short-circuit)
111
Latched
No
-
Yes
OL_ON_STATUS[1:0]
On-state diagnostic (openload)
01
Not
latched
No
-
Yes
VPS_UV
Vps Under-voltage detection
0
Not
latched
No
Hi-Z if
“0”
No
VPS_UV_REG
Vps Under-voltage detection
0
Latched
Yes
Hi-Z if
“0”
No
VDD_UV
Vdd Under-voltage detection
0
Not
latched
No
-
No
VDD_UV_REG
Vdd Under-voltage detection
0
Latched
Yes
-
Yes
VDD_OV_REG
Vdd Over-voltage detection
0
Latched
Yes
-
Yes
VDD_OV
Vdd Over-voltage detection
0
Not
latched
No
Hi-Z if
“0”
No
62/95
DS11115 Rev 10
L9960, L9960T
Functional description
Table 75. Diagnostics bits description (continued)
Name
Description
POR
value
Bit
State
DIAG_CLR_E
N impact
Hbridge
state
reported
in
NGFAIL
ILIM_REG
Current limitation mode
1
Latched
No
-
No
OTWARN
Over-temperature warning
0
Not
latched
No
-
No
OTWARN_REG
Over-temperature warning
0
Latched
No
-
No
NOTSD
Over-temperature shut down
1
Not
latched
Yes
-
No
NOTSD_REG
Over-temperature shut down
1
Latched
Yes
-
Yes
BRIDGE_EN
Bridge “Enable”
0
Not
latched
No
Hi-Z if
“0”
No
OCH0[1:0]
Over-current on high-side
transistor OUT 0
10
Latched
Yes
Hi-Z if
“00”
Yes
OCL0[1:0]
Over-current on low-side
transistor OUT 0
10
Latched
Yes
Hi-Z if
“00”
Yes
OCH1[1:0]
Over-current on high-side
transistor OUT 1
10
Latched
Yes
Hi-Z if
“00”
Yes
OCL1[1:0]
Over-current on low-side
transistor OUT 1
10
Latched
Yes
Hi-Z if
“00”
Yes
VDD_OV_L[2:0]
Counter for duration of
VDD_OV event
001
Latched
No
-
No
Error_count[3:0]
Number of over-current events
0000
Latched
Yes
-
no
CC_latch
-
1
Latched
No
Hi-Z if
"0"
Yes
NDIS status
-
-
Not
Latched
No
-
Yes
000
Not
Latched
No
Yes
000000
Not
Latched
No
No
10
Latched
Yes
HWSC/LBIST_status
(1)
OTSDcnt[5:0]
Load in Short Circuit
status of the HWSC/LBIST
Number of OTSD events
part of the general Overcurrent
Diagnostics
Hi-Z if
"11"
Yes
1. In case of SPI interrogation for HWSC/LBIST in between test execution, the answer could be "0xx".
DS11115 Rev 10
63/95
94
Functional description
4.8.3
L9960, L9960T
Global Failure Bit NGFAIL definition
NGFAIL groups the following failures:
Over-current on each of the 4 MOS (Ion threshold not taken into account, validity bit not
taken into account), including the load in short-circuit
Open-load in ON-state
Open-load (or shorts) in OFF-state
HWSC (or BIST) not executed or failing
CC_latch_status
VDD Over-voltage (latched)
VDD Under-voltage (latched)
NOTSD_REG
UV_CNT_REACHED = 1 and UV counter stop
NDIS = 0 (also when forced low externally)
Once all the conditions which determine the assertion of NGFAIL are cleared (failure no
more present and the latched version of the failure bit is cleared), the bit is de-asserted.
In case NGFAIL is flagged because of NOTSD_REG assertion, the flag remains set until a
toggle of DIS pin is performed.
There is no failure considered on Vps undervoltage, despite the bridge goes in OFF-state.
There is no clear of NGFAIL by itself, the reported error itself has to be cleared in order to
clear NGFAIL.
Table 76. NGFAIL
Bit status
Note:
64/95
Description
0
failure
1
no failure
Condition
default value
(-) available in the R4 bit position in SPI answer frame 8a.
DS11115 Rev 10
L9960, L9960T
4.8.4
Functional description
Diagnostic of "Over-current" in on-state
The diagnostics of over-current on high-side and low-side transistors are based on 2 bits for
each transistor.
Table 77. Diagnostic of "Over-current" in on-state
2 Bits status by MOS
Bits Status 1 Bits Status 0
OCH0[1:0] / OCH1 [1:0] / OCL0[1:0] / OCL1[1:0]
Priority
Condition
NOC
ION_TH
1
0
Diag not done or no over current detection
3 (lowest)
Default value
0
0
Diag done, over current detection
1 (highest)
-
1
1
Diag done,load short detect on diagonal MOS
2
-
Note:
(-) available in the R10,R9,R7,R6,R4,R3,R1,R0 bit position in SPI answer frame 1.
First bit is overcurrent and second bit is load short detection.
Note:
OCxx[1] bit is over current detection: “0” means over current detection
OCxx[0] bit is Ion current threshold detection: “1” means above
Ion_th threshold + Ioc on diagonal MOS (this bit allows a reliable detection of load in
short circuit).
OCxx[1:0] = 2’b01 is not a possible condition.
Figure 27. Example of correct Overcurrent detection
User case for validity bit assertion
ILoad
Ioc
Ion_th
Tdiag2
Tdiag1
GAPGPS02359
DS11115 Rev 10
65/95
94
Functional description
L9960, L9960T
Figure 28. Example of NO Overcurrent detection by Tdiag2
User case for validity bit assertion
ILoad
Ioc
Ion_th
Tdiag2
Tdiag1
GAPGPS02551
The way to define the validity of the diagnostic is based on a programmable time called
"Tdiag1" and the fixed time “Tdiag2”. As soon as an activation command is set (PWM edge
or IN1!=IN2), the timing "Tdiag1" starts.
Tdiag1 is defined as the maximum programmable time in which it is expected that the
current reaches the current limitation threshold for a valid detection. Tdiag2 starts
automatically when Ion_th is overcome and depends on the conditions on Vps (pls refer to
Vps_norm thresholds on Table 63). Both are digital filters and guaranteed through scan.
Depending on the load current profile the two filters could be overlapped or as worst case,
sequential.
Here below it is explained the diagnostics result, with respect to Iload and Tdiag1 and Tdiag2:
If the current reaches the over-current threshold "OC_hs(ls)" for a duration "Toc_hs
(ls)" during diagnostics (Tdiag1, Tdiag2), the failure is detected and the bits "OCxx1:0"
are set to "00", which means "OVER-CURRENT ".
If the current is above I_lim_H and below the over-current threshold "OC_hs(ls)" and
the duration above Ion_threshold is shorter than “Tdiag2”, then "OCxx1:0" are set to
"10" which means "NO OVER-CURRENT".
If the current is above I_lim_H and below the over-current threshold "OC_hs(ls)" and
the duration above Ion_threshold is longer than “Tdiag2”, then "OCxx1:0" are set to
"10" which means "NO OVER-CURRENT" (current limitation reached).
If the Tdiag1 duration cannot be reached and no overcurrent detected for duration
Toc_hs(ls), then "OCxx1:0" are set to "10" which means "NO OVER-CURRENT".
If the current is above Ion_threshold and below the over-current threshold "OC_hs(ls)"
and an overcurrent is detected in same time as diagonal MOS, then "OCxx1:0" are set
to "11" which means "NO OVER-CURRENT BUT IO-ON is above threshold"
In case the overcurrent threshold is reached after Tdiag1+Tdiag2 expiration (worst case),
the device is still protected by an automatic shut-off after Timer expiration.
66/95
DS11115 Rev 10
L9960, L9960T
Functional description
Figure 29. Current diagnostic state diagram for each MOS
Activation command or cyclic in case of perduration of active state
Tdiag1 deared
I < Ion_Th
NOC = 1
Ion_Th = 0
t1 = rising edge Ion
Timer Tdiag1 and Tdiag2 running
NOC = 1
Ion_Th=0
Timer Tdiag1 running
Timer Tdiag2 stopped & deared
I < Ion_Th & Timer >= Tdiag1
I > Ion_Th
(Timer > = Tdiag1) &
(((I > I_on) & (Timer >= Tdiag1 + Tdiag2)) or I < Ion_Th)
NOC = 1
Ion_Th = 0
I > Ioc
Ioc on Diagonal MOS
I > Ioc
I > Ioc
I > Ioc
NOC=1
Ion_Th = 1
NOC = 0
Ion_Th = 0
Error counter incremented
0CXX = 10
0CXX = 11
0CXX = 00
GAPGPS02358
The condition I > Ioc means a current higher than Ioc_ls (or Ioc_hs) during the confirmation
time Toc_ls (or Toc_hs).
The condition I > Ion_th means a current higher than Ion_th during the confirmation time
Tion_th.
Error_count is incremented each time one MOS goes into over-current condition after the
end of the timers. This reflects short-circuit conditions while ON. In case after overcurrent
condition, the DIS pin is set to '1' by µC, the register is cleared at the next fall edge of DI
signal or after SPI reading.
Table 78. Error_count[3:0]
4-bit combination
Description
Condition
0000
Default value
xxxx
Note:
Decimal value accordingly
-
(-) available in the R4,R3,R2,R1 bit position in SPI answer frame 8c
Here below it is shown the validity bit time programming for Tdiag1 (guaranteed through
scan):
Table 79. TDIAG1 (µs)
3-bit config combination
Description
Condition
000
9
-
001
14
-
010
20
-
011
25
-
100
30
-
DS11115 Rev 10
67/95
94
Functional description
L9960, L9960T
Table 79. TDIAG1 (µs) (continued)
Note:
3-bit config combination
Description
Condition
101
35
-
110
40
-
111
45
Reset value
(-) available in the R6,R5,R4 bit position in SPI command frame 3.
Validity echo bit time programming status of Tdiag1:
Table 80. TDIAG1_echo[2:0]
Note:
3-bit status combination
Description
Condition
000
echo 9 µs config
-
001
echo 14 µs config
-
010
echo 20 µs config
-
011
echo 25 µs config
-
100
echo 30 µs config
-
101
echo 35 µs config
-
110
echo 40 µs config
-
111
echo 45 µs config
Default value
(-) available in the R6,R5,R4 bit position in SPI answer frame 7a.
Validity bit time programming Tdiag2:
Tdiag2 is the blanking time when the MOS is involved for the current limitation (not
belonging to the free wheel).
Overcurrent diagnostic reset
The overcurrent diagnostics bit can be cleared by means of one of the following conditions:
Note:
68/95
Power On Reset sequence
Transition from "Disable" to "Enable" on the pin DIS,
Diagnostic register read by SPI (in case bit "DIAG_CLR_EN" = 1).
if several diagnostics are performed between two SPI reads, the over-current diagnostic bits
can only be overwritten if the new diagnostic has a higher priority than the one already
stored in the register.
DS11115 Rev 10
L9960, L9960T
4.8.5
Functional description
Diagnostic of "Open Load" in on-state
The diagnostic of the Open Load in on-state is possible as long as, at least, one
freewheeling cycle (meaning PWM = 0) is done through the body diode of the low-side
transistor meaning "passive freewheeling". The diagnostics is consequently available in
PWM/DIR and IN1/IN2 mode when the recirculation is performed through LS drivers.
After OL diagnostics activation, to update the OL status register it is needed that a time
Tstable_on is expired.
This is allowed by setting the bit OL_ON = “1” each time the open-load diagnostic is
requested:
Table 81. OL_ON
Bit config
Note:
Description
Condition
0
Open Load in on-state disabled
Reset value
1
Open Load in on-state enabled
-
(-) available in the D9 bit position in SPI command frame 6.
After the first PWM ='0' cycle the active HS is turned-off and a passive recirculation phase is
present to avoid shoot-through before enabling the ls driver and perform the OL diagnostics
after T_stable_on.
The voltage of the low-side transistor drain is monitored to track a recirculation current
(drain voltage below ground in case of current recirculation).
Table 82. OL_ON_STATUS [1:0]
Bit status
Note:
Description
Priority
Condition
-
-
00
OL disabled
01
No diag done
Low
Default value
10
OL / Diag done
High
-
11
No OL / Diag done
Medium
-
(-) available in the R1,R0 in SPI answer frame 8b.
In case OL_ON bit = “0” (Diag function disabled), the OL_ON_STATUS=[00].
Note:
if several diagnostics are performed between two SPI reads, the open-load diagnostic bits
can only be overwritten if the new diagnostic has a higher priority than the one already
stored in the register.
After the OL fault disappears there is no need to perform any action on DIS or PWM in order
to come back to Normal mode (bridge directly switch to Normal operating).
DS11115 Rev 10
69/95
94
Functional description
L9960, L9960T
Figure 30. Open load timing diagram
6.4μs
OL_ON_request
PWM
Gate feedback
HS0/ HS1
Bridge
ACTIVE FREEWHEELING
PASSIVE
FREEWHEELING
DRIVE
ACTIVE
FREEWHEELING
6μs
O_ol_on_en
OL sample point
I_ol_on
Antiglitch filter
2.4μs
4.8.6
GAPGPS02980
On-state diagnostics electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 83. Open Load in ON-state electrical characteristics
Symbol
Tstable_On
tOl_On
Voutx_SR
Parameter
Condition
Min.
Typ.
Max.
Unit
On-state diagnostic filtering
time
Digital filter not re-triggerable
(guaranteed by scan)
4
6
8
µs
Anti glitch filter
Digital filter applied on
i_ol_on (guaranteed by
scan)
1
2
4
µs
Voltage during passive
freewheeling
Passive freewheeling phase
-150
-
-10
mV
When operating at low duty cycle and high frequency, in case the load current is very small,
it may occur that the toggling VOUT_x stays almost at ground level during passive
freewheeling; this may lead to not fully operating Open Load diagnostic in ON state.
70/95
DS11115 Rev 10
L9960, L9960T
4.8.7
Functional description
Off-state diagnostic
The Off-state diagnostic is activated via a dedicated SPI command “OFF STATE diagnosis”
by enabling the bit TRIG.
Table 84. TRIG
Bit config
Note:
Description
0
OFF-state diagnosis not triggered
1
Trigger OFF-state diagnosis
Condition
Reset value
-
(-) available in the D0 bit position in SPI command frame 9.
Once diagnosis sequence was performed, Off-state Diagnostic result is available through
the same SPI command “OFF STATE diagnosis”.
This diagnostic is performed in disable state condition, set only by DIS activation and on
the condition that there was not a protection previously set (reported in NGFAIL and
VPS_UV), which means during a disable state phase occurring after an active-state phase
of the bridge or after reset state only in case of DIS activation.
Off state diag is allowed when NGFAIL = '1' - Off state diag is allowed when NGFAIL = '0'
only when the source of failure is from OFF state diagnostics itself.
Off-state diagnostic sequence
Figure 31. Structure and detection criteria
regulator
1.8V
I0
load
OUT1
OL
SCB
SCG
OUT2
300μA
Current
comparison
I1
GAPGPS02412
If the load is connected and when the off state diagnostics is enabled, L9960 aims at
regulating the voltage on OUT1 at a typical value of 1.8 V with a typical current consumption
of 300 µA.
Short to Ground is detected if I0 < - 930 µA (typ). SCG fault is guaranteed for currents
higher than SCG threshold.
Short to Battery is detected if I0 is >190 µA (typ). SCB fault is guaranteed for currents
lower than SCB threshold.
Openload is detected if I0 > min (OUT1_OL_Thr) to min (OUT1_SCB_Thr)
In order to avoid any wrong diagnostic, a filtering time "Thz" is implemented before
performing the diagnostic.
Thz is started on DIS rising edge event or reset (POR/SW) event only.
DS11115 Rev 10
71/95
94
Functional description
L9960, L9960T
When the TRIG command is set, the current sources needed to run the OFF state diagnosis
are turned-on. A delay is implemented to complete the settling of the current sources
(Tdiag_del).
Additionally, a filtering of the diagnosis is done. This filter time is Tstable_off and if the
diagnosis input is stable during Tstable_off, the diag is performed and the failure is latched.
If the diagnosis input is switching during Tstable_off, the diag is not performed and the filter
time is re-triggered on each edge of the diagnosis input.
A time-out (Ttimeout) is implemented in parallel to Tstable_off in order to filter out too long
and unstable input.
Here below the OpenLoad in Offstate diagram, showing two application cases.
Figure 32. Open load off state diagnosis diagram
1. N o r m al o p er at io n , n o f ailu r e
2. St ead y St at e O p en L o ad f ailu r e
tristate
tristate
i_ol_off
i_ol_off or i_sgnd_off or i_scb_off
tHZ
tHZ
tDIAG_DEL
tstable
tDIAG_DEL
tstable
no failure
Open Load / Diag done
O_off_diag_en
( based on SPI request)
no diag triggered / tHZ not expired
O_off_diag_en
( based on SPI request)
no diag done / diag sequence on-going
no diag done / diag sequence on-going
Diag done / no failure
Open Load / Diag Done
GAPGPS02362
The Off-state diagnostic table is reported as follows:
Off-state diagnostic principle
Table 85. DIAG_OFF[2:0]
Bits status
Note:
72/95
Description
Priority
Condition
-
-
6(Highest)
-
000
Not used
001
Open Load / Diag done
010
Short circuit to BAT
5
-
011
Short circuit to GND
4
-
100
No failure / Diag done
3
-
101
No Diag triggered / incorrect state (active state or vps_uv
state)
2
-
110
No Diag triggered / Thz not expired
1
-
111
No Diag done / Diag sequence (tdiag_del + tstable) on
going
(-) available in the R2/R1/R0 bit position in SPI answer frame 9.
DS11115 Rev 10
0 (Lowest) Default value
L9960, L9960T
4.8.8
Functional description
Off-state diagnostic electrical characteristics
Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified.
All voltages refer to GND. Currents are positive into and negative out of the specified pin.
Table 86. Off-state diagnostic electrical characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
Current threshold for
OpenLoad detection (in
relation with SCB range
defined below)
-
-30
-
OUT1_SCB
_Thr - 3µA
µA
OUT1_SCG_Thr
Current threshold for SCG
detection
-
-1200
-
-500
µA
OUT1_SCB_Thr
Current threshold for SCB
detection
-
100
-
500
µA
Thz
Delay time before allowing
off-state diagnostic
After disable, including reset
(guaranteed through scan)
200
250
300
ms
Tstable_off
Off-state diagnostic filtering
time
Starts at the end of Tdiag_del
Applied to the combination of
the 3 inputs (guaranteed
through scan)
36
40
50
µs
Tdiag_del
Settling time for Off-state
diagnostics current
generators; Timing for
reliable diagnostic
(guaranteed through scan)
600
749
900
µs
IOL (OUT2 pull
down current)
Current source used for the
detection
-
200
-
400
µA
Ttimeout
Off-state diagnosis time-out
(unstable diagnostics input
during Tstable_off)
Starts at the end of Tdiag_del
(guaranteed through scan)
7
8.4
10
ms
Vout_reg
OUT1 regulator output
voltage during Offstae
diagnostics
-
1.3
1.8
2.3
V
ESD capacitors connected
to OUT1 and OUT2. (1)
-
10
-
47
nF
OUT1_OL_Thr
C_ESD
1. See also paragraph 3.13.1 of the application note AN4867 on www.st.com website.
4.9
SPI
A standard 16 bits Serial Peripheral Interface (SPI) is implemented to allow bi-directional
communication between the L9960 and the MCU.
The SPI is used for configuration and diagnostic purposes as well as identifying the L9960
(ASSP name).
The SPI interface of L9960 is a slave SPI interface: the master is the µcontroller which
provides NCS and SCLK to L9960. As far as MSB/LSB order is concerned, MSB is sent first.
DS11115 Rev 10
73/95
94
Functional description
4.9.1
L9960, L9960T
Protocol description
Transfer format uses 16 bits word in case of single device configuration and multiple of 16
bits word in case of daisy chain configuration (number of devices in the daisy chain is not
limited).
A command sent by the µcontroller during transfer N is answered during transfer N+1.
Figure 33. SPI SDO update at 2nd SPI command
NCS
SDI
SDO
Command N
Command N+1
Answer to cmd N -1
Answer to cmd N
GAPGPS02363
SDO is clocked on SCLK rising edge.
Figure 34. SPI SDO is clocked on SCLK rising edge
NCS
SCLK
SDO
MSB
14
13
...
...
LSB
GAPGPS02364
SDI is sampled on falling edge.
When NCS = '1' and during Reset, any signals at the SCLK and SDI pins have to be
ignored, and SDO remains in a high impedance state. Otherwise, the SPI interface is
always active.
SCLK is guaranteed to be at '0' when NCS rises and falls (guaranteed by application).
At each rising edge of the clock pulse after NCS goes low, the response word is serially
shifted out on the SDO pin.
At each falling edge of the clock pulse (after NCS goes low) the new control word is serially
shifted in on the SDI pin. The SPI command bits are decoded to determine the destination
address for the data bits. After the 16th (or multiple of 16, for daisy chains) clock cycle, at
the next NCS low to high transition, the SPI shift register data bits are transferred into the
latch whose address was decoded from the SPI shift register command bits.
A command is executed after 16 SCLK cycles (or a multiple of 16) and NCS goes high.
In case of "no SCLK edge" when NCS = '0', the transfer is considered as valid: no error is
returned to the µcontroller. The answer of last command is sent during next transfer.
Figure 35. In case of no SCLK edge when NCS=0
NCS
SCLK
SDO
Command N
Command N+1
Answer to cmd N -1
Answer to cmd N
GAPGPS02365
74/95
DS11115 Rev 10
L9960, L9960T
4.9.2
Functional description
SPI command and response words format
L9960 is controlled with a 16 bits command word including:
4 Address bits, 11 data bits and 1 parity bit:
Table 87. SPI command word format
MSB
LSB
Address
x
x
x
x
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
parity_bit
x
x
x
x
x
x
x
x
x
x
x
x
The command is stored in a command register after the rising edge of NCS
The response consists of a 16 bits word which contains:
4 Address bits of the command word
12 bits as payload corresponding to the command word requested information like
diagnostic, output state, etc.
Table 88. SPI response word format
MSB
LSB
Address
x
x
x
x
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0
x
x
x
x
x
x
x
x
x
x
x
x
Response after reset
1st response after reset is 0000 0000 0000 0000.
Response after communication error
In case of communication error (not used commands, wrong parity bit, number of
clocks not multiples of 16) the following response is sent: 0000 0000 0000 0000.
Command Chip Select (NCS) LOW without clock is ignored.
DS11115 Rev 10
75/95
94
Functional description
L9960, L9960T
Read ASIC name (ID), and ASIC silicon version
ASIC name (ID) can be read back after the following command word “Electronic ID request“:
Address
1
1
1
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
parity_bit
0
0
0
0
0
0
0
0
0
0
0
1
1
Following, the Response to Command word “Electronic ID request“:
Address
1
1
1
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0
0
0
0
0
1
1
1
0
1
1
0
0
1
ASIC name [00 1110 0100]
L9960 silicon version can be read back after the following command word “Silicon version
request“:
Address
1 1
1 1
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
parity_bit
0
0
0
0
0
0
0
0
0
0
1
0
Response to Command word “Silicon version request“:
Address
1
1
1
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0
x
x
x
x
x
x
0
0
0
0
0
0
1
Supplier
Silicon version
Table 89. Supplier ID code
-
R11
R10
Description
Supplier ID[1:0]
0
0
1st source
-
0
1
2nd source
Table 90. Silicon version identifier
76/95
Silicon version
R9
R8
R7
R6
Description
-
0
0
0
0
Silicon AA
-
0
0
0
1
Silicon AB
-
0
0
0
1
Silicon AC
-
…
…
…
…
…
DS11115 Rev 10
L9960, L9960T
4.9.3
Functional description
Read ASIC traceability number
ASIC traceability number can be read back after the following 2 command words
“Component traceability number request“:
Address
D10 D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
parity_bit
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
Response to command words “Component traceability request” 1 & 2
Address
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0
1
1
0
1
I11
I10
I9
I8
I7
I6
I5
I4
I3
I2
I1
I0
1
1
0
1
I23
I22
I21
I20
I19
I18
I17
I16
I15
I14
I13
I12
Table 91. Wafer coordinate
24-bit config[23:0]
Component traceability
I[11:6]
Wafer Y coordinate
I[5:0]
Wafer X coordinate
Figure 36. Wafer XY coordinate
Y
X
0,0
GAPGPS02366
Table 92. Traceability code and wafer number
24-bit config[23:0]
I[16:12]
Component traceability
Wafer number
Die coordinate and wafer number bits are defined by specification.
DS11115 Rev 10
77/95
94
Functional description
4.9.4
L9960, L9960T
Read Logic HW version
Logic HW version can be read back after the following command word “Logic HW version
request“:
Address
1 1
1 1
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
parity_bit
0
0
0
0
0
0
0
0
0
1
0
0
Response to command word “Logic HW version request”
Address
1 1
4.9.5
1
R11
R10
R9
R8
R7
1
R6
R5
R4
R3
R2
R1
Code_version[7:0]
Parity bit
The LSB (Least Significant Bit i.e. the last sent bit) of the word sent by the MCU to the
L9960 is the parity bit.
ODD parity is being used.
No parity bit generation is used in response words for the slave device.
78/95
DS11115 Rev 10
R0
L9960, L9960T
4.9.6
Functional description
SPI communication mode (Parallel and Daisy chain mode)
The SPI communication between one master and multiple slaves can be operated in
parallel or in daisy chain.
Parallel operation: several SPI-slaves can be connected to one SPI channel. The
communication lines SDI, SDO and CLK are shared, and every slave has its own chip select
line (NCS).
Daisy chain operation: several L9960 can be connected to one SPI connection in daisy
chain operation to save µC interface pins. The number of devices connected in daisy chain
is unlimited.
Figure 37. Daisy chain operation example
μC
SDO
SDI
shift register
SCLK NCS1 NCS2 NCS3
NCS1 : low for 48 clocks SCLK
reads from IC A- - C
NCS1 SCLK
writes into IC A- -C
NCS1 SCLK
IC A
NCS1 SCLK
IC B
SDO
SDI
IC C
SDI
shift register
SDO
SDI
shift register
SDO
shift register
Three devices in one daisy chain
NCS2: low for 32 clocks SCLK
reads from IC D - E
NCS2 SCLK
IC D
SDI
writes into IC D - E
NCS2 SCLK
IC E
SDO
SDO
SDI
shift register
shift register
Two devices in one daisy chain
NCS3: low for 16 clocks CLK
writes into IC F
reads from IC F
NCS3 SCLK
IC F
SDI
shift register
SDO
single chain
GAPGPS02367
Software constraint: daisy chain is only possibly for ASICs using the same SPI protocol.
DS11115 Rev 10
79/95
94
Functional description
4.9.7
L9960, L9960T
Communication check
The purpose of this SPI communication self-check is to detect errors in the SPI
communication from the µC.
In case of no communication or of communication failure into the defined time frame, the
bridge is put into tri-state.
After the RESET state release, the communication check time-out timer Tcc is started by
NDIS HIGH and DIS LOW from a pre-loaded value:
If NDIS = '0' and DIS='1' when the RESET state is released, the pre-load is Tcc
If NDIS='1' and DIS='0' when the RESET state is released, the pre-load is Tcc*2 for the
first communication, Tcc for the next communications.
In case the timer has expired (time-out), a status bit is registered CC_latch.
Table 93. CC_latch
Bit config
Note:
Description
0
Communication Check Fail
1
Communication Check Pass or Disable
Condition
Default value
Available in D9 bit position in SPI answer frame 7e.
The communication check can be disabled by SPI via dedicated bit Config_CC.
Table 94. Config_CC
Bit config
Note:
Description
Condition
0
Disable communication check
-
1
enable communication check
Reset value
(-) available in D7 bit position in SPI answer frame 2.
The status of config register is inverted in a status bit.
Table 95. Config_CC_state_echo7
Bit config
Note:
80/95
Description
0
echo communication check active
1
echo communication check inactive
(-) available in the R10 bit position in SPI answer frame 7e.
DS11115 Rev 10
Condition
Default value
-
L9960, L9960T
4.9.8
Functional description
Electrical characteristics
The component guarantees the functionality of the SPI interface for a VDD5 voltage down to
Vpor (Max frequency define in parameter fSCLK).
4.5 < VDD5 < 5.5 V; 3.0 < VDDIO < 5.5 V unless otherwise noted.
Positive current is flowing into pin.
Table 96. Electrical characteristics serial data output
symbol
Parameters
Conditions
Min.
Max.
Value
VDDIO -0.4V
-
V
VSDOH
High output level (ISDO = -2 mA)
Back to back structure
used
VSDOL
Low output level (ISDO = 3.2 mA)
-
-
0.4
V
VDDIO = 5 V
VDDIO = 19 V
For 0 < SDO < VDDIO
(-40 °C ≤ Tj ≤ 25 °C)
-5
5
µA
VDDIO = 5 V
VDDIO = 19 V
For 0 < SDO < VDDIO
(25 °C > Tj ≤ 150 °C)
-5
10
µA
VDDIO+0.05
VDDIO+0.2
V
ISDOL
Tri state leakage current
(NCS = HIGH)
VOV_SDO
Over voltage detection threshold
at SDO output
Prevent output from
damage; avoid back
supply to VDDIO
tOFF_PROT
Turn-off delay for over voltage
reverse supply protection
direct control of back to
back in HS path;
VDDIO+1V; Measure at
0.5*Ipeak
0
1.5
µs
Voltage range w/o damage
SDO driven High or Low
No damage of the part in
short-circuit condition
-0.3
19
V
VSDO
Inputs NCS; SCLK; SDI
VINL
Low input level
-
-0.3
0.75
V
VINH
High input level
-
1.75
VDD5+0.3
V
Vhyst
Hysteresis
-
0.1
1
V
Input current for NCS; SCLK; SDI
(Vin= VDD5)
-50
5
µA
Input pull up current source for
Pull-up circuit protected
NCS; SCLK; SDI (VDD5 VPOR) against supply back
& (VIN < 2.5V)
feeding injection
-30
-100
µA
IIN
IIN,pu
DS11115 Rev 10
81/95
94
Functional description
L9960, L9960T
Table 97. SPI electrical characteristics
Symbol
Parameters
Conditions
Min.
Max.
Value
Clock frequency (50% duty cycle)
SPI has to work for all
frequencies
0
5
MHz
SDO rise and fall time
20% to 80% VSDOH
guaranteed by design,
20pF…150pF load
5
35
ns
tclh
Minimum time SCLK = HIGH
-
75
-
ns
tcll
Minimum time SCLK = LOW
-
75
-
ns
tpcld
Propagation delay – incl. rise/fall time
(SCLK to data at SDO active)
150pF load
-
50
ns
tcsdv
NCS = LOW to output SDO active (SDO
gets the same value as the last value
150pF load
from the previous communication)
-
75
ns
tsclch
SCLK low before NCS low
(setup time SCLK to NCS change H/L)
-
75
-
ns
SCLK change L/H after NCS = low
VHDL relevant(1)
950
-
ns
tscld
SDI input setup time
(SCLK change H/L after SDI data valid)
-
15
-
ns
thcld
SDI input hold time
(SDI data hold after SCLK change H/L)
-
15
-
ns
tsclcl
SCLK low before NCS high
-
100
-
ns
thclch
SCLK high after NCS high
-
100
-
ns
tpchdz
NCS L/H to SDO @ high impedance
-
-
75
ns
950
-
ns
fSCLK
tsdo_trans
thclcl_app
(1)
NCS min. high time
VHDL relevant
Capacitance at SDI; SDO; SCLK; NCS
-
-
10
pF
NCS Filter time (Pulses tfNCS are
ignored)
-
10
40
ns
tSPI_switch
Minimum Input Rise and Fall time;
20-80% at SDI; SCLK; NCS
-
-
2
ns
tSPI_ovuv
Minimum input over/undershoot
guaranteed by design
-200
200
mV
Communication check timer
-
54
80
ms
tonNCS
tfNCS
Tcc
1. Application relevant: VHDL design needs at least 4 clock cycles (e.g. System Clock 5MHz) to process assertion of NCS
(low active Chip Select).
82/95
DS11115 Rev 10
L9960, L9960T
Functional description
The following timing diagram enumerates the timing parameters applicable to the SPI
interface:
Figure 38. SPI timings
tspi_switch
NCS
ton_ncs
tsclch thclcl_app
tcll
tclh
tsclcl
thclch
SCLK
tcsdv
tpcld
tsdo_trans
SDO
LSB
MSB
tscld
SDI
tpchdz
thcld
MSB
LSB
GAPGPS02369
DS11115 Rev 10
83/95
94
Table 98. SPI communication command and answer words
Word
ID
D4
D3
D2
D1
D0
Parity
bit
ON state
-
-
-
-
-
-
-
-
-
-
Not used
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
-
overcurrent monitoring
#2 (2)
0
0
1
0
SW reset[1:0] (00)
0
0
0
0
0
0
0
-
restart trigger
#3
0
0
1
1
CL[1:0] (01)
configuration 1
#4 (2)
0
1
0
0
configuration 2
#5 (2)
0
1
0
1
configuration 3 (WL mode
trigger)
#6 (5)
0
1
1
0 TDSR (0) OL_ON (0)
configuration 4
DS11115 Rev 10
OTsd_thr_var (000)
1(3)
-
OTwarn_thr_var
(000)
0(4)
-
0
0
0
0
0
-
X
X
X
X
X
X
-
TVVL[3:0] (1111)
X
X
X
TDIAG1[2:0]
(111)
#1
DIAG_CLR_EN
(1)
-
UV_WIN
(0)
-
OTWARN_TSEC_EN
(0)
0
TSW_low_current
(1)
0
NSPREAD
(0)
0
UV_PROT_EN
(0)
0
(2)
L9960, L9960T
#0(1)
VSR (1)
D5
Config CC (1)
D6
ISR (1)
D7
HWSC/LBIST Trigger (0)
D8
NOSR (0)
D9
in1_in2_if (0)
D10
VVL_MODE
(0)
Address
Functional description
84/95
The command and answer words of an SPI communication are described below:
Word
ID
Address
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Parity
bit
ON state
#7a
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
configuration request 1
#7b
0
1
1
1
0
0
0
0
0
0
0
0
0
1
0
1
configuration request 2
#7c
0
1
1
1
0
0
0
0
0
0
0
0
1
0
0
1
configuration request 3
#7d
0
1
1
1
0
0
0
0
0
0
0
1
0
0
0
1
configuration request 4
#7e
0
1
1
1
0
0
0
0
0
0
1
0
0
0
0
1
configuration request 5
#8a
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
states request 1
#8b
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
states request 2
#8c
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
states request 3
#9
1
0
0
1
0
0
0
0
0
0
0
0
0
0
TRIG (0)
(6)
OFF STATE diagnosis
1
0
1
0
Reserved
Reserved
#10b(6) 1
0
1
0
Reserved
Reserved
(6)
1
0
1
1
Reserved
Reserved
#12a
1
1
0
0
All '0's (D10:D0), parity bit (1)
Reserved
#12b
1
1
0
0
'00000000001' + parity bit at 0
#10a
DS11115 Rev 10
#11
L9960, L9960T
Table 98. SPI communication command and answer words (continued)
Reserved
component traceability
number request 1
component traceability
number request 2
#13a
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
#13b
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
#14
1
1
1
0
#15a
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
electronic id request
#15b
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
silicon version request
#15c
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
Logic HW version request
Reserved
Reserved
2. In command frames 1, 2, 4 and 5 the bitfileds set to '0' must be respected otherwise internal logic will discard the command.
These bits are consequently used as internal cross-check by logic on valid address for correct frame processing
3. D[1] BITFIELD IN SPI COMMAND #3 must be kept at 1.
4. D[1] bitfield in SPI command #4 must be kept at 0.
85/95
5. After POR or SW reset, D[8]..D[0] bitfield is set at ' 0_0111_1101 '. This POR value is not processed by the logic as whatever further configuration. This bitfield status is
mirrored in bitfield R[9]..R[1] in answer frame #7d.
6. Frame 10a, 10b and 11 are reserved SPI command frames for ATE. If sent by, the SDO response will be the error frame 0x0000h.
Functional description
1. Command frame '0' is not used.
R4
R3
R2
R1
R0
Description
0
0
0
0
0
0
0
0
0
0
Error because not use
0
OCL0[1:0]
overcurrent monitoring
0
0
0
0
0
answer to #1
0
0
0
1
0
OCH1[1:0]
0
answer to #2
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Nothing report
answer to #3
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
Nothing report
answer to #4
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Nothing report
answer to #5
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
Nothing report
answer to #6
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Nothing report
answer to #7a
0
1
1
1
CL_echo[1:0]
1
0
Configuration
request 1
answer to #7b
0
1
1
1
0
Configuration
request 2
answer to #7c
0
1
1
1
0
0
Configuration
request 3
UV_PROT_EN_echo TSW_low_current_echo
OCL1[1:0]
OTwarn_thr_var_echo
OT_sd_thr_var_echo
TVVL_echo[3:0]
0
TDIAG1_echo[2:0]
OCH0[1:0]
0
0
0
0
L9960, L9960T
0
In1_in2_if latch
DS11115 Rev 10
answer to error
UV_WIN_echo
R5
OTWARN_TSEC_EN_echo
R6
DIAG_CLR_EN
R7
NSPREAD_echo
R8
VSR_echo
R9
ISR_echo
R10
NOSR_echo
R11
in1_in2_if_echo
Address
WLMODE_echo
Word ID
Functional description
86/95
Table 99. SPI communication configuration
0
1
1
1
0
answer to #7e
0
1
1
1
CC latch_state
answer to #8a
1
0
0
0
BRIDGE_EN
answer to #8b
1
0
0
0
answer to #8c
1
0
0
0
R7
R6
R3
R2
R1
R0
0
0
0
0
0
0
0
0
ILIM_REG
VDD_OV_REG
VDD_UV_REG
VPS_UV
NOTSD_REG
Error_count[3:0]
OL_ON_STATUS [1:0]
0
NOTSD
HWSC/LBIST_status
Configuration
request5
0
NGFAIL
0
OTWARN_REG
0
Configuration
request 4
VPS_UV_REG
0
Description
0
OTWARN
DS11115 Rev 10
0
R4
X
OTSDcnt[5:0]
0
R5
87/95
UV_CNT_REACHED
answer to #7d
R8
states request 1
states request2
0
states request3
Functional description
(1)
config_CC_status_echo
R9
DIS_status
R10
TDSR_echo
R11
POR status
Address
NDIS_status
Word ID
L9960, L9960T
Table 99. SPI communication configuration (continued)
Word ID
Address
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0
DlAG_OFF[2:0]
Description
1
0
0
1
0
0
0
0
0
0
0
0
0
answer to #10a
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Nothing report
answer to #10b
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Nothing report
answer to #11
1
0
1
1
answer to #12a
1
1
0
0
answer to #12b
1
1
0
0
answer to #13a
1
1
0
1
I11
I10
I9
I8
I7
I6
I5
answer to #13B
1
1
0
1
I23
I22
I21
I20
I19
I18
answer to #14
1
1
1
0
0
0
0
0
0
0
answer to #15a
1
1
1
1
answer to #15b
1
1
1
1
0
0
answerto#15c
1
1
1
1
0
0
Reserved for supplier
test mode
Reserved
Reserved
-
-
VDD_UV
VDD_OV_L[2:0]
-
I4
I3
I2
I1
I0
component traceability
number request 1
I17
I16
I15
I14
I13
I12
component traceability
number request 2
0
0
0
0
0
0
0
ASSP
0
0
Reserved
ASIC name [9:0]
Silicon version(3:0]
0
0
OFF STATE diagnosis
VDD_OV
DS11115 Rev 10
answer to #9
0
0
Functional description
88/95
Table 99. SPI communication configuration (continued)
0
0
code_version[7:0]
Nothing report
electronic id request
silicon version request
Logic HW version
request
1. Bitfield R9..R1 is the mirror of the bitfield D8..D0 in command frame 6
L9960, L9960T
L9960, L9960T
5
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
PowerSSO-36 (exposed pad) package mechanical data
Figure 39. PowerSSO-36 (exposed pad) package mechanical drawing
Bottom view
ggg M C A-B D
D1
ggg M CA-B D
G3
G3
E2
E4
G3
D3
e
// eee C
A2
A
ccc C
SEATING PLANE
A1
b
Section A-A
C
ddd M CD
h
ș1
h
2x
ș2
f f f C A-B
D
R1
H
D2
A
N
B (see Section B-B)
R
GAUGE PLANE
L2
B
L
D
A
S
ș1
ș
5.1
L1
index area
(0.25D x 0.75E1)
G1x2
E1
E3 pin 1 indicator
Section B-B
E
(b)
WITH PLATING
G2
c
c1
2x
aaa CD
b1
BASE METAL
2x N/2 TIPS
bbb C
1 2 3
Top view
B
A
(see Section A-A)
N/2
GAPGPS03424
7587131_I_EH
DS11115 Rev 10
89/95
94
Package information
L9960, L9960T
Table 100. PowerSSO-36 (exposed pad) package mechanical data
Millimeters
Inches
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
Ө
0°
-
8°
0°
-
8°
Ө1
5°
-
10°
5°
-
10°
Ө2
0°
-
-
0°
-
-
A
2.15
-
2.45
0.0846
0.0965
A1
0.0
-
0.1
0.0
0.0039
A2
2.15
-
2.35
0.0846
0.0925
b
0.18
-
0.32
0.0071
0.0126
b1
0.13
0.25
0.3
0.0051
c
0.23
-
0.32
0.0091
c1
0.2
0.2
0.3
0.0079
D(1)
10.30 BSC
0.0098
0.0126
0.0079
0.0118
0.4055 BSC
D1
6.9
-
7.5
0.2717
-
0.2953
D2
-
3.65
-
-
0.1437
-
D3
-
4.3
-
-
0.1693
-
e
0.50 BSC
0.0197 BSC
E
10.30 BSC
0.4055 BSC
7.50 BSC
0.2953 BSC
(1)
E1
E2
4.3
-
5.2
0.1693
-
0.2047
E3
-
2.3
-
-
0.0906
-
E4
-
2.9
-
-
0.1142
-
G1
-
1.2
-
-
0.0472
-
G2
-
1
-
-
0.0394
-
G3
-
0.8
-
-
0.0315
-
h
0.3
-
0.4
0.0118
-
0.0157
L
0.55
0.7
0.85
0.0217
-
0.0335
L1
1.40 REF
0.0551 REF
L2
0.25 BSC
0.0098 BSC
N
36
1.4173
R
0.3
-
-
0.0118
-
-
R1
0.2
-
-
0.0079
-
-
S
0.25
-
-
0.0098
-
-
Tolerance of form and position
aaa
90/95
0.0118
0.2
DS11115 Rev 10
0.0079
L9960, L9960T
Package information
Table 100. PowerSSO-36 (exposed pad) package mechanical data (continued)
Millimeters
Inches
Symbol
Min.
Typ.
Max.
Min.
Typ.
bbb
0.2
0.0079
ccc
0.1
0.0039
ddd
0.2
0.0079
eee
0.1
0.0039
ffff
0.2
0.0079
ggg
0.15
0.0059
Max.
1. Dimensions D and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is ‘0.25
mm’ per side D and ‘0.15 mm’ per side E1. D and E1 are Maximum plastic body size dimensions including
mold mismatch.
DS11115 Rev 10
91/95
94
Reference document
6
L9960, L9960T
Reference document
Application Note AN4867 “L9960 ETC H-bridge”, www.st.com website.
92/95
DS11115 Rev 10
L9960, L9960T
7
Revision history
Revision history
Table 101. Document revision history
Date
Revision
22-Jun-2015
1
Initial release.
25-Jun-2015
2
Updated CDM results in Section Table 4..
3
Document status promoted from target specification to
production.
Updated:
– Description on page 1;
– Table 8: Timing characteristics (LS rise/fall time);
– Table 11: VPS electrical characteristics (Inserted limits for
Vs_clamp_neg);
– Table 63: Electrical characteristics (Updated limit for Itrack HS
range 2 and range 3, and update limits for CL hysteresis ,
range 0 and range 3);
– Table 71: Over-current detection electrical characteristics.
(corrected typo: thresholds range swap for OC range 3 for LS/HS);
– Table 4: Absolute maximum ratings (added note for ESD table
concerning HBM for OUTx and VPS).
– Table 98: SPI communication command and answer words
(added note for SPI command frame #3, #4 and #6).
4
Table 71: Over-current detection electrical characteristics
corrected USL for Itrack.
Table 98: SPI communication command and answer words
updated Word ID “#6” from 0 to X; updated note “5”.
Table 99: SPI communication configuration updated Word ID
answer to #7d# (R9-R1 from 0 to X; updated note “1”.
5
Modified title in cover page and added “AEC-Q100 qualified” as
first feature.
Updated:
– Table 6: Range of functionality: added note for Tj;
– Table 8: Timing characteristics for timings Td-On and Td_off;
– Figure 11: POR timing diagram;
– Table 32: HWSC/LBIST electrical characteristics: LBIST
duration and LBIST coverage;
– Section 4.6.2: Current slew rate,
– Section 4.6.3: Voltage slew rate: removed wrong note for OL
diagnostics in On-state not available during NOSR mode;
– Section 4.6.4: Current limitation: updated general description
on current limitation fucntionality, and corrected figure 20, 21
and 22 for Tdiag2 and ILIM_REG references.
Updated description and references for table 48 , 49 and 50;
– Table 8: Timing characteristics;
– Table 63: Electrical characteristics;
– Section 4.8.4: Diagnostic of "Over-current" in on-state
corrected typo in ISR limits;
– Section 4.8.5: Diagnostic of "Open Load" in on-state
description and corrected label for figure 28;
– Section 4.8.7: Off-state diagnostic.
Added Section 6: Reference document.
14-Sep-2015
07-Oct-2015
02-Sep-2016
Changes
DS11115 Rev 10
93/95
94
Revision history
L9960, L9960T
Table 101. Document revision history (continued)
Date
22-Jun-2017
21-Dec-2017
21-Jun-2018
04-Oct-2019
02-Feb-2021
94/95
Revision
Changes
6
Updated:
– The values of ‘TTSD’ parameter in Table 70;
– The values of ‘OUT1_OL_Thr’ parameter in Table 86;
– Table 100: PowerSSO-36 (exposed pad) package mechanical
data.
7
Updated:
– Battery voltage monitoring on page 19;
– Section 4.8.6: On-state diagnostics electrical characteristics on
page 70.
8
Updated:
– Figure 2.2: Bill of materials on page 13;
– Table 8: Timing characteristics on page 17 with condition
TSW_low_current = 0;
– Section 4.7.1: corrected description for OTSDcnt reset;
– Section 4.8.3: corrected statement for NGFAIL bit deassertion;
– Added range for C_ESD capacitors (as application info only) on
OUT1 and OUT2 in Table 86.
9
Updated:
– Table 2: Pin definition (PSSO36twin die) and function;
– Table 96: Electrical characteristics serial data output.
Minor text changes.
10
Updated:
– Title;
– Figure 1: Block diagram for L9960;
– Section 2: Application description.
Added:
– Section 2.1: Application circuit;
– Section 2.2: Bill of materials.
Minor text changes in:
– Description;
– Section 4.9.4: Read Logic HW version;
– Table 97: SPI electrical characteristics;
– Table 98: SPI communication command and answer words.
DS11115 Rev 10
L9960, L9960T
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS11115 Rev 10
95/95
95