0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L9960T

L9960T

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    PowerSSOIC36

  • 描述:

    L9960T

  • 数据手册
  • 价格&库存
L9960T 数据手册
L9960 L9960T Automotive Single/Dual H-Bridge, SPI programmable DC Brushed Motor Driver Datasheet - production data  Short circuit and programmable thermal warning and shutdown thresholds  Open Load diagnosis in ON condition  All I/O pins can withstand up to 19 V  SPI interface for configuration and diagnosis  Two independent enable/disable pins NDIS and DIS and SOPC (Switch-off Path Check) available GAPGPS00337 PowerSSO-36  Spread Spectrum function for EMI reduction Features  AEC-Q100 qualified  Available in single (L9960) and Twin (L9960T) option, both in PSSO36 package  Flexible driving strategy via configurable pins PWM/DIR (IN1/IN2) Description  RDSon < 400 mΩ (full path at Tj =150° C)  Input switching frequency up to 20 kHz The device is an integrated H-Bridge for resistive and inductive loads for automotive applications. Target application includes throttle control actuators, exhaust gas recirculation control valves and general purpose DC motors such as turbo, flap control and electric pumps.  Built in charge pump supporting 100% duty cycle The driving strategy is enhanced by configurable PWM / DIR pins and IN1/IN2.  Logic levels compatible to 3.3 V and 5 V The H-Bridge contains integrated free-wheel diodes. In case of freewheeling condition, the low-side only is switched on in parallel of its diode to reduce power dissipation.  Operating battery supply voltage from 4.5 V up to 28 V  Operating VDD5 supply voltage from 4.5 V to 5.5 V  Monitoring of VDD5 supply voltage with bidirectional switch-off pin  Current limitation SPI-adjustable in four steps.  Output stage current limitation with dependence on temperature  2 Programmable voltage and current slew rate control The integrated Serial Peripheral Interface (SPI) makes it possible to adjust device parameters, to control all operating modes and read out diagnostic information. Table 1. Device summary Order code Package L9960 L9960TR L9960T Tube PowerSSO-36 L9960T-TR February 2021 This is information on a product in full production. Packing Tape and Reel Tube Tape and Reel DS11115 Rev 10 1/95 www.st.com Contents L9960, L9960T Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 2 3 4 Application description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 General electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Thermal ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Range of functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 4.2 Device supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.1 Functional State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.2 Vps power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.3 VDD5 regulated voltage supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.4 VDDIO voltage supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.5 Device supply electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power on reset (POR) and SW reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 Power on reset (POR) electrical characteristics . . . . . . . . . . . . . . . . . . 29 4.3 System clock electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4 Hardware self check (HWSC) and LBIST . . . . . . . . . . . . . . . . . . . . . . . . 30 4.5 2/95 PowerSSO36 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.4.1 HWSC test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.4.2 HWSC/LBIST electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 32 Digital input controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5.1 Bridge functional modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5.2 Disable inputs DIS and NDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.5.3 Control inputs DIR and PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.5.4 Digital inputs control electrical characteristics . . . . . . . . . . . . . . . . . . . . 41 DS11115 Rev 10 L9960, L9960T 4.6 4.7 4.8 4.9 5 Contents Driver configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.6.1 Slew rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.6.2 Current slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.6.3 Voltage slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6.4 Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Driver protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.7.1 Over-temperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.7.2 Over-temperature monitoring electrical characteristics . . . . . . . . . . . . . 56 4.7.3 Short-circuit to battery: over-current detection in low-side transistors . . 57 4.7.4 Short-circuit to ground: over-current detection in high-side transistor . . 58 4.7.5 Load in short-circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.7.6 Over-current detection electrical characteristics . . . . . . . . . . . . . . . . . . 59 Diagnostics and registers descriptions in case of validity bit configuration 60 4.8.1 Diagnostic Reset strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.8.2 Diagnostic reset bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.8.3 Global Failure Bit NGFAIL definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.8.4 Diagnostic of "Over-current" in on-state . . . . . . . . . . . . . . . . . . . . . . . . 65 4.8.5 Diagnostic of "Open Load" in on-state . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.8.6 On-state diagnostics electrical characteristics . . . . . . . . . . . . . . . . . . . . 70 4.8.7 Off-state diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.8.8 Off-state diagnostic electrical characteristics . . . . . . . . . . . . . . . . . . . . . 73 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.9.1 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.9.2 SPI command and response words format . . . . . . . . . . . . . . . . . . . . . . 75 4.9.3 Read ASIC traceability number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.9.4 Read Logic HW version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.9.5 Parity bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.9.6 SPI communication mode (Parallel and Daisy chain mode) . . . . . . . . . 79 4.9.7 Communication check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.9.8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 PowerSSO-36 (exposed pad) package mechanical data . . . . . . . . . . . . . 89 6 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DS11115 Rev 10 3/95 3 List of tables L9960, L9960T List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 4/95 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin definition (PSSO36twin die) and function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Application circuit - BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Thermal ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Range of functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Bridge output drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 VPS_UV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VPS_UV_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VPS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 UV_PROT_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 UV_PROT_EN_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 UV_WIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 UV_WIN_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 UV_CNT_REACHED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 VDD_UV_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 VDD_UV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 VDD_OV_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 VDD_OV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 VDD_OV_L[2:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 VDD5 voltage monitoring Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Device supply electrical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SW reset [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 POR status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 POR electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 System clock electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 NSPREAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 NSPREAD_echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 HWSC/LBIST Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 HWSC/LBIST_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 HWSC/LBIST electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VVL_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 VVL_MODE echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TVVL[3:0] (µs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 TVVL_echo[3:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 BRIDGE_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 NDIS_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DIS_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Normal mode H-bridge input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 IN1/IN2 mode H-bridge input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 VVL mode H-bridge input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TSW_low_current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 TSW_low_current_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Digital inputs control electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Range current slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ISR_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 DS11115 Rev 10 L9960, L9960T Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. List of tables VSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Voltage slew rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 VSR_echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 NOSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 NOSR_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 TDSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 TDSR_ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ILIM_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 CL[1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 CL_echo[1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 OTwarn_thr_var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 OTwarn_thr_var_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 OTsd_thr_var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 OTsd_thr_var_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 NOTSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 NOTSD_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 OTWARN_TSEC_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 OTWARN_TSEC_EN_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 OTWARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 OTWARN_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Over-temperature monitoring electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Over-current detection electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 DIAG_CLR_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 DIAG_CLR_EN_echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Status bits description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Diagnostics bits description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 NGFAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Diagnostic of "Over-current" in on-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Error_count[3:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 TDIAG1 (µs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 TDIAG1_echo[2:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 OL_ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 OL_ON_STATUS [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Open Load in ON-state electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 TRIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DIAG_OFF[2:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Off-state diagnostic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 SPI command word format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 SPI response word format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Supplier ID code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Silicon version identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Wafer coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Traceability code and wafer number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 CC_latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Config_CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Config_CC_state_echo7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Electrical characteristics serial data output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 SPI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 SPI communication command and answer words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 SPI communication configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 PowerSSO-36 (exposed pad) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . 90 DS11115 Rev 10 5/95 6 List of tables L9960, L9960T Table 101. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6/95 DS11115 Rev 10 L9960, L9960T List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Block diagram for L9960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connection of L9960 version (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin connection of L9960T version (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Example of VDD5 slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 External power supply circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Battery voltage monitoring – case1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Battery voltage monitoring – case2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 VDD5 under voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 VDD5 over voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 POR timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 HWSC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 HWSC state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Bridge STATE diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Bridge STATE diagram in VVL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Bridge STATE diagram in IN1/IN2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 cases of high-side/low-side activation (normal mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 cases of high-side/low-side activation (IN1/IN2 mode) . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Ideal waveforms of switching with slew rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Tdiag2 blanking time depends on the Vps voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Slew rate switching strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Current limitation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Effect of the temperature diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Thermal current limitation adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Example of low-side transistor low impedance short circuit to battery (I < Ioc_ls) . . . . . . . . 57 Over-current detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Example of correct Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Example of NO Overcurrent detection by Tdiag2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Current diagnostic state diagram for each MOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Open load timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Structure and detection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Open load off state diagnosis diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 SPI SDO update at 2nd SPI command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SPI SDO is clocked on SCLK rising edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 In case of no SCLK edge when NCS=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Wafer XY coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Daisy chain operation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 PowerSSO-36 (exposed pad) package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 89 DS11115 Rev 10 7/95 7 Block diagram and pin description L9960, L9960T 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram for L9960 CP VPS GND Under -voltage detect ion DIR PWM DIS NDIS Under -voltage detect ion Over -voltage detection Direction / Phase control Disable block 1 VDDIO NCS SCLK SDI SDO SPI INTERFACE CONTROL LOGIC VDD5 Charge pump + Voltage clamp GATE DRIVERS Protections : - SC to GND - SC to battery - SC of the load - Over -temperature - Undervoltage Current limitation monitoring OUT1 Slew rate & dead Time adjustment Current sense & Feedback circuit OUT2 Diagnosis : - Under -voltage - Over -current LS - Over -current HS - Over -temperature shutdown - Disable pin status - Current limitation - Current limitation reduction - OL in OFF state PGND GAPGPS02311 8/95 DS11115 Rev 10 L9960, L9960T Block diagram and pin description 1.2 Pin description 1.2.1 PowerSSO36 package Figure 2. Pin connection of L9960 version (top view) PGND1 1 36 OUT2A SCLK1 2 35 NCS1 SDI1 3 34 DIS1 SDO1 4 33 CP1 OUT1A 5 32 VS1 OUT1A 6 31 VS1 NDIS1 7 30 IN2A AGND1 8 29 IN1A VDD5 9 28 NC NC 10 27 VDDIO NC 11 26 NC NC 12 25 NC NC 13 24 NC NC 14 23 NC NC 15 22 NC NC 16 21 NC NC 17 20 NC NC 18 19 NC GAPGPS02651 Figure 3. Pin connection of L9960T version (top view) PGND1 1 36 OUT2A SCLK1 2 35 NCS1 SDI1 3 34 DIS1 SDO1 4 33 CP1 OUT1A 5 32 VS1 OUT1A 6 31 VS1 NDIS1 7 30 IN2A AGND1 8 29 IN1A VDD5 9 28 NC NC 10 27 VDDIO IN1B 11 26 AGND2 IN2B 12 25 NDIS2 VS2 13 24 OUT1B VS2 14 23 OUT1B CP2 15 22 SDO2 DIS2 16 21 SDI2 NCS2 17 20 SCLK2 OUT2B 18 19 PGND2 GAPGPS02307 DS11115 Rev 10 9/95 94 Block diagram and pin description L9960, L9960T Table 2. Pin definition (PSSO36twin die) and function Pin # Pin name I/O Type 1 PGND1 Power Ground 2 SCLK1 SPI Serial Clock Input (internal pull-up) I 3 SDI1 SPI Data In Input (internal pull-up) I 4 SDO1 SPI Serial Data Out. Tri-state output buffer, Transfers data to the µC O OUT1A Output of DMOS half bridge 1 [device A] O 7 NDIS1 Bidirectional Enable pin: open drain output pulled low in case of VDD over/under voltage. If the input is pulled low OUT 1-2 go to tri-state. I/O 8 AGND1 Analog Ground pin 9 VDD5 10 NC 11(1) IN1B Input Half Bridge 1 (internal pull-down) [device B]. Acting as PWM at power-up, can be configured to IN1 via SPI frame I 12(1) IN2B Input Half Bridge 2 (internal pull-down) [device B]. Acting as DIR at power-up, can be configured as IN2 via SPI frame. I VS2 Power supply voltage for Power Stages (external reverse protection required) I 15(1) CP2 Tank capacitor for Charge Pump output O 16(1) DIS2 Disable pin: if it is pulled high Out1-2 are in tri-state (internal pull-up) I 17(1) NCS2 SPI Chip Select Input (internal pull-up) I O 5 6 13(1) (1) 14 GND Regulated 5V supply GND I Not connected pin (1) OUT2B Output of DMOS half bridge 2 [device B] (1) 19 PGND2 Power Ground 20(1) SCLK2 SPI Serial Clock Input (internal pull-up) I 18 GND (1) SDI2 SPI Data In Input (internal pull-up). I (1) SDO2 SPI Serial Data Out O 21 22 23(1) O OUT1B Output of DMOS half bridge 1 [device B]. multi-bonding 25(1) NDIS2 Bidirectional Enable pin: open drain output pulled low in case of VDD over/under voltage. If the input is pulled low OUT 1-2 go to tri-state. 26(1) AGND2 Analog Ground pin 27 VDDIO Regulated 3.3/5V supply for SDO output buffer I 28 NC Not connected pin - 29 IN1A Input Half Bridge 1 (internal pull-down) [device A]. Acting as PWM at power-up, can be configured to IN1 via SPI I 30 IN2A Input Half Bridge 2 (internal pull-down) [device A]. Acting as DIR at power-up, can be configured as IN2 via SPI. I 24(1) 10/95 Function DS11115 Rev 10 I/O GND L9960, L9960T Block diagram and pin description Table 2. Pin definition (PSSO36twin die) and function (continued) Pin # Pin name 31 Function I/O Type VS1 Power supply voltage for Power Stages (external reverse protection required) I 33 CP1 Charge Pump output O 34 DIS1 Disable pin: if it is pulled high Out1-2 are in tri-state (internal pull-up) I 35 NCS1 SPI Chip Select Input (internal pull-up) I 36 OUT2A Output of DMOS half bridge 2 [device A]. multi-bonding O EP AGND1 Exposed Pad connected to PCB Ground 32 1. For L9960 version in PSSO36, the pins from 11 to 26 are not connected. DS11115 Rev 10 11/95 94 Application description 2 L9960, L9960T Application description The L9960 is dedicated to be part of an H-Bridge module for automotive applications. It can be used in all the applications requiring an H-Bridge power stage configuration in order to drive DC motors or bi-directional solenoid-controlled actuators. Device configurability allows to choose the best current or voltage slew rate for the optimization of motor control and noise suppression. Typical applications are:  Electronic throttle control;  Exhaust gas recirculation (EGR) or waste flap control;  Swirl actuator control;  Electric pumps, motor control and auxiliaries;  Generic DC or Stepper motors driving. The module is implemented with a microcontroller, an input filter (fulfillment of the EMC/EMI requirements) and an over-voltage protection diode (optional). 2.1 Application circuit Figure 4. Application circuit 12/95 DS11115 Rev 10 L9960, L9960T 2.2 Application description Bill of materials Table 3. Application circuit - BOM Component Requirement Comment 50 V CVBP1 CVBP2 To be mounted close to the pin 50 V CVDD1 Min Typ Max Unit - 100 - μF - 1 - μF - 10 - μF CVDD2 To be mounted close to the pin - 100 - nF CVDDIO To be mounted close to the pin - 100 - nF CCP To be mounted close to the pin - 100 - nF To be mounted close to the pin Values as big as possible (max 47 nF) are recommended if Open Load in OFF detection is disturbed 10 - 47 nF To be mounted close to the pin Values as big as possible (max 47 nF) are recommended if Open Load in OFF detection is disturbed 10 - 47 nF Rpd_NDIS - 10 - KΩ Rpu_DIS - 10 - KΩ - - - - - - - - COUT1 COUT2 D1 STPS5L60S D2 SMA6T33AY Clamp max: 35 V DS11115 Rev 10 13/95 94 General electrical characteristics L9960, L9960T 3 General electrical characteristics 3.1 Absolute maximum ratings Warning: Warning: stressing the device above the rating listed in the “Absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect the device reliability. Table 4. Absolute maximum ratings Symbol Parameter Condition Min Max Unit Vps Supply voltage Continuous -1 40 V Vout1,2 Output voltage Continuous. OUT is limited by VPS -1 40 V VDD5 Logic supply voltage 0 V < Vps < 40 V -0.3 19 V VDDIO SDO supply voltage 0V 7 V - - 400 Tj = 25 °C to 170 °C, Tcase  140 °C Iout = 7.5 A; Vps > 7 V - - 450 Unit mΩ Vbd_h Body diode forward voltage drop High-side transistor Idiode = 9A - 2 3 V Vbd_l Body diode forward voltage drop Low-side transistor Idiode = 9A - 2 3 V 16/95 DS11115 Rev 10 L9960, L9960T 3.5 General electrical characteristics Timing characteristics Table 8. Timing characteristics Symbol Tdon Tdoff Td Trise_L Tfall_L Parameter Delay time for switch-on Delay time for switch-off Delay time: symmetry Condition Min. Typ. Max. Unit Rload 6 Ω, ISR = 1; VSR = 1 PWM edge  10%, TSW_low_current = 0, Vout (or 10% Iout) - - 10.5 µs Rload 6 Ω, ISR = 0; VSR = 0 PWM edge  10%, TSW_low_current = 0, Vout (or 10% Iout) - - 11.5 µs NOSR mode: PWM edge  10%, TSW_low_current = 0, Vout (or 10% Iout) - - 7 µs Rload 6 Ω, ISR = 1; VSR = 1 PWM edge  90%, TSW_low_current = 0, Vout (or 90% Iout) - - 12 µs Rload 6 Ω, ISR = 0; VSR = 0 PWM edge  90%, TSW_low_current = 0, Vout (or 90% Iout) - - 13 µs NOSR mode PWM edge  90%, TSW_low_current = 0, Vout (or 90% Iout) - - 5.5 µs |Tdon-Tdoff| NOSR mode - - 5 µs |Tdon-Tdoff| ISR/VSR mode 2 - 8 µs 0.04 - 0.5 µs 5 - 10 µs Low-side transistor rise time Non selectable by SPI Low-side transistor fall time 10%-90% Vout , Iload = 3 A DS11115 Rev 10 17/95 94 Functional description L9960, L9960T 4 Functional description 4.1 Device supply The L9960 is supplied through 3 pins connected to 3 different external voltage supply sources: 4.1.1  VPS, battery voltage to supply the bridge,  VDD5, 5 V regulated voltage to supply chip digital I/O's,  VDDIO, the supplying SDO output buffer voltage. Functional State Following functional states are defined for L9960:  Normal Mode –  Tri-state –  supply voltages are present and no failure. H-bridge is driven by the selected driving control mode (PWM/DIR, IN1/IN2) and it is configurable via SPI (i.e slew rate, current limitation and overcurrent thresholds, OT warning thresholds). H-bridge gate drivers are disabled due to a fault independently from PWM signal (IN1 or IN2). Once the fault condition is disappeared, L9960 restarts working without dedicated fault recovery procedure. Disabled – H-bridge is disabled due to a fault condition and it is necessary to execute the dedicated procedure to initialize the device (please review the below table for the dedicated procedure for each fault). In case the fault is related to an overvoltage or undervoltage on VDD5, the H-bridge is set to tri-state with NDIS low. Note: Please review the dedicated Section 4.8.1: Diagnostic Reset strategy in application note. 4.1.2 Vps power supply VPS pin is the power supply of the H-bridge. A filter could be implemented, mainly to fulfill the EMC requirements, and an over-voltage protection diode can also be added (optional). Figure 6. External power supply circuitry Controlled by MCU Battery Voltage OPTIONAL OPTIONAL GAPGPS02312 18/95 DS11115 Rev 10 L9960, L9960T Functional description Tri-state mode power consumption Depending on the error detection affecting L9960, the bridge is switched to tri-state. In this status the output leakage current is less than "Iout" (refer to Table 23) on the overall range of functionality (Vps and temperature ranges). Normal and VVL modes power consumption In normal and VVL modes, the current consumption on Vps is mainly based on the output current delivered to the load and the High-Side Power MOS supply consumption. Battery voltage monitoring The Vps voltage is monitored internally to detect undervoltage conditions on power supply line. When Vps decreases below the under-voltage threshold "Vps_uv" longer than a filter "Tvps_uv", the bridge is disabled (SPI communication is still working). The filtering time "Tvps_uv" is implemented to avoid unwanted detection due to parasitic glitches when Vps increases as well as decreases. As soon as the voltage rises again above the Vps under-voltage threshold (hysteresis implemented), the bridge is switched back to normal mode driven by DIR and PWM levels (or IN1/IN2). All the settings are kept as before the under-voltage event. No PWM toggle is necessary to restart the H-bridge if the condition is disappeared. The Vps voltage monitoring information is readable via SPI by VPS_UV bit which is not latched. Table 9. VPS_UV Bit status Description Condition 0 Vps > Vps_uv longer than Tvps_uv Default value 1 Vps < Vps_uv longer than Tvps_uv - The info is available in position R0 of the answer frame 8a. The information is also readable by VPS_UV_REG bit which is latched. Table 10. VPS_UV_REG Bit status Description Condition 0 latched Vps > Vps_uv longer than Tvps_uv Default value 1 latched Vps < Vps_uv longer than Tvps_uv - The info is available in position R5 of the answer frame 8a. DS11115 Rev 10 19/95 94 Functional description L9960, L9960T Battery voltage monitoring electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 11. VPS electrical characteristics Symbol Parameter Condition Min. Typ. Max. Unit Vs_clamp_neg Negative clamp on VPS battery line -3 A from VPS, 3 ms -2.5 - -0.5 V Vps_uv_off Vps under-voltage threshold Vps decreasing 3.7 - 4.2 V Vps_uv_on Vps under-voltage threshold Vps increasing 4.2 - 4.7 V Vps_uv_hys Vps under-voltage hysteresis - 0.1 - 1 V 1 - 3 µs Tvps_uv Vps under-voltage filtering time Digital filter (guaranteed by scan) Undervoltage protection A counter is implemented to measure if two consecutive Vps under-voltage events occur within a fixed time frame, defined by the parameter (UV_WIN), which is programmable via SPI in two different values: 20 or 40 µs; if it happens, a specific bit named “UV_CNT_REACHED” is set to 1 and the bridge is disabled. The “UV_PROT_EN” bit is used to enable the counter UV_WIN and an echo answer is available. In the tables below, the configuration and functions for each of these parameters are shown: Table 12. UV_PROT_EN Bit status Note: Description 0 Counter and disabling protection are not enabled 1 Counter and disabling protection are enabled Condition Reset value - (-) available in position D3 of the SPI command frame 4. Table 13. UV_PROT_EN_echo Bit status Note: 20/95 Description 0 Echo counter and disabling protection not enabled 1 Echo counter and disabling protection enabled (-) available in position R3 of the SPI answer frame 7b. DS11115 Rev 10 Condition Reset value - L9960, L9960T Functional description Table 14. UV_WIN Bit status Note: Description Condition 0 UV_WIN window is set to 20 µs Reset value 1 UV_WIN window is set to 40 µs - (-) available in position D0 of the SPI command frame 4. Table 15. UV_WIN_echo Bit status Note: Description Condition 0 Echo: UV_WIN window is set to 20 µs Reset value 1 Echo: UV_WIN window is set to 40 µs - (-) available in position R0 of the SPI answer frame 7b. Table 16. UV_CNT_REACHED Bit status Note: Description Condition 0 No VS under voltage events closer than UV_WIN Default Value 1 Two VS under voltage events closer than UV_WIN - (-) available in position R5 of the SPI answer frame 8c. If this UV protection option is not enabled, an indefinite number of consecutive battery under-voltage events can occur with the only action taken by the device to disable the bridge, when the battery level is below “vps_uv threshold”. Figure 7 and Figure 8 show the cases of VPS UV events greater or smaller than 2 in the time frame defined by UV_WIN. Case 1 (no enabled protection) The first VPS transition under the VPs_uv_off threshold is disregarded, due to the event duration less than Tvps_uv. After the second UV transition on Vps, the bridge is put in tri-state. As the protection has not been enabled via UV_PROT bit, the H-bridge keeps on switching between On-state and tri-state. Figure 7. Battery voltage monitoring – case1 T < Tvps _uv Tvps _uv Tvps _uv Tvps _uv Tvps _uv Vps Vps _uv _hys Vps _uv _off ‘’VPS _UV’’ BRIDGE STATE ON-STATE TRI-STATE ON-STATE TRI-STATE ON-STATE T > UV_WIN or UV_PROT not enabled ‘’UV _CNT_REACHED’’ GAPGPS02313 DS11115 Rev 10 21/95 94 Functional description L9960, L9960T Figure 8. Battery voltage monitoring – case2 T < Tvps _uv Tvps _uv Tvps _uv Vps Vps _uv _off Vps _uv _hys ‘’VPS _UV’’ BRIDGE STATE ON-STATE TRISTATE ON-STATE DISABLE T < UV_WIN UV_CNT_REACHED GAPGPS02314 Case 2 In this scenario, after the second UV transition on VPS, with the enabled protection via UV_PROT set to 1, if two UV events occur by the UV_WIN timeframe expiration, the Hbridge is set in Disable condition consequently. 4.1.3 VDD5 regulated voltage supply The VDD5 Input voltage is provided by an external power supply, supplying the corresponding L9960 digital I/O's. When VDD5 is not supplied, there is only a small leakage current sank from VPS, see parametric table with condition VDD5 Vdd_uv longer than Tvdd_uv1 Default Value 1 Latched Vdd < Vdd_uv longer than Tvdd_uv1 - (-) available in position R1 of the SPI answer frame 8a. Table 18. VDD_UV Bit status Note: Description Condition 0 Vdd > Vdd_uv longer than Tvdd_uv1 Default Value 1 Vdd < Vdd_uv longer than Tvdd_uv1 - (-) available in position R0 of the SPI answer frame 12b. Figure 9. VDD5 under voltage monitoring Tvdd _uv 1 Tvdd _uv 1 T < T vdd_uv1 Vdd Vdd _uv _th Vdd _uv _hys Tvdd _uv 2 VDD_UV BRIDGE STATE DISABLE ON-STATE ON-STATE T > Thold _ndis NDIS VDD_UV filter 2.6ms UV_DIS delay 500ms UV_DIS_filtered GAPGPS02315 VDD5 over-voltage protection Although the VDD5 input pin and all I/O's withstand up to 19 V, an over-voltage circuitry is implemented to ensure that the bridge is kept in disable condition when VDD5 voltage is higher than the VDD5 over-voltage threshold (VDD5_ov_th) for duration longer than "TVDD5_ov”. This VDD5 over-voltage condition is also feedbacked directly to NDIS pin, by pulling NDIS to LOW after the filter time “TVDD5_ov ”. The NDIS pin is released when VDD5 voltage decreases below the "VDD5_ov_th" threshold and wait hysteresis as well as TVDD5_ov filtering implemented + Thold_ndis filter time are expired. The information is readable via 2 diagnostics bits called VDD5_OV_REG (latched) and VDD_OV (unlatched). DS11115 Rev 10 23/95 94 Functional description L9960, L9960T Table 19. VDD_OV_REG Bit status Note: Description Condition 0 Latched Vdd < Vdd_ov_th longer than Tvdd_ov Default Value 1 Latched Vdd > Vdd_ov_th longer than Tvdd_ov - (-) available in position R2 of the SPI answer frame 8a. Table 20. VDD_OV Bit status Note: Description Condition 0 Vdd < Vdd_ov_th longer than Tvdd_ov Default value 1 Vdd > Vdd_ov_th longer than Tvdd_ov - (-) available in position R1 of the SPI answer frame 12b. In case of VDD5 over-voltage condition, the bridge is kept in disable until the over-voltage condition is removed (hysteresis as well as TVDD5_ov filtering implemented). Figure 10. VDD5 over voltage monitoring T < Tvdd _ov Vdd _ov_hys Vdd _ov_th Vdd T < Tvdd _ov Tvdd _ov VDD_OV BRIDGE STATE DISABLE ON-STATE ON-STATE NDIS VDD_OV Filter 2.6ms OV_DIS T > Thold _ndis GAPGPS02316 This information is filtered, and reported in NGFAIL (Global Failure Bit NGFAIL definition on page 64). A counter is available to inform about the overvoltage event length (guaranteed by scan). The counter starts as soon as VDD5_OV event occurs. The counter stops for the following conditions:  when its max value was reached,  when the VDD5_OV condition is removed. The VDD5_OV length information is readable in a latched 3 bits word called VDD5_OV_L. These 3 bits define the time range of the current counter value, according to the following table: 24/95 DS11115 Rev 10 L9960, L9960T Functional description Table 21. VDD_OV_L[2:0] Note: Bit status min max Condition 000 not used - - 001 No VDD_OV event - default value 010 T_vdd_ov 10 ms - 011 10 ms 30 ms - 100 30 ms 100 ms - 101 100 ms 300 ms - 110 300 ms 1000 ms - 111 1000 ms - - (-) available in positions R11/R10/R9 of the SPI answer frame 12a.  A new VDD5_OV event overwrites the previous VDD5_OV length, except if the new event length is shorter than the value defined in VDD5_OV_L.  A reading of VDD5_OV_L through SPI clears the current value; if an event is still present when SPI reading occurs, the counter restarts counting until VDD5_OV condition is removed or the counter itself has reached its max value. DS11115 Rev 10 25/95 94 Functional description L9960, L9960T VDD5 voltage monitoring electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 22. VDD5 voltage monitoring Electrical characteristics Symbol Parameter Condition Min. Typ. Max. Unit 4.45 - 4.7 V VDD5_uv_th VDD5 decreasing VDD5 under-voltage detection threshold Valid for the extended range of temperature (1) VDD5_uv_hys VDD5 under-voltage hysteresis VDD5 increasing 10 - 50 mV TVDD5_uv1 VDD5 under-voltage filtering time for bridge switched to Tri-state Vpor < VDD5 < VDD5_uv_off Digital filter (guaranteed through scan) 2 - 3.25 ms TVDD5_uv2 VDD5 under-voltage filtering time for NDIS pin pulled to ”LOW” level VDD5 decreasing Digital filter (guaranteed through scan) 415 - 625 ms VDD5_ov_th VDD5 over-voltage detection threshold VDD5 increasing Valid for the extended range of temperature 5.2 - 5.55 V VDD5 over-voltage filtering time VDD5 increasing Digital filter (guaranteed through scan) 2 - 3.25 ms VDD5 decreasing 10 - 50 mV NDIS output ON state threshold On Load current = 5 mA 0 - 0.4 V NDIS Hold time Minimum time before releasing NDIS after fault disappearance (guaranteed through scan) 2 - 3.25 ms TVDD5_ov VDD5_ov_hys VDD5 over-voltage hysteresis NDIS_VOL Thold_ndis 1. Extended range of temperature (150, 170 °C) 4.1.4 VDDIO voltage supply In order to ensure a full compatibility with 5 V and 3.3V MCU peripherals, a pin VDDIO is dedicated to supply the output buffer of SDO. The overall current consumption on VDDIO is "IVDDIO". 26/95 DS11115 Rev 10 L9960, L9960T 4.1.5 Functional description Device supply electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 23. Device supply electrical characteristic Symbol Ips Iout Icc IVDDIO 4.2 Parameter Power supply current Condition Min. Typ. Max. Unit VDD5 < 0.7 V; Vps < 16 V Tj < 85 °C; L9960 - 10 40 µA VDD5 < 0.7 V; Vps  16 V Tj > 85 °C; L9960 - - 180 µA FPWM = 0; Iout = 0 (L9960, L9960T) - - 5 mA For FPWM=20 kHz; Iout = 0 (L9960) - - 5 mA For FPWM = 20 kHz; Iout = 0 (L9960T) - - 10 mA -100 - 100 µA VDD5 >VDD5_uv_on FPWM = 0, for L9960 for L9960T - - 9 18 FPWM = 20 kHz for L9960 for L9960T - - 9 18 SDO not connected (L9960) for L9960T - - 1 2 Bridge in tri-state All current sources switched OFF Leakage current on output Measured between OUT1 and OUT2 Logic-supply current SPI controller current consumption on VDDIO mA mA Power on reset (POR) and SW reset POR is a low active internal reset signal, leading the H-bridge in tri-state. It is released in case the VDD5 is higher than the POR threshold (hysteresis implemented). The POR input has a hysteresis to avoid unstable behaviors during ramp up and down of VDD5. The POR is active for VDD5 from 0V to [Vpor + Vpor_hys] (POR threshold + hysteresis). When RESET state is active, the bridge is switched to tri-state. When VDD5 voltage increases above the POR (Power On Reset) threshold (hysteresis implemented), the L9960 starts with all the settings reset to their default values. In Figure 11 is shown an example of POR timing diagram. At point 1, due to a POR condition on VDD5 supply, the POR signal is set to low and it is released after 300 µs. L9960 is in disable state and the LBIST+HWSC (condition 2) is DS11115 Rev 10 27/95 94 Functional description L9960, L9960T executed by application SW by HWSC/LBIST Trigger bit. If passed the H-bridge switches to Normal Mode after the first PWM transition. At point 4 is shown the case, in which a SW reset is enabled by µC, with no impact on internal POR signal. Figure 11. POR timing diagram 1 Vdd < Vdd_por threshold POR 4 SW reset enable by SW 300us before the release of the POR 2 BIST trigger by SW 3 PWM L9960 STATE Reset state (~300us) Tri-state LBIST+ HWSC DI Normal state Reset state Tri-state LBIST+ HWSC Normal state BIST + HWSC : 4.5ms NDIS driven by L9960 time GAPGPS02317 The SW reset configuration comes into a 2-bit register Table 24. SW reset [1:0] Bit status 01 Description SW reset command - All except 01 no action Note: Condition - (-) available in positions D10/D9 of the SPI command frame 2. The SW reset lasts 2-clock periods. The device goes back to RESET state immediately in case of POR condition on VDD5 or in case of SW reset. This reset is asynchronous, with a synchronous release. After a POR condition on VDD5 or a SW reset, the register bit called “POR” is set to “1”; it is cleared by read back via SPI. Once cleared, this bit indicates a further Power On Reset. Table 25. POR status Bit status Note: 28/95 Description 0 After SPI reading (not submitted to DIAG_CLR_EN) 1 after Power On Reset (-) available in the R11 bit position in SPI answer frame 7e. DS11115 Rev 10 Condition Default value L9960, L9960T 4.2.1 Functional description Power on reset (POR) electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 26. POR electrical characteristics Symbol Parameter Condition Min. Max. Unit 3 3.7 V Vpor POR threshold VDD5 decreasing Vpor_hys POR hysteresis For VDD5 increasing, Bridge is switched ON at VDD5_uv_off+VDD5_uv_hys or (Vpor + Vpor_hys) 0.1 0.3 V POR filtering time VDD5 decreasing Analog filtering (guaranteed by design) 0.01 4 µs Td_pow Power-on delay time DIR = PWM = NDIS = 1 / DIS = 0 (guaranteed by scan) - 300 µs Vpor_int POR threshold on internal regulator - 1 3 V Tpor 4.3 System clock electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 27. System clock electrical characteristics Symbol Fclock Parameter Condition Internal System clock ±10% accuracy Min. 4.5 Typ 5 Max. Unit 5.5 MHz A Spread Spectrum function can be an optional solution to reach EMC performance. The effect is a reduction on emission peak values by spreading the energy in the frequency domain. Table 28. NSPREAD Bit status Note: Description Condition 0 Spread Spectrum Activate Reset value 1 Spread Spectrum Disable - (-) available in the R2 position in SPI answer frame 4. A register report the echo of NSPREAD Config: "NSPREAD echo" Table 29. NSPREAD_echo Bit status Note: Description Condition 0 echo Spread Spectrum Activate Default value 1 echo Spread Spectrum Disable - (-) available in the R2 position of the SPI answer frame 7b. DS11115 Rev 10 29/95 94 Functional description 4.4 L9960, L9960T Hardware self check (HWSC) and LBIST The target of the hardware self check is to check the proper function of the VDD5 over voltage detection. Due to the fact that over voltage is impossible in a proper working ECU, it is necessary to simulate an over voltage situation, by changing the over voltage threshold during HWSC/LBIST test. The target of the LBIST is to cover the disable path of the device, for safety aspects. As long as the HWSC/LBIST has not been performed (indicated by the signal HWSC/LBIST_done = "0") the bridge outputs remain disabled in tri-state. The start condition for the HWSC/LBIST is triggered by a SPI bit “HWSC/LBIST Trigger”. It is considered as a valid command only after a POR or a SW reset or a failed HWSC/BIST. If passed, it cannot be triggered again and the SPI answer remains the same. HWSC/LBIST can be re-triggered only in case of FAIL result, or SW reset. Table 30. HWSC/LBIST Trigger Bit status Description 0 HWSC/LBIST not requested 1 request for HWSC/LBIST Condition Reset value - Note: (-) available in the D8 position in SPI command frame 2, please refer to Application Note for MISO response in case of SW reset and for HWSC trigger. 4.4.1 HWSC test procedure Once the HWSC is started, the reference voltage of the VDD5 over-voltage comparator is reduced to the lower value "VDD5_ov_hwsc", by the signal o_VDD5_ov_ref, as shown in the Figure 12 below. At the same time, the filters “Thwsc_fil”, “Thwsc_ref” and “Thwsc_dur” are started. "Thwsc_dur" indicates the duration of the LBIST test. "Thwsc_dur" indicates the duration of the dynamical adjustment of the VDD overvoltage threshold. In case the VDD5 over-voltage comparator indicates an over voltage condition when the filter time “Thwsc_fil” has expired the HWSC status bits indicate that the test has successfully passed. In case the VDD5 over-voltage indicates no over voltage condition when the filter time “Thwsc_fil” has expired the HWSC status bits are set to indicate that the test has failed. In case the filter time Thwsc_fil is not yet fully expired at the end of “Thwsc_ref” (e.g. due to several restarts of “Thwsc_fil”) the HWSC status bits are set to indicate that the test has failed. After “Thwsc_ref” has expired, the reduced VDD5 over-voltage comparator reference voltage returns back to the VDD5 over voltage disable threshold “Vdd_ov_th”. tHWSC is re-triggered with every transition of the VDD5 OV comparator from "0" to "1" In Figure 12 "o_VDD5_ov_ref" is an internal signal which controls the reduction of the VDD5 over voltage threshold. 30/95 DS11115 Rev 10 L9960, L9960T Functional description Figure 12. HWSC timing diagram HWSC trigger tHWSC_DUR tHWSC_REF O_vdd_ov_ref VDD_OV_th VVDD5 VDD_OV_HWSC i_vdd_ov tHWSCrestarted Thwsc_fil HWSC_DONE 0 0 1 HWSC_DIS 1 0 0 HWSC not done HWSC failed GAPGPS02318 HWSC passed HWSC done & passed Stop conditions for HWSC test The HWSC is stopped by one of the following conditions:  HWSC duration time “Thwsc_dur” has expired  in case of a reset condition (RESET active) Once the HWSC duration time “Thwsc_dur” has expired the internal signal HWSC_done is set to "1", independently of the HWSC result. HWSC failed In case the HWSC has failed or is not done, all outputs are disabled. HWSC is not done if it was not triggered or if is not finished (“Thwsc_dur” not expired) Result of HWSC/LBIST test HWSC/LBIST test status (3 bits) is requested by SPI command "states request 1": Table 31. HWSC/LBIST_status Bit status (b2 b1 b0) Note: Description 0xx HWSC/LBIST not done 100 HWSC/LBIST done - HWSC FAIL/LBIST FAIL 101 HWSC/LBIST done - HWSC running/LBIST PASS 110 HWSC/LBIST done - HWSC FAIL/LBIST PASS 111 HWSC/LBIST done - HWSC PASS/LBIST PASS Condition Default value (-) available in the R8/R7/R6 positions in SPI answer frame 8a. DS11115 Rev 10 31/95 94 Functional description L9960, L9960T Figure 13. HWSC state diagram state before HWSC executed HWSC ongoing HWSC done - (N)_HWSC_RQ = („0") / „1" (SW_REQUEST) POR 3 HWSC_done = „1" HWSC_pass = „0" HWSC failed 1 2 HWSC_done = „0" HWSC_pass = „0" (N)_HWSC_RQ = („0") / „1" HWSC_done = „0" HWSC_pass = „X" HWSC passed 4 HWSC_done = „1" HWSC_pass = „1" (N)_HWSC_RQ = („0") / „1" (SW_REQUEST) GAPGPS02319 4.4.2 HWSC/LBIST electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 32. HWSC/LBIST electrical characteristics Pos. Symbol 6.1 VDD5_ov_hw Parameter Condition VDD5 over-voltage disable threshold in HWSC mode - Analog settling time for changing in HWSC mode and back Settling time for changing the VDD5 overvoltage disable threshold includes analog filter time tA_FIL, (guaranteed by design) HWSC duration time Min. Max. Unit 3.7 4.2 V 0 10 µs (guaranteed through scan) 100 160 µs 6.2 Thwsc_ch_ov 6.3 Thwsc_dur 6.4 Thwsc_fil HWSC filter time (guaranteed through scan) 40 70 µs 6.5 Thwsc_ref HWSC reference time (guaranteed through scan) 80 130 µs 6.6 - LBIST coverage for the disable path (design info) 95 - % 6.7 LBIST_dur LBIST duration at start-up (guaranteed through scan) - 4.34 ms 32/95 DS11115 Rev 10 L9960, L9960T 4.5 Functional description Digital input controls All the digital inputs and outputs of the L9960 must be compatible with 3.3V and 5V CMOS technologies, but must also withstand up to 19V. Bridge functional modes Three functional modes are available on L9960, listed below:  Normal mode (via PWM / DIR)  VVL  IN1 / IN2 Normal mode L9960 is in Normal Mode when the PWM / DIR control interface is selected. In the below example it is showed the case of LS active freewheeling. Figure 14. Bridge STATE diagram NDIS NORMAL MODE 4.5.1 DIS DIR PWM BRIDGE STATE Forward Free Wheeling Reverse Free Wheeling Forward HS0 command LS0 command HS1 command LS1 command GAPGPS02320 VVL mode VVL mode is programmed through a dedicated SPI command “VVL mode” (configuration 3). This mode is used to drive valves in Forward or Reverse mode. DS11115 Rev 10 33/95 94 Functional description L9960, L9960T Figure 15. Bridge STATE diagram in VVL mode VVL MODE NDIS DIS DIR PWM BRIDGE STATE Free Tri Wheeling state Forward Reverse Free Tri Wheeling state Tvvl Tvvl Forward GAPGPS02321 Programming the bridge in normal or VVL mode is performed through dedicated SPI command to setup the MODE configuration bit: Table 33. VVL_MODE Bit status Note: Description 0 No VVL mode 1 VVL mode Condition Reset value - (-) available in the D10 bit position in SPI command frame 5. The status of the VVL is echoed through a SPI configuration request Table 34. VVL_MODE echo Bit status Note: Description 0 No VVL mode 1 VVL mode Condition Reset value - (-) available in the R11 bit position in SPI answer frame 7c. In VVL mode, once PWM is set to LOW, the bridge is put in tri-state after a programmable time “Tvvl” from 0us to 26ms by the register defined below. Table 35. TVVL[3:0] (µs) 4 bits combination 34/95 Description 0000 0 0001 6.4 0010 12.6 Condition Not to be used if IN1/IN2 interface is selected 0011 24.8 0100 50.4 - 0101 100 - 0110 200 - 0111 400 - DS11115 Rev 10 L9960, L9960T Functional description Table 35. TVVL[3:0] (µs) (continued) 4 bits combination Note: Description Condition 1000 800 - 1001 1600 - 1010 3200 - 1011 6500 - 1100 13000 - 1101 26000 - 1111 26000 Reset value (-) available in the D9/D8/D7/D6 bit position in SPI command frame 5. VVL mode is deactivated (no tri-state phase) when the current limitation is active The status of the TVVL is echoed through a SPI configuration request Table 36. TVVL_echo[3:0] Note: 4 bits Status combination Description Condition 0000 0 0001 6.4 0010 12.6 0011 24.8 0100 50.4 - 0101 100 - Not to be used if IN1/IN2 interface is selected 0110 200 - 0111 400 - 1000 800 - 1001 1600 - 1010 3200 - 1011 6500 - 1100 13000 - 1101 26000 - 1111 26000 Default value (-) available in the R10/R9/R8/R7 bit position in SPI answer frame 7c. IN1_IN2 mode This mode changes the meaning of PWM/DIR and allows driving directly the half-bridge. To enable this mode it is necessary: Note: 1. Program a dedicated SPI register (configuration2: IN1_IN2_if) set to '1'. 2. PWM/DIR (IN1/IN2) inputs must be low to latch and apply the configuration (see Note). In order to set back the default driving control mode (PWM/DIR) the same procedure has to be followed: the SPI command bit IN1_IN2_if bit has to be set to '0' and IN1=IN2 has to be set to '0' to latch and apply the configuration. DS11115 Rev 10 35/95 94 Functional description L9960, L9960T Status of the SPI register (IN1_IN2_if) and its internally latched version are available through SPI (configuration request 2: “(IN1_IN2_if)” echo and "IN1_IN2_if_latched_echo") Figure 16. Bridge STATE diagram in IN1/IN2 mode N DIS DIS IN1 IN2 MODE PWM (IN1) DIR (IN2) HS Free Wheeling Reverse LS Free Wheeling Forward HS Free Wheeling GAPGPS02322 4.5.2 Disable inputs DIS and NDIS The pin DIS is internally pulled-up and high active. When DIS is active (set to HIGH), the bridge is set to disabled independently from the internal clock (asynchronous switch-off path), whatever the state of the DIR and PWM inputs. All the data stored in SPI registers are not reset and SPI communication with the MCU is still possible. When DIS is inactive (set to LOW) and NDIS is active (set to HIGH), the bridge is controlled by the DIR and PWM inputs, synchronously. After DIS or NDIS release, the bridge waits for the next PWM rising edge before being released from disable (see Note). The pin NDIS is internally pulled down and high active. When NDIS is inactive (set to LOW) either by NDIS pin or by protection schemes, the bridge is set disabled independently from the internal clock (asynchronous switch-off path), whatever the state of the DIR and PWM inputs. All the data stored in SPI registers are not reset and SPI communication with the MCU is still possible. The “real-time” state of the bridge is a bit called "BRIDGE_EN". It reflects the disabling of the bridge, (including disabling by internal protection schemes), and not the tri-state linked to VVL mode activation. Note: In case of IN1/IN2 mode, a rising edge either on IN1 or on IN2 is valid to release the disable mode. A minimum delay of 1us is suggested to be applied between DIS fall edge and rising edge on driving control pins. Table 37. BRIDGE_EN Bit status 36/95 Description Condition 0 Bridge disabled Default value 1 Bridge Enabled - DS11115 Rev 10 L9960, L9960T Note: Functional description (-) available in the R9 bit position in SPI answer frame 8a. The µC should be able to perform a SOPC (Switch-off path check). For that purpose, the status of each disable line is also provided through SPI status of the followings pins: NDIS, DIS, VDD5_OV, VDD5_UV. The status of NDIS and DIS can be monitored by 2 SPI registers: Table 38. NDIS_status Bit status Note: Description Condition 0 NDIS pin = '0' - 1 NDIS pin = '1' - (-) available in the R11 bit position in SPI answer frame 8a. Table 39. DIS_status Bit status Description Condition 0 DIS pin = '0' - 1 DIS pin = '1' - Note: (-) available in the R10 bit position in SPI answer frame 8a. 4.5.3 Control inputs DIR and PWM The pins DIR and PWM are internally pulled down. In normal mode, the bridge is controlled by these two inputs according to the following table: Table 40. Normal mode H-bridge input Note: DIR PWM OUT1_HS OUT1_LS OUT2_HS OUT2_LS Condition 1 1 1 0 0 1 Forward 0 1 0 1 1 0 Reverse x 0 0 1 0 1 Freewheeling A minimum pulse width of 1 µs has to be guaranteed on driving control pins PWM/DIR for the relative command acknlowdgement by internal logic. In IN1/IN2 mode, the bridge is controlled by these two inputs according to the table below: Table 41. IN1/IN2 mode H-bridge input Inputs Outputs (MOS Driver) Condition IN2 (DIR) IN1 (PWM) OUT1_HS OUT1_LS OUT2_HS OUT2_LS 0 0 0 1 0 1 LS Freewheeling 0 1 1 0 0 1 Forward DS11115 Rev 10 37/95 94 Functional description L9960, L9960T Table 41. IN1/IN2 mode H-bridge input (continued) Inputs Outputs (MOS Driver) Condition IN2 (DIR) IN1 (PWM) OUT1_HS OUT1_LS OUT2_HS OUT2_LS 1 0 0 1 1 0 Reverse 1 1 1 0 1 0 HS Freewheeling(1) 1. It is advised against using this recirculation option in IN1/IN2 mode as L9960 is not safely protected against external failures (i.e SCG). For IN1/IN2 mode only it is advised to recirculate (active freewheeling) on low-side drivers only. Note: A minimum pulse width of 1 µs has to be guaranteed on driving control pins PWM/DIR for the relative command acknlowdgement by internal logic. In VVL mode, the bridge is controlled by these two inputs and according to the VVL status as described in the table below: Table 42. VVL mode H-bridge input DIR PWM VVL phase OUT1_HS OUT1_LS OUT2_HS OUT2_LS Condition 1 1 1 0 0 1 Forward 0 1 no active with PWM=1 0 1 1 0 Reverse x 0 T < TVVL 0 1 0 1 Freewheeling x 0 T > TVVL 0 0 0 0 Tri-state A specific dead-time “TSW“ is implemented between high-side and low-side transistors switching to avoid cross-conduction. It applies when switching from on-state to freewheeling state and viceversa, regardless of the actual way to drive the H-bridge (PWD/DIR or IN1/IN2). The total delay may be related to the switching Current slew rate selected by SPI. The dead time is managed in the digital design, using analog feedback information from the gate driver. Table 43. TSW_low_current Bit config Description 0 Tsw activated on i_gate_fb only 1 Tsw activated on the last event between i_gate_fb or i_out_on Condition Reset value In order to avoid h-bridge misbehavior, it is strongly recommended to avoid working with default settings: TSW_low_current = 0 is the only configuration allowed for all the applications. POR, BIST/HWSC and SW reset commands overwrite the configuration TSW_low_current=0, so the application SW shall take care of resuming TSW_low_current=1. The bit TSW_low_current_echo is available for reading on the Configuration Request 1 register, for eventual runtime configuration check Note: 38/95 (-) available in the D2 bit position in SPI command frame 3. DS11115 Rev 10 L9960, L9960T Functional description A register report the echo of Tsw_low_current Config: "Tsw_low_current echo" Table 44. TSW_low_current_echo Bit status Note: Description Condition 0 echo Tsw activated on i_gate_fb only - 1 echo Tsw activated on the last event between i_gate_fb or i_out_on Default value (-) available in the R3 bit position in SPI answer frame 7a. By convention (normal mode), for DIR=1, the current flows from OUT1 to OUT2, for DIR = 0, the current flows from OUT2 to OUT1. Figure 17. 4 cases of high-side/low-side activation (normal mode) HS1 HS2 OUT1 OUT2 LS1 OUT2 LS2 DIR=1; PWM=1 (Forward) OUT1 OUT1 OUT2 DIR=0; PWM=1 (Reverse) DIR=1; PWM=0 (Freewheeling LS) OUT1 OUT2 DIR=0; PWM=0 (Freewheeling LS) GAPGPS02334 If IN1/IN2 mode is selected the convention is the following:  IN1=1, IN2=0 -> OUT1=1, OUT2=0 (Forward)  IN1=0, IN2=1 -> OUT1=0, OUT2=1 (Reverse)  IN1=0, IN2=0 -> OUT1=0, OUT2=0 (Freewheeling Low-Side)  IN1=1, IN2=1 -> OUT1=1, OUT2=1 (Freewheeling High-Side) DS11115 Rev 10 39/95 94 Functional description L9960, L9960T Figure 18. 4 cases of high-side/low-side activation (IN1/IN2 mode) VPS VPS T1 T2 T2 T1 M M T3 T4 T3 T4 IN1 = 0 , IN2 =1 Reverse , T2 and T3 active IN1 = 1 , IN2 = 0 Forward, T1 and T4 active VPS VPS T2 T1 T2 T1 M M T3 T4 IN1 = 0 , IN2 = 0 LS Freewheeling via T3 to T4 T3 T4 IN1 = 1 , IN2 = 1 HS Freewheeling via T2 to T1 Note: Please refer to warning message. GAPGPS02335 An active freewheeling is automatically set, at the end of the dead time, which means that the power transistor in parallel to the internal freewheeling diode is switched on during freewheeling phase. This should lead to a power dissipation decrease when driving inductive loads. Warning: In case of current limitation event in IN1/IN2 mode, the freewheeling is automatically set back to LS drivers. It is advised against selecting the HS recirculation in IN1/IN2 mode as L9960 is not safely protected against external failures (i.e SCG). For IN1/IN2 mode it is advised to recirculate (active freewheeling) on low-side drivers only. For PWM mode the recirculation is set by design on LS drivers only. 40/95 DS11115 Rev 10 L9960, L9960T 4.5.4 Functional description Digital inputs control electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 45. Digital inputs control electrical characteristics Symbol Parameter Condition Min. Typ. Max. Unit Vih Digital input voltage HIGH (NDIS, DIS, DIR, PWM) Valid for the extended range of temperature (note(1)) 1.75 - VDD5 +0.3 V Vil Digital input voltage LOW (NDIS, DIS, DIR, PWM) Valid for the extended range of temperature -0.3 - 0.75 V Vihys Hysteresis of digital input voltage (NDIS, DIS, DIR, PWM) 100 - 1000 mV -100 - -30 Vin = 5 V no back supply vs. the inputs allowed -5 - 5 Vin = 19 V Device is kept in tri-state -50 - 130 3 V < Vin < 5.5 V (Iinh_NDIS VDD5>VDD5_UV) 30 - 100 Vin = 19 V Device stays in normal state (Iinh_NDIS VDD5>VDD5_UV) 30 - 100 Vin < 0.75V (Iinh_NDIS VDD5>VDD5_UV) -5 - +90 TVVL accuracy - -25 - +25 % Dead time between active MOS switched OFF to freewheel MOS switched ON Valid for the extended range of temperature (guaranteed by scan) 1.8 2 2.5 us Tsw_sr Dead time between freewheel MOS switched OFF to active MOS switched ON Including freewheeling MOS Slew Rate delay Valid for the extended range of temperature (guaranteed by scan) 4.1 4.6 5.1 us Td_dis NDIS/DIS delay time DIS / NDIS  90% OUTx @ Iout = 3 A Analog delay at turn-off - - 5 µs DIS asynchronous filtering Analog EMC filtering (guaranteed by design) 0.2 - 1 µs Vin = 0 V Iinl Iinh Tvvl_acc TSW Td_filter Input current source for DIS Input current sink for: NDIS / DIR / PWM µA µA µA 1. Extended range of temperature (150, 170°C). DS11115 Rev 10 41/95 94 Functional description 4.6 L9960, L9960T Driver configuration The following features of the driver stage are configurable by SPI allowing to better fit it to the application requirements and also to the type of load. 4.6.1  Slew rate control  Current limitation thresholds  Overcurrent thresholds  Thermal warning and Shutdown thresholds Slew rate control The slew rate of each high side power transistor of the bridge is controlled either during turnon and turn-off (current and voltage slew rate). The same setting is applied for both switching phases. Moreover, the slew rate is configurable by SPI in order to get the best trade-off between conducted/radiated EMI and power dissipation during switching. The overall delay implemented between high-side and low-side transistor switching is adjusted automatically to avoid any cross-conduction through one half-bridge in all conditions (Tsw). 4.6.2 Current slew rate The current slew rate can be set in real time by SPI. The corresponding read/write bit is "ISR". No external component is needed to select the current slew rate range. Table 46. ISR Bit config Note: Description 0 see table below 1 default value see table Condition Reset value (-) available in the D7 bit position in SPI command frame 3. Current slew rate depends upon the ISR/NOSR configuration also on the following bits and conditions (ILIM_REG, overcurrent or Tj) as defined in the table below. Table 47. Range current slew rate 42/95 Range/ condition ISR TDSR NOSR Comment SLOW 0 X 0 Slow DI/DT FAST 1 X 0 Fast DI/DT SR disabled if ILIM_REG = 1 Or NOC=0 X X X Slew rate disabled if tj > Otwam X 1 X Slew rate disabled X X 1 DS11115 Rev 10 current slew rate not controlled L9960, L9960T Functional description The current SR setting is reported by bit "ISR_echo" Table 48. ISR_echo Bit status Description Condition 0 echo ISR SLOW config - 1 echo ISR FAST config Default value Note: (-) available in the R8 bit position in SPI answer frame 7a. 4.6.3 Voltage slew rate The voltage slew rate on HS FETs can be set in real time by SPI. The corresponding read/write bit is "VSR". Only the power transistors not used for freewheeling are adjustable, the two others are controlled with a preset slew rate. Table 49. VSR Bit status Note: Description 0 see table below 1 default value see table Condition Reset value (-) available in the R6 bit position in SPI command frame 3. Voltage Slew rate depends upon the VSR/NOSR bit configuration also on the following bit/conditions (ILIM_REG, overcurrent or Tj (and TDSR)) as defined in the table below. Table 50. Voltage slew rate Range/ condition VSR TDSR NOSR Condition SLOW 0 X 0 Slow dV/dT FAST (Default at POR) 1 X 0 Fast dV/dT SR disabled if ILIM_REG = 1 Or NOC = 0 X X X Very fast dv/dt Slew rate disabled if tj > OTwam X 1 X Very fast dv/dt Slew rate disabled X X 1 Very fast dv/dt The voltage SR setting is reported by bit "VSR_echo". Table 51. VSR_echo Bit status Note: Description Condition 0 echo VSR SLOW config - 1 echo VSR FAST config Default value (-) available in the R7 bit position in SPI answer frame 7a. DS11115 Rev 10 43/95 94 Functional description L9960, L9960T The current slew rate control can be disabled and the voltage slew rate can be overwritten by a faster SR when Tj > OTwarn, ILIM_REG = 1, NOC = 0 or NOSR bit is set. Table 52. NOSR Bit status Note: Description 0 NOSR mode NOT allowed 1 NOSR mode allowed Condition Reset value - (-) available in the D8 bit position in SPI command frame 3. The NOST configuration is reported by bit "NOSR_echo" Table 53. NOSR_echo Bit status Note: Description 0 Echo NOSR mode NOT allowed 1 Echo NOSR mode allowed Condition Default value - (-) available in the R9 bit position in SPI answer frame 7a. Temperature Dependent Slew Rate: When Tj > OTwarn and in case TDSR=1 (TDSR bit configuration defined below), the current and voltage slew rates are automatically switched from current configuration mode (SLOW or FAST) to the very fast configuration. In case TDSR='0' the current SR mode is kept as selected during OTwarn condition. Table 54. TDSR Bit status Note: Description 0 TDSR mode NOT allowed condition 1 TDSR mode allowed Condition Default value - (-) available in the D10 bit position in SPI command frame 6. The TDSR configuration is reported by bit "TDSR_ECHO" Table 55. TDSR_ECHO Bit status 44/95 Description 0 TDSR mode NOT allowed condition 1 TDSR mode allowed DS11115 Rev 10 Condition Default value - L9960, L9960T Functional description The ideal switching waveforms generated by an inductive load operating in switching mode are described in the following figure. The Initial state of the bridge shown in the figure corresponds to a freewheeling phase. Figure 19. Ideal waveforms of switching with slew rate control OFF HSideMOS GateDrive TURN-ON ON TURN-OFF OFF (Initial Conditions) IB I gate I CP1 IA I S1 V C,Miller (RDSON min.) I S2 IB IA I CP2 Vcharge_pump V gate_fb V gate_fb V gate_source VS/R_th V drain_source I ds Vout_on ILoad=Vps/R* DC V out I diode A 1 2 B B 3 4 5 6 7 A 8 9 10 ZOOM VMOS Vbat Toverlap I load IOUT GAPGPS02336 There are two phases during each turn-on and turn-off, in which the output slew-rate is controlled: current slope control for phase A, and voltage slope control for phase B (phase A and B refer to Figure 19). During phase A (current slope control), a constant gate current IA results in a defined dIout/dt due to the transconductance of the output stage (no closed loop control). DS11115 Rev 10 45/95 94 Functional description L9960, L9960T During phase B (voltage slope control), a constant gate current IB results in a defined dVMOS/dt due to the Miller capacitance of the output stage. VS/R_th is the threshold voltage for the voltage comparator connected to the output. VL is the low voltage of the transistor. 4.6.4 Current limitation A chopper current limitation is integrated in the L9960. This current limitation is used during transient phases (for instance, fast move of the throttle) or in case of stalled motor shaft, mainly to protect the actuator and also reduce the power dissipation inside the L9960. When the current reaches the current limitation threshold, the information is stored and latched in a bit called "ILIM_REG". This bit can be reset by the three methods defined previously (SPI, DIS, RESET). Table 56. ILIM_REG Bit status Note: Description 0 Latched I < Ilim_H and Toff > Toffmin 1 Latched I > Ilim_H and Tdiag2 expired Condition default value - (-) available in the R3 bit position in SPI answer frame 8a. The current limitation strategy is based on one threshold with hysteresis that leads to a controlled current ripple. As soon as current reaches ILIMH threshold (TlimH filter expiration) L9960 switches to NOSR mode, the internal SR control (very fast SR), and the ILIM_REG bit in ON-Diagnosis will be set to "1". Tdiag2 timing starts and overcurrent control is now enabled. The Tdiag2 timing is used to ensure short circuit detection: in case current reaches Ioc threshold (Toc filter implemented) before Tdiag2 expiration, the device will set the relative OVC diagnosis bits (OCH0,OCH1,OCL0,OCL1) according to the 4 MOS overcurrent thresholds data. L9960 is put in Tristate due to an "overcurrent" event that has been detected on at least one MOS. In case of NO OVC detection (no Ioc threshold reached) at the end of the Tdiag2 timing, the device takes the control, deactivates the VVL mode (if selected), and enters current limitation. The HS driver is switched off and it is forced an active freewheeling phase on both LS drivers that decreases current during t_off_min. This timing is used to assure a minimum recirculation time, to avoid any switch-on of the HS driver regardless of the PWM="1" user command (T-off-min timing will be also triggered by any possible falling edge on PWM before the end of Tdiag2 timing, since PWM information is still being analyzed). The value of the blanking time depends on a Vps threshold Vps_norm. If VPS crosses the Vps_norm threshold while Tdiag2 has already started, its value is not affected. 46/95 DS11115 Rev 10 L9960, L9960T Functional description Figure 20. Tdiag2 blanking time depends on the Vps voltage VPS Vps_norm Vps_norm_hyst Tdiag2 increase Tdiag2 min Tdiag2 increase GAPGPS02338 During the active freewheeling phase, the current continues decreasing down to I_lim_L threshold (with TlimL filter time implemented). ILIM_REG diagnosis bit is set to "0" as soon as current goes below I_lim_L+hyst. After current is below I_lim_L threshold during at least TlimL and t_off_min is elapsed, L9960 exits CURRENT_LIMITATION (still with NOSR active). The programmed VSR and ISR are set back if I < I_LIM_L and PWM='0'. When IN1-IN2 mode, VSR and ISR are set back if I < I_LIM_L and IN1 (or IN2)='0', depending on the toggling pin. Figure 21. Slew rate switching strategy ILS t_off_min tempo is started at each HS switch-OFF while in NOSR mode (end of blanking OR PWM falling edge) I_lim_H I_lim_L 0 Once I > I_lim_H, we start blanking and go to NOSR mode t_off_min t_off_min t PWM Tdiag2 Ignored (toff_min) Tdiag2 BLANKING ILIM_REG Once (I < I_lim_L) AND after t_off_min, we leave current limitation When (I < I_lim_L) AND i_pwm = ‘0’, we go back to normal SR (otherwise we remain in NOSR mode) and toff_minisnot applied continued (SV OC diag) CURRENT_LIM SLEW RATE SSR/FSR NOSR SSR/FSR SSR: Slow Slew Rate FSR: Fast Slew Rate NOSR: Increase Slew Rate Note: - Current limitation state is reached when I > I_lim_H at the end of blanking (MOS is switched-OFF by the device, user looses control). This information is latched in ILIM_REG SPI bit. When toff_min is started due to PWM falling edge in FSR, the ILIM_REG SPI bit is not set (MOS is switched-OFF by user). - PWM control remains active during blanking (user can switch-off) GAPGPS02339 DS11115 Rev 10 47/95 94 Functional description L9960, L9960T Figure 22. Current limitation schemes Fpwm = 1kHz --> MOS switching period is determined by current limitation conditions ILoad Tdiag2 Toffmin Tdiag2 Toffmin Ilim_H Ilim_L Tliml Tliml MOS PWM time ILoad Tdiag2 Fpwm = 10 kHz -> MOS switching period corresponds to PWM switching period Tdiag2 Ilim_H Ilim_L Toffmin MOS PWM time GAPGPS02340 Note: See also Figure 21: Slew rate switching strategy. The high threshold "Ilim_H" of the current limit is selectable by SPI through the bits called "CL[1:0]". Four current limits are available to fulfill the transient current requirements of the application. The default value is set to Range 1. The low threshold "Ilim_L" is based on the high threshold (Ilim_L = Ilim_H – 0.5 (TYP)). 48/95 DS11115 Rev 10 L9960, L9960T Functional description Table 57. CL[1:0] 2 bits combination Note: Description Condition 00 Range 0 - 01 Range 1 reset value 10 Range 2 - 11 Range 3 - (-) available in the R10,R9 bit positions in SPI command frame 3. A register report the echo of CL[1:0] configuration register: "CL_echo[1:0]" Table 58. CL_echo[1:0] 2 bits status combination Note: Description Condition 00 Echo Range 0 config - 01 Echo Range 1 config reset value 10 Echo Range 2 config - 11 Echo Range 3 config - (-) available in the R11,R10 bit position in SPI answer frame 7a. Effect of the temperature Figure 23. Effect of the temperature diagram Ilim Ilim_range_3 A B Tsecure C Ilim_range_2 A Ilim_reduction_range_3 = Ilim_Tsd3 C Ilim_range_1 A Ilim_reduction_range_2 = Ilim_Tsd2 C Ilim_range_0 D A D Ilim_reduction_range_1 = Ilim_Tsd1 C D Ilim_reduction_range_0 = Ilim_Tsd0 D OTwarn OTsd Temp GAPGPS02652 DS11115 Rev 10 49/95 94 Functional description L9960, L9960T In order to take into account the junction temperature increase, the current limitation threshold is dynamically adjusted. Below a junction temperature of "OTwarn", the current limit "Ilim_H" linearly decreases from dot A to dot B like as showed in Figure 24: Thermal current limitation adjustment. When Tj exceeds OTwarn, then the Ilim_H is automatically decreased, proportionally with temperature, down to Ilim_Tsd (dot C on Figure 24) in order to reduce the power dissipation and preserve the device. If, in case of a lower power dissipation, the junction temperature decreases below OTwarn_ hyst, then the Ilim_H consequently would increase staying always on C-B or B-A line. It is possible changing the OTwarn and OTsd thresholds via SPI, and reading the ECHO response as showed in the following tables. Table 59. OTwarn_thr_var Note: Bit status Description Condition 000 0 Default value, Otwarn (150, 170) °C 001 -5 - 010 not allowed - 011 not allowed - 100 +5 - 101 +10 - 110 +15 - 111 +20 - (-) available in the R6,R5,R4 bit position in SPI command frame 4. Table 60. OTwarn_thr_var_echo Note: 50/95 Bit status Description Condition 000 0 Default value, Otwarn (150, 170) °C 001 -5 - 010 not allowed - 011 not allowed - 100 +5 - 101 +10 - 110 +15 - 111 +20 - (-) available in the R6,R5,R4 bit position in SPI answer frame 7b. DS11115 Rev 10 L9960, L9960T Functional description Table 61. OTsd_thr_var Note: Bit status Description Condition 000 0 Default value, Otsd (170, 200) °C 001 -5 - 010 -10 - 011 -15 - 100 +5 - 101 +10 - 110 +15 - 111 +20 - (-) available in the R9,R8,R7 bit position in SPI command frame 4. Table 62. OTsd_thr_var_echo Note: Bit status Description Condition 000 0 Default value 001 -5 - 010 -10 - 011 -15 - 100 +5 - 101 +10 - 110 +15 - 111 +20 - (-) available in the R9,R8,R7 bit position in SPI answer frame 7b. DS11115 Rev 10 51/95 94 Functional description L9960, L9960T Table 63. Electrical characteristics Symbol Ilim_H Ilim_Tsd3 Ilim_Tsd2 Ilim_Tsd1 Parameter Min. Typ. Max. Unit Current limitation high threshold Tj = -40°C Point A 3.4 4.5 5.6 A CL1:0 = 00 / range 0 Tj = Otwarn Point B 3.2 4.3 5.4 A Current limitation high threshold Tj = -40°C Point A 5.4 7 8.6 A CL1:0 = 01 / range 1 Tj = Otwarn Point B 5.1 6.6 8.2 A Current limitation high threshold Tj = -40°C Point A 6.4 8.3 10.2 A CL1:0 = 10 / range 2 Tj = Otwarn Point B 6.1 7.9 9.7 A Current limitation high threshold Tj = -40°C Point A 8.8 10.7 12.8 A CL1:0 = 11 / range 3 Tj = Otwarn Point B 8.1 10.1 12.2 A Current limitation high threshold Tj = Otsd Point C 1.25 2.5 3.75 Above OTsd CL1:0 = 11 / range 3 CL1:0 = 10 / range 2 0.97 1.95 2.92 CL1:0 = 01 / range 1 0.83 1.65 2.48 CL1:0 = 00 / range 0 0.54 1.08 1.62 Tj = -40 °C to Tj = Otwarn; Segment AB (range 1 and range 2) 0.35 0.5 0.8 A Tj ≤ 25 °C range 0 and range 3 0.35 0.5 0.88 A Tj > 25 °C to Tj = Otwarn; Segment AB; range 0 and range 3 0.35 0.5 0.8 A Current limitation high threshold Ilim_Tsd0 Ihyst Condition Current hysteresis A Toffmin Current limitation delay time Digital delay (guaranteed through scan) 30 - 45 µs Toverlap VMOS high and Iout low overlapping time Guaranteed by design 0 - 5 µs Vps > Vps_norm Digital filter (guaranteed through scan) 10 - 15 µs Vps < Vps_norm Digital filter (guaranteed through scan) 15 - 20 µs - 8.9 - 9.6 V Tdiag2 Vps_norm 52/95 Blanking time Beside this Vps threshold the blanking time is low DS11115 Rev 10 L9960, L9960T Functional description Table 63. Electrical characteristics (continued) Symbol Parameter Below Vps norm – Vps_norm_hyst Vps_norm_hyst threshold blanking time increase Tlimh High current limitation threshold filtering time Tliml Low current limitation threshold filtering time SlowDI/DT FastDI/DT SlowDV/DT FastDV/DT VFastDV/DT Condition - Digital anti glitch filters (guaranteed through scan) Measured between 20% and Slow current slew rate on HS 80% of the output current. drivers (Following limits are related to SR measured with VPS at 16 V Fast current slew rate on HS and with resistive load (6 Ω). SR are referred to HS drivers drivers only). (1) Slow current slew rate on HS drivers Measured between 20% and 80% of the output voltage. Fast current slew rate on HS (Following limits are related to drivers SR measured with VPS at 16 V and pure resistive load (6 Ω). Very fast voltage slew rate on SR are valid for HS drivers only.) HS drivers Min. Typ. Max. Unit 0.001 0.1 0.2 V 0.1 0.55 1 µs 1 2 3 µs 0.3 0.6 0.9 A/µs 1 2 3 A/µs 2 4 7 V/µs 5 10 17 V/µs 16 20 30 V/µs 1. Application note will include SR trend with different battery voltage and resistive/inductive load. DS11115 Rev 10 53/95 94 Functional description L9960, L9960T 4.7 Driver protections 4.7.1 Over-temperature protection In case of over-temperature detection (Tj > OTsd), the bridge is disabled. The information is stored on both latched and unlatched bits called NOTSD_REG and NOTSD. This bit can be reset by the three different ways. The real-time status of over-temperature is indicated in a bit called NOTSD. A double flag strategy is implemented: NOTSD indicates real time status, NOTSD_REG latches the fault until cleared. Table 64. NOTSD Note: Bit status Description Bridge state Condition 0 Tj>Otsd Disabled - 1 TjOtsd Disabled - 1 Latched if Tj OTwarn - (-) available in the R4 bit position in SPI answer frame 8b. Table 69. OTWARN_REG Bit status Description Comment 0 Latched if Tj < OTwarn Default value 1 Latched if Tj > OTwarn - Note: (-) available in the R5 bit position in SPI answer frame 8a. 4.7.2 Over-temperature monitoring electrical characteristics Table 70. Over-temperature monitoring electrical characteristics Symbol OTwarn OTsd OThyst 56/95 Parameter Over-temperature warning Over-temperature shut-down threshold Over-temperature hysteresis Condition Min. Typ. Max. Unit OTwarn_thr_var set to 000 (default value) 150 - 170 °C OTwarn_thr_var set to 001 145 - 165 °C OTwarn_thr_var set to 100 155 - 175 °C OTwarn_thr_var set to 101 160 - 180 °C OTwarn_thr_var set to 110 165 - 185 °C OTwarn_thr_var set to 111 170 - 190 °C OTsd_thr_var set to 000 (default value) 170 - 200 °C OTsd_thr_var set to 001 165 - 195 °C OTsd_thr_var set to 010 160 - 190 °C OTsd_thr_var set to 011 155 - 185 °C OTsd_thr_var set to 100 175 - 205 °C OTsd_thr_var set to 101 180 - 210 °C OTsd_thr_var set to 110 185 - 215 °C OTsd_thr_var set to 111 190 - 222 °C 0 - 5 °C Applicable for OTwarn and OTsd DS11115 Rev 10 L9960, L9960T Functional description Table 70. Over-temperature monitoring electrical characteristics (continued) Symbol Parameter Condition Min. Typ. Max. Unit TTSD Over-temperature filtering time Guaranteed by clock measurement 1.7 2 2.3 µs Tsecure Time out to decrease Ilim Guaranteed through scan 1.5 - 2 s Tsdoff Over-temperature shutdown release time Filter on OTSD release (guaranteed through scan) 90 100 110 ms OTsdOTwarn Rang of temperature dependent current reduction - 20 - - °C Tj_range Junction temperature analog output range - 125 - 190 °C Tj_acc Junction temperature analog output accuracy Guaranteed through scan - - 3 °C 1 - 3 µs TOT_warn 4.7.3 Temperature warning filtering time Short-circuit to battery: over-current detection in low-side transistors Figure 25. Example of low-side transistor low impedance short circuit to battery (I < Ioc_ls) Battery current Rshort OFF OUT1 OFF DC motor ON OUT2 OFF GND GAPGPS02344 The low-side transistors are protected against over-current due to an output short-circuited to battery. When a low-side transistor is switched on, the current is monitored and if the lowside over-current threshold "Ioc_ls" is overtaken for duration longer than "Toc_ls", the bridge is switched to disable. This information is stored and latched in bits called "OCL_x". The bits "OCL_x" are reset and the bridge is released when diagnostics is read by SPI (if DIAG_CLR_EN=1 only), or by DIS level change (falling edge) or by RESET. DS11115 Rev 10 57/95 94 Functional description 4.7.4 L9960, L9960T Short-circuit to ground: over-current detection in high-side transistor The high-side transistors are protected against over-current due to an output short-circuited to ground. When a high-side transistor is switched on, the current is monitored and if the high-side over-current threshold "Ioc_hs" is overtaken for duration longer than "Toc_hs", the bridge is switched to tri-state. This information is stored and latched in bits called "OCH_x". The bits "OCH_x" are reset and the bridge is released when diagnostics is read by SPI if DIAG_CLR_EN=1, or by DIS level change (falling edge) or by RESET. The low-side and high-side over-current thresholds, in case of current limitation on low-side transistors, are respecting the following conditions:  Itrack_ls = Ioc_ls - Ilim_H  Itrack_hs = Ioc_hs - Ilim_H Itrack_ls and Itrack_hs are defined as follows:   In forward condition, the reference for tracking is Ilim_H (threshold is referred to LS1) – Itrack(HS0) = Ioc(HS0) - Ilim_H(LS1) – Itrack(LS1) = Ioc(LS1) - Ilim_H(LS1) In reverse condition, the reference for tracking is Ilim_H (threshold is referred to LS0) – Itrack(HS1) = Ioc(HS1) - Ilim_H(LS0) – Itrack(LS0) = Ioc(LS0) - Ilim_H(LS0) Figure 26. Over-current detection Toc _x ILoad Ioc _x Itrack _x Tracking current Tlimh + Tb Ilim _H Ilim _L Over-current detection Î Bridge in tri-state time GAPGPS02345 4.7.5 Load in short-circuit In order to discriminate between the short circuit of an output to GND and the load in short circuit, a current detection threshold is available for all 4 MOS transistors of the bridge: 58/95  for the 2 freewheeling transistors, Ilim_H current detection threshold is used,  for the 2 other transistors, a current detection threshold called Ion_th = Ilim_H is implemented.  Ion_th only follows AC slope when the temperature is changing  Bits are to be stored when validity bit is set. DS11115 Rev 10 L9960, L9960T 4.7.6 Functional description Over-current detection electrical characteristics Parameters are specified at 2 temperatures -40°C and +150°C; for temperatures between -40°C and +170°C, the current values are interpolated. Table 71. Over-current detection electrical characteristics Symbol Ioc_ls Ioc_hs Parameter Condition Min. Typ. Max. Unit Over-current threshold CL1:0 = 00 / range 0 Tj = -40°C 5.4 7 8.6 Tj = 150°C 5.2 6.8 8.4 Over-current threshold CL1:0 = 01 / range 1 Tj = -40°C 7.4 9.5 11.6 Tj = 150°C 7.1 9.2 11.2 Over-current threshold CL1:0 = 10 / range 2 Tj = -40°C 8.4 10.8 13.2 Tj = 150°C 8.1 10.4 12.7 Tj = 150°C 9.8 12.1 14.3 A Tj = -40°C for Ioc_ls 10.4 12.6 15.8 A Tj = -40°C for Ioc_hs 10.4 12.6 14.9 A 2 2.5 5 A Over-current threshold CL1:0 = 11 / range 3 A A A Itrack_ls Itrack_hs Tracking current for CL1:0  10 & 11 - Itrack_ls Itrack_hs Tracking Current for CL1:0 =10 Tj ≤ 25 °C 1.8 2.5 5 A Tracking Current for CL1:0 =10 Tj = 150 °C 2 2.5 5 A Itrack_ls Tracking current for CL1:0 = 11 - 1.6 1.9 5 A Tracking current for CL1:0 = 11 Tj ≤ 25 °C 1.1 1.9 5 A Tracking current for CL1:0 = 11 Tj = 150 °C 1.6 1.9 5 A Low-side & high-side overcurrent detection filtering time -40°C  Tj  150°C Digital filter (guaranteed through scan) 1 - 2 µs Itrack_hs Toc_ls Toc_hs Ioc_on Non-Freewheeling MOS LSC threshold CL1:0 = 11 / range 0 Tj = -40°C 3.4 - 5.6 Tj = 150°C 3.2 - 5.4 Non-Freewheeling MOS LSC threshold CL1:0 = 11 / range 1 Tj = -40°C 5.4 - 8.6 Tj = 150°C 5.1 - 8.2 Non-Freewheeling MOS LSC threshold CL1:0 = 11 / range 2 Tj = -40°C 6.4 - 10.2 Tj = 150°C 6.1 - 9.7 Non-Freewheeling MOS LSC threshold CL1:0 = 11 / range 3 Tj = -40°C 8.8 - 12.8 Tj = 150°C 8.1 - 12.2 DS11115 Rev 10 A A A A 59/95 94 Functional description L9960, L9960T Table 71. Over-current detection electrical characteristics (continued) Symbol Parameter Tionh Ion threshold filtering time Tionl Ihyst 4.8 Current hysteresis on Ion Condition Min. Typ. Max. Unit Digital anti glitch filters on rising edge (guaranteed through scan) 1 2 3 µs Digital anti glitch filters on falling edge (guaranteed through scan) 1 2 3 µs Tj = -40°C to +150° 0.4 0.5 0.6 A Diagnostics and registers descriptions in case of validity bit configuration A detailed diagnostic of the H-bridge is available through SPI communication. The diagnostic words are used to report the following information:  H-Bridge failures,  H-bridge functional status,  H-bridge HWSC test result. A detailed diagnostic is performed using a validity concept. The concept of the validity of the diagnostic is to provide the information “diagnostic done” OR “diagnostic NOT done”. 4.8.1 Diagnostic Reset strategy When diagnosis bits are latched, they can only be released by one of the following conditions:  Transition from "Disable" (High) to "Enable" (Low) on DIS pin,  Diagnostic register read by SPI (see details on each failure release) depending on "DIAG_CLR_EN" bit status,  Reset condition. Usually, when the diagnostic register is reset, the bridge is switched back to normal mode driven by DIR and PWM or IN1 and IN2. All the settings are kept as before the failure. In case of SPI read, no additional action on DIS is needed. When the diagnosis is combined with a protection of the driver (driver put into tri-state), a reading by spi clears the diagnosis, but the bridge is released only at the next PWM rising edge event. 60/95 DS11115 Rev 10 L9960, L9960T 4.8.2 Functional description Diagnostic reset bit In case of "DIAG_CLR_EN" set to HIGH (RESET value), all the bits of the diagnostic register can be cleared by the three possibilities described in the previous section. In case of "DIAG_CLR_EN" set to LOW, the SPI diagnostics reading doesn't clear the flag for diagnostics flags bits reported in Table 72. Therefore, the bridge is kept in disable state until a transition from "high" to "low" on DIS pin or RESET condition. Table 72. DIAG_CLR_EN Bit config Note: Description 0 OC and OT diagnostic status bits not cleared by SPI reading 1 Clear of diagnostic status bits by SPI reading Comment Reset value (-) available in the R0 bit position in SPI command frame 3. A register reports the echo of DIAG_CLR_EN configuration regsiter: "DIAG_CLR_EN_echo" Table 73. DIAG_CLR_EN_echo Bit config Note: Description 0 OC and OT diagnostic status bits not cleared by SPI 1 Clear of diagnostic status bits by SPI reading Comment Default value (-) available in the 1st bit position in SPI answer frame 7a. If a new diagnostic occurs simultaneously with diagnostic register reset, this new diagnostic becomes the new status of the diagnostic register (new information must not be lost). Known limitation: This diagnostic reset strategy has a limitation: if the SPI transfer is not correct (for example only 15 clock periods instead of 16) and the diagnostic register has already been cleared, if the failure is no more present, the information is lost (it has not been transferred to the µcontroller). DS11115 Rev 10 61/95 94 Functional description L9960, L9960T Status bits description Note: usually status bits information is not impacted by any SPI communication, whatever the “DIAG_CLR_EN” state is. Table 74. Status bits description Name Description SPI read impact Config_CC_state_echo Echo of programmed the Communication Check CL[1:0] No Echo of the programmed Current Limitation Range No Echo of the programmed Increased Slew Rate No ISR echo Echo of the programmed Current Slew Rate range No VSR echo Echo of the programmed Voltage Slew Rate No DIAG_CLR_EN echo Echo of the programmed DIAG_CLR_EN bit No Echo of the programmed VVL mode No Echo of the programmed freewheel duration in VVL mode No ASSP Name No Silicon Version No Echo of the programmed Spread Spectrum mode No NOSR echo VVL_MODE echo TVVL[3:0] ASSP Name[9:0] Silicon Version[3:0] NSPREAD echo TSW_low_current_echo Echo of the programmed Cross- condition improve mode No I[23:0] Echo of tracking part number No ASSP Echo of ASSP device No Echo of digital tracking version No Echo of programmed TDIAG1 validation time No Code version[7:0] TDIAG1[2:0] Table 75. Diagnostics bits description Name Description POR value Bit State DIAG_CLR_E N impact Hbridge state reported in NGFAIL DIAG_OFF[2:0] Off-state diagnostic (openload, short-circuit) 111 Latched No - Yes OL_ON_STATUS[1:0] On-state diagnostic (openload) 01 Not latched No - Yes VPS_UV Vps Under-voltage detection 0 Not latched No Hi-Z if “0” No VPS_UV_REG Vps Under-voltage detection 0 Latched Yes Hi-Z if “0” No VDD_UV Vdd Under-voltage detection 0 Not latched No - No VDD_UV_REG Vdd Under-voltage detection 0 Latched Yes - Yes VDD_OV_REG Vdd Over-voltage detection 0 Latched Yes - Yes VDD_OV Vdd Over-voltage detection 0 Not latched No Hi-Z if “0” No 62/95 DS11115 Rev 10 L9960, L9960T Functional description Table 75. Diagnostics bits description (continued) Name Description POR value Bit State DIAG_CLR_E N impact Hbridge state reported in NGFAIL ILIM_REG Current limitation mode 1 Latched No - No OTWARN Over-temperature warning 0 Not latched No - No OTWARN_REG Over-temperature warning 0 Latched No - No NOTSD Over-temperature shut down 1 Not latched Yes - No NOTSD_REG Over-temperature shut down 1 Latched Yes - Yes BRIDGE_EN Bridge “Enable” 0 Not latched No Hi-Z if “0” No OCH0[1:0] Over-current on high-side transistor OUT 0 10 Latched Yes Hi-Z if “00” Yes OCL0[1:0] Over-current on low-side transistor OUT 0 10 Latched Yes Hi-Z if “00” Yes OCH1[1:0] Over-current on high-side transistor OUT 1 10 Latched Yes Hi-Z if “00” Yes OCL1[1:0] Over-current on low-side transistor OUT 1 10 Latched Yes Hi-Z if “00” Yes VDD_OV_L[2:0] Counter for duration of VDD_OV event 001 Latched No - No Error_count[3:0] Number of over-current events 0000 Latched Yes - no CC_latch - 1 Latched No Hi-Z if "0" Yes NDIS status - - Not Latched No - Yes 000 Not Latched No Yes 000000 Not Latched No No 10 Latched Yes HWSC/LBIST_status (1) OTSDcnt[5:0] Load in Short Circuit status of the HWSC/LBIST Number of OTSD events part of the general Overcurrent Diagnostics Hi-Z if "11" Yes 1. In case of SPI interrogation for HWSC/LBIST in between test execution, the answer could be "0xx". DS11115 Rev 10 63/95 94 Functional description 4.8.3 L9960, L9960T Global Failure Bit NGFAIL definition NGFAIL groups the following failures:  Over-current on each of the 4 MOS (Ion threshold not taken into account, validity bit not taken into account), including the load in short-circuit  Open-load in ON-state  Open-load (or shorts) in OFF-state  HWSC (or BIST) not executed or failing  CC_latch_status  VDD Over-voltage (latched)  VDD Under-voltage (latched)  NOTSD_REG  UV_CNT_REACHED = 1 and UV counter stop  NDIS = 0 (also when forced low externally) Once all the conditions which determine the assertion of NGFAIL are cleared (failure no more present and the latched version of the failure bit is cleared), the bit is de-asserted. In case NGFAIL is flagged because of NOTSD_REG assertion, the flag remains set until a toggle of DIS pin is performed. There is no failure considered on Vps undervoltage, despite the bridge goes in OFF-state. There is no clear of NGFAIL by itself, the reported error itself has to be cleared in order to clear NGFAIL. Table 76. NGFAIL Bit status Note: 64/95 Description 0 failure 1 no failure Condition default value (-) available in the R4 bit position in SPI answer frame 8a. DS11115 Rev 10 L9960, L9960T 4.8.4 Functional description Diagnostic of "Over-current" in on-state The diagnostics of over-current on high-side and low-side transistors are based on 2 bits for each transistor. Table 77. Diagnostic of "Over-current" in on-state 2 Bits status by MOS Bits Status 1 Bits Status 0 OCH0[1:0] / OCH1 [1:0] / OCL0[1:0] / OCL1[1:0] Priority Condition NOC ION_TH 1 0 Diag not done or no over current detection 3 (lowest) Default value 0 0 Diag done, over current detection 1 (highest) - 1 1 Diag done,load short detect on diagonal MOS 2 - Note: (-) available in the R10,R9,R7,R6,R4,R3,R1,R0 bit position in SPI answer frame 1. First bit is overcurrent and second bit is load short detection. Note:  OCxx[1] bit is over current detection: “0” means over current detection  OCxx[0] bit is Ion current threshold detection: “1” means above Ion_th threshold + Ioc on diagonal MOS (this bit allows a reliable detection of load in short circuit). OCxx[1:0] = 2’b01 is not a possible condition. Figure 27. Example of correct Overcurrent detection User case for validity bit assertion ILoad Ioc Ion_th Tdiag2 Tdiag1 GAPGPS02359 DS11115 Rev 10 65/95 94 Functional description L9960, L9960T Figure 28. Example of NO Overcurrent detection by Tdiag2 User case for validity bit assertion ILoad Ioc Ion_th Tdiag2 Tdiag1 GAPGPS02551 The way to define the validity of the diagnostic is based on a programmable time called "Tdiag1" and the fixed time “Tdiag2”. As soon as an activation command is set (PWM edge or IN1!=IN2), the timing "Tdiag1" starts. Tdiag1 is defined as the maximum programmable time in which it is expected that the current reaches the current limitation threshold for a valid detection. Tdiag2 starts automatically when Ion_th is overcome and depends on the conditions on Vps (pls refer to Vps_norm thresholds on Table 63). Both are digital filters and guaranteed through scan. Depending on the load current profile the two filters could be overlapped or as worst case, sequential. Here below it is explained the diagnostics result, with respect to Iload and Tdiag1 and Tdiag2:  If the current reaches the over-current threshold "OC_hs(ls)" for a duration "Toc_hs (ls)" during diagnostics (Tdiag1, Tdiag2), the failure is detected and the bits "OCxx1:0" are set to "00", which means "OVER-CURRENT ".  If the current is above I_lim_H and below the over-current threshold "OC_hs(ls)" and the duration above Ion_threshold is shorter than “Tdiag2”, then "OCxx1:0" are set to "10" which means "NO OVER-CURRENT".  If the current is above I_lim_H and below the over-current threshold "OC_hs(ls)" and the duration above Ion_threshold is longer than “Tdiag2”, then "OCxx1:0" are set to "10" which means "NO OVER-CURRENT" (current limitation reached).  If the Tdiag1 duration cannot be reached and no overcurrent detected for duration Toc_hs(ls), then "OCxx1:0" are set to "10" which means "NO OVER-CURRENT".  If the current is above Ion_threshold and below the over-current threshold "OC_hs(ls)" and an overcurrent is detected in same time as diagonal MOS, then "OCxx1:0" are set to "11" which means "NO OVER-CURRENT BUT IO-ON is above threshold" In case the overcurrent threshold is reached after Tdiag1+Tdiag2 expiration (worst case), the device is still protected by an automatic shut-off after Timer expiration. 66/95 DS11115 Rev 10 L9960, L9960T Functional description Figure 29. Current diagnostic state diagram for each MOS Activation command or cyclic in case of perduration of active state Tdiag1 deared I < Ion_Th NOC = 1 Ion_Th = 0 t1 = rising edge Ion Timer Tdiag1 and Tdiag2 running NOC = 1 Ion_Th=0 Timer Tdiag1 running Timer Tdiag2 stopped & deared I < Ion_Th & Timer >= Tdiag1 I > Ion_Th (Timer > = Tdiag1) & (((I > I_on) & (Timer >= Tdiag1 + Tdiag2)) or I < Ion_Th) NOC = 1 Ion_Th = 0 I > Ioc Ioc on Diagonal MOS I > Ioc I > Ioc I > Ioc NOC=1 Ion_Th = 1 NOC = 0 Ion_Th = 0 Error counter incremented 0CXX = 10 0CXX = 11 0CXX = 00 GAPGPS02358 The condition I > Ioc means a current higher than Ioc_ls (or Ioc_hs) during the confirmation time Toc_ls (or Toc_hs). The condition I > Ion_th means a current higher than Ion_th during the confirmation time Tion_th. Error_count is incremented each time one MOS goes into over-current condition after the end of the timers. This reflects short-circuit conditions while ON. In case after overcurrent condition, the DIS pin is set to '1' by µC, the register is cleared at the next fall edge of DI signal or after SPI reading. Table 78. Error_count[3:0] 4-bit combination Description Condition 0000 Default value xxxx Note: Decimal value accordingly - (-) available in the R4,R3,R2,R1 bit position in SPI answer frame 8c Here below it is shown the validity bit time programming for Tdiag1 (guaranteed through scan): Table 79. TDIAG1 (µs) 3-bit config combination Description Condition 000 9 - 001 14 - 010 20 - 011 25 - 100 30 - DS11115 Rev 10 67/95 94 Functional description L9960, L9960T Table 79. TDIAG1 (µs) (continued) Note: 3-bit config combination Description Condition 101 35 - 110 40 - 111 45 Reset value (-) available in the R6,R5,R4 bit position in SPI command frame 3. Validity echo bit time programming status of Tdiag1: Table 80. TDIAG1_echo[2:0] Note: 3-bit status combination Description Condition 000 echo 9 µs config - 001 echo 14 µs config - 010 echo 20 µs config - 011 echo 25 µs config - 100 echo 30 µs config - 101 echo 35 µs config - 110 echo 40 µs config - 111 echo 45 µs config Default value (-) available in the R6,R5,R4 bit position in SPI answer frame 7a. Validity bit time programming Tdiag2:  Tdiag2 is the blanking time when the MOS is involved for the current limitation (not belonging to the free wheel). Overcurrent diagnostic reset The overcurrent diagnostics bit can be cleared by means of one of the following conditions: Note: 68/95  Power On Reset sequence  Transition from "Disable" to "Enable" on the pin DIS,  Diagnostic register read by SPI (in case bit "DIAG_CLR_EN" = 1). if several diagnostics are performed between two SPI reads, the over-current diagnostic bits can only be overwritten if the new diagnostic has a higher priority than the one already stored in the register. DS11115 Rev 10 L9960, L9960T 4.8.5 Functional description Diagnostic of "Open Load" in on-state The diagnostic of the Open Load in on-state is possible as long as, at least, one freewheeling cycle (meaning PWM = 0) is done through the body diode of the low-side transistor meaning "passive freewheeling". The diagnostics is consequently available in PWM/DIR and IN1/IN2 mode when the recirculation is performed through LS drivers. After OL diagnostics activation, to update the OL status register it is needed that a time Tstable_on is expired. This is allowed by setting the bit OL_ON = “1” each time the open-load diagnostic is requested: Table 81. OL_ON Bit config Note: Description Condition 0 Open Load in on-state disabled Reset value 1 Open Load in on-state enabled - (-) available in the D9 bit position in SPI command frame 6. After the first PWM ='0' cycle the active HS is turned-off and a passive recirculation phase is present to avoid shoot-through before enabling the ls driver and perform the OL diagnostics after T_stable_on. The voltage of the low-side transistor drain is monitored to track a recirculation current (drain voltage below ground in case of current recirculation). Table 82. OL_ON_STATUS [1:0] Bit status Note: Description Priority Condition - - 00 OL disabled 01 No diag done Low Default value 10 OL / Diag done High - 11 No OL / Diag done Medium - (-) available in the R1,R0 in SPI answer frame 8b. In case OL_ON bit = “0” (Diag function disabled), the OL_ON_STATUS=[00]. Note: if several diagnostics are performed between two SPI reads, the open-load diagnostic bits can only be overwritten if the new diagnostic has a higher priority than the one already stored in the register. After the OL fault disappears there is no need to perform any action on DIS or PWM in order to come back to Normal mode (bridge directly switch to Normal operating). DS11115 Rev 10 69/95 94 Functional description L9960, L9960T Figure 30. Open load timing diagram 6.4μs OL_ON_request PWM Gate feedback HS0/ HS1 Bridge ACTIVE FREEWHEELING PASSIVE FREEWHEELING DRIVE ACTIVE FREEWHEELING 6μs O_ol_on_en OL sample point I_ol_on Antiglitch filter 2.4μs 4.8.6 GAPGPS02980 On-state diagnostics electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 83. Open Load in ON-state electrical characteristics Symbol Tstable_On tOl_On Voutx_SR Parameter Condition Min. Typ. Max. Unit On-state diagnostic filtering time Digital filter not re-triggerable (guaranteed by scan) 4 6 8 µs Anti glitch filter Digital filter applied on i_ol_on (guaranteed by scan) 1 2 4 µs Voltage during passive freewheeling Passive freewheeling phase -150 - -10 mV When operating at low duty cycle and high frequency, in case the load current is very small, it may occur that the toggling VOUT_x stays almost at ground level during passive freewheeling; this may lead to not fully operating Open Load diagnostic in ON state. 70/95 DS11115 Rev 10 L9960, L9960T 4.8.7 Functional description Off-state diagnostic The Off-state diagnostic is activated via a dedicated SPI command “OFF STATE diagnosis” by enabling the bit TRIG. Table 84. TRIG Bit config Note: Description 0 OFF-state diagnosis not triggered 1 Trigger OFF-state diagnosis Condition Reset value - (-) available in the D0 bit position in SPI command frame 9. Once diagnosis sequence was performed, Off-state Diagnostic result is available through the same SPI command “OFF STATE diagnosis”. This diagnostic is performed in disable state condition, set only by DIS activation and on the condition that there was not a protection previously set (reported in NGFAIL and VPS_UV), which means during a disable state phase occurring after an active-state phase of the bridge or after reset state only in case of DIS activation. Off state diag is allowed when NGFAIL = '1' - Off state diag is allowed when NGFAIL = '0' only when the source of failure is from OFF state diagnostics itself. Off-state diagnostic sequence Figure 31. Structure and detection criteria regulator 1.8V I0 load OUT1 OL SCB SCG OUT2 300μA Current comparison I1 GAPGPS02412 If the load is connected and when the off state diagnostics is enabled, L9960 aims at regulating the voltage on OUT1 at a typical value of 1.8 V with a typical current consumption of 300 µA.  Short to Ground is detected if I0 < - 930 µA (typ). SCG fault is guaranteed for currents higher than SCG threshold.  Short to Battery is detected if I0 is >190 µA (typ). SCB fault is guaranteed for currents lower than SCB threshold.  Openload is detected if I0 > min (OUT1_OL_Thr) to min (OUT1_SCB_Thr) In order to avoid any wrong diagnostic, a filtering time "Thz" is implemented before performing the diagnostic. Thz is started on DIS rising edge event or reset (POR/SW) event only. DS11115 Rev 10 71/95 94 Functional description L9960, L9960T When the TRIG command is set, the current sources needed to run the OFF state diagnosis are turned-on. A delay is implemented to complete the settling of the current sources (Tdiag_del). Additionally, a filtering of the diagnosis is done. This filter time is Tstable_off and if the diagnosis input is stable during Tstable_off, the diag is performed and the failure is latched. If the diagnosis input is switching during Tstable_off, the diag is not performed and the filter time is re-triggered on each edge of the diagnosis input. A time-out (Ttimeout) is implemented in parallel to Tstable_off in order to filter out too long and unstable input. Here below the OpenLoad in Offstate diagram, showing two application cases. Figure 32. Open load off state diagnosis diagram 1. N o r m al o p er at io n , n o f ailu r e 2. St ead y St at e O p en L o ad f ailu r e tristate tristate i_ol_off i_ol_off or i_sgnd_off or i_scb_off tHZ tHZ tDIAG_DEL tstable tDIAG_DEL tstable no failure Open Load / Diag done O_off_diag_en ( based on SPI request) no diag triggered / tHZ not expired O_off_diag_en ( based on SPI request) no diag done / diag sequence on-going no diag done / diag sequence on-going Diag done / no failure Open Load / Diag Done GAPGPS02362 The Off-state diagnostic table is reported as follows: Off-state diagnostic principle Table 85. DIAG_OFF[2:0] Bits status Note: 72/95 Description Priority Condition - - 6(Highest) - 000 Not used 001 Open Load / Diag done 010 Short circuit to BAT 5 - 011 Short circuit to GND 4 - 100 No failure / Diag done 3 - 101 No Diag triggered / incorrect state (active state or vps_uv state) 2 - 110 No Diag triggered / Thz not expired 1 - 111 No Diag done / Diag sequence (tdiag_del + tstable) on going (-) available in the R2/R1/R0 bit position in SPI answer frame 9. DS11115 Rev 10 0 (Lowest) Default value L9960, L9960T 4.8.8 Functional description Off-state diagnostic electrical characteristics Tj = -40 °C to 150 °C, VDD5 = 4.5 V to 5.5 V, Vps = 4 V to 28 V unless otherwise specified. All voltages refer to GND. Currents are positive into and negative out of the specified pin. Table 86. Off-state diagnostic electrical characteristics Symbol Parameter Condition Min. Typ. Max. Unit Current threshold for OpenLoad detection (in relation with SCB range defined below) - -30 - OUT1_SCB _Thr - 3µA µA OUT1_SCG_Thr Current threshold for SCG detection - -1200 - -500 µA OUT1_SCB_Thr Current threshold for SCB detection - 100 - 500 µA Thz Delay time before allowing off-state diagnostic After disable, including reset (guaranteed through scan) 200 250 300 ms Tstable_off Off-state diagnostic filtering time Starts at the end of Tdiag_del Applied to the combination of the 3 inputs (guaranteed through scan) 36 40 50 µs Tdiag_del Settling time for Off-state diagnostics current generators; Timing for reliable diagnostic (guaranteed through scan) 600 749 900 µs IOL (OUT2 pull down current) Current source used for the detection - 200 - 400 µA Ttimeout Off-state diagnosis time-out (unstable diagnostics input during Tstable_off) Starts at the end of Tdiag_del (guaranteed through scan) 7 8.4 10 ms Vout_reg OUT1 regulator output voltage during Offstae diagnostics - 1.3 1.8 2.3 V ESD capacitors connected to OUT1 and OUT2. (1) - 10 - 47 nF OUT1_OL_Thr C_ESD 1. See also paragraph 3.13.1 of the application note AN4867 on www.st.com website. 4.9 SPI A standard 16 bits Serial Peripheral Interface (SPI) is implemented to allow bi-directional communication between the L9960 and the MCU. The SPI is used for configuration and diagnostic purposes as well as identifying the L9960 (ASSP name). The SPI interface of L9960 is a slave SPI interface: the master is the µcontroller which provides NCS and SCLK to L9960. As far as MSB/LSB order is concerned, MSB is sent first. DS11115 Rev 10 73/95 94 Functional description 4.9.1 L9960, L9960T Protocol description Transfer format uses 16 bits word in case of single device configuration and multiple of 16 bits word in case of daisy chain configuration (number of devices in the daisy chain is not limited). A command sent by the µcontroller during transfer N is answered during transfer N+1. Figure 33. SPI SDO update at 2nd SPI command NCS SDI SDO Command N Command N+1 Answer to cmd N -1 Answer to cmd N GAPGPS02363 SDO is clocked on SCLK rising edge. Figure 34. SPI SDO is clocked on SCLK rising edge NCS SCLK SDO MSB 14 13 ... ... LSB GAPGPS02364 SDI is sampled on falling edge. When NCS = '1' and during Reset, any signals at the SCLK and SDI pins have to be ignored, and SDO remains in a high impedance state. Otherwise, the SPI interface is always active. SCLK is guaranteed to be at '0' when NCS rises and falls (guaranteed by application). At each rising edge of the clock pulse after NCS goes low, the response word is serially shifted out on the SDO pin. At each falling edge of the clock pulse (after NCS goes low) the new control word is serially shifted in on the SDI pin. The SPI command bits are decoded to determine the destination address for the data bits. After the 16th (or multiple of 16, for daisy chains) clock cycle, at the next NCS low to high transition, the SPI shift register data bits are transferred into the latch whose address was decoded from the SPI shift register command bits. A command is executed after 16 SCLK cycles (or a multiple of 16) and NCS goes high. In case of "no SCLK edge" when NCS = '0', the transfer is considered as valid: no error is returned to the µcontroller. The answer of last command is sent during next transfer. Figure 35. In case of no SCLK edge when NCS=0 NCS SCLK SDO Command N Command N+1 Answer to cmd N -1 Answer to cmd N GAPGPS02365 74/95 DS11115 Rev 10 L9960, L9960T 4.9.2 Functional description SPI command and response words format L9960 is controlled with a 16 bits command word including:  4 Address bits, 11 data bits and 1 parity bit: Table 87. SPI command word format MSB LSB Address x x x x D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 parity_bit x x x x x x x x x x x x The command is stored in a command register after the rising edge of NCS The response consists of a 16 bits word which contains:  4 Address bits of the command word  12 bits as payload corresponding to the command word requested information like diagnostic, output state, etc. Table 88. SPI response word format MSB LSB Address x x x x R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 x x x x x x x x x x x x Response after reset 1st response after reset is 0000 0000 0000 0000. Response after communication error In case of communication error (not used commands, wrong parity bit, number of clocks not multiples of 16) the following response is sent: 0000 0000 0000 0000. Command Chip Select (NCS) LOW without clock is ignored. DS11115 Rev 10 75/95 94 Functional description L9960, L9960T Read ASIC name (ID), and ASIC silicon version ASIC name (ID) can be read back after the following command word “Electronic ID request“: Address 1 1 1 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 parity_bit 0 0 0 0 0 0 0 0 0 0 0 1 1 Following, the Response to Command word “Electronic ID request“: Address 1 1 1 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 0 0 0 0 1 1 1 0 1 1 0 0 1 ASIC name [00 1110 0100] L9960 silicon version can be read back after the following command word “Silicon version request“: Address 1 1 1 1 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 parity_bit 0 0 0 0 0 0 0 0 0 0 1 0 Response to Command word “Silicon version request“: Address 1 1 1 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 x x x x x x 0 0 0 0 0 0 1 Supplier Silicon version Table 89. Supplier ID code - R11 R10 Description Supplier ID[1:0] 0 0 1st source - 0 1 2nd source Table 90. Silicon version identifier 76/95 Silicon version R9 R8 R7 R6 Description - 0 0 0 0 Silicon AA - 0 0 0 1 Silicon AB - 0 0 0 1 Silicon AC - … … … … … DS11115 Rev 10 L9960, L9960T 4.9.3 Functional description Read ASIC traceability number ASIC traceability number can be read back after the following 2 command words “Component traceability number request“: Address D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 parity_bit 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 Response to command words “Component traceability request” 1 & 2 Address R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 1 1 0 1 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0 1 1 0 1 I23 I22 I21 I20 I19 I18 I17 I16 I15 I14 I13 I12 Table 91. Wafer coordinate 24-bit config[23:0] Component traceability I[11:6] Wafer Y coordinate I[5:0] Wafer X coordinate Figure 36. Wafer XY coordinate Y X 0,0 GAPGPS02366 Table 92. Traceability code and wafer number 24-bit config[23:0] I[16:12] Component traceability Wafer number Die coordinate and wafer number bits are defined by specification. DS11115 Rev 10 77/95 94 Functional description 4.9.4 L9960, L9960T Read Logic HW version Logic HW version can be read back after the following command word “Logic HW version request“: Address 1 1 1 1 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 parity_bit 0 0 0 0 0 0 0 0 0 1 0 0 Response to command word “Logic HW version request” Address 1 1 4.9.5 1 R11 R10 R9 R8 R7 1 R6 R5 R4 R3 R2 R1 Code_version[7:0] Parity bit The LSB (Least Significant Bit i.e. the last sent bit) of the word sent by the MCU to the L9960 is the parity bit. ODD parity is being used. No parity bit generation is used in response words for the slave device. 78/95 DS11115 Rev 10 R0 L9960, L9960T 4.9.6 Functional description SPI communication mode (Parallel and Daisy chain mode) The SPI communication between one master and multiple slaves can be operated in parallel or in daisy chain. Parallel operation: several SPI-slaves can be connected to one SPI channel. The communication lines SDI, SDO and CLK are shared, and every slave has its own chip select line (NCS). Daisy chain operation: several L9960 can be connected to one SPI connection in daisy chain operation to save µC interface pins. The number of devices connected in daisy chain is unlimited. Figure 37. Daisy chain operation example μC SDO SDI shift register SCLK NCS1 NCS2 NCS3 NCS1 : low for 48 clocks SCLK reads from IC A- - C NCS1 SCLK writes into IC A- -C NCS1 SCLK IC A NCS1 SCLK IC B SDO SDI IC C SDI shift register SDO SDI shift register SDO shift register Three devices in one daisy chain NCS2: low for 32 clocks SCLK reads from IC D - E NCS2 SCLK IC D SDI writes into IC D - E NCS2 SCLK IC E SDO SDO SDI shift register shift register Two devices in one daisy chain NCS3: low for 16 clocks CLK writes into IC F reads from IC F NCS3 SCLK IC F SDI shift register SDO single chain GAPGPS02367 Software constraint: daisy chain is only possibly for ASICs using the same SPI protocol. DS11115 Rev 10 79/95 94 Functional description 4.9.7 L9960, L9960T Communication check The purpose of this SPI communication self-check is to detect errors in the SPI communication from the µC. In case of no communication or of communication failure into the defined time frame, the bridge is put into tri-state. After the RESET state release, the communication check time-out timer Tcc is started by NDIS HIGH and DIS LOW from a pre-loaded value:  If NDIS = '0' and DIS='1' when the RESET state is released, the pre-load is Tcc  If NDIS='1' and DIS='0' when the RESET state is released, the pre-load is Tcc*2 for the first communication, Tcc for the next communications. In case the timer has expired (time-out), a status bit is registered CC_latch. Table 93. CC_latch Bit config Note: Description 0 Communication Check Fail 1 Communication Check Pass or Disable Condition Default value Available in D9 bit position in SPI answer frame 7e. The communication check can be disabled by SPI via dedicated bit Config_CC. Table 94. Config_CC Bit config Note: Description Condition 0 Disable communication check - 1 enable communication check Reset value (-) available in D7 bit position in SPI answer frame 2. The status of config register is inverted in a status bit. Table 95. Config_CC_state_echo7 Bit config Note: 80/95 Description 0 echo communication check active 1 echo communication check inactive (-) available in the R10 bit position in SPI answer frame 7e. DS11115 Rev 10 Condition Default value - L9960, L9960T 4.9.8 Functional description Electrical characteristics The component guarantees the functionality of the SPI interface for a VDD5 voltage down to Vpor (Max frequency define in parameter fSCLK). 4.5 < VDD5 < 5.5 V; 3.0 < VDDIO < 5.5 V unless otherwise noted. Positive current is flowing into pin. Table 96. Electrical characteristics serial data output symbol Parameters Conditions Min. Max. Value VDDIO -0.4V - V VSDOH High output level (ISDO = -2 mA) Back to back structure used VSDOL Low output level (ISDO = 3.2 mA) - - 0.4 V VDDIO = 5 V VDDIO = 19 V For 0 < SDO < VDDIO (-40 °C ≤ Tj ≤ 25 °C) -5 5 µA VDDIO = 5 V VDDIO = 19 V For 0 < SDO < VDDIO (25 °C > Tj ≤ 150 °C) -5 10 µA VDDIO+0.05 VDDIO+0.2 V ISDOL Tri state leakage current (NCS = HIGH) VOV_SDO Over voltage detection threshold at SDO output Prevent output from damage; avoid back supply to VDDIO tOFF_PROT Turn-off delay for over voltage reverse supply protection direct control of back to back in HS path; VDDIO+1V; Measure at 0.5*Ipeak 0 1.5 µs Voltage range w/o damage SDO driven High or Low No damage of the part in short-circuit condition -0.3 19 V VSDO Inputs NCS; SCLK; SDI VINL Low input level - -0.3 0.75 V VINH High input level - 1.75 VDD5+0.3 V Vhyst Hysteresis - 0.1 1 V Input current for NCS; SCLK; SDI (Vin= VDD5) -50 5 µA Input pull up current source for Pull-up circuit protected NCS; SCLK; SDI (VDD5  VPOR) against supply back & (VIN < 2.5V) feeding injection -30 -100 µA IIN IIN,pu DS11115 Rev 10 81/95 94 Functional description L9960, L9960T Table 97. SPI electrical characteristics Symbol Parameters Conditions Min. Max. Value Clock frequency (50% duty cycle) SPI has to work for all frequencies 0 5 MHz SDO rise and fall time 20% to 80% VSDOH guaranteed by design, 20pF…150pF load 5 35 ns tclh Minimum time SCLK = HIGH - 75 - ns tcll Minimum time SCLK = LOW - 75 - ns tpcld Propagation delay – incl. rise/fall time (SCLK to data at SDO active) 150pF load - 50 ns tcsdv NCS = LOW to output SDO active (SDO gets the same value as the last value 150pF load from the previous communication) - 75 ns tsclch SCLK low before NCS low (setup time SCLK to NCS change H/L) - 75 - ns SCLK change L/H after NCS = low VHDL relevant(1) 950 - ns tscld SDI input setup time (SCLK change H/L after SDI data valid) - 15 - ns thcld SDI input hold time (SDI data hold after SCLK change H/L) - 15 - ns tsclcl SCLK low before NCS high - 100 - ns thclch SCLK high after NCS high - 100 - ns tpchdz NCS L/H to SDO @ high impedance - - 75 ns 950 - ns fSCLK tsdo_trans thclcl_app (1) NCS min. high time VHDL relevant Capacitance at SDI; SDO; SCLK; NCS - - 10 pF NCS Filter time (Pulses  tfNCS are ignored) - 10 40 ns tSPI_switch Minimum Input Rise and Fall time; 20-80% at SDI; SCLK; NCS - - 2 ns tSPI_ovuv Minimum input over/undershoot guaranteed by design -200 200 mV Communication check timer - 54 80 ms tonNCS tfNCS Tcc 1. Application relevant: VHDL design needs at least 4 clock cycles (e.g. System Clock 5MHz) to process assertion of NCS (low active Chip Select). 82/95 DS11115 Rev 10 L9960, L9960T Functional description The following timing diagram enumerates the timing parameters applicable to the SPI interface: Figure 38. SPI timings tspi_switch NCS ton_ncs tsclch thclcl_app tcll tclh tsclcl thclch SCLK tcsdv tpcld tsdo_trans SDO LSB MSB tscld SDI tpchdz thcld MSB LSB GAPGPS02369 DS11115 Rev 10 83/95 94 Table 98. SPI communication command and answer words Word ID D4 D3 D2 D1 D0 Parity bit ON state - - - - - - - - - - Not used 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 - overcurrent monitoring #2 (2) 0 0 1 0 SW reset[1:0] (00) 0 0 0 0 0 0 0 - restart trigger #3 0 0 1 1 CL[1:0] (01) configuration 1 #4 (2) 0 1 0 0 configuration 2 #5 (2) 0 1 0 1 configuration 3 (WL mode trigger) #6 (5) 0 1 1 0 TDSR (0) OL_ON (0) configuration 4 DS11115 Rev 10 OTsd_thr_var (000) 1(3) - OTwarn_thr_var (000) 0(4) - 0 0 0 0 0 - X X X X X X - TVVL[3:0] (1111) X X X TDIAG1[2:0] (111) #1 DIAG_CLR_EN (1) - UV_WIN (0) - OTWARN_TSEC_EN (0) 0 TSW_low_current (1) 0 NSPREAD (0) 0 UV_PROT_EN (0) 0 (2) L9960, L9960T #0(1) VSR (1) D5 Config CC (1) D6 ISR (1) D7 HWSC/LBIST Trigger (0) D8 NOSR (0) D9 in1_in2_if (0) D10 VVL_MODE (0) Address Functional description 84/95 The command and answer words of an SPI communication are described below: Word ID Address D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Parity bit ON state #7a 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 configuration request 1 #7b 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 configuration request 2 #7c 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 configuration request 3 #7d 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 configuration request 4 #7e 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 configuration request 5 #8a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 states request 1 #8b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 states request 2 #8c 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 states request 3 #9 1 0 0 1 0 0 0 0 0 0 0 0 0 0 TRIG (0) (6) OFF STATE diagnosis 1 0 1 0 Reserved Reserved #10b(6) 1 0 1 0 Reserved Reserved (6) 1 0 1 1 Reserved Reserved #12a 1 1 0 0 All '0's (D10:D0), parity bit (1) Reserved #12b 1 1 0 0 '00000000001' + parity bit at 0 #10a DS11115 Rev 10 #11 L9960, L9960T Table 98. SPI communication command and answer words (continued) Reserved component traceability number request 1 component traceability number request 2 #13a 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 #13b 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 #14 1 1 1 0 #15a 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 electronic id request #15b 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 silicon version request #15c 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 Logic HW version request Reserved Reserved 2. In command frames 1, 2, 4 and 5 the bitfileds set to '0' must be respected otherwise internal logic will discard the command. These bits are consequently used as internal cross-check by logic on valid address for correct frame processing 3. D[1] BITFIELD IN SPI COMMAND #3 must be kept at 1. 4. D[1] bitfield in SPI command #4 must be kept at 0. 85/95 5. After POR or SW reset, D[8]..D[0] bitfield is set at ' 0_0111_1101 '. This POR value is not processed by the logic as whatever further configuration. This bitfield status is mirrored in bitfield R[9]..R[1] in answer frame #7d. 6. Frame 10a, 10b and 11 are reserved SPI command frames for ATE. If sent by, the SDO response will be the error frame 0x0000h. Functional description 1. Command frame '0' is not used. R4 R3 R2 R1 R0 Description 0 0 0 0 0 0 0 0 0 0 Error because not use 0 OCL0[1:0] overcurrent monitoring 0 0 0 0 0 answer to #1 0 0 0 1 0 OCH1[1:0] 0 answer to #2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Nothing report answer to #3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Nothing report answer to #4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Nothing report answer to #5 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Nothing report answer to #6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Nothing report answer to #7a 0 1 1 1 CL_echo[1:0] 1 0 Configuration request 1 answer to #7b 0 1 1 1 0 Configuration request 2 answer to #7c 0 1 1 1 0 0 Configuration request 3 UV_PROT_EN_echo TSW_low_current_echo OCL1[1:0] OTwarn_thr_var_echo OT_sd_thr_var_echo TVVL_echo[3:0] 0 TDIAG1_echo[2:0] OCH0[1:0] 0 0 0 0 L9960, L9960T 0 In1_in2_if latch DS11115 Rev 10 answer to error UV_WIN_echo R5 OTWARN_TSEC_EN_echo R6 DIAG_CLR_EN R7 NSPREAD_echo R8 VSR_echo R9 ISR_echo R10 NOSR_echo R11 in1_in2_if_echo Address WLMODE_echo Word ID Functional description 86/95 Table 99. SPI communication configuration 0 1 1 1 0 answer to #7e 0 1 1 1 CC latch_state answer to #8a 1 0 0 0 BRIDGE_EN answer to #8b 1 0 0 0 answer to #8c 1 0 0 0 R7 R6 R3 R2 R1 R0 0 0 0 0 0 0 0 0 ILIM_REG VDD_OV_REG VDD_UV_REG VPS_UV NOTSD_REG Error_count[3:0] OL_ON_STATUS [1:0] 0 NOTSD HWSC/LBIST_status Configuration request5 0 NGFAIL 0 OTWARN_REG 0 Configuration request 4 VPS_UV_REG 0 Description 0 OTWARN DS11115 Rev 10 0 R4 X OTSDcnt[5:0] 0 R5 87/95 UV_CNT_REACHED answer to #7d R8 states request 1 states request2 0 states request3 Functional description (1) config_CC_status_echo R9 DIS_status R10 TDSR_echo R11 POR status Address NDIS_status Word ID L9960, L9960T Table 99. SPI communication configuration (continued) Word ID Address R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 DlAG_OFF[2:0] Description 1 0 0 1 0 0 0 0 0 0 0 0 0 answer to #10a 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Nothing report answer to #10b 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Nothing report answer to #11 1 0 1 1 answer to #12a 1 1 0 0 answer to #12b 1 1 0 0 answer to #13a 1 1 0 1 I11 I10 I9 I8 I7 I6 I5 answer to #13B 1 1 0 1 I23 I22 I21 I20 I19 I18 answer to #14 1 1 1 0 0 0 0 0 0 0 answer to #15a 1 1 1 1 answer to #15b 1 1 1 1 0 0 answerto#15c 1 1 1 1 0 0 Reserved for supplier test mode Reserved Reserved - - VDD_UV VDD_OV_L[2:0] - I4 I3 I2 I1 I0 component traceability number request 1 I17 I16 I15 I14 I13 I12 component traceability number request 2 0 0 0 0 0 0 0 ASSP 0 0 Reserved ASIC name [9:0] Silicon version(3:0] 0 0 OFF STATE diagnosis VDD_OV DS11115 Rev 10 answer to #9 0 0 Functional description 88/95 Table 99. SPI communication configuration (continued) 0 0 code_version[7:0] Nothing report electronic id request silicon version request Logic HW version request 1. Bitfield R9..R1 is the mirror of the bitfield D8..D0 in command frame 6 L9960, L9960T L9960, L9960T 5 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. PowerSSO-36 (exposed pad) package mechanical data Figure 39. PowerSSO-36 (exposed pad) package mechanical drawing Bottom view ggg M C A-B D D1 ggg M CA-B D G3 G3 E2 E4 G3 D3 e // eee C A2 A ccc C SEATING PLANE A1 b Section A-A C ddd M CD h ș1 h 2x ș2 f f f C A-B D R1 H D2 A N B (see Section B-B) R GAUGE PLANE L2 B L D A S ș1 ș 5.1 L1 index area (0.25D x 0.75E1) G1x2 E1 E3 pin 1 indicator Section B-B E (b) WITH PLATING G2 c c1 2x aaa CD b1 BASE METAL 2x N/2 TIPS bbb C 1 2 3 Top view B A (see Section A-A) N/2 GAPGPS03424 7587131_I_EH DS11115 Rev 10 89/95 94 Package information L9960, L9960T Table 100. PowerSSO-36 (exposed pad) package mechanical data Millimeters Inches Symbol Min. Typ. Max. Min. Typ. Max. Ө 0° - 8° 0° - 8° Ө1 5° - 10° 5° - 10° Ө2 0° - - 0° - - A 2.15 - 2.45 0.0846 0.0965 A1 0.0 - 0.1 0.0 0.0039 A2 2.15 - 2.35 0.0846 0.0925 b 0.18 - 0.32 0.0071 0.0126 b1 0.13 0.25 0.3 0.0051 c 0.23 - 0.32 0.0091 c1 0.2 0.2 0.3 0.0079 D(1) 10.30 BSC 0.0098 0.0126 0.0079 0.0118 0.4055 BSC D1 6.9 - 7.5 0.2717 - 0.2953 D2 - 3.65 - - 0.1437 - D3 - 4.3 - - 0.1693 - e 0.50 BSC 0.0197 BSC E 10.30 BSC 0.4055 BSC 7.50 BSC 0.2953 BSC (1) E1 E2 4.3 - 5.2 0.1693 - 0.2047 E3 - 2.3 - - 0.0906 - E4 - 2.9 - - 0.1142 - G1 - 1.2 - - 0.0472 - G2 - 1 - - 0.0394 - G3 - 0.8 - - 0.0315 - h 0.3 - 0.4 0.0118 - 0.0157 L 0.55 0.7 0.85 0.0217 - 0.0335 L1 1.40 REF 0.0551 REF L2 0.25 BSC 0.0098 BSC N 36 1.4173 R 0.3 - - 0.0118 - - R1 0.2 - - 0.0079 - - S 0.25 - - 0.0098 - - Tolerance of form and position aaa 90/95 0.0118 0.2 DS11115 Rev 10 0.0079 L9960, L9960T Package information Table 100. PowerSSO-36 (exposed pad) package mechanical data (continued) Millimeters Inches Symbol Min. Typ. Max. Min. Typ. bbb 0.2 0.0079 ccc 0.1 0.0039 ddd 0.2 0.0079 eee 0.1 0.0039 ffff 0.2 0.0079 ggg 0.15 0.0059 Max. 1. Dimensions D and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is ‘0.25 mm’ per side D and ‘0.15 mm’ per side E1. D and E1 are Maximum plastic body size dimensions including mold mismatch. DS11115 Rev 10 91/95 94 Reference document 6 L9960, L9960T Reference document Application Note AN4867 “L9960 ETC H-bridge”, www.st.com website. 92/95 DS11115 Rev 10 L9960, L9960T 7 Revision history Revision history Table 101. Document revision history Date Revision 22-Jun-2015 1 Initial release. 25-Jun-2015 2 Updated CDM results in Section Table 4.. 3 Document status promoted from target specification to production. Updated: – Description on page 1; – Table 8: Timing characteristics (LS rise/fall time); – Table 11: VPS electrical characteristics (Inserted limits for Vs_clamp_neg); – Table 63: Electrical characteristics (Updated limit for Itrack HS range 2 and range 3, and update limits for CL hysteresis , range 0 and range 3); – Table 71: Over-current detection electrical characteristics. (corrected typo: thresholds range swap for OC range 3 for LS/HS); – Table 4: Absolute maximum ratings (added note for ESD table concerning HBM for OUTx and VPS). – Table 98: SPI communication command and answer words (added note for SPI command frame #3, #4 and #6). 4 Table 71: Over-current detection electrical characteristics corrected USL for Itrack. Table 98: SPI communication command and answer words updated Word ID “#6” from 0 to X; updated note “5”. Table 99: SPI communication configuration updated Word ID answer to #7d# (R9-R1 from 0 to X; updated note “1”. 5 Modified title in cover page and added “AEC-Q100 qualified” as first feature. Updated: – Table 6: Range of functionality: added note for Tj; – Table 8: Timing characteristics for timings Td-On and Td_off; – Figure 11: POR timing diagram; – Table 32: HWSC/LBIST electrical characteristics: LBIST duration and LBIST coverage; – Section 4.6.2: Current slew rate, – Section 4.6.3: Voltage slew rate: removed wrong note for OL diagnostics in On-state not available during NOSR mode; – Section 4.6.4: Current limitation: updated general description on current limitation fucntionality, and corrected figure 20, 21 and 22 for Tdiag2 and ILIM_REG references. Updated description and references for table 48 , 49 and 50; – Table 8: Timing characteristics; – Table 63: Electrical characteristics; – Section 4.8.4: Diagnostic of "Over-current" in on-state corrected typo in ISR limits; – Section 4.8.5: Diagnostic of "Open Load" in on-state description and corrected label for figure 28; – Section 4.8.7: Off-state diagnostic. Added Section 6: Reference document. 14-Sep-2015 07-Oct-2015 02-Sep-2016 Changes DS11115 Rev 10 93/95 94 Revision history L9960, L9960T Table 101. Document revision history (continued) Date 22-Jun-2017 21-Dec-2017 21-Jun-2018 04-Oct-2019 02-Feb-2021 94/95 Revision Changes 6 Updated: – The values of ‘TTSD’ parameter in Table 70; – The values of ‘OUT1_OL_Thr’ parameter in Table 86; – Table 100: PowerSSO-36 (exposed pad) package mechanical data. 7 Updated: – Battery voltage monitoring on page 19; – Section 4.8.6: On-state diagnostics electrical characteristics on page 70. 8 Updated: – Figure 2.2: Bill of materials on page 13; – Table 8: Timing characteristics on page 17 with condition TSW_low_current = 0; – Section 4.7.1: corrected description for OTSDcnt reset; – Section 4.8.3: corrected statement for NGFAIL bit deassertion; – Added range for C_ESD capacitors (as application info only) on OUT1 and OUT2 in Table 86. 9 Updated: – Table 2: Pin definition (PSSO36twin die) and function; – Table 96: Electrical characteristics serial data output. Minor text changes. 10 Updated: – Title; – Figure 1: Block diagram for L9960; – Section 2: Application description. Added: – Section 2.1: Application circuit; – Section 2.2: Bill of materials. Minor text changes in: – Description; – Section 4.9.4: Read Logic HW version; – Table 97: SPI electrical characteristics; – Table 98: SPI communication command and answer words. DS11115 Rev 10 L9960, L9960T IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS11115 Rev 10 95/95 95
L9960T 价格&库存

很抱歉,暂时无法提供与“L9960T”相匹配的价格&库存,您可以联系我们找货

免费人工找货