0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L99DZ120TR

L99DZ120TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP64_EP

  • 描述:

    ICAUTODOORACTUATOR64LQFP

  • 数据手册
  • 价格&库存
L99DZ120TR 数据手册
L99DZ120 Automotive door actuator driver with embedded LIN Datasheet - production data – Overcurrent – Thermal warning – Thermal shutdown  Fully protected driver for external MOSFETs in H-bridge configuration  Two 5 V voltage regulators for microcontroller and peripheral supply Features  Programmable reset generator for power-on and undervoltage  AEC-Q100 qualified  Configurable window watchdog  1 half bridge for 7.5 A load (RON = 100 mΩ)  LIN 2.2a compliant (SAEJ2602 compatible) transceiver  1 half bridge for 7.5 A load (RON = 150 mΩ)  2 half bridges for 3 A load (RON = 300 mΩ)  1 configurable high-side driver for up to 1.5 A (RON = 500 mΩ) or 0.35 A (RON = 1600 mΩ) load  1 configurable high-side driver for 0.8 A (RON = 800 mΩ) or 0.35 A (RON = 1600 mΩ) load  3 configurable high-side drivers for 0.15 A/0.35 A (RON =2 Ω)  1 configurable high-side driver for 0.25 A/0.5 A (RON = 2 Ω)  Separated (Isolated) fail-safe block with 2 LS (RON = 1 Ω) to pull down the gates of the external HS MOSFETs  Thermal clusters  A/D conversion of supply voltages and internal temperature sensors  Embedded and programmable VS duty cycle adjustment for LED driver outputs Applications Door zone applications.  4 configurable high-side drivers for 0.15 A/0.25 A (RON = 5 Ω) Table 1. Device summary  Internal 10bit PWM timer for each stand-alone high-side driver  Buffered supply for voltage regulators and 2 high-side drivers (OUT15 & OUT_HS / both  P-channel) to supply e.g. external contacts Order codes Package LQFP-64 epad  Programmable soft-start function to drive loads with higher inrush currents as current limitation value (for OUT1-6, OUT7, OUT8 and OUT_HS) with thermal expiration feature Tray Tape and reel L99DZ120 L99DZ120TR Product label  All the embedded outputs come with protection and supervision features: – Current Monitor (high-side only) – Open-load March 2019 This is information on a product in full production. DS11567 Rev 5 1/161 www.st.com Contents L99DZ120 Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Block diagram and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.1 3.4 2/161 LQFP64 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.1 Supply and supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.3 Power-on reset (VSREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.4 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.5 Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.6 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.7 Watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.8 Current monitor output (CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.9 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.10 Outputs OUT1 - OUT15, OUT_HS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.11 Power outputs switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.12 Over Current Recovery settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.13 Current monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.14 H-bridge driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.15 Gate drivers for the external Power-MOS switching times . . . . . . . . . . 42 3.4.16 Drain source monitoring external H-bridge . . . . . . . . . . . . . . . . . . . . . . 45 3.4.17 Open-load monitoring external H-bridge . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.18 Fail safe low-side switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.19 Wake up input WU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.20 LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.21 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.22 Input LIN_FLASH for Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.23 Inputs DIR, DIRH, PWMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.24 Debug input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 DS11567 Rev 5 L99DZ120 4 Contents 3.4.25 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.26 Temperature diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.27 Interrupt outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.28 Timer1 and Timer2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.29 SGND loss comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1 Supply VS, VSREG 4.2 Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Voltage regulator: V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.2 Voltage regulator: V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.3 Voltage regulator failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.4 Short to ground detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.5 Voltage regulator behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.3 SW-debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.4 V1_standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.5 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.6 VBAT_standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Wake-up from Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 Wake up input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 Functional overview (truth table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 Configurable window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.6.1 4.7 Change watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Fail-safe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.7.1 Temporary failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.7.2 Non-recoverable failures – forced Vbat_standby mode . . . . . . . . . . . . . 70 4.8 Reset output (NReset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.9 LIN Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.10 4.9.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.9.2 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.9.3 Wake up from Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.9.4 Receive-only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Serial Peripheral Interface (ST SPI Standard) . . . . . . . . . . . . . . . . . . . . . 74 DS11567 Rev 5 3/161 6 Contents L99DZ120 4.11 Power supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.11.1 VS supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.11.2 VSREG supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.12 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 77 4.13 Power outputs OUT1..15 and OUT_HS . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.14 Auto-recovery alert and thermal expiration . . . . . . . . . . . . . . . . . . . . . . . 79 4.15 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.16 Inductive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.17 Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.18 Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.19 Current monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.20 PWM mode of the power outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.21 Cross-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.22 Programmable soft-start function to drive loads with higher inrush current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 4.23 H-bridge control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.24 H-bridge driver slew-rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.25 Resistive low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.26 Short circuit detection / drain source monitoring . . . . . . . . . . . . . . . . . . . 87 4.27 H-bridge monitoring in off-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.28 Programmable cross current protection . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.29 Power window H-bridge safety switch off block . . . . . . . . . . . . . . . . . . . . 91 4.30 Temperature warning and shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.31 Thermal clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.32 VS compensation (duty cycle adjustment) module . . . . . . . . . . . . . . . . . . 95 4.33 Analog digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1 ST SPI 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1.1 5.2 4/161 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.1 Clock and Data Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2.2 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.3 Address definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 DS11567 Rev 5 L99DZ120 Contents 5.2.4 Protocol failure detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7 SPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.1 Global Status Byte GSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 7.2 Control register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.3 Status register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 7.4 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.5 8 7.4.1 Control Register CR1 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4.2 Control Register CR2 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.4.3 Control Register CR3 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.4.4 Control Register CR4 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4.5 Control Register CR5 (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.4.6 Control Register CR6 (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.4.7 Control Register CR7 (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.4.8 Control Register CR8 (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.4.9 Control Register CR9 (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.4.10 Control Register CR10 (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.4.11 Control Register CR11 (0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.4.12 Control Register CR12 (0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.4.13 Control Register CR13 (0x0D) to CR17 (0x11) . . . . . . . . . . . . . . . . . . 139 7.4.14 Control Register CR18 (0x12) to CR22 (0x16) . . . . . . . . . . . . . . . . . . 140 7.4.15 Control Register CR34 (0x22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.4.16 Configuration Register (0x3F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.5.1 Status Register SR1 (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.5.2 Status Register SR2 (0x32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7.5.3 Status Register SR3 (0x33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.5.4 Status Register SR4 (0x34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.5.5 Status Register SR5 (0x35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.5.6 Status Register SR6 (0x36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.5.7 Status Register SR7 (0x37) to SR9 (0x39) . . . . . . . . . . . . . . . . . . . . . 153 7.5.8 Status Register SR10 (0x3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.5.9 Status Register SR11 (0x3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 DS11567 Rev 5 5/161 6 Contents 9 6/161 L99DZ120 8.1 LQFP-64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.2 LQFP-64 marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 DS11567 Rev 5 L99DZ120 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Supply and supply monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Power-on reset (VSREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Current monitor output (CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Charge pump electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Outputs OUT1 - OUT15, OUT_HS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Power outputs switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Half bridges (OUT1, OUT4, OUT5 and OUT6) OCR timing parameters . . . . . . . . . . . . . . 38 High-side (OUT7, OUT8 and OUT_HS) OCR timing parameters. . . . . . . . . . . . . . . . . . . . 38 Current monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 H-bridge driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Gate drivers for the external Power-MOS switching times . . . . . . . . . . . . . . . . . . . . . . . . . 42 Drain source monitoring external H-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Open-load monitoring external H-bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Fail safe low-side switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Wake-up inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LIN transmit data input: pin TxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LIN receive data output: pin RxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LIN transmitter and receiver: pin LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 LIN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Input: CSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Inputs: CLK, DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 DI, CLK and CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Output: DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Inputs LIN_FLASH for Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Inputs DIR, DIRH, PWMH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Debug input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Temperature diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Interrupt outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Timer1 and Timer2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 SGND loss comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Wake-up events description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Status of different functions/features vs operating modes . . . . . . . . . . . . . . . . . . . . . . . . . 64 Temporary failures description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Non-recoverable failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 DS11567 Rev 5 7/161 9 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. 8/161 L99DZ120 Power output settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 H-bridge control truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 H-bridge monitoring in off-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Thermal cluster definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Operation codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Global Status Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Device application access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Device information read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 RAM address range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ROM address range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Information Registers Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 SPI Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Burst Read Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 SPI Data Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Data Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 WD Type/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 WD bit position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Global Status Byte (GSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 GSB signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Control register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Status register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Control Register CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 CR1 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Wake-up input1 filter configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Voltage regulator V2 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Standby transition configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Control Register CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 CR2 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Configuration of Timer x on-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Control Register CR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 CR3 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Control Register CR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 CR4 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Control Register CR5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 CR5 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 OUTx Configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Control Register CR6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 CR6 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Control Register CR7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 CR7 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Control Register CR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 CR8 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Control Register CR9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 CR9 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Control Register CR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 CR10 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Control Register CR11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 CR11 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Control Register CR12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 CR12 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Control Register CR13 to CR17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 CR13 to CR17 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 DS11567 Rev 5 L99DZ120 List of tables Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Control Register CR18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 CR18 to CR22 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Control Register CR34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 CR34 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 CR signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Status Register SR1 (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 SR1 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Status Register SR2 (0x32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 SR2 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Status Register SR3 (0x33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 SR3 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Status Register SR4 (0x34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 SR4 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Status Register SR5 (0x35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 SR5 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Status Register SR6 (0x36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 SR6 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Status Register SR7 (0x37) to SR9 (0x39) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 SR7 to SR9 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Status Register SR10 (0x3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 SR10 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Status Register SR11 (0x3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 SR11 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 LQFP-64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 DS11567 Rev 5 9/161 9 List of figures L99DZ120 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. 10/161 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Activation profile 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Activation profile 1 (first cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Activation profile 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Activation profile 2 (first cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LQFP64 package and PCB thermal configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Voltage regulator V1 characteristics (quiescent current and accuracy) . . . . . . . . . . . . . . . 28 Watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Watchdog early, late and safe windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Hard Short case, the OC threshold is reached before end of blanking time. . . . . . . . . . . . 39 Overload case, the OC threshold is reached after end of blanking time. . . . . . . . . . . . . . . 39 H-driver delay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 IGHxr ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 IGHxf ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 LIN transmit, receive timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 SPI – transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 SPI input timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 SPI output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 SPI CSN - output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 SPI – CSN high to low transition and global status bit access . . . . . . . . . . . . . . . . . . . . . . 58 Voltage regulator behaviour and diagnosis during supply voltage . . . . . . . . . . . . . . . . . . . 61 NINT pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Main operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Watchdog in normal operating mode (no errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Watchdog with error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Watchdog in Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 NReset pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 RxDL pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Wake-up behavior according to LIN 2.2a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Thermal shutdown protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Example of long auto-recovery on OUT7. Temperature acquisition starts after tAR, thermal expiration occurs after a ∆T = 30° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Block diagram of physical realization of AR alert and thermal expiration . . . . . . . . . . . . . . 81 Charge pump low filtering and start up implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Software strategy for half bridges before applying auto-recovery mode. . . . . . . . . . . . . . . 84 Overcurrent recovery mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 H-bridge GSHx slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 H-bridge diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 H-bridge open-load-detection (no open-load detected) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 H-bridge open-load-detection (open-load detected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 H-bridge open-load-detection (short to ground detected) . . . . . . . . . . . . . . . . . . . . . . . . . . 90 H-bridge open-load detection (short to VS detected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 PWMH cross current protection time implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 LSx_FSO: low-side driver “passively” turned on, taking supply from output pin (if main supply fails), can guarantee VLSx_FSO < VOUT_max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Safety concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Thermal clusters identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DS11567 Rev 5 L99DZ120 List of figures Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Block diagram VS compensation (duty cycle adjustment) module . . . . . . . . . . . . . . . . . . . 95 Sequential ADC Read Out for VSREG, VS, WU and THCL1 ..THCL6 . . . . . . . . . . . . . . . . . 96 SPI pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SDO pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SPI signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SDI Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 SDO frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Window watchdog operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Timer_x controlled by DIR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 LQFP-64 package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 LQFP-64 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 LQFP-64 marking information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 DS11567 Rev 5 11/161 11 Description 1 L99DZ120 Description The L99DZ120 is a door zone systems IC providing electronic control modules with enhanced power management power supply functionality, including various standby modes, as well as LIN physical communication layers. The two low-drop voltage regulators of the devices supply the system microcontroller and external peripheral loads such as sensors and provide enhanced system standby functionality with programmable local and remote wake-up capability. In addition 8 high-side drivers to supply LEDs, 2 high-side drivers to supply bulbs increase the system integration level. Up to 3 DC motors and 4 external MOS transistors in H-bridge configuration can be driven. All outputs are SC protected and implement an open-load diagnosis. The ST standard SPI interface (4.0) allows control and diagnosis of the device and enables generic software development. 12/161 DS11567 Rev 5 L99DZ120 Block diagram and pin descriptions Figure 1. Block diagram &33 &3 96 287 PŸ Ÿ$ &30 &KDUJH 3XPS &33 &30 *+ Ÿ$ 287 PŸ 6+ */ Ÿ$ 287 PŸ [ 'ULYHU,QWHUIDFH/RJLF 'LDJQRVWLF Ÿ$ 287 PŸ ',5+ 3:0+ /6B)62 /6B)62 )DLO6DIH [ 965(* 9B 15(6(7 95(* 9B 95(* 5['B/1,17 7['B/ /,1 'HEXJ /,1  287 PŸ Ÿ$UHVSŸ Ÿ$ :DWW%XOE +6 287 Ÿ Ÿ$$ +6 287 Ÿ Ÿ$ +6 287 Ÿ ŸP$ +6 287 Ÿ ŸP$ +6 287 Ÿ ŸP$ +6 ŸP$ 287 Ÿ +6 3&KDQQHO 1,17 :8 +6 965(* [7M &O 3&KDQQHO 96 [7M &O &61 &/. ', '2 &0 287 PŸ Ÿ$UHVSŸ Ÿ$ :DWW%XOE +6 %XI IHUHG 96 /,1B)/$6+ +6 ŸP$ 287 Ÿ 287B+6 Ÿ ŸP$ ',5 ',5 %LW $'&6$5 63,,QW HUI DF H :LQG RZ :DW FKG RJ 2 Block diagram and pin descriptions *1' 6*1' 3*1' *$3*&)7 Table 2. Pin definitions and functions Pin Symbol Function 1 WU Wake-up Input: Input pin for static or cyclic monitoring of external contacts 2 CP2M Charge pump pin for capacitor 2, negative side 3 CP2P Charge pump pin for capacitor 2, positive side 4 CP 5 CP1P Charge pump pin for capacitor 1, positive side 6 CP1M Charge pump pin for capacitor 1, negative side Charge pump output DS11567 Rev 5 13/161 160 Block diagram and pin descriptions L99DZ120 Table 2. Pin definitions and functions (continued) Pin Symbol 7 NC Not connected 8 NC Not connected 9 OUT14 High-side-driver output to drive LEDs 10 OUT13 High-side-driver output to drive LEDs 11 OUT12 High-side-driver output to drive LEDs 12 OUT9 High-side-driver output to drive LEDs 13 OUT10 High-side-driver-output 14 OUT11 High-side-driver output to drive LEDs 15 LS1_FSO Fail Safe low-side switch (Active low) 16 LS2_FSO Fail Safe low-side switch (Active low) Power supply voltage for power stage outputs (external reverse battery protection required), for this input a ceramic capacitor as close as possible to GND is recommended. Important: For the capability of driving, the full current at the outputs all pins of VS must be connected externally! 17 VS 18 VS; 2nd pin 19 OUT7 High-side-driver output to drive LEDs or a 10 Watt bulb (programmable Rdson) OUT6 Half-bridge outputs: the output is built by a high-side and a low-side switch which are internally connected. The output stage of both switches is a power DMOS transistor. Each driver has an internal parasitic reverse diode (bulk-drain-diode: high-side driver from output to VS, low-side driver from GND to output) 21 OUT1 Half-bridge outputs: the output is built by a high-side and a low-side switch which are internally connected. The output stage of both switches is a power DMOS transistor. Each driver has an internal parasitic reverse diode (bulk-drain-diode: high-side driver from output to VS, low-side driver from GND to output) 22 NC 20 14/161 Function 23 OUT5 24 OUT5; 2nd pin 25 VSREG 26 OUT_HS Current capability (pin description see above) Not connected Half-bridge outputs: the output is built by a high-side and a low-side switch which are internally connected. The output stage of both switches is a power DMOS transistor. Each driver has an internal parasitic reverse diode (bulk-drain-diode: high-side driver from output to VS, low-side driver from GND to output) Current capability (pin description see above) Power supply voltage to supply the internal voltage regulators, OUT15 and the OUT_HS (external reverse battery protection required / Diode) for this input a ceramic capacitor as close as possible to GND and an electrolytic back up capacitor is recommended. High-side-driver output to drive LEDs or to supply contacts DS11567 Rev 5 L99DZ120 Block diagram and pin descriptions Table 2. Pin definitions and functions (continued) Pin Symbol Function 27 OUT4 Half-bridge outputs: the output is built by a high-side and a low-side switch which are internally connected. The output stage of both switches is a power DMOS transistor. Each driver has an internal parasitic reverse diode (bulk-drain-diode: high-side driver from output to VS, low-side driver from GND to output) 28 OUT4; 2nd pin 29 NC 30 VS; 3rd pin 31 OUT15 High-side-driver output to drive LEDs 32 PGND Power GND 33 OUT8 High-side-driver output to drive LEDs or a 5 Watt bulb (programmable Rdson) 34 NC Not connected 35 SGND Signal Ground Current capability (pin description see above) Not connected Current capability (for the pin description see above) 36 CM Current monitor output: depending on the selected multiplexer bits CM_SEL_x (CR 7) of the; Control Register this output sources an image of the instant current; through the corresponding high-side driver with a fixed ratio 37 NC Not connected 38 CLK SPI: serial clock input 39 DO SPI: serial data output (push pull output stage) 40 DI SPI: serial data input 41 CSN 42 TxD_L 43 RxD_L/NINT RxDL -> LIN receive data output; NINT -> indicates local/remote wake-up events (push pull output stage) 44 LIN_FLASH LIN Flash Mode enable (former TxD_C pin, to guarantee family compatibility) 45 NC 46 DIR1 47 PWMH PWMH input: this input signal can be used to control the H-bridge Gate Drivers. 48 DIRH Direction Input: this input controls the H-bridge Drivers for the external MOSFETs 49 DIR2 Direct Drive Input 2 50 NRESET 51 5V_1 52 NC SPI: chip select not input LIN Transmit data input Not connected Direct Drive Input 1 NReset output to micro controller; (reset state = LOW) (low-side switch with drain connected to the output pin and internal pull up resistance to 5V_1) Voltage regulator 1 output: 5 V supply e.g. micro controller Not connected DS11567 Rev 5 15/161 160 Block diagram and pin descriptions L99DZ120 Table 2. Pin definitions and functions (continued) 16/161 Pin Symbol Function 53 NINT Interrupt output (low active; push-pull output stage) to indicate VSREG early warning (Active mode); indicates wake-up events from V1_standby mode 54 NC Not connected 55 NC Not connected 56 Debug 57 LIN 58 5V_2 Voltage regulator 2 output: 5 V supply for external loads (potentiometer, sensors). V2 is protected against reverse supply 59 GL1 Gate driver for PowerMOS low-side switch in half-bridge 1 60 SH1 Source of high-side switch in half-bridge 1 61 GH1 Gate driver for PowerMOS high-side switch in half-bridge 1 62 GH2 Gate driver for PowerMOS high-side switch in half-bridge 2 63 SH2 Source of high-side switch in half-bridge 2 64 GL2 Gate driver for PowerMOS low-side switch in half-bridge 2 Debug input to deactivate the window watchdog (high active) LIN bus line DS11567 Rev 5 L99DZ120 Block diagram and pin descriptions ',5 15(6(7 1& 9B 1& 1,17 1& 'HEXJ 9B /,1 6+ */ *+ 6+ *+ */ Figure 2. Pin connection (top view)  :8  ',5+ &30 3:0+ &33 ',5 &3 1& &33 /,1B)/$6+ &30 5['B/1,17 1& 7['B/ 1& &61 287 ', 287 '2 287 &/. 287 1& 287 &0 6*1' 287 3*1' 287 96 1& 287 965(* 287B+6 287 287 287 1& 287 287 287 287 96 1& /6B)62 96 /6B)62 *$3*&)7 DS11567 Rev 5 17/161 160 Electrical specifications L99DZ120 3 Electrical specifications 3.1 Absolute maximum ratings Stressing the device above the rating listed in Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability Table 3. Absolute maximum ratings Symbol Value [DC voltage] Unit DC supply voltage / “jump start” -0.3 to +28 V Load dump -0.3 to +40 V Stabilized supply voltage, logic supply -0.3 to 6.5 V1 < VSREG V Stabilized supply voltage -0.3 to +28(2) V Logic input / output voltage range -0.3 to V1+0.3 V -0.3 to 40 V Debug input pin voltage range -0.3 to 40 V Output voltage range of Fail-Safe low-side Switches -0.3 to 35 V DC Wake up input voltage / “jump start” -0.3 to +28 V Load dump -0.3 to +40 V LIN bus I/O voltage range -20 to +40 V Current injection into VS related input pins 20 mA Current injection into VS related outputs 20 mA -0.3 to VS+0.3 V VGH1, VGH2 (VGxy) High Voltage Signal Pins VSxy-0.3 to VSxy+13; VCP+0.3 V VGL1, VGL2, (VGxy) High Voltage Signal Pins VSxy-0.3 to VSxy+13; VCP-0.3V to +12V; Vcp+0.3V V -1 to 40 V -5 to 40 V VS, VSREG 5V_1 5V_2(1) VDI, VCLK VCSN VDO, VRXDL/NINT, VNRESET, VCM, VDIR, VDIR2, VPWMH, VDIRH, VINT Parameter / test condition VLIN_FLASH, VTXDL Multi Level Inputs VDebug VLS1_FSO, VLS2_FSO VWU VLIN IInput(3) IOUT_INJ (3) VOUTn, Vout_HS Output voltage (n = 1 to 15) High Voltage Signal Pins VSH1, VSH2 (VSxy) High Voltage Signal Pins; single pulse with tmax = 200ns 18/161 VCP1P High Voltage Signal Pins VS-0.3 to VS+14 V VCP2P High Voltage Signal Pins VS-0.6 to VS+14 V DS11567 Rev 5 L99DZ120 Electrical specifications Table 3. Absolute maximum ratings (continued) Symbol Value [DC voltage] Unit -0.3 to VS+0.3 V High Voltage Signal Pin VS ≤ 26 V VS-0.3 to VS+14 V High Voltage Signal Pin VS > 26 V VS-0.3 to +40 V ±1.25 A ±2.5 A IOUT7 ±5 A IOUT1,6 ±5 A IOUT4,5 ±10 A Maximum cumulated current at VS drawn by OUT1(2) ±7.5 A Maximum cumulated current at VS drawn by OUT8 & OUT10(2) ±2.5 A Maximum cumulated current at VS drawn by OUT4(2) ±10 A Maximum cumulated current at VS drawn by OUT5(2) ±10 A Maximum cumulated current at VS drawn by OUT6 & OUT7(2) ±7.5 A Maximum cumulated current at VS drawn by OUT9, OUT11, OUT12, OUT13, OUT14, OUT15 and CP ±2.5 A Maximum current at VSREG pin (2) (5V_1. 5V_2 and OUT_HS) ±2.5 A Maximum cumulated current at PGND drawn by OUT1 & OUT6(2) ±7.5 A Maximum cumulated current at PGND drawn by OUT5(2) ±12.5 A Maximum cumulated current at PGND drawn by OUT4(2) ±12.5 A Maximum current at SGND(2) ±1.25 A -0.3 to 0.3 V VCP1M, VCP2M VCP Parameter / test condition High Voltage Signal Pins IOUT9, IOUT10, IOUT11, IOUT12, IOUT13, IOUT14, IOUT15, IOUT_HS IOUT8 IVScum IVSREG IPGNDcum ISGND GND pins Output current(2) PGND versus SGND 1. 5V_2 is robust against SC to 28 V only in case VSREG is supplied. 2. Values for the absolute maximum DC current through the bond wires. This value does not consider maximum power dissipation or other limits. 3. Guaranteed by design. Note: All maximum ratings are absolute ratings. Leaving the limitation of any of these values may cause an irreversible damage of the integrated circuit! DS11567 Rev 5 19/161 160 Electrical specifications L99DZ120 Note: Loss of ground or ground shift with externally grounded loads: ESD structures are configured for nominal currents only. If external loads are connected to different grounds, the current load must be limited to this nominal current. 3.2 ESD protection Table 4. ESD protection Parameter All pins(1) All power output pins (2): OUT1 – OUT15, OUT_HS Value Unit +/-2 kV +/-4 kV +/-8(2) LIN +/-10(3) +/-6(4) kV +/-500 V +/-750(6) V +/- 200 V All pins(5) Corner pins(5) All pins (7) 1. HBM (human body model, 100 pF, 1.5 kΩ) according to MIL 883C, Method 3015.7 or EIA/JESD22A114-A. 2. HBM with all none zapped pins grounded. 3. Indirect ESD Test according to IEC 61000-4-2 (150 pF, 330 Ω) and ‘Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications’ (version 1.3, 2012-05-04). 4. Direct ESD Test according to IEC 61000-4-2 (150 pF, 330 Ω) and ‘Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications’ (version 1.3, 2012-05-04). 5. Charged device model. 6. For WU, these limits are referred to one-zap stress; in case of three-zap stress, the limits are +750V/-400V. 7. Machine model; C = 220 pF, R = 0 Ω. 3.3 Thermal data Table 5. Operating junction temperature Symbol Tj Parameter Operating junction temperature Value Unit -40 to 175 °C All parameters are guaranteed in the junction temperature range -40 to 150°C (unless otherwise specified); the device is still operative and functional at higher temperatures (up to 175°C). Note: Parameters limits at higher junction temperatures than 150°C may change respect to what is specified as per the standard temperature range. Note: Device functionality at high junction temperature is guaranteed by characterization. 20/161 DS11567 Rev 5 L99DZ120 Electrical specifications Table 6. Temperature warning and thermal shutdown Symbol TW Parameter Thermal overtemperature warning threshold Min. Typ. Max. Unit 140 150 160 °C Cluster 1-4 Cluster 5-6 165 165 175 175 185 190 °C Tj(1) 175 185 195 °C Tj(1) Tj(1) TSD1 TSD2 TSD12hys Tjtft Thermal shutdown junction temperature 1 Thermal shutdown junction temperature 2 Hysteresis Thermal warning / shutdown filter time 5 °C 32 µs 1. Non-overlapping. 3.3.1 LQFP64 thermal data Devices belonging to L99DZxxx family embed a multitude of junctions (i.e. Outputs based on a PowerMOSFET stage) housed in a relatively small piece of silicon. The most complex device contains, among all the described features, 6 half-bridges (12 N-Channel PowerMOS), 10 high-sides and two voltage regulators; all the other derivatives, even if smaller than the family super set device, still contain a significant number of junctions. For this reason, using the Thermal Impedance of a single junction (i.e. voltage regulator or major power dissipation contributor) does not allow to predict thermal behavior of the whole device and therefore it is not possible to assess if a device is thermally suitable for a given activation profile and loads characteristics. Thermal information is provided as temperature reading by different clusters placed close to the most dissipative junctions. Some representative and realistic worst-case thermal profiles are described in the below paragraph. Following measurement methods can be easily implemented, by final user, for a specific activation profile. L99DZ120 thermal profiles Profile 1 Battery Voltage: 16V, Ambient temperature start: 85°C DC activation  V1 charged with 70 mA (DC activation)  V2 charged with 30 mA (DC activation)  OUT7: 1 x10W bulb (DC activation)  OUT8: 1 x 5W bulb (DC activation)  OUT11: 300 Ω resistor (DC activation)  OUT12: 300 Ω resistor (DC activation)  OUT13: 300 Ω resistor (DC activation)  OUT14: 300 Ω resistor (DC activation) DS11567 Rev 5 21/161 160 Electrical specifications L99DZ120 Cyclic activation  OUT4 – OUT5: 3,3 Ω resistor placed across those outputs –  10 activations of Lock/Un-lock (250 ms ON Lock; 500 ms wait; 250 ms ON Unlock unlock; 500 ms wait) OUT5 – OUT6: 10 Ω resistor placed across those outputs – (250 ms ON Safe Lock; 500 ms wait; 250 ms ON Safe unlock; 500 ms wait) Test execution: Once thermal equilibrium is reached with all DC load active, the “Cyclic Activation” sequence is applied. Temperature reading is logged just at the end of the whole sequence. Figure 3. Activation profile 1   7HPSHUDWXUH ƒ&  &OXVWHU &OXVWHU  &OXVWHU &OXVWHU &OXVWHU                      7LPH V *$3*&)7 Figure 4. Activation profile 1 (first cycle)          &XUUHQW $ 7HPSHUDWXUH ƒ&  &OXVWHU &OXVWHU &OXVWHU &OXVWHU &OXVWHU   287B               7LPH V *$3*&)7 22/161 DS11567 Rev 5 L99DZ120 All curves are plotted interpolating measured samples with 15 ms of period. Profile 2 Battery Voltage: 16V, Ambient temperature start: 85°C DC activation  V1 charged with 70 mA (DC activation)  V2 charged with 30 mA (DC activation)  OUT7: 1 x10W bulb (DC activation)  OUT8: 1 x 5W bulb (DC activation)  OUT11: 300 Ω resistor (DC activation)  OUT12: 300 Ω resistor (DC activation)  OUT13: 300 Ω resistor (DC activation  OUT14: 300 Ω resistor (DC activation) Cyclic activation  OUT1 – OUT6: 6,8 Ω resistor placed across those outputs – 2 activations (3s ON; 1s OFF; 2x) Test execution: Once thermal equilibrium is reached with all DC load active, the “Cyclic Activation” sequence is applied. Figure 5. Activation profile 2      $[LV7LWOH Note: Electrical specifications &OXVWHU &OXVWHU  &OXVWHU  &OXVWHU &OXVWHU                          $[LV7LWOH *$3*&)7 DS11567 Rev 5 23/161 160 Electrical specifications L99DZ120                     &XUUHQW $ 7HPSHUDWXUH ƒ& Figure 6. Activation profile 2 (first cycle) &OXVWHU &OXVWHU &OXVWHU &OXVWHU &OXVWHU  287B           7LPH V *$3*&)7 Note: All curves are plotted interpolating measured samples with 15 ms of period. Figure 7. LQFP64 package and PCB thermal configuration Note: 24/161 Layout condition for Thermal Characterization (board finishing thickness 1.5 mm +/- 10%, board four layers, board dimension 77 mm x 114 mm, board material FR4, Cu thickness 0,070 mm for outer layers, 0.0035 mm for inner layers, thermal vias separation 1.2 mm). DS11567 Rev 5 L99DZ120 Electrical specifications 3.4 Electrical characteristics 3.4.1 Supply and supply monitoring All SPI communication, logic and oscillator parameters are working down to VSREG = 3.5 V and parameters are as specified in the following chapters (guaranteed by design).  SPI thresholds  Oscillator frequency (delay times correctly elapsed)  Internal register status correctly kept (reset at default values for VSREG< VPOR)  Reset threshold correctly detected The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 7. Supply and supply monitoring Symbol Parameter VSUV VS undervoltage threshold Vhyst_UV VS undervoltage hysteresis VSOV VS overvoltage threshold Vhyst_OV VS overvoltage hysteresis VSREG_UV VSREG undervoltage threshold Vhyst_UV VSREG undervoltage hysteresis VSREG_OV VSREG overvoltage threshold Vhyst_OV VSREG overvoltage hysteresis tovuv_filt VS/VSREG over/undervoltage filter time Test condition VS increasing / decreasing Min. Typ. 4.7 0.04 0.1 Max. Unit 5.4 V 0.2 V VS increasing 20 22.5 VS decreasing 18.5 22.5 0.5 VSREG increasing / decreasing 1 4.2 0.04 0.1 1.5 V 4.9 V 0.2 V VSREG increasing 20 22.5 VSREG decreasing 18.5 22.5 0.5 1 1.5 64 IV(act) Current consumption in Active mode VS = VSREG = 12 V;  TxD LIN = high; V1 = ON; V2 = ON; HS/LS Driver OFF; CP = ON IV(BAT) Current consumption in Vbat_standby mode (1) VS = 12 V; Both voltage regulators deactivated; HS/LS Driver OFF IV(BAT)CS Current consumption in Vbat_standby mode with cyclic sense enabled (1) IV(BAT)CW Current consumption in Vbat_standby mode with cyclic wake enabled (1) V V V µs 11 14 mA 8 16 30 µA VS = 12 V; Both voltage regulators deactivated; T = 50 ms, tON = 100 µs 30 80 130 µA VS = 12 V; Both voltage regulators deactivated during standby phase 30 80 130 µA DS11567 Rev 5 25/161 160 Electrical specifications L99DZ120 Table 7. Supply and supply monitoring (continued) Symbol IV(V1stby) IqLIN IOUT_HS Parameter Test condition Min. Typ. Max. Unit Current consumption in V1_standby mode (1) VS = 12 V; Voltage regulator V1 active; (IV1 = 0); HS/LS Driver OFF 16 50 70 µA Current consumption in V1_standby mode (1) (2) VS = 12 V; Voltage regulator V1 active; (IV1 = ICMP); HS/LS Driver OFF 196 µA Current consumption in V1_standby mode (1) VS = 12V; Voltage regulator V1 active; (IV1 = IPEAK); HS/LS Driver OFF 436 µA Quiescent current adder for LIN wake up activated Guaranteed by design 0 Additional bias quiescent current for switched on OUT_HS or Guaranteed by design OUT15 by DIR or Timer; value for 1 output µA 620 1100 µA IOUTHS_DIR Quiescent current adder if OUT_HS and/or OUT15 are configured for Direct Drive; value during output off Guaranteed by design 0 5 µA Itimer Quiescent current adder if timer1 and/or timer 2 are active to provide interrupt on NINT upon timer expiration Guaranteed by design 65 110 µA 1. Conditions for specified current consumption: — VLIN > (VS-1.5 V) — VWU < 1 V or VWU > (VS – 1.5 V) 2. Iq = Iq0 + 2% * ILOAD (see also Figure 8: Voltage regulator V1 characteristics (quiescent current and accuracy) 3.4.2 Oscillator The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 8. Oscillator Symbol Parameter Test condition Min. Typ. Max. Unit fCLK1(1) Oscillation frequency OSC1 1.66 2.0 2.34 MHz fCLK2(1) Oscillation frequency OSC2 30.4 32.0 33.6 MHz 1. OSC1: charge pump, SPI, output drivers, watchdog OSC2: ADC 3.4.3 Power-on reset (VSREG) All outputs open; Tj = -40 °C to 150 °C, unless otherwise specified. 26/161 DS11567 Rev 5 L99DZ120 Electrical specifications Table 9. Power-on reset (VSREG) Symbol VPOR_R VPOR_F Parameter VPOR threshold VPOR threshold Test condition Min. VSREG rising (1) VSREG falling Typ. Max. Unit 3.45 4.5 V 3.5 V 2.45 1. This threshold is valid if VSREG had already reached VPOR_R(max) previously. 3.4.4 Voltage regulator V1 The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V ≤ VS ≤ 28 V; 4.5 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 10. Voltage regulator V1 Symbol V1 Parameter Test condition Output voltage VSREG = 13.5V VSREG absolute minimum value for controlling NRESET output VSREG rising/falling V1_low_acc Output voltage tolerance low accuracy mode ILOAD = 0 mA to ICMP; (Active mode) or ILOAD = 0 mA to IPEAK (V1stdby); VSREG = 13.5 V VSREG_absmin Min. Typ. Max. 5.0 Unit V 2 V -3 3 % V1_hi_acc ILOAD = ICMP to 100 mA; (Active Output voltage mode) or ILOAD = IPEAK to tolerance high accuracy 100 mA (V1stdby); mode VSREG = 13.5 V -2 2 % V1_250mA Output voltage tolerance (100 to 250mA) -3 3 % VDP1 ICC1 ICCmax1 Cload1 tTSD Drop-out Voltage ILOAD = 250 mA; VSREG = 13.5 V ILOAD = 50 mA; VSREG = 5 V 0.2 0.4 V ILOAD = 100 mA; VSREG = 5 V 0.3 0.5 V ILOAD = 150 mA; VSREG = 5 V 0.45 0.6 V 250 mA 900 mA Output current in Active Max. continuous load current mode Short circuit output current Current limitation Load capacitor1 Ceramic (+/- 20%) 340 600 0.22(1) V1 deactivation time after thermal shut-down µF 1 sec ICMP_ris Current comp. rising thresh Rising current 2 4 6 mA ICMP_fal Current comp. falling threshold Falling current 1.4 2.8 4.2 mA DS11567 Rev 5 27/161 160 Electrical specifications L99DZ120 Table 10. Voltage regulator V1 (continued) Symbol ICMP_hys Parameter Test condition Min. Current comp. Hysteresis Typ. Max. 1.2 Unit mA IPeak_ris(2) Current comp. rising thresh. Rising current 6 12 18 mA IPeak_fal(2) Current comp. falling threshold Falling current 5 10 15 mA IPeak_hys(2) Current comp. Hysteresis mA 2 V V1fail V1 fail threshold tV1fail V1 fail filter time 2 µs V1 short filter time 4 ms tV1FS V1 Fail-Safe Filter Time 2 ms tV1off V1 deactivation time after 8 consecutive WD failures tV1short V1 forced 2 Tested by scan 150 200 250 ms 1. Nominal capacitor value required for stability of the regulator. Tested with 220 nF ceramic (+/- 20%). Capacitor must be located close to the regulator output pin. A 2.2 µF capacitor is recommended to minimize the DPI stress in the application. 2. In Active mode, V1 regulator is switched to high accuracy mode, dropping below the ICMP threshold regulator switches to low accuracy mode. Figure 8. Voltage regulator V1 characteristics (quiescent current and accuracy) $FWLYH 9VWGE\PRGH +LJKDFFXUDF\ 9 9 :'RQ  GH PR 9 ,T LYH   $FWFXUDF\ 9RQ KDF +LJ :'  GH PR9 \ E WG 9  9DVFFXUDF:\ 'RQ  /RZ 6ORSH  ,/RDG ,T  DF\ FXU DF  I /RZ 9 'RI RQ   : 9 GE\ :' W H 9V PRG H Y L W $F ,&03 28/161 DS11567 Rev 5 ,3HDN ,/RDG ("1($'5 L99DZ120 3.4.5 Electrical specifications Voltage regulator V2 The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V ≤ VS ≤ 28 V; 4.5 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 11. Voltage regulator V2 Symbol Parameter Test condition Min. Typ. Max. Output voltage VSREG = 13.5 V V2_1mA Output voltage tolerance (0 to 1 mA) ILOAD = 1 mA; VSREG = 13.5 V -6.5 6.5 % V2_25mA Output voltage tolerance (1 to 25 mA) ILOAD = 25 mA; VSREG = 13.5 V -3 3 % V2_50mA Output voltage tolerance (25 to 50 mA) ILOAD = 50 mA; VSREG = 13.5 V -4 4 % V2_100mA Output voltage tolerance (50 to 100 mA) ILOAD = 100 mA; VSREG = 13.5 V -4 4 % V2 VDP2 Drop-out voltage 5.0 Unit ILOAD = 25 mA; VSREG = 5.25 V 0.3 0.4 V ILOAD = 50 mA; VSREG = 5.25 V 0.4 0.8 V ILOAD = 100 mA; VSREG = 13.5 V 1 1.6 V 50 mA 250 mA Output current in Active mode Max. continuous load current Short circuit output current Current limitation Cload Load capacitor Ceramic (+/- 20%) V2fail V2 fail threshold V2 forced tV2fail ICC2 ICCmax2 tV2short V 100 150 0.22 (1) μF 2 V V2 fail filter time 2 µs V2 short filter time 4 ms 1. Nominal capacitor value required for stability of the regulator. Tested with 220 nF ceramic (+/- 20%). Capacitor must be located close to the regulator output pin. A 2.2 µF capacitor is recommended to minimize the DPI stress in the application. 3.4.6 Reset output The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4V ≤ VSREG ≤ 28V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 12. Reset output Symbol Parameter VRT1falling Reset threshold voltage1 VRT2falling VRT3falling Test condition Min. Typ. Max. Unit VV1 decreasing 3.25 3.5 3.7 V Reset threshold voltage2 VV1 decreasing 3.55 3.8 4 V Reset threshold voltage3 VV1 decreasing 3.75 4.0 4.2 V DS11567 Rev 5 29/161 160 Electrical specifications L99DZ120 Table 12. Reset output (continued) Symbol 30/161 Parameter Test condition Min. Typ. Max. Unit VRT4falling Reset threshold voltage4 VV1 decreasing 4.1 4.3 4.5 V VRTrising Reset threshold voltage4 VV1 increasing 4.67 4.8 4.87 V VRESET Reset Pin low output V1 > 1 V; IRESET = 5 mA voltage 0.2 0.4 V RRESET Reset pull up int. resistor 20 30 kΩ 40 µs 10 tRR Reset reaction time ILOAD = 1 mA 6 tUV1 V1 undervoltage filter time tV1R Reset pulse duration (V1 undervoltage and V1 power on reset) 1.5 2.0 2.5 ms tWDR Reset pulse duration (watchdog failure) 3 4 5 ms 16 DS11567 Rev 5 µs L99DZ120 3.4.7 Electrical specifications Watchdog timing 4.5 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 13. Watchdog timing Symbol tLW Parameter Test condition Long open window Min. Typ. Max. Unit 160 200 240 ms 4.5 ms TEFW1 Early Failure Window 1 TLFW1 Late Failure Window 1 20 TSW1 Safe Window 1 7.5 TEFW2 Early Failure Window 2 TLFW2 Late Failure Window 2 100 TSW2 Safe Window 2 37.5 TEFW3 Early Failure Window 3 TLFW3 Late Failure Window 3 200 TSW3 Safe Window 3 75 TEFW4 Early Failure Window 4 TLFW4 Late Failure Window 4 400 TSW4 Safe Window 4 150 DS11567 Rev 5 ms 12 ms 22.3 ms ms 60 ms 45 ms ms 120 ms 90 ms ms 240 ms 31/161 160 Electrical specifications L99DZ120 Figure 9. Watchdog timing 1RUPDOVWDUWXSRSHUDWLRQDQGWLPHRXWIDLOXUHV 7 /: ORQJRSHQZLQGRZ 7 (): HDUO\IDLOXUHZLQGRZ FRUUHFWWULJJHUWLPLQJ 7 6: VDIHWULJJHUZLQGRZ HDUO\WULJJHUWLPLQJ 7 :'5 ZDWFKGRJUHVHWGXUDWLRQ PLVVLQJWULJJHU 7 ():7 6: 7 (): 7 6: 7 (): 7 /: :' WULJJHU WULJJHUVLJQDO 7 /: 7 /: 15(6 2XW 7 :'5 7:'5 QRUPDORSHUDWLRQ  WLPHPV PLVVLQJ WULJJHU HDUO\ ZULWH WLPHPV 0LVVLQJ0LFURFRQWUROOHUWULJJHUVLJQDO :' WULJJHU 7 /: 7/: 7 /: WLPHPV 15(6 2XW 7 :'5 7 :'5 7 :'5 WLPHPV  ("1($'5 32/161 DS11567 Rev 5 L99DZ120 Electrical specifications Figure 10. Watchdog early, late and safe windows 76:Q 6DIHZLQGRZ 7():Q (DUO\)DLOXUHZLQGRZ 7/):Q /DWHIDLOXUHZLQGRZ 7/):QBPLQ 76:QBPD[ 76:QBPLQ XQGHILQHG 7():QBPD[ (DUO\ :DWFKGRJ IDLOXUH VDIHWULJJHUDUHD /DWH ZDWFKGRJ IDLOXUH XQGHILQHG WLPH ("1($'5 3.4.8 Current monitor output (CM) The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28V; 6 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified Table 14. Current monitor output (CM) Symbol VCM Parameter Test condition Functional voltage range ICM/IOUT8 (low on-resistance) Typ. 0 Current monitor output ratio: ICM/IOUT1,4,5,6 and 7 (low onresistance) ICMr Min. Max. Unit V1-1V V 1/10000 0 V ≤ VCM ≤ (V1 - 1 V) 1/6500 ICM/IOUT 7,8 (high on-resistance) 1/2000 ICM/IOUT9,10,11,12,13,14,15 and HS 1/1000 DS11567 Rev 5 33/161 160 Electrical specifications L99DZ120 Table 14. Current monitor output (CM) (continued) Symbol ICM acc Parameter Current monitor accuracy accICMOUT1,4,5,6 and 7(low onresistance) 0 V ≤ VCM ≤ (V1 - 1 V); IOUTmin = 500 mA; IOUT4,5max=7.4 A; IOUT1,6max = 2.9 A; IOUT7max = 1.4 A Current monitor accuracy accICMOUT 8 (low on-resistance) 0 V ≤ VCM ≤ (V1 - 1 V); IOUTmin = 100 mA; IOUT8max=0.9 A Current monitor accuracy accICMOUT9,10,11,12,13,14,15 ,HS and OUT7,8 (high on-resistance) 0 V ≤ VCM ≤ (V1 - 1 V); IOUT.min = 100 mA; IOUT11,12, 15 HS = 0.2 A; IOUT7,8 max = 0.3 A Current monitor accuracy accICMOUT1,4,5,6 and 7 (low onresistance) 0 V ≤ VCM ≤ (V1 - 1 V); IOUTmin = 2 * IOLD; IOUT4,5max = 7.4 A; IOUT1,6max = 2.9 A; IOUT7max = 1.4 A Current monitor accuracy accICMOUT 8(low on-resistance) 0 V ≤ VCM ≤ (V1 - 1 V); IOUTmin = 2 * IOLD; IOUT8max = 0.9 A Current monitor accuracy accICMOUT9,11,12,13,14,15, HS and OUT7,8 (high on-resistance) 0 V ≤ VCM ≤ (V1 - 1 V); IOUT.min = 2 * IOLD; IOUT9,13,14max = 0.3 A; IOUT11,12,15 HS = 0.2 A; IOUT7,8 max = 0.3 A Current monitor accuracy accICMOUT10 0 V ≤ VCM ≤ (V1 - 1 V); IOUT.min = 2 * IOLD; IOUT10max = 0.4 A ICM acc_2ol tcmb Test condition Min. Current monitor blanking time Typ. Max. 4% + 1% FS(1) 8% + 2% FS(1) 4% + 1% FS(1) 8% + 2% FS(1) 4% + 1% FS(1) 8% + 4% FS(1) 32 Unit µs 1. FS (full scale) = IOUTmax * ICMr 3.4.9 Charge pump The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 15. Charge pump electrical characteristics Symbol Parameter VCP Charge pump output voltage ICP Charge pump output current(1) 34/161 Test condition Min. Typ. VS = 6 V, ICP = -15 mA VS+6 VS+7 VS ≥ 10 V, ICP = -15 mA VS+11 VS+12 VCP = VS + 10 V; VS = 13.5 V; C1 = C2 = CCP = 100 nF 22.5 DS11567 Rev 5 Max. Unit V VS+13.5 V mA L99DZ120 Electrical specifications Table 15. Charge pump electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. VCP = VS; VS = 13.5 V; C1 = C2 = CCP = 100 nF Max. Unit 70 mA VS+5.5 V ICPlim Charge pump output current limitation(2) VCP_low Charge pump low threshold voltage TCP Charge pump low filter time 64 µs fCP Charge Pump frequency 400 kHz VS+4.5 VS+5 1. ICP is the minimum current the device can provide to an external circuit without VCP going below VS + 10 V. 2. ICPlim is the maximum current, which flows out of the device in case of a short to VS. 3.4.10 Outputs OUT1 - OUT15, OUT_HS The voltages are referred to power ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V, all outputs open;  Tj = -40 °C to 150 °C, unless otherwise specified. Table 16. Outputs OUT1 - OUT15, OUT_HS Symbol Parameter rON OUT1,6 On-resistance to supply or GND rON OUT4 rON OUT5 On-resistance to supply or GND On-resistance to supply or GND On-resistance to supply in low resistance mode rON OUT7 On-resistance to supply in high resistance mode Test condition VS = 13.5 V; Tj = 25 °C; IOUT1,6 = ±1.5A Min. Typ. 300 VS = 13.5V; Tj = 130°C IOUT1,6 = ±1.5 A VS = 13.5V; Tj = 25 °C; IOUT4 = ±3 A 150 VS = 13.5 V; Tj = 25 °C;  IOUT7 = -0.8 A 100 VS = 13.5 V; Tj = 25°C;  IOUT7 = -0.2 A VS = 13.5 V; Tj = 130 °C;  IOUT7 = -0.2 A DS11567 Rev 5 mΩ mΩ 200 500 VS = 13.5 V; Tj = 130 °C;  IOUT7 = -0.8 A mΩ mΩ 300 VS = 13.5 V; Tj = 130 °C; IOUT5 = 3 A Unit mΩ 600 VS = 13.5 V; Tj = 130 °C; IOUT4 = ±3 A VS = 13.5 V; Tj = 25°C; IOUT5 = ±3 A Max. mΩ mΩ 1000 1600 mΩ mΩ 3200 mΩ 35/161 160 Electrical specifications L99DZ120 Table 16. Outputs OUT1 - OUT15, OUT_HS (continued) Symbol Parameter On-resistance to supply in low resistance mode rON OUT8 On-resistance to supply in high resistance mode rON OUT9,10,13,14 On-resistance to supply rON OUT11,12,15, HS On-resistance to supply 36/161 Test condition Min. VS = 13.5 V; Tj = 25 °C; IOUT8 = -0.4 A Typ. 800 VS = 13.5 V; Tj = 130 °C;  IOUT8 = -0.4 A 1600 VS = 13.5 V; Tj = 130 °C;  IOUT8 = -0.2 A 2000 VS = 13.5 V; Tj = 130 °C; IOUT9,10,13,14 = -75 mA 5 VS = 13.5 V; Tj = 130 °C; IOUT11,12,15, HS = -75 mA Switched-off output current VOUT = 0 V; standby mode high-side drivers of OUT7VOUT = 0 V; active mode 15, OUT_HS IQLH Switched-off output current VOUT = 0 V; standby mode high-side drivers of OUT1-6 V OUT = 0 V; Active mode IQLL VOUT = VS; standby mode Switched-off output current low-side drivers of OUT1-6 VOUT = VS - 0.5 V; active mode DS11567 Rev 5 mΩ mΩ 4000 VS = 13.5 V; Tj = 25 °C; IOUT11,12,15, HS = -75 mA mΩ mΩ 3200 VS = 13.5 V; Tj = 25 °C; IOUT9,10,13,14 = -75 mA Unit mΩ 1600 VS = 13.5 V; Tj = 25 °C;  IOUT8 = -0.2 A IQLH Max. mΩ Ω 10 Ω -5 µA -10 µA -5 µA -100 µA 165 -100 µA µA L99DZ120 3.4.11 Electrical specifications Power outputs switching times The voltages are referred to power ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 17. Power outputs switching times Symbol td ON H td OFF H Parameter Output delay time high-side driver on (OUT1,4,5,6) Output delay time high-side driver on (OUT7,8) Output delay time high-side driver off (OUT1,4,5,6) Output delay time high-side driver off (OUT7,8) Test condition VS = 13.5 V; V1 = 5 V; corresponding low-side driver is not active (1)(2)(3) (from CSN 50% to OUT 50%) see Figure 20 VS = 13.5 V; (1)(2)(3) (from V1 = 5 V CSN 50% to OUT 50%) see Figure 20 Min. Typ. Max. Unit 15 40 80 µs 20 40 90 µs 50 150 300 µs 20 70 130 µs td ON H Output delay time high-side driver on (OUT9 …OUT15, OUT_HS) VS/VSREG = 13.5 V; V1 = 5 V; (from CSN 80% to OUT 80%) 30 µs td OFF H Output switch off delay time highside driver on (OUT9 …OUT15, OUT_HS) VS/VSREG = 13.5 V; V1 = 5 V; (from CSN 80% to OUT 20%) 35 µs td ON L Output delay time low-side driver (OUT1-6) on VS = 13.5 V; V1 = 5 V; corresponding high-side driver is not active (1)(2)(3) (from CSN 50% to OUT 50%) see Figure 20 td OFF L Output delay time low-side driver (OUT1-6) off td HL td LH Cross current protection time (OUT1-6) VS = 13.5 V; (1)(2)(3) (from V1 = 5 V CSN 50% to OUT 50%) see Figure 20 tcc ONLS_OFFHS – td OFF H(4) tcc ONHS_OFFLS – td OFF L (4) VS = 13.5 V; V1 = 5 V 15 30 70 µs 40 150 300 µs 50 200 400 µs 0.1 0.2 0.6 V/µs dVOUT/dt Slew rate of OUT1-OUT8 dVmax/dt Maximum external applied slew rate on OUT1-OUT6 without Guaranteed by design switching on the LS and HS (only in Active mode) dVOUT/dt Slew rate of OUT9-OUT15, OUT_HS VS/VSREG = 13.5 V; V1 = 5 V (1)(2)(3) 2 V/µs fPWMx(00) PWM switching frequency VS/VSREG = 13.5 V; V1 = 5 V 100 Hz fPWMx(01) PWM switching frequency VS/VSREG = 13.5 V; V1 = 5 V 200 Hz (1)(2)(3) DS11567 Rev 5 20 V/µs 37/161 160 Electrical specifications L99DZ120 Table 17. Power outputs switching times (continued) Symbol Parameter Test condition Min. Typ. Max. Unit fPWMx(10) PWM switching frequency VS/VSREG = 13.5 V; V1 = 5 V 330 Hz fPWMx(11) PWM switching frequency VS/VSREG = 13.5 V; V1 = 5 V 500 Hz 1. RLOAD = 16 Ω at OUT1,6 and OUT7,8 in low on-resistance mode 2. RLOAD = 4 Ω at OUT4,5 3. RLOAD = 128 Ω at OUT4,9,10,11,12,13,15,15,HS and OUT7,8 in high on-resistance mode 4. tCC is the switch-on delay time if complement in half bridge has to switch off 3.4.12 Over Current Recovery settings Table 18. Half bridges (OUT1, OUT4, OUT5 and OUT6) OCR timing parameters Symbol Parameter Tblanking Tocr_hb Toff_hb Over current filter time for half bridges OFF Time for half bridges OCR_FREQ=0 OFF Time for half bridges OCR_FREQ=1 Test condition Min. Typ. Max. Unit Guaranteed by Design 33 40 47 µs Guaranteed by Design 26 32 38 µs 218 264 310 µs 106 128 150 µs Guaranteed by Design Table 19. High-side (OUT7, OUT8 and OUT_HS) OCR timing parameters Symbol Parameter Tblanking Tocr_hs Toff_hs 38/161 Over current filter time for high-side OFF Time for high-side OCR_FREQ=0 OFF Time for high-side OCR_FREQ=1 Test condition Min. Typ. Max. Unit Guaranteed by Design 33 40 47 µs Guaranteed by Design 53 64 75 µs 398 480 562 µs 192 232 272 µs Guaranteed by Design DS11567 Rev 5 L99DZ120 Electrical specifications Figure 11. Hard Short case, the OC threshold is reached before end of blanking time Figure 12. Overload case, the OC threshold is reached after end of blanking time 3.4.13 Current monitoring The voltages are referred to power ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. DS11567 Rev 5 39/161 160 Electrical specifications L99DZ120 Table 20. Current monitoring Symbol Parameter |IOC1|, |IOC6| Test condition Min. VS = 13.5 V; V1 = 5 V; sink and source Typ. Max. Unit 3 5 A 7.5 10 A 6 10 A VS = 13.5 V; V1 = 5 V; sink and source; Tj = -40 °C to |IOC4| 70 °C Overcurrent threshold HS & LS VS = 13.5 V; V1 = 5 V; sink and source; Tj = 130 °C |IOC5_1| 3 4 5 A 4.5 6 7.5 A 7.5 10 A Overcurrent threshold HS in low onresistance mode 1.5 2.5 A Overcurrent threshold HS in high on-resistance mode 0.35 0.65 A Overcurrent threshold HS in low onresistance mode 0.7 1.3 A Overcurrent threshold HS in high on-resistance mode 0.35 0.65 A 0.35 0.7 A 0.15 0.3 A Overcurrent threshold HS in high current mode 0.5 1 A Overcurrent threshold HS in low current mode 0.25 0.5 A Overcurrent threshold HS in high current mode 0.25 0.5 A Overcurrent threshold HS in low current mode 0.15 0.3 A VS = 13.5 V; V1 = 5 V; sink and source |IOC5_2| |IOC5_3| |IOC7| |IOC8| |IOC9|, |IOC13|, |IOC14| |IOC10| |IOC11|, |IOC12|, |IOC15|, |IOC_HS| tAR |IOLD1|, |IOLD6| |IOLD4|, |IOLD5| 40/161 Overcurrent threshold HS in high current mode Overcurrent threshold to HS in low current mode Auto recovery time limit Under-current threshold HS & LS VS/VSREG = 13.5 V; V1 = 5 V; source OUT1 to OUT6 100 ms OUT7, OUT8, OUT_HS 120 ms VS = 13.5 V; V1 = 5 V; sink and source DS11567 Rev 5 10 30 80 mA 60 150 300 mA L99DZ120 Electrical specifications Table 20. Current monitoring (continued) Symbol |IOLD7| |IOLD8| IOLD9|, |IOLD13|, |IOLD14| |IOLD10| |IOLD11|, |IOLD12|, |IOLD15|, |IOLD_HS| tOL_out 3.4.14 Parameter Test condition Min. Typ. Max. Unit Under-current threshold HS in low on-resistance mode 15 40 60 mA Under-current threshold HS in high on-resistance mode 5 10 15 mA Under-current threshold HS in low on-resistance mode 10 30 45 mA Under-current threshold HS in high on-resistance mode 5 10 15 mA 6 12 mA 0.5 4 mA Under -current threshold HS in high current mode 10 30 mA Under -current threshold HS in low current mode 0.3 4 mA Under -current threshold HS in high current mode 6 12 mA Under -current threshold HS in low current mode 0.85 4 mA 250 µs Under-current threshold HS in high current mode VS/VSREG = 13.5 V; V1 = 5 V; source Under-current threshold HS in low current mode Duration of open-load condition to set the status bit Filter time of open-load signal 150 200 H-bridge driver The voltages are referred to power ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V; Tj = -40°C to 150 °C, unless otherwise specified. Table 21. H-bridge driver Symbol Parameter Test condition Min. Typ. Max. Unit Drivers for external high-side PowerMOS IGHx(Ch) RGHx VGHHx Average charge current (charge stage) On-resistance (dischargestage) Gate-on voltage Tj = 25 °C VSHx = 0 V; IGHx = 50 mA; Tj = 25 °C 0.3 6 VSHx = 0 V; IGHx = 50 mA; Tj = 130 °C VS = SH = 6 V; ICP = 15 mA VSHx + 6 VS = SH = 12 V; ICP = 15 mA VSHx + 8 DS11567 Rev 5 A 10 14 Ω 14 20 Ω V VSHx + 10 VSHx + 11.5 V 41/161 160 Electrical specifications L99DZ120 Table 21. H-bridge driver (continued) Symbol RGSHx Parameter Test condition Passive gate-clamp resistance Min. Typ. VGHx = 0.5 V Max. Unit 15 kΩ 0.3 A Drivers for external low-side Power-MOS IGLx(Ch) RGLx Average charge-current (charge stage) On-resistance (dischargestage) VGHLx Gate-on voltage RGSLx Passive gate-clamp resistance 3.4.15 Tj = 25 °C VSLx = 0 V; IGHx = 50 mA; Tj = 25 °C 6 VSLx = 0 V; IGHx = 50 mA; Tj = 130 °C VS = 6 V; ICP = 15 mA VSLx + 6 VS = 12 V; ICP = 15 mA VSLx + 8 10 14 Ω 14 20 Ω V VSLx + 10 VSLx + 11.5 15 V kΩ Gate drivers for the external Power-MOS switching times The voltages are referred to power ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 22. Gate drivers for the external Power-MOS switching times Symbol Parameter Test condition Min. Typ. Max. Unit TG(HL)xHL Propagation delay time high to low (switch mode(1) VS = 13.5 V; VSHx = 0; RG = 0 Ω; CG = 2.7 nF 1.5 µs TG(HL)xLH Propagation delay time low to high (switch mode)(1) VS = 13.5 V; VSLx = 0; RG = 0 Ω; CG = 2.7 nF 1.5 µs IGHxrmax Maximum source current (current mode) VS = 13.5 V; VSHx = 0; VGHx = 1 V; SLEW = 1 FH 32 mA IGHxfmax Maximum sink current (current mode) VS = 13.5 V, VSHx = 0; VGHx = 2 V; SLEW = 1 FH 32 mA dIIGHxr Source current accuracy VS = 13.5 V; VSHx = 0; VGHx = 1 V See Figure 14: IGHxr ranges dIIGHxf Sink current accuracy VS = 13.5 V; VSHx = 0; VGHx = 2 V See Figure 15: IGHxf ranges Switching voltage (VS-VSH) VDSHxrSW between current mode and switch mode (rising) VS = 13.5 V 2.8 V Switching voltage (VS-VSH) VDSHxfSW between switch mode and current mode (falling) VS = 13.5 V 2.8 V 42/161 DS11567 Rev 5 L99DZ120 Electrical specifications Table 22. Gate drivers for the external Power-MOS switching times (continued) Symbol Parameter Test condition Min. Typ. Max. Unit t0GHxr Rise time (switch mode) VS = 13.5 V; VSHx = 0; RG = 0 Ω; CG = 2.7 nF 45 ns t0GHxf Fall time (switch mode) VS = 13.5 V; VSHx = 0; RG = 0 Ω; CG = 2.7 nF 85 ns t0GLxr Rise time VS = 13.5 V; VSLx = 0; RG = 0 Ω; CG = 2.7 nF 45 ns t0GLxf Fall time VS = 13.5 V; VSLx = 0; RG = 0 Ω; CG = 2.7 nF 85 ns tccp0001 Programmable cross-current protection time 500 ns tccp0010 Programmable cross-current protection time 750 ns tccp0011 Programmable cross-current protection time 1000 ns tccp0100 Programmable cross-current protection time 1250 ns tccp0101 Programmable cross-current protection time 1500 ns tccp0110 Programmable cross-current protection time 1750 ns tccp0111 Programmable cross-current protection time 2000 ns tccp1000 Programmable cross-current protection time 2250 ns tccp1001 Programmable cross-current protection time 2500 ns tccp1010 Programmable cross-current protection time 2750 ns tccp1011 Programmable cross-current protection time 3000 ns tccp1100 Programmable cross-current protection time 3250 ns tccp1101 Programmable cross-current protection time 3500 ns tccp1110 Programmable cross-current protection time 3750 ns tccp1111 Programmable cross-current protection time 4000 ns fPWMH PWMH switching frequency VS = 13.5 V; VSLx = 0; RG = 0 Ω; CG = 2.7 nF; PWMH-Duty-Cycle = 50%; tccp configured as 0001 50 kHz 1. DS11567 Rev 5 43/161 160 Electrical specifications L99DZ120 Figure 13. H-driver delay times 7* +/ [/+ 7* +/ [+/  9 &613:0+',5 W  9&613:0+',5 W  9 *6 +/ [  W *$3*&)7 Figure 14. IGHxr ranges ,*+[U DFFXUDF\     ,*+[U0D[  ,*+[U7\S ,*+[U0LQ                                    'DWDLQSXW ("1($'5 44/161 DS11567 Rev 5 L99DZ120 Electrical specifications Figure 15. IGHxf ranges ,*+[I DFFXUDF\      ,*+[I0D[ ,*+[I7\S  ,*+[I0LQ                                    'DWDLQSXW 3.4.16 ("1($'5 Drain source monitoring external H-bridge The voltages are referred to power ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V; Tj = -40°C to 150 °C, unless otherwise specified. Table 23. Drain source monitoring external H-bridge Symbol Parameter Test condition Min. Typ. Max. Unit VSCd1_HB Drain-source threshold voltage 0.375 0,5 0.625 V VSCd2_HB Drain-source threshold voltage 0.6 0,75 0.9 V VSCd3_HB Drain-source threshold voltage 0,85 1 1,15 V VSCd4_HB Drain-source threshold voltage 1,06 1,25 1,43 V VSCd5_HB Drain-source threshold voltage 1,27 1,5 1,73 V VSCd6_HB Drain-source threshold voltage 1,49 1,75 2,01 V VSCd7_HB Drain-source threshold voltage 1,7 2 2,3 V tSCd_HB Drain-source monitor filter time tscs_HB Drain-source comparator settling time 3.4.17 6 VS = 13.5 V; VSH = jump from GND to VS µs 5 µs Open-load monitoring external H-bridge The voltages are referred to power ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; 6 V ≤ VSREG ≤ 28 V; Tj = -40 °C to 150 °C, unless otherwise specified. DS11567 Rev 5 45/161 160 Electrical specifications L99DZ120 Table 24. Open-load monitoring external H-bridge Symbol Parameter Test condition Min. Typ. Max. Unit VODSL Low-side drain-source monitor low off-threshold voltage VSLx = 0 V; VS = 13.5 V 0.15 VS V VODSH Low-side drain-source monitor high off-threshold voltage VSLx = 0 V; VS = 13.5 V 0.85 VS V VOLSHx Output voltage of selected SHx in open-load test mode VSLx = 0 V; VS = 13.5 V 0.5 VS V RpdOL Pull-down resistance of the nonVSLx = 0 V; VS = 13.5 V; selected SHx pin in open-load mode VSHX = 4.5 V 20 kΩ tOL_HB Open-load filter time 2 ms 3.4.18 Fail safe low-side switch The voltages are referred to power ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 18 V; Tj = 40 °C to 150 °C, unless otherwise specified. Table 25. Fail safe low-side switch Symbol VOUT_max Parameter Max output voltage in case of missing supply RDSON DC output resistance IOLimit Overcurrent limitation tONHL Test condition Min. IOUT = 1 mA; VS = VSREG = 0 V ILOAD = 250 mA; Tj = 25 °C Typ. Max. Unit 2 2.5 V 1.4 ILOAD = 250 mA; Tj = 130 °C Ω 2.2 Ω 1500 mA Turn on delay time to 10% VOUT 100 µs tOFFLH Turn off delay time to 90% VOUT 100 µs tSCF Short circuit filter time dVmax/dt 46/161 8 V < VS < 16 V 500 64 Maximum external applied slew rate on Guaranteed by design LS1_FSO and LS2_FSO without switching on LS DS11567 Rev 5 60 µs V/µs L99DZ120 3.4.19 Electrical specifications Wake up input WU The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VSREG ≤ 28 V; Tj = 40 °C to 150 °C, unless otherwise specified. Table 26. Wake-up inputs Symbol Parameter VWUthn Test condition Min. Typ. Max. Unit Wake-up negative edge threshold voltage 0.4 VSREG 0.45 VSREG 0.5 VSREG V VWUthp Wake-up positive edge threshold voltage 0.5 VSREG 0.55 VSREG 0.6 VSREG V VHYST Hysteresis 0.05 VSREG 0.1 VSREG 0.15 VSREG V tWU_stat Static wake filter time VWU < 1 V or  VWU > (VSREG – 1.5 V) IWU_stdby Input current in standby mode RWU_act Input resistor to GND in Active mode and in Standby mode during Wake-up input sensing tWU_cyc Cyclic wake filter time 3.4.20 64 µs 5 30 60 μA 80 160 300 kΩ 16 µs LIN transceiver LIN 2.2 compliant for bit-rates up to 20 kBit/s SAE J2602 compatible. The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VSREG ≤ 18 V; Tjunction = -40 °C to 150°C unless otherwise specified. Table 27. LIN transmit data input: pin TxD Symbol Parameter Test condition Min. VTXDLOW Input voltage dominant level Active mode VTXDHIGH Input voltage recessive level Active mode VTXDHYS VTXDHIGH-VTXDLOW Active mode 0.2 RTXDPU TXD pull up resistor Active mode 13 Typ. Max. 1.0 Unit V 2.3 V V 29 46 kΩ Typ. Max. Unit 0.2 0.5 V Table 28. LIN receive data output: pin RxD Symbol Parameter Test condition VRXDLOW Output voltage dominant level Active mode VRXDHIGH Output voltage recessive level Active mode DS11567 Rev 5 Min. V1-0.5 V1-0.2 V 47/161 160 Electrical specifications L99DZ120 Table 29. LIN transmitter and receiver: pin LIN Symbol Parameter VTHdom Receiver threshold voltage recessive to dominant state VBusdom Receiver dominant state Test condition Min. Typ. Max. Unit 0.4 VSREG 0.45 VSREG 0.5 VSREG V 0.4VSRE G 0.55 VSREG 0.6 VSREG V VTHrec Receiver threshold voltage dominant to recessive state 0.5 VSREG VBusrec Receiver recessive state 0.6 VSREG VTHhys Receiver threshold hysteresis: VTHrec -VTHdom 0.07 VSREG 0.1 VSREG 0.175 VSREG V VTHcnt Receiver tolerance center value: (VTHrec +VTHdom)/2 0.475 VSREG 0.5 VSREG 0.525 VSREG V V V VTHwkup Activation threshold for wake-up comparator 1.0 1.5 2 V VTHwkdwn Activation threshold for wake-up comparator VSREG 3.5 VSREG 2.5 VSREG1.5 V tLINBUS LIN Bus Wake-up Dominant Sleep mode; edge: rec-dom Filter time tdom_LIN LIN Bus Wake-up Dominant Sleep mode; edge: rec-domFilter time rec 28 Transmitter input current limit in dominant state 40 ILINDomSC VTXD = VTXDLOW; VLIN = VBATMAX = 18 V Ibus_PAS_dom Input leakage current at the VTXD = VTXDHIGH; VLIN = 0 V; receiver incl. pull-up resistor VBAT = 12 V; Slave mode Ibus_PAS_rec Transmitter input current in recessive state In standby modes; VTXD = VTXDHIGH; VLIN > 8 V; VBAT < 18 V; VLIN ≥ VBAT Ibus_NO_GND Input current if loss of GND at device GND = VSREG; 0 V < VLIN < 18 V; VBAT = 12 V Ibus Input current if loss of VBAT at device μs 100 180 -1 mA mA μA 1 mA GND = VS; 0 V < VLIN < 18 V Tj=-40 °C ....105 °C(1) 30 μA GND = VS; 0 V < VLIN < 18 V Tj= 130 °C(2) 35 μA 1.2 V LIN voltage level in dominant state Active mode; VTXD = VTXDLOW;  Rbus = 500 Ω VLINrec LIN voltage level in recessive state Active mode; VTXD = VTXDHIGH; ILIN = 10 µA RLINup LIN output pull up resistor VLIN = 0 V LIN input capacitance Guaranteed by design 48/161 μs 20 VLINdom CLIN 64 DS11567 Rev 5 -1 0.8*VS 20 V 40 60 kΩ 100 pF L99DZ120 Electrical specifications 1. 105°C is the maximum junction temperature of an unpowered device according to this test condition within the specified ambient temperature range 2. Used for device test only The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6V < VS < 28V; Tj = -40 °C to 150 °C, unless otherwise specified. Table 30. LIN transceiver timing Symbol tRXpd tRXpd_sym D1 D2 D3 D4 tdom(TXDL) Parameter Test condition Min. Receiver propagation delay time tRXpd = max(tRXpdr, tRXpdf); tRXpdf = t(0.5 VRXD)-t(0.45 VLIN); tRXpdr = t(0.5 VRXD)-t(0.55 VLIN); VSREG = 12 V; CRXD=20 pF; Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF Symmetry of receiver propagation delay time (rising vs. falling edge) tRXpd_sym = tRXpdr - tRXpdf; VSRE = 12 V; Rbus = 1 kΩ; Cbus = 1 nF; CRXD = 20 pF -2 Duty Cycle 1 THRec(max) = 0.744 * VSREG; THDom(max) = 0.581 * VSREG; VSREG = 7 to 18 V, tbit = 50 µs; D1 = tbus_rec(min) / (2 x tbit); Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF 0.396 Duty Cycle 2 THRec(min) = 0.422* VSREG; THDom(min) = 0.284* VSREG; VSREG = 7.6 to 18 V, tbit = 50 µs; D2 = tbus_rec(max) / (2 x tbit); Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF Duty Cycle 3 THRec(max) = 0.778* VSREG; THDom(max) = 0.616* VSREG; VSREG = 7 to 18 V, tbit = 96 µs; D3 = tbus_rec(min) / (2 x tbit); Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF Duty Cycle 4 THRec(min) = 0.389* VSREG; THDom(min) = 0.251* VSREG; VSREG = 7.6 to 18 V, tbit = 96 µs; D4 = tbus_rec(max) / (2 x tbit); Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF TXDL dominant timeout Typ. Unit 6 μs 2 μs 0.581 0.417 0.590 12 DS11567 Rev 5 Max. ms 49/161 160 Electrical specifications L99DZ120 Table 30. LIN transceiver timing (continued) Symbol Parameter Test condition Min. Typ. Max. Unit tLIN LIN permanent recessive time-out 40 μs tdom(bus) LIN Bus permanent dominant time-out 12 ms Figure 16. LIN transmit, receive timing W 7;SGI W 7;SGU 9 7[' WLPH 9 /,1UHF  9 7+UHF 9 /,1 9 7+GRP  9 /,1GRP WLPH 9 5[' WLPH W 5;SGI W 5;SGU *$3*&)7 3.4.21 SPI The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VSREG < 18 V; V1 = 5 V; all outputs open; Tj = -40 °C to 150 °C, unless otherwise specified. Table 31. Input: CSN Symbol Parameter Test condition Min. Typ. VCSNLOW Input voltage low level Normal mode VCSNHIGH Input voltage high level Normal mode VCSNHYS VCSNHIGH - VCSNLOW Normal mode 0.2 ICSNPU CSN Pull up resistor Normal mode 13 29 Min. Typ. Max. 1.0 Unit V 2.3 V V 46 kΩ Max. Unit Table 32. Inputs: CLK, DI Symbol tset tset_CP 50/161 Parameter Test condition Delay time from standby Time until SPI, ADC and to Active mode OUT15/OUT_HS are operative Delay time from standby Time until power stages that are to Active mode supplied by the CP are operative DS11567 Rev 5 10 560 750 µs 960 µs L99DZ120 Electrical specifications Table 32. Inputs: CLK, DI (continued) Symbol Parameter Vin_L Input low level Vin_H Input high level Test condition Min. Typ. Max. 1.0 V 2.3 Vin_Hyst Input hysteresis 0.2 Ipdin Pull down current at input Vin = 1.5 V Cin(1) Input capacitance at input CSN, CLK, DI and PWM1,2 Guaranteed by design fCLK SPI input frequency at CLK 5 Unit V V 30 60 µA 15 pF 4 MHz Max. Unit 1. Value of input capacity is not measured in production test. Parameter guaranteed by design. Table 33. DI, CLK and CSN timing Symbol Note: Parameter Test condition Min. Typ. tCLK Clock period 250 ns tCLKH Clock high time 100 ns tCLKL Clock low time 100 ns tset_CSN CSN setup time, CSN low before rising edge of CLK 150 ns tset_CLK CLK setup time, CLK high before rising edge of CSN 150 ns tset_DI DI setup time 25 ns thold_DI DI hold time 25 ns tr_in Rise time of input signal DI, CLK, CSN 25 ns tf_in Fall time of input signal DI, CLK, CSN 25 ns Max. Unit 0.5 V See Figure 18: SPI input timing. Table 34. Output: DO Symbol Parameter Test condition VDOL Output low level IDO = -4 mA VDOH Output high level IDO = 4 mA IDOLK 3-state leakage current VCSN = V1, 0 V < VDO < V1 CDO 3-state input capacitance Guaranteed by design DS11567 Rev 5 Min. Typ. V1 - 0.5 V -10 10 10 μA 15 pF 51/161 160 Electrical specifications L99DZ120 Table 35. DO timing Symbol Test condition Min. Typ. Max. Unit tr DO DO rise time CL = 50 pF; ILOAD = -1 mA 25 ns tf DO DO fall time CL = 50 pF; ILOAD = -1 mA 25 ns ten DO tri L DO enable time from 3-state to low level CL = 50 pF; ILOAD = -1 mA; pull-up load to V1 50 100 ns tdis DO L tri DO disable time from low level to 3-state CL = 50 pF; ILOAD = -1 mA; pull-up load to V1 50 100 ns ten DO tri H DO enable time from 3-state to high level CL = 50 pF; ILOAD = -1 mA; pull-down load to GND 50 100 ns tdis DO H tri DO disable time from high level to 3-state CL = 50 pF; ILOAD = -1 mA; pull-down load to GND 50 100 ns DO delay time VDO < 0.3 V1; VDO > 0.7 V1; CL = 50 pF 30 60 ns Typ. Max. Unit td DO Note: Parameter See Figure 19: SPI output timing. Table 36. CSN timing Symbol Parameter tCSN_HI,min Minimum CSN high time, active mode tCSNfail CSN low timeout Test condition Transfer of SPI-command to Input Register Min. 6 μs 20 Note: See Figure 20: SPI CSN - output timing. 3.4.22 Input LIN_FLASH for Flash mode 35 50 ms The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6V ≤ VSREG ≤ 18; V1 = 5 V; Tj = -40 °C to 150 °C. Table 37. Inputs LIN_FLASH for Flash mode Symbol Test condition Min. Typ. Max. Unit VflashL Input low level (VLIN_FLASH for exit from Flash mode) 6.1 7.25 8.4 V VflashH Input high level (VLIN_FLASH for transition into Flash mode) 7.4 8.4 9.4 V Input voltage hysteresis 0.6 0.8 1.0 V VflashHYS 52/161 Parameter DS11567 Rev 5 L99DZ120 3.4.23 Electrical specifications Inputs DIR, DIRH, PWMH The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VSREG ≤ 18 V; Tj = -40 °C to 150 °C. Table 38. Inputs DIR, DIRH, PWMH Symbol Test condition Min. VIL Input voltage low level VSREG = 13.5 V VIH Input voltage high level VSREG = 13.5 V Input hysteresis VSREG = 13.5 V 0.2 Input pull-down current VSREG = 13.5 V 5 VIHYS Iin 3.4.24 Parameter Typ. Max. 1 Unit V 2.3 V V 30 60 µA Debug input The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VSREG ≤ 18 V; Tj = -40 °C to 150 °C. Table 39. Debug input Symbol Test condition Min. VdIL Input voltage low level VSREG = 13.5 V VdIH Input voltage high level VSREG = 13.5 V Input hysteresis VSREG = 13.5 V 0.2 Pull-down resistor VDEBUG = 6 to 18 V 2.5 VdIHYS Rdin 3.4.25 Parameter Typ. Max. 1 Unit V 2.3 V V 5 7.5 kΩ ADC characteristics The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VSREG ≤ 18 V, Tj = -40 °C to 150 °C. Table 40. ADC characteristics Symbol Parameter Test condition tcon Conversion time fADC Clock frequency (see fclk2) Acc Accuracy Min. Typ. Max. 2.5 µs 8 MHz Voltage divider + reference(1) -2 2 Overall accuracy for WU input: WU = 22 V -3 3 Overall accuracy for WU input: WU = 18 V -3.5 3.5 Overall accuracy for WU input: WU = 6 V -4 4 Overall accuracy for WU input: WU = 4.5 V -4.6 4.6 DS11567 Rev 5 Unit % 53/161 160 Electrical specifications L99DZ120 Table 40. ADC characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit IEII Integral linearity error 4 LSB IEDI Differential linearity error 2 LSB VAINVS Conversion voltage range (VS, VSREG & WU) 1 22 V VAINTemp Conversion voltage range (TCL1 …TCL6) 0 2 V 1. Guaranteed by design. 3.4.26 Temperature diode characteristics The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VSREG ≤ 18 V, Tj = -40 °C to 150 °C Table 41. Temperature diode characteristics Symbol 3.4.27 Parameter Test condition Min. Typ. Max. Unit VTROOM 1-6 TSENSE output voltage at 25 °C VS = 12 V; T = 25 °C — 1.4 V VTSENSE1-6 TSENSE output voltage 1 - 8 T = 25 °C; T = 130 °C;  T = -40 °C — -4 mV/K Interrupt outputs The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VSREG ≤ 18 V, Tj = -40 °C to 150°C Table 42. Interrupt outputs Symbol 54/161 Parameter Test condition VINTL Output low level IINT = -4 mA VINTH Output high level IINT = 4 mA IINTLK 3-state leakage current 0 V < VINT < V1 tInterrupt Interrupt pulse duration (NINT, RxD_L/NINT) tInt_react Interrupt reaction time Min. Typ. Max. Unit 0.5 V V1 - 0.5 V -10 10 s 56 Tested by scan chain DS11567 Rev 5 6 μA 40 µs L99DZ120 3.4.28 Electrical specifications Timer1 and Timer2 6 V ≤ VSREG ≤ 18 V; Tj = -40 °C to 150 °C Table 43. Timer1 and Timer2 Symbol Parameter Test condition Min. Typ. Max. Unit ton 1 Timer on time 0.1 ms ton 2 Timer on time 0.3 ms ton 3 Timer on time 1 ms ton 4 Timer on time 10 ms ton 5 Timer on time 20 ms T1 Timer period 10 ms T2 Timer period 20 ms T3 Timer period 50 ms T4 Timer period 100 ms T5 Timer period 200 ms T6 Timer period 500 ms T7 Timer period 1000 ms T8 Timer period 2000 ms Figure 17. SPI – transfer timing diagram &61KLJKWRORZ'2HQDEOHG &61 WLPH &/.         ; ;         WLPH ',GDWDZLOOEHDFFHSWHGRQWKHULVLQJHGJHRI&/.VLJQDO ',         ; ;         &RPPDQG%\WH 'DWD '2GDWDZLOOFKDQJHRQWKHIDOOLQJHGJHRI&/.VLJQDO '2         ; ;       WLPH  *OREDO6WDWXV%\WH &61ORZWRKLJKDFWXDOGDWDLV WUDQVIHUHGWRRXWSXWSRZHUVZLWFKHV *OREDO(UURU ,QSXW 'DWD 5HJLVWHU ROGGDWD  WLPH QHZGDWD WLPH *$3*&)7 The SPI can be driven by a micro controller with its SPI peripheral running in the following mode: CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. DS11567 Rev 5 55/161 160 Electrical specifications L99DZ120 Figure 18. SPI input timing 7$$ &61 7$$ WVHW&61 W&/.+ WVHW&/. 7$$ &/. 7$$ WVHW', WKROG', W&/./ 7$$ ', 9DOLG 9DOLG 7$$ *$3*&)7 56/161 DS11567 Rev 5 L99DZ120 Electrical specifications Figure 19. SPI output timing 7I&/. 7U&/. 9FF &/. 9FF 9FF 7U'2 9FF '2 ORZWRKLJK 9FF 7G'2 7I '2 9FF '2 KLJKWRORZ 9FF 7I&61 7U&61 9FF &61 9FF 9FF  7HQ'2BWULB/ 7GLV'2B/BWUL  7HQ'2BWULB+ 7GLV'2B+BWUL ("1($'5 DS11567 Rev 5 57/161 160 Electrical specifications L99DZ120 Figure 20. SPI CSN - output timing & 61 ORZ WR KLJK GDWD IURP VKLIW UHJLVWHU LV WUDQVIHUUHG WR RXWSXW SRZHU V ZLWFKHV W U LQ W I LQ W &61B+,PLQ      & 61 WG 2)) RXWSXW FXUUHQW RI D GULYHU 2 1 VWDWH    2) ) VWDWH  W 2)) WG 21 W 21   RXWSXW FXUUHQW RI D GULYHU 2 )) VWDWH  2 1 VWDWH   ("1($'5 Figure 21. SPI – CSN high to low transition and global status bit access &61KLJKWRORZDQG&/.VWD\VORZVWDWXVLQIRUPDWLRQRIGDWDELW IDXOWFRQGLWLRQ LVWUDQVIHUHGWR'2 &61 WLP H &/. WLP H ', WLP H ',GDWDLVQRWDFFHSWHG '2  WLP H '2VWDWXVLQIRUPDWLRQRIGDWDELW *67%  IDXOWFRQGLWLRQ ZLOOVWD\DVORQJDV&61LVORZ ("1($'5 3.4.29 SGND loss comparator Tj = -40 °C to 150 °C, unless otherwise specified. Table 44. SGND loss comparator Symbol Parameter Test condition VSGNDloss VSGND loss threshold (VSGND – VPGND ) tSGNDloss 58/161 VSGND loss filter time DS11567 Rev 5 Min. Typ. Max. Unit 100 270 500 mV 5 7 9 µs L99DZ120 Application information 4 Application information 4.1 Supply VS, VSREG VSREG supplies voltage regulators V1 and V2, all internal regulated voltages for analog and digital functionality, LIN and both P-channel high-side switches OUT15 and OUT_HS. All other high-sides, Fail Safe block and the charge pump are supplied by VS. In case the VSREG pin is disconnected, all power outputs connected to VS are automatically switched off. 4.2 Voltage regulators The device contains two independent and fully protected low drop voltage regulators designed for very fast transient response and do not require electrolytic output capacitors for stability. The output voltage is stable with ceramic load capacitors >220 nF. 4.2.1 Voltage regulator: V1 The V1 voltage regulator provides 5 V supply voltage and up to 250 mA continuous load current to supply the system microcontroller. The V1 regulator is embedded in the power management and fail-safe functionality of the device and operates according to the selected operating mode. The V1 voltage regulator is supplied by pin VSREG. In addition, the V1 regulator supplies the devices internal loads. The voltage regulator is protected against overload and overtemperature. An external reverse current protection has to be provided by the application circuitry to prevent the input capacitor from being discharged by negative transients or low input voltage. Current limitation of the regulator ensures fast charge of external bypass capacitors. The output voltage is stable for ceramic load capacitors >220 nF. In case the device temperature exceeds the TSD1 threshold (either cluster or grouped mode) the V1 regulator remains on. The micro controller has the possibility for interaction or error logging. If the chip temperature exceeds the TSD2 threshold (TSD2 > TSD1), V1 will be deactivated and all wakeup sources (LIN, WU and Timer) are disabled. After tTSD, the voltage regulator will restart automatically. If the restart fails 7 times within one minute the devices enter the Forced Vbat_standby mode. The status bit FORCED_SLEEP_TSD2/V1SC (SR1) is set. 4.2.2 Voltage regulator: V2 The voltage regulator V2 is supplied by pin VSREG and can supply additional 5 V loads such as sensors or potentiometers. The maximum continuous load current is 50 mA. The regulator is protected against:  Overload  Overtemperature  Short-circuit (short to ground and battery supply voltage)  Reverse biasing DS11567 Rev 5 59/161 160 Application information 4.2.3 L99DZ120 Voltage regulator failure The V1, and V2 regulator output voltages are monitored. In case of a drop below the failure thresholds (V1 < V1fail for t > tV1fail, V2 < V2fail for t > tV2fail), the failure bits V1FAIL, V2FAIL (SR 2) are latched. 4.2.4 Short to ground detection At turn-on of the V1 and V2 regulators, a short-to-GND condition is detected by monitoring the regulator output voltage. If V1 or V2 is below the V1fail (or V2fail) threshold for t > tV1short (t > tV2short) after turn-on, the devices will identify a short circuit condition at the related regulator will be switched off. In case of V1 short-to-GND the device enters Forced Vbat_standby mode automatically. Bits FORCED_SLEEP_TSD2/V1SC and (SR 1) V1FAIL (SR 2) are set. In case of a V2 short-to-GND failure the V2SC (SR 2) and V2FAIL (SR 2) bits are set. Once the output voltage of the corresponding regulator exceeded the V1fail (V2fail) threshold the short-to-ground detection is disabled. In case of a short-to-ground condition, the regulator is switched off due to thermal shutdown. V1 is switched off at TSD2, V2 is switched off at TSD1. 60/161 DS11567 Rev 5 L99DZ120 4.2.5 Application information Voltage regulator behavior Figure 22. Voltage regulator behaviour and diagnosis during supply voltage 9VUHJ>9@ 96UHJ89 9325 9VUHJ$%6PLQ 9VUHJXY ELWLVVHW ILOWHUWLPHW2989BILOW 567%ELWLVVHWDQGUHJLVWHUV DUHVHWWRGHIDXOWDW9325B5 9>9@ WW89 XV W!W9IDLO W!W89 &RQWURO 5HJLVWHUV VHWWRGHIDXOW DW9325B) W!W89 9 957+ 9IDLO 1R5HVHWJHQHUDWHG 1UHVHW RXWSXW ,IW!WYVKRUW 9VKRUWGHWHFWHG 9EDWWVWDQGE\ 9IDLOELWLVVHW WYU WYU +LJK WUU WUU /RZ W9)6 VSHFLILF&RQWURO5HJLVWHUVDUHVHWWRGHIDXOWYDOXHV +LJK=*URXQGHG 9VUHJ$%6PLQ PLQLPXP9VUHJWRFRQWURO15HVHW W89 96UHJ89 9VUHJXQGHUYROWDJH W9IDLO 9IDLOILOWHUWLPH 9325B5) 9VUHJSRZHURQUHVHWYROWDJH ULVLQJIDOOLQJ WUU UHVHWSXOVHUHDFWLRQWLPH WYU UHVHWSXOVHGXUDWLRQ 957+ 9UHVHWWKUHVKROGYROWDJH 9)$,/ 9IDLOWKUHVKROGYROWDJH 9XQGHUYROWDJHILOWHUWLPH W9VKRUW 9VKRUWILOWHUWLPH W9)6 9IDLOVDIHILOWHUWLPH W2989BILOW 9VUHJRYHUXQGHUYROWDJHILOWHUWLPH ("1($'5 4.3 Operating modes The devices can be operated in the following operating modes: 4.3.1  Active  LIN Flash  V1_standby  VBAT_standby  Debug Active mode All functions are available and the device is controlled by SPI. DS11567 Rev 5 61/161 160 Application information 4.3.2 L99DZ120 Flash mode To program the system microcontroller via LIN bus signals, the devices can be operated in LIN Flash mode. The watchdog is disabled in this mode. The Flash mode is entered by applying an external voltage at the pin:  VLIN_FLASH ≥ VFlashH (LIN Flash mode) In LIN Flash mode the maximum bitrate is increased to 100 kbit/s automatically (LIN_HS_EN = 1). A transition from Flash mode to V1_standby or Vbat_standby mode is not possible. At exit from Flash modes (VLIN_FLASH < VFlashL) no NReset pulse is generated. The watchdog starts with a Long Open Window (tLW). 4.3.3 SW-debug mode To allow software debugging, the watchdog can be deactivated by applying an external voltage to the DEBUG input pin (Vdebug > VdiH). In Debug mode, all device functionality and Operating modes are available. The watchdog is deactivated. At Exit from Debug mode (Vdebug < VdiL) the watchdog starts with a Long Open Window. Note: The device includes a test mode. This mode is activated by a dedicated sequence which includes a high voltage at the Debug Pin. The Debug Pin must be kept at nominal voltage levels in order to avoid accidental activation of the test mode. 4.3.4 V1_standby mode The transition from Active mode to V1_standby mode is controlled by SPI. To supply the micro controller in a low power mode, the V1 voltage regulator remains active. After the V1_standby command (CSN low to high transition), the device enters V1_standby mode immediately and the watchdog starts a Long Open Window (tLW). The watchdog is deactivated as soon as the V1 load current drops below the ICMP threshold (IV1< Icmp_fal). The V1 load current monitoring can be deactivated by setting ICMP = 1. In this configuration the watchdog will be deactivated upon transition into V1_standby mode without monitoring the V1 load current. Writing ICMP (CR 34) = 1 is only possible with the first SPI command after setting ICMP_CONFIG_EN (Config Reg) = 1. The ICMP_CONFIG_EN bit is reset to 0 automatically with the next SPI command. Power outputs (except OUT_HS & OUT15) are switched off in V1_standby mode. OUT_HS & OUT15 remain in the configuration programmed prior to the standby command in order to enable (cyclic) supply of external contacts. The timer signal (Timer1 or Timer2) can be mirrored to the NINT output pin during V1_standby mode. LIN transmitter (TxDL) is off. 62/161 DS11567 Rev 5 L99DZ120 4.3.5 Application information Interrupt Figure 23. NINT pins 9 (6'SURW 'DWD,Q (QDEOH 'LJLWDO ORJLF 'DWD2XW *1' *1' ("1($'5 RxDL/NINT indicates:  a wake-up event from V1_standby mode and the programmable timer interrupt RxDL/NINT pin is pulled low for t = tinterrupt. NINT indicates:  In Active mode: VSREG dropped below the programmed early warning threshold in Control Register 3 (VSREG < VSREG_EW_TH); feature is deactivated if VSREG_EW_TH is set to 0 V. In V1_standby mode – Programmable timer interrupt; An NINT pulse is generated at the beginning of the timer on-time (Timer 1 or Timer2) – Wake-up from V1_standby mode by any wake-up source NINT is pulled low for t = tinterrupt In case of increasing V1 load current during V1_standby mode (IV1 > Icmp_ris), the device remains in standby mode and the watchdog starts with a Long Open Window. No Interrupt signal is generated. 4.3.6 VBAT_standby mode The transition from Active mode to Vbat_standby mode is initiated by an SPI command. In Vbat_standby mode, the voltage regulators V1 and V2 (depending on configuration in CR 1), the power outputs (except OUT15 and OUT_HS) as well as LIN transmitter are switched off. An NReset pulse is generated upon wake-up from Vbat_standby mode. 4.4 Wake-up from Standby modes A wake-up from standby mode will switch the device to Active mode. This can be initiated by one or more of the following events: DS11567 Rev 5 63/161 160 Application information L99DZ120 Table 45. Wake-up events description Wake up source LIN bus activity Level change of WU IV1 >Icmp_ris Description Always enabled Can be configured or disabled by SPI Device remains in V1_standby mode but watchdog is enabled (If ICMP = 0). No interrupt is generated. Programmable by SPI: – V1_standby mode: device wakes up after programmable timer Timer Interrupt / Wake up expiration. NINT and RxDL/NINT interrupt signals are generated of µC by TIMER – Vbat_standby mode: device wakes up after programmable timer expiration, V1 regulator is turned on and NReset signal is generated SPI Access 4.4.1 Always active (except in VBAT_STANDBY mode) Wake up event: CSN is low and first rising edge on CLK Wake up input The WU input can be configured as wake-up source. The wake-up input is sensitive to any level transition (positive and negative edge) and can be configured for static or cyclic monitoring of the input voltage level. For static contact monitoring, a filter time of tWU_STAT is implemented. The filter is started when the input voltage passes the specified threshold VWU_THP or VWU_THN. Cyclic contact monitoring allows periodical activation of the wake-up input to read the status of the external contact. The periodical activation can be configured to Timer 1 or Timer 2. The input signal is filtered with a filter time of tWU_CYC after a delay (80% of the configured Timer on-time). A Wake-up will be processed if the status has changed versus the previous cycle. The buffered output OUT_HS can be used to supply the external contacts with the timer setting according to the cyclic monitoring of the wake-up input. In standby modes, the input WU is configurable with an internal pull-up or pull-down current source according to the setup of the external contact. In Active mode the inputs have an internal pull down resistor (RWU_act) and the input status can be read by SPI. Static sense should be configured before the read operation is started in order to reflect the actual input level. 4.5 Functional overview (truth table) Table 46. Status of different functions/features vs operating modes Operating modes Function Voltage regulator V1 Voltage regulator V2 Reset generator 64/161 Comments VOUT = 5 V VOUT = 5 V Active mode V1-standby static mode (cyclic sense) On On(1) On/ Off(2) On DS11567 Rev 5 On(2) / Off On Vbat-standby static mode (cyclic sense) Off On(2) / Off Off L99DZ120 Application information Table 46. Status of different functions/features vs operating modes (continued) Operating modes Function Comments Active mode V1-standby static mode (cyclic sense) Vbat-standby static mode (cyclic sense) On Off (on if IV1 > ICMP and ICMP = 0) Off Off Active(3) Active(3) Oscillator time base On / Off On(2) / Off On(2) / Off LIN 2.2a On Off(4) Off(4) Oscillator OSC1 2 MHz On On/Off(5) On/Off(5) Oscillator OSC2 32 MHz ON Off Off VSREG-Monitor On (6) (6) VS-Monitor On Off Off H-bridge Gate Driver, bridge drivers, all high-side drivers (except OUT_HS & OUT15) supplied by VS On/ Off(2) Off Off Fail-safe low-side switches On/ Off(7) On On On On On On/ Off(2) On/ Off (2) On/ Off(2) Charge pump On Off Off ADC (SPI read out and VSREG early warning interrupt) On Off Off Thermal shutdown TSD2 On On Off Thermal shutdown TSD1x for OUT_HS and OUT15 (Pchannel HS) On On/ Off(2) On/ Off(2) Window watchdog V1 monitor Wake up HS-cyclic supply LIN Short circuit protection for fail-safe low-side switches (in case LS is switched on) OUT_HS & OUT15 (Pchannel HS) supplied by VSREG 1. Supply the processor in low current mode. 2. According to SPI setting and DIR. 3. Unless disabled by SPI. 4. The bus state is internally stored when going to standby mode. A change of bus state will lead to a wake-up after exceeding of internal filter time. 5. ON, if cyclic sense is enabled or during wake-up request. 6. Cyclic activation = pulsed ON during cyclic sense. 7. ON in Fail-Safe mode; if standby mode is entered with active Fail-safe mode the output remains ON in standby mode. DS11567 Rev 5 65/161 160 Application information L99DZ120 Figure 24. Main operating modes )ODVK0RGH /,1 )XQFWLRQDOLW\DVLQ$FWLYH0RGH :DWFKGRJ2)) 9V!9SRU /,1)ODVK0RGH /,1B+6BHQ  9EDWVWDUWXS $OOUHJLVWHUV 6HWWRGHIDXOW &KLS5HVHWELW 567%  9/,1B)/$6+!9IODVK 9/,1B)/$6+9IODVK $FWLYH 0RGH 9/,1B)/$6+!9IODVK 9/,1B)/$6+!9IODVK 63,FRPPDQG 25 [7KHUPDO6KXWGRZQ 25 9VKRUWWR*1' 99IRUPVDIWHUVZLWFK21  25 [:')DLOXUH 921 5HVHW*HQHUDWRUDFWLYH :DWFKGRJDFWLYH :DNHXS (YHQW 63,FRPPDQG :DNHXS (YHQW 96WDQGE\ 0RGH 9EDW6WDQGE\ 0RGH 92)) 5HVHW*HQHUDWRU2)) 1UHVHW ORZ :DWFKGRJ2)) [7KHUPDO6KXWGRZQ76' 25 [:'IDLO 921 5HVHW*HQHUDWRUDFWLYH :DWFKGRJ 2)) LI,Y,FPSRU,&03  ("1($'5 4.6 Configurable window watchdog During normal operation, the watchdog monitors the micro controller within a programmable trigger cycle. After power-on or standby mode, the watchdog is started with a timeout (Long Open Window tLW). The timeout allows the micro controller to run its own setup and then to start the window watchdog by setting TRIG (CR1,ConfigReg) =1 Subsequently, the micro controller has to serve the watchdog by alternating the watchdog trigger bit TRIG (CR1,Config Reg) within the safe trigger area TSWX. The trigger time is configurable by SPI. A correct watchdog trigger signal will immediately start the next cycle. After 8 watchdog failures in sequence, the V1 regulator is switched off for tV1OFF. After 7 additional watchdog failures the V1 regulator is turned off permanently and the device goes into Forced Vbat_standby mode. The status bit FORCED_SLEEP_WD (SR 1) is set. A wake-up is possible by LIN. After wake-up from Forced Vbat_standby mode and the watchdog trigger still fails, the device enters Forced Vbat_standby mode again after one Long Open Window. 66/161 DS11567 Rev 5 L99DZ120 Application information This actually produces an additional watchdog failure but the watchdog fail counter will remain at maximum value of 15 failures. This sequence is repeated until a valid watchdog trigger event is performed by writing TRIG = 1. In case of a Watchdog failure, the power outputs and V2 are switched off and the status bit WDFAIL (SR 1) is set to 1. A reset pulse is generated at NReset output and the device enters Fail-safe mode. Control registers are set to their Fail Safe values and the Fail-safe low-side switches are turned on. Please refer to chapter Section 4.7: Fail-safe mode for more details. The following diagrams illustrate the Watchdog behavior of the devices. The diagrams are split into 3 parts. The first diagram shows the functional behavior of the watchdog without any error. The second diagram covers the behavior covering all the error conditions, which can affect the watchdog behavior. Figure 27: Watchdog in Flash mode shows the transition in and out of Flash modes. Figure 25, Figure 26 and Figure 27 can be overlapped to get all the possible state transitions under all circumstances. For a better readability, they were split in normal operating, operating with errors and Flash mode. Figure 25. Watchdog in normal operating mode (no errors) :DNHXS 9!957[ $FWLYHPRGH ORQJ RSHQ ZLQGRZ *R9EDWVWE\ 2U *R9VWE\$1', Y ,FPS :' 2)) 75,* à 9EDWVWDQGE\PRGH 96WDQGE\ , 9 ,&03 *R9VWE\ SURSSHUWULJJHULQ :LQGRZ 0RGH :LQGRZPRGH JR9EDWVWE\ $FWLYHPRGH ("1($'5 DS11567 Rev 5 67/161 160 Application information L99DZ120 Figure 26. Watchdog with error conditions )DLO6DIH (YHQW 9!9UWK ORQJ RSHQ ZLQGRZ $FWLYHPRGH IRUFHG9EDWVWE\ 99UWK 75,* à SURSSHUWULJJHULQ :' 2)) )DLO6DIH (YHQW 9EDWVWDQGE\PRGH 99UWK :LQGRZ 0RGH :LQGRZPRGH IRUFHG9%$7[:'IDLO [76' 6KRUW9 $FWLYHPRGH ("1($'5 Figure 27. Watchdog in Flash mode $FWLYHPRGH ORQJ RSHQ ZLQGRZ ([LWIURP )/$6+'HEXJPRGH (QWHU :' 2)) )/$6+'HEXJPRGH $FWLYHPRGH )/$6+'HEXJ PRGH (QWHU :LQGRZ 0RGH )/$6+'HEXJPRGH ("1($'5 Note: Whenever the device is operated without servicing the mandatory watchdog trigger events, a sequence of 15 consecutive reset events is performed and the device enters the Forced_Vbat_Stby mode with bit FORCED_SLEEP_WD in SR1 set. If the device is woken up after such a forced VBAT_Standby condition and the watchdog is still not serviced, the device, after one long open watchdog window will re-enter the same Forced_Vbat_Stby mode until the next wake up event. In this case, an additional watchdog failure is generated, but the fail counter is not cleared, keeping the maximum number of 15 failures. This sequence is repeated until a valid watchdog trigger event is performed by writing TRIG = 1. 68/161 DS11567 Rev 5 L99DZ120 4.6.1 Application information Change watchdog timing The watchdog trigger time is configured by setting WD_TIME_x (CR 2). Writing to these bits is possible only using the first SPI command after setting WD_CONFIG_EN = 1 (Config Reg). The WD_CONFIG_EN bit is reset to 0 automatically with the next SPI command. 4.7 Fail-safe mode 4.7.1 Temporary failures The devices enter Fail-safe mode in case of:  Watchdog failure  V1 turn on failure  V1 failure (V1 < VRTxfalling for t > tV1FS)  Thermal Shutdown TSD2 – V1 short (V1 < V1fail for t > tV1short) The Fail Safe functionality is also available in V1_Standby mode. During V1_Standby mode the Fail Safe mode is entered in the following cases:  V1 failure (V1 < VRTxfalling for t > tV1FS)  Watchdog failure (if watchdog still running due to IV1 > Icmp_fal)  Thermal Shutdown TSD2 In Fail Safe mode the devices return to a fail safe state. The Fail Safe condition is indicated to the system in the Global Status Byte. The conditions during Fail Safe mode are:  All outputs beside LS1_FSO and LS2_FSO are turned off  All Control Registers are set to fail safe default values  Write operations to Control Registers are blocked until the Fail Safe condition is cleared. The following bits are not WRITE protected: – TRIG (CR1, Config Register ): watchdog trigger bit – V2_x (CR1): Voltage Regulator V2 control – CR2 (bit ): Timer1 and Timer2 settings – OUT_HS_x (CR5 ): OUT_HS configuration – OUT15_x (CR6): OUT15 configuration – PWMx_freq_y (CR12): PWM frequency configuration – PWMx_DC_y (CR13 – CR17): PWM duty cycle configuration  LIN transmitter and SPI remain on (transmitters are deactivated in case of thermal shutdown TSD1 (TSD1 cluster 5 or 6 in cluster mode)  Corresponding Failure Bits in Status Registers are set  FS Bit (Global Status Byte) is set  LS1_FSO and LS2_FSO will be turned on  Charge pump is switched off If the Fail Safe mode was entered it keeps active until the Fail safe condition is removed and the Fail Safe was read by SPI. Depending on the root cause of the Fail Safe operation, the actions to exit Fail safe mode are as shown in the following table. DS11567 Rev 5 69/161 160 Application information L99DZ120 Table 47. Temporary failures description Failure source Failure condition Microcontroller (oscillator) Watchdog early write failure or expired window FS (Global Status Byte) =1; WDFAIL (SR 1) =1; WDFAIL_CNT_x (SR 1) = n+1 TRIG (CR 1) = 1 during long open window Read&Clear SR1 Short at turn-on FS (Global Status Byte) =1; FORCED_SLEEP_TSD2/V1SC (SR 1) =1 Wake-up;  Read&Clear SR1 Undervoltage FS (Global Status Byte) = 1; V1UV (SR 1) = 1; V1fail (SR 2) = 1(1) V1 >VRTrising;  Read&Clear SR1 Tj > TSD2 FS (Global Status Byte) = 1; TW (SR 2) = 1; TSD1 (SR 1) =1; TSD2 (SR 1) =1 Tj < TSD2;  Read&Clear SR1 V1 Temperature Diagnosis Exit from Fail-safe mode 1. If V1 < V1fail (for t > tV1fail). The Fail-safe Bit is located in the Global Status Register. 4.7.2 Non-recoverable failures – forced Vbat_standby mode If the Fail-safe condition persists and all attempts to return to normal system operation fail, the devices enter the Forced Vbat_standby mode in order to prevent damage to the system. The Forced Vbat_standby mode can be terminated by any wake-up source. The root cause of the Forced Vbat_standby mode is indicated in the SPI Status Registers. In Forced Vbat_standby mode, all Control Registers are set to power-on default values except:  CP_DITH_DIS (Config. Reg ) The Forced Vbat_standby mode is entered in case of:  Multiple watchdog failures: FORCED_SLEEP_WD (SR 1) = 1 (15 x watchdog failure)  Multiple thermal shutdown 2: FORCED_SLEEP_TSD2/V1SC (SR 1) = 1 (7 x TSD2)  V1 short at turn-on (V1 < V1fail for t > tV1short): FORCED_SLEEP_TSD2/V1SC (SR 1) = 1 Table 48. Non-recoverable failure Failure source Failure condition Temperature 70/161 Exit from Fail-safe mode FS (Global Status Byte) = 1; WDFAIL (SR 1) = 1; FORCED_SLEEP_WD (SR 1) = 1 Wake-up; TRIG (CR 1) = 1 during long open window; Read&Clear SR1 Short at turn-on FS (Global Status Byte) = 1; FORCED_SLEEP_TSD2/V1SC (SR 1) = 1 Wake-up;  Read&Clear SR1 7 times TSD2 FS (Global Status Byte) =1; TW (SR 2) = 1; Wake-up;  TSD1 (SR 1) = 1; TSD2 (SR 1) = 1; Read&Clear SR1 FORCED_SLEEP_TSD2/V1SC (SR 1) = 1 Microcontroller 15 consecutive (Oscillator) Watchdog Failures V1 Diagnosis DS11567 Rev 5 L99DZ120 4.8 Application information Reset output (NReset) Figure 28. NReset pin (6'SURW 9 .2KPV 'DWD2XW 'DWD,Q 'LJLWDO ORJLF *1' *1' ("1($'5 If V1 is turned on and the voltage exceeds the V1 reset threshold, the reset output NReset is pulled up to V1 by an internal pull-up resistor after a reset delay time (tV1R). This is necessary for a defined start of the micro controller when the application is switched on. Since the NReset output is realized as an open drain output it is also possible to connect an external NReset open drain NReset source to the output. As soon as the NReset is released by the devices the watchdog starts with a long open window. A reset pulse is generated in case of: 4.9  V1 drops below VRTxfalling (configurable by SPI) for t > tUV1  Watchdog failure  Turn-on of the V1 regulator (VSREG Power-on or wake-up from Vbat_standby mode) LIN Bus Interface Figure 29. RxDL pin 9 (6'SURW 'DWD,Q (QDEOH 'LJLWDO ORJLF 'DWD2XW *1' *1' ("1($'5 DS11567 Rev 5 71/161 160 Application information 4.9.1 L99DZ120 Features  LIN 2.2a compliant (SAEJ2602 compatible) transceiver  LIN Cell has been designed according to “Hardware requirements for transceivers (version 1.3)”  Bitrate up to 20 kbit/s  Dedicated LIN Flash mode with bitrate up to 100 kbit/s  GND disconnection fail safe at module level  Off mode: does not disturb network  GND shift operation at system level  Micro controller Interface with CMOS-compatible I/O pins  Internal pull-up resistor  Receive-only mode  ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2  Matched output slopes and propagation delay  Wake-up behaviour according to LIN2.2a and Hardware Requirements for LIN, CAN and Flexray Interfaces (version 1.3) At VSREG > VPOR (i.e. VSREG power-on reset threshold), the LIN transceiver is enabled. The LIN transmitter is disabled in case of the following errors:  Dominant TxDL time out  LIN permanent recessive  Thermal shutdown 1  VSREG overvoltage/ undervoltage The LIN receiver is not disabled in case of any failure condition. The default bitrate of the transceiver allows communication up to 20 kbit/s. To enable fast flashing via the LIN bus, the transceiver can be operated in high speed mode by setting bit LIN_HS_EN (Config Reg) = 1. This feature is enabled automatically in LIN Flash mode. 4.9.2 Error handling The devices LIN transceiver provides the following 3 error handling features. Dominant TxDL time out If TXD_L is in dominant state (low) for t > tdom(TXDL) the transmitter will be disabled, the status bit LIN_TXD_DOM (SR 2) will be set. The transmitter remains disabled until the status bit is cleared. The TxD dominant timeout detection can be disabled via SPI (LIN_TXD_TOUT_EN = 0). Permanent recessive If TXD_L changes to dominant (low) state but RXD_L signal does not follow within t < tLIN the transmitter will be disabled, the status bit LIN_PERM_REC (SR 2) will be set. The transmitter remains disabled until the status bit is cleared. 72/161 DS11567 Rev 5 L99DZ120 Application information Permanent dominant If the bus state is dominant (low) for t > tdom(bus) a bus permanent dominant failure will be detected. The status bit LIN_PERM_DOM (SR 2) will be set. The transmitter will not be disabled. 4.9.3 Wake up from Standby modes In low power modes (V1_standby mode and Vbat_standby mode) the devices can receive two types of wake up signals from the LIN bus (configurable by SPI bit LIN_WU_CONFIG (Config Reg)):  Recessive-Dominant-recessive pattern with t > tdom_LIN (default, according to LIN 2.2a)  State Change recessive-to-dominant or dominant-to-recessive (according to LIN 2.1) Pattern Wake-up (default) Figure 30. Wake-up behavior according to LIN 2.2a 9ROWDJHDW/,13LQRI/,13K\VLFDO/D\HUGHYLFH /,1UHFHVVLYH WGRP/,1 96XSSO\ 9 6XSSO\ /,1GRPLQDQW VOHHSPRGH VWDQGE\PRGH RUVLPLODUPRGHQDPLQJ *$3*&)7 Status change wake-up - Recessive-to-dominant Normal wake-up can occur when the LIN transceiver was set in standby mode while LIN was in recessive (high) state. A dominant level at LIN for t > tLINBUS, will switch the devices to Active mode. Status change wake-up - Dominant-to-recessive If the LIN transceiver was set in standby mode while LIN was in dominant (low) state, recessive level at LIN for t > tLINBUS, will switch the devices to Active mode. 4.9.4 Receive-only mode The LIN transmitter can be disabled in Active mode by setting the bit LIN_REC_ONLY (CR2). In this mode it is possible to listen to the bus but not sending to it. DS11567 Rev 5 73/161 160 Application information 4.10 L99DZ120 Serial Peripheral Interface (ST SPI Standard) A 32-bit SPI is used for bi-directional communication with the microcontroller. The SPI is driven by a microcontroller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. This device is not limited to microcontroller with a built-in SPI. Only three CMOS-compatible output pins and one input pin is needed to communicate with the device. A fault condition can be detected by setting CSN to low. If CSN = 0, the DO-Pin reflects the global error flag (fault condition) of the device.  Chip Select Not (CSN) The input Pin is used to select the serial interface of this device. When CSN is high, the output Pin (DO) is in high impedance state. A low signal activates the output driver and a serial communication can be started. The state during CSN = 0 is called a communication frame. If CSN = low for t > tCSNfail the DO output is switched to high impedance in order not to block the signal line for other SPI nodes.  Serial Data In (DI) The input Pin is used to transfer data serial into the device. The data applied to the DI is sampled at the rising edge of the CLK signal and shifted into an internal 32-bit shift register. At the rising edge of the CSN signal the content of the shift register is transferred to Data Input Register. The writing to the selected Data Input Register is only enabled if exactly 32-bit are transmitted within one communication frame (i.e. CSN low). If more or less clock pulses are counted within one frame the complete frame is ignored. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected IC's is recommended.  Serial Data Out (DO) The data output driver is activated by a logical low level at the CSN input and will go from high impedance to a low or high level depending on the global error flag (fault condition). The first rising edge of the CLK input after a high to low transition of the CSN Pin will transfer the content of the selected status register into the data out shift register. Each subsequent falling edge of the CLK will shift the next bit out.  Serial Clock (CLK) The CLK input is used to synchronize the input and output serial bit streams. The data input (DI) is sampled at the rising edge of the CLK and the data output (DO) will change with the falling edge of the CLK signal. The SPI can be driven with a CLK Frequency up to 4 MHz. 74/161 DS11567 Rev 5 L99DZ120 Application information 4.11 Power supply failure 4.11.1 VS supply failure VS overvoltage If the supply voltages VS reaches the overvoltage threshold VSOV:  LIN remains enabled  OUT1 to OUT_14 are turned off (default). The shutdown of outputs may be disabled by SPI (VS_OV_SD_EN (CR 3) = 0)  Charge pump is disabled (and is switched on automatically in case the supply voltage recovers to normal operating voltage)  H-bridge gate driver is switched into sink condition  Recovery of outputs after overvoltage condition is configurable by SPI:  – VS_LOCK_EN (CR 3) = 1: outputs are off until Read&Clear VS_OV (SR 2). – VS_LOCK_EN (CR 3) = 0: outputs turned on automatically after VS overvoltage condition has recovered. The overvoltage bit VS_OV (SR 2) is set and can be cleared with a ‘Read&Clear’ command. The overvoltage bit is reset automatically if VS_LOCK_EN (CR 3) = 0 and the overvoltage condition has recovered. VS undervoltage If the supply voltage VS drops below the under voltage threshold voltage (VSUV):  LIN remains enabled  OUT1 to OUT14 are turned off (default).  The shutdown of outputs may be disabled by SPI (VS_UV_SD_EN (CR 3) = 0)  Recovery of outputs after undervoltage condition is configurable by SPI:  – VS_LOCK_EN (CR 3) = 1: outputs are off until Read&Clear VS_UV (SR 2). – VS_LOCK_EN (CR 3) = 0: outputs turned on automatically after VS undervoltage condition has recovered. The undervoltage bit VS_UV (SR 2) is set and can be cleared with a ‘Read&Clear’ command. The undervoltage bit is removed automatically if VS_LOCK_EN (CR 3) = 0 and the undervoltage condition has recovered. DS11567 Rev 5 75/161 160 Application information 4.11.2 L99DZ120 VSREG supply failure VSREG overvoltage If the supply voltages VSREG reaches the overvoltage threshold VSREG_OV:  LIN is switched to high impedance  OUT15 and OUT_HS are turned off (default). The shutdown of outputs may be disabled by SPI (VSREG_OV_SD_EN (CR 3) = 0)   Recovery of outputs after overvoltage condition is configurable by SPI: – VSREG_LOCK_EN (CR 3) = 1: outputs are off until Read&Clear VSREG_OV (SR 2). – VSREG_LOCK_EN (CR 3) = 0: outputs turned on automatically after VSREG overvoltage condition has recovered. The overvoltage bit VSREG_OV (SR 2) is set and can be cleared with a ‘Read&Clear’ command. The overvoltage bit is reset automatically if VSREG_LOCK_EN (CR 3) = 0 and the overvoltage condition has recovered. VSREG undervoltage If the supply voltage VSREG drops below the under voltage threshold voltage (VSREG_UV):  LIN is switched to high impedance  OUT15 and OUT_HS are turned off (default).  The shutdown of outputs may be disabled by SPI (VSREG_UV_SD_EN (CR 3) = 0)  Recovery of outputs after undervoltage condition is configurable by SPI:  76/161 – VSREG_LOCK_EN (CR 3) = 1: outputs are off until Read&Clear VSREG_UV (SR 2). – VSREG_LOCK_EN (CR 3) = 0: Outputs turned on automatically after VSREG undervoltage condition has recovered. The undervoltage bit VSREG_UV (SR 2) is set and can be cleared with a ‘Read&Clear’ command. The undervoltage bit is removed automatically if VSREG_LOCK_EN (CR 3) = 0 and the undervoltage condition has recovered. DS11567 Rev 5 L99DZ120 4.12 Application information Temperature warning and thermal shutdown Figure 31. Thermal shutdown protection and diagnosis 7M!76' 76' 76' $OORXWSXWVDQG9RII 9RIIIRUW W76' W!W76' $OORXWSXWVDQG9RII 9RQ 'LDJQRVLV76'  'LDJQRVLV76'  [76' :DNHXSHYHQW )RUFHG 9EDWBVWDQGE\ 0RGH 7M!76' Ã5HDGDQG&OHDU¶ 25 3RZHURQUHVHW 3RZHURQUHVHW 7HPSHUDWXUH :DUQLQJ 'LDJQRVLV7:  Ã5HDGDQG&OHDU¶ 25 3RZHURQUHVHW 7M!7Z $FWLYH 0RGH 6WDQGE\0RGHV GXULQJF\FOLFVHQVH 9V!9SRU 3RZHU2Q5HVHW $OORXWSXWVLQFO9RII 1RWH ,QWKHUPDOFOXVWHUPRGH 76'&RQILJ   RQO\WKHFRQFHUQHGRXWSXWFOXVWHUZLOOEHVZLWFKHGRII ("1($'5 Note: The Thermal State machine will recover the same state as before entering Standby mode. In case of a TSD2 it will enter TSD1 state. DS11567 Rev 5 77/161 160 Application information 4.13 L99DZ120 Power outputs OUT1..15 and OUT_HS The component provides a total of 4 half bridges outputs OUT1, OUT4-6 to drive motors and 10 stand alone high-side outputs OUT7..15 and OUT_HS to drive e.g. LED’s, bulbs or to supply contacts. All high-side outputs beside OUT_HS and OUT15 are supplied by the pin VS and OUT_HS and OUT15 are supplied by the buffered supply VSREG. OUT_HS is intended to be used as contact supply. Beside OUT15 and OUT_HS the high-side switches can be activated only in case of running charge pump. OUT15 and OUT_HS can be activated also in standby modes. All high-side and low-side outputs switch off in case of:  VS (VSREG) overvoltage and undervoltage (depending on configuration, see Section 4.11.2: VSREG supply failure)  Overcurrent (depending on configuration, auto recovery mode (see below)  Overtemperature (TSD1x/ cluster or single mode)  Fail safe event  Loss of GND at SGND pin In case of overcurrent or overtemperature (TSD1_CLx (SR 6)) condition, the drivers will switch off. The relevant status bit will be latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. In case overvoltage/ undervoltage condition, the drivers will be switched off. The relevant status bit will be latched and can be read and optionally cleared by SPI. If VSREG_LOCK_EN (CR 3) respectively VS_LOCK_EN (CR 3) are set, the drivers remain off until the status is cleared. If the VS_LOCK_EN or VSREG_LOCK_EN) bit is set to 0, the drivers will switch on automatically if the error condition disappears. Undervoltage and overvoltage shutdown can be disabled by SPI. In case of open-load condition, the relevant status register will be latched. The status can be read and optionally cleared by SPI. The high and low-side outputs are not switched off in case of open-load condition. For OUT1, OUT4-8 and OUT_HS the auto recovery feature (OUTx_OCR (CR 7)) can be enabled; half-bridges and high-side drivers have different Auto recovery frequencies (frecx_hs and frecx_hb). If these bits are set to 1 the driver will automatically restart from an overload condition. This overload recovery feature is intended for loads which have an initial current higher than the overcurrent limit of the output (e.g. Inrush current of cold light bulbs). The SPI bits OUTx_OCR_ALERT (SR4) indicate that the output reached auto-recovery condition. Note: The maximum voltage and current applied to the high-side Outputs is specified in the ‘Absolute Maximum Ratings’. Appropriate external protection may be required in order to respect these limits under application conditions. In case of outputs switch off due to loss of ground at SGND pin, the device has to be re-started through a power off on both VS and VSREG. Each of the stand alone high-side driver outputs OUT7 … OUT15 and OUT_HS can be driven with an internally generated PWM signal, an internal Timer or with DIR1 respectively DIR2. See Table 49. 78/161 DS11567 Rev 5 L99DZ120 Application information Table 49. Power output settings OUTx_3 OUTx_2 4.14 OUTx_1 OUTx_0 Description 0 0 0 0 OFF 0 0 0 1 ON 0 0 1 0 Timer1 output is controlled by timer1; starting with ON phase after timer restart 0 0 1 1 Timer2 output is controlled by timer2; starting with ON phase after timer restart 0 1 0 0 PWM1 0 1 0 1 PWM2 0 1 1 0 PWM3 0 1 1 1 PWM4 1 0 0 0 PWM5 1 0 0 1 PWM6 1 0 1 0 PWM7 1 0 1 1 PWM8 1 1 0 0 PWM9 1 1 0 1 PWM10 1 1 1 0 DIR1 1 1 1 1 DIR2 Auto-recovery alert and thermal expiration The thermal expiration feature provides a robust protection against possible microcontroller malfunction, switching off a given channel if continuously driven in auto-recovery. If the temperature of the related cluster increases by more than 30 °C after reaching the autorecovery time tAR, the channel is switched off. The thermal expiration status bit OUTx_TH_EX (SR 3) is set. During auto-recovery condition, OUTx_OCR_ALERT (SR 4) is set. The Alert bit indicates that an overload condition (load in-rush, short-circuit, etc) is present. The thermal expiration feature is controlled by SPI (OUTx_OCR_THX_EN (CR 8). DS11567 Rev 5 79/161 160 Application information L99DZ120 Figure 32. Example of long auto-recovery on OUT7. Temperature acquisition starts after tAR, thermal expiration occurs after a ∆T = 30° 80/161 DS11567 Rev 5 L99DZ120 Application information Figure 33. Block diagram of physical realization of AR alert and thermal expiration #BUU4VQQMZ $VSSFOU 4FOTF (BUF ESJWFS 0/ DPNNBOE ˜$ 1PXFS.04 %JBHOPTUJD 0WFSDVSSFOU DPNQ *UI 5FNQTFOTF "NQ "%$ 5@EBUB )4@&OBC "3MJNJU SFBDIFE %JHJUBM4UBUF .BDIJOF 0$ 04$ -BNQ%SJWFS*$ *$3*&)7 4.15 Charge pump The charge pump uses two external capacitors, which are switched with fCP. The output of the charge pump has a current limitation. In standby mode and after a thermal shutdown has been triggered the charge pump is disabled. If the charge pump output voltage remains too low for longer than TCP, the power-MOS outputs and the EC-control are switched off. The H-bridge MOSFET gate drivers are switched to resistive low and CP_LOW (SR 2) is set. This bit has to be cleared to reactivate the drivers. If the bit CP_LOW_CONFIG (Configuration Register 0x3F) is set to ‘1’, CP_LOW (SR2) behaves as a ‘live’ bit and the outputs are re-activated automatically upon recovery of the charge pump output voltage. In case of reaching the overvoltage shutdown threshold VSOV the charge pump is disabled and automatically restarted after VS recovered to normal operating voltage. Figure 34. Charge pump low filtering and start up implementation &3   )LOWHU7LPH 7 &3  W\S—V 9 & 3ORZ ' &3ORZ &/. 3RZHU6WDJH'LVDEOH 6WDUW8S%ODQ NLQJ  7LPH WVHW B&3 W\SLFDO —V $OOSRZHUVWDJH  EHVLGH3&KDQQH O GLVDEOHG *DWH'ULYH2XWSXWVGLVDEOHG *$3*&)7 4.16 Inductive loads Each of the half bridges is built by internally connected high-side and low-side power DMOS transistors. Due to the built-in reverse diodes of the output transistors, inductive loads can DS11567 Rev 5 81/161 160 Application information L99DZ120 be driven at the outputs OUT1 and OUT4-6 without external freewheeling diodes. The highside drivers OUT7 to OUT15 and OUT_HS are intended to drive resistive loads only. Therefore only a limited energy (E < 1 mJ) can be dissipated by the internal ESD-diodes in freewheeling condition. For inductive loads (L > 100 μH) an external freewheeling diode connected between GND and the corresponding output is required. 4.17 Open-load detection The open-load detection monitors the load current in each activated output stage. If the load current is below the open-load detection threshold for t > tOL_OUT the corresponding openload bit OUTx_OL (SR 5) is set in the status register. 4.18 Overcurrent detection An overcurrent condition is detected after a filter time (see Figure 11 and Figure 12) and is indicated by the status bit OUTx_OC (SR 3). In case of overcurrent, the corresponding driver switches off to reduce the power dissipation and to protect the integrated circuit. If the outputs are not configured in recovery mode, the microcontroller has to clear the relevant status bits to reactivate the corresponding drivers. 4.19 Current monitor The current monitor sources a current image of the power stage output current at the current monitor pin CM, which has a fixed ratio (ICMr) of the instantaneous current of the selected high-side driver. The signal at output CM is blanked for tcmb after switching on the driver until the correct settlement of the circuitry. The bits CM_SELx (CR 7) define which of the outputs is multiplexed to the current monitor output CM. The current monitor output allows a more precise analysis of the actual state of the load rather than the detection of an open-load or overload condition. For example, it can be used to detect the motor state (starting, free running, stalled). The current monitor output is enabled after the currentmonitor blanking time, when the selected output is switched on. If this output is off, the current monitor output is in high impedance mode. The current monitor can be deactivated by CM_EN (CR 7). 4.20 PWM mode of the power outputs Description see Section 7.3: Status register overview. 4.21 Cross-current protection The four half-bridges of the device are cross-current protected by an internal delay time. If one driver (LS or HS) is turned off, the activation of the other driver of the same half-bridge will be automatically delayed by the crosscurrent protection time. After the crosscurrent protection time is expired the slew-rate limited switch-off phase of the driver is changed to a fast turn-off phase and the opposite driver is turned-on with slew-rate limitation. Due to this behavior, it is always guaranteed that the previously activated driver is completely turned off before the opposite driver starts to conduct. 82/161 DS11567 Rev 5 L99DZ120 4.22 Application information Programmable soft-start function to drive loads with higher inrush current Loads with start-up currents higher than the overcurrent limits (e.g. inrush current of lamps, start current of motors) can be driven by using the programmable soft-start function (i.e. overcurrent recovery mode). Each driver has a corresponding overcurrent recovery bit OUTx_OCR (CR 7). If this bit is set, the device automatically switches the outputs on again after a programmable recovery time. The PWM modulated current will provide sufficient average current to power up the load (e.g. heat up the bulb) until the load reaches operating condition. The PWM frequency is defined by setting OCR_FREQ (CR7). The device itself cannot distinguish between a real overload (e.g. short-circuit condition) and a load characterized by operation currents exceeding the short-circuit threshold. Examples are non-linear loads like a light bulb used on the HS outputs or a motor used on the half bridge output with inrush and stall currents that shall be limited by the auto recovery feature. For the bulb, a real overload condition can only be qualified by time. For overload detection the microcontroller can switch on the light bulbs by setting the overcurrent recovery bit for the first e.g. 50 ms. After clearing the recovery bit, the output will be switched off automatically if the overload condition remains. For the half bridges the high current can be present during all motor activation and another SW strategy must be applied to identify a SC to GND or Supply. Before running the motor e.g. with a first SPI command all bridges LS are switched on (without auto recovery functionality / cleared overcurrent recovery bit), all HS are switched off and a SC to Battery can be diagnosed. With a next SPI command, all HS are switched on (without auto recovery functionality/ cleared overcurrent recovery bit) and all LS are switched off. In this sequence, a short to GND can be diagnosed. If in both sequences no overload condition is identified, the motor can be run by switching on the relevant HS and LS each configured in auto recovery mode (see Figure 35). Such sequence can be applied before any motor activation to identify SC just before operating the motor (in case the delay due to the 2 additional SPI commands is not limiting the application) or in case of power up of the system resp. applied on a certain time base. DS11567 Rev 5 83/161 160 Application information L99DZ120 Figure 35. Software strategy for half bridges before applying auto-recovery mode 9EDW 9EDW 96 96 96 287[+6 287\+6 "" 2)) 287[ 0 287[+6 2)) 2)) 287\/6 /'= "" 287\/6 /'= *1' /'= *1' *1' 6:6WHS6KRUWWRJURXQGGHWHFWLRQ 6:6WHS 6:6WHS +62)) /621 2)) 287[/6 6:6WHS6KRUWWREDWWHU\GHWHFWLRQ $52)) 287\ 0 *1' %(*,1 6:5RXWLQH 21 287[ 21 /'= 287\+6 21 287\ 21 287[/6 96 1 6KRUWWR9V" +621 /62)) 6KRUWWR*1'" 1 6HW$521 < < .HHS$52)) 6ZLWFK+62)) .HHS$52)) 6ZLWFK/62)) (1' 6:5RXWLQH ("1($'5 As soon as an output reaches auto-recovery condition, OUTx_OCR_ALERT (SR 4)) is set. The Alert bit indicates that an overload condition (load in-rush, short-circuit, etc) is present. 84/161 DS11567 Rev 5 L99DZ120 Application information Figure 36. Overcurrent recovery mode , /2$' 8QOLPLWHG,QUXVK&XUUHQW /LPLWHG,QUXVK&XUUHQWLQ SURJUDPPDEOHUHFRYHU\PRGH &XUUHQW/LPLWDWLRQ W *$3*&)7 4.23 H-bridge control The PWMH and DIRH inputs control the drivers of the external H-bridge transistors. In single Motor mode the motor direction can be chosen with the direction input (DIRH), the duty cycle(a) and frequency with the PWMH input (single mode). With the SPI bits SD (CR 10) and SDS (CR 10) four different slow-decay modes (via drivers and via diode) can be selected using the high-side or the low-side transistors. Unconnected inputs are defined by internal pull-down current. a. If tccp is programmed to 4 µs and frequency to 50 kHz, max duty cycle achievable is 92%. DS11567 Rev 5 85/161 160 Application information L99DZ120 Table 50. H-bridge control truth table Control Control bits pins Output pins Nb HEN SD SDS CP_LOW VS_OV VS_UV DS TSD1 GH1 GL1 GH2 GL2 Comment PWMH Motor config DIRH Failure bits 1 x x 0 x x x x x x x RL RL RL RL H-bridge disabled 2 x x 1 x x 1 0 0 0 0 RL RL RL RL Charge pump voltage too low 3 x x 1 x x 0 x x x 1 RL RL RL RL Thermal shutdown 4 x x 1 x x 0 1 0 0 0 L L L L L(1) L(1) L(1) Overvoltage 5 x x 1 x x 0 0 0 1 0 L(1) Short-circuit(1) 6 0 1 1 x x 0 0 0 0 0 L H H L Bridge H2/L1 on 7 x 0 1 0 0 0 0 0 0 0 L H L H Slow-decay mode LS1 and LS2 on 8 0 0 1 0 1 0 0 0 0 0 L H L L 9 1 0 1 0 1 0 0 0 0 0 L L L H Slow-decay mode LS2 on 10 1 1 1 x x 0 0 0 0 0 H L L H Bridge H1/L2 on 11 x 0 1 1 0 0 0 0 0 0 H L H L Slow-decay mode HS1 and HS2 on 12 0 0 1 1 1 0 0 0 0 0 L L H L Slow-decay mode HS1 on 13 1 0 1 1 1 0 0 0 0 0 H L L L Slow-decay mode HS2 on Single Slow-decay mode LS1 on 1. Only the H-bridge leg (low-side and high-side), in which one MOSFET is in short-circuit condition is switched off. Both MOSFETs of the other H-bridge leg remain active and driven by DIRH and PWMH. During watchdog long-open window, the H-bridge drivers are forced off until the first valid watchdog trigger in window mode (setting TRIG = 0 during safe window). The Control Registers remain accessible during long open window. 4.24 H-bridge driver slew-rate control The rising and falling slope of the drivers for the external high-side Power-MOS can be slew rate controlled. If this mode is enabled the gate of the external high-side Power-MOS is driven by a current source instead of a low-impedance output driver switch as long as the drain-source voltage over this Power-MOS is below the switch threshold. The current is programmed using the bits SLEW_x (CR 10), which represent a binary number. This number is multiplied by the minimum current step. This minimum current step is the maximum source-/sink-current (IGHxrmax / IGHxfmax) divided by 31. Programming SLEW_x to 0 disables the slew rate control and the output is driven by the lowimpedance output driver switch. 86/161 DS11567 Rev 5 L99DZ120 Application information Figure 37. H-bridge GSHx slope 9*6+[ &XUUHQW &RQWUROOHG /RZ5HVLVWLYH 6ZLWFK &RQWUROOHG &XUUHQW &RQWUROOHG W 9'6+[ W *$3*&)7 4.25 Resistive low The resistive output mode protects the devices and the H-bridge in the standby mode and in some failure modes (thermal shutdown TSD1 (SR 1), charge pump low CP_LOW (SR 2) and DI pin stuck at ‘1’ SPI_INV_CMD (SR 2)). When a gate driver changes into the resistive output mode due to a failure a sequence is started. In this sequence the concerning driver is switched into sink condition for 32 μs to 64 μs to ensure a fast switch-off of the H-bridge transistor. If slew rate control is enabled, the sink condition is slew-rate controlled. Afterwards the driver is switched into the resistive output mode (resistive path to source). 4.26 Short circuit detection / drain source monitoring The Drain - Source voltage of each activated external MOSFET of the H-bridge is monitored by comparators to detect shorts to ground or battery. If the voltage-drop over the external MOSFET exceeds the configurable threshold voltage VSCd_HB (DIAG_x (CR 10) for longer t > tSCd_HB the corresponding gate driver switches off the external MOSFET and the corresponding drain source monitoring flag DS_MON_x (SR 2) is set. The DSMON_x bits have to be cleared through the SPI to reactivate the gate drivers. This monitoring is only active while the corresponding gate driver is activated. If a drain-source monitor event is detected, the corresponding gate-driver remains activated for at maximum the filter time. When the gate driver switches on, the drain-source comparator requires the specified settling time until the drain-source monitoring is valid. During this time, this drain-source DS11567 Rev 5 87/161 160 Application information L99DZ120 monitor event may start the filter time. The threshold voltage VSCd_HB can be programmed using the SPI bits DIAG_x (CR 10). Figure 38. H-bridge diagnosis 9V 96 96 '60RQLWRULQJ+6 *DWH'ULYHU+6 '60RQLWRULQJ+6 97KUHV N N *+ 97KUHV *DWH'ULYHU+6 *+ 6+ 0 6+ *DWH'ULYHU/6 *DWH'ULYHU/6 */ */ '60RQLWRULQJ/6 2/0RQLWRULQJ '60RQLWRULQJ/6 2/0RQLWRULQJ N N 97KUHV 97KUHV ("1($'5 4.27 H-bridge monitoring in off-mode The drain source voltages of the H-bridge driver external transistors can be monitored, while the transistors are switched off. If either bit OL_H1L2 (CR 10) or OL_H2L1 (CR 10) is set to 1, while bit HEN (CR 1) = 1, the H-drivers enter resistive low mode and the drain-source voltages can be monitored. Since the pull-up resistance is equal to the pull-down resistance on both sides of the bridge a voltage of 2/3 VS on the pull-up highside and 1/3 VS on the lowside is expected, if they drive a low-resistive inductive load (e.g. motor). If the drain source voltage on each of these Power-MOS is less than 1/6 VS, the drain-source monitor bit of the associated driver is set. The open-load filter time is tOL_HB. 88/161 DS11567 Rev 5 L99DZ120 Application information Figure 39. H-bridge open-load-detection (no open-load detected) 9V N 9V 9V 0 P '60  N 97 9V N '60  97 9V *$3*&)7 Figure 40. H-bridge open-load-detection (open-load detected) 9V N 0 9V 2SHQ P '60  97 9V N N '60  97 9V *$3*&)7 DS11567 Rev 5 89/161 160 Application information L99DZ120 Figure 41. H-bridge open-load-detection (short to ground detected) 9V N *1' 0 *1' P '60  N 97 9V '60  N 6KRUW 97 9V *$3*&)7 Figure 42. H-bridge open-load detection (short to VS detected) 9V 6KRUW N 9V 9V 0 P '60  '60  N 97  9V N 97  9V *$3*&)7 Table 51. H-bridge monitoring in off-mode Control bits Failure bits Comments Nb OL H1L2 OL H2L1 H OLTH High DSMON LS1 DSMON LS2 90/161 1 0 0 0 0 0 Drain-Source monitor disabled 2 1 0 x 0 0 No open-load detected 3 1 0 0 0 1 Open-load SH2 4 1 0 0 1 1 Short to GND 5 1 0 1 1 1 Short to VS 6 0 1 x 0 0 No open-load detected 7 0 1 0 1 0 Open-load SH1 DS11567 Rev 5 L99DZ120 Application information Table 51. H-bridge monitoring in off-mode (continued) Control bits Failure bits Comments Nb OL H1L2 OL H2L1 H OLTH High DSMON LS1 DSMON LS2 4.28 8 0 1 0 1 1 Short to GND 9 0 1 1 1 1 Short to VS Programmable cross current protection The external PowerMOSFETs transistors in H-bridge (two half-bridges) configuration are switched on with an additional delay time tCCP to prevent cross current in the halfbridge. The cross current protection time tCCP can be programmed with the SPI bits COPT_x (CR 10). The timer is started when the gate driver is switched on in the device. The PWMH module has 2 timers to configure locking time for high-side and freewheeling low-side. The programmable time tCCP-TIM1 / tCCP-TIM2 is the same. Sequence for switching in PWM mode is the following:  HS switch off after locking tCCP-TIM1  LS switch on after 2nd locking tCCP-TIM1  HS switch on after locking tCCP-TIM2 which starts with rising edge on PWM input Figure 43. PWMH cross current protection time implementation WSS W FFS WSS[WFFS WSS![WFFS 3:0 ,QSXW W&&37,0 W&&37,0 W&&37,0 W&&37,0 W&&37,0 W&&37,0 +6/RJLF W&&37,0 /6/RJLF W&&37,0 W&&37,0 $FWLYH )UHH:KHHOLQJ 3DVVLYH )UHH:KHHOLQJ 3DVVLYH )UHH:KHHOLQJ ("1($'5 4.29 Power window H-bridge safety switch off block The two LS Switches LS1_FSO and LS2_FSO are intended to be used to switch off the gates of the external high-side MOSFETs in the power window h-bridge if a fatal error happens. This block must work also in case the MOSFET driver and the according control blocks on the chip are destroyed. Therefore it is necessary to have a complete separated safety block on the device, which has it’s own supply and GND connection, separated from the other supplies and GNDs. In the block is implemented an own voltage regulator and oscillator. DS11567 Rev 5 91/161 160 Application information L99DZ120 The safety block is surrounded by a GND isolation ring realized by deep trench isolation. The LS driver must work down to a lower voltage than the other circuits. The block has its own internal supply and an own oscillator for monitoring the failure signals (WWD, V1 fail, SPI fail & Tj) which are Manchester encoded and decoupled by high ohmic resistances. In case of fail-safe event, both LS switches LS1_FSO and LS2_FSO are switched on. In case of entering V1_standby mode or Vbat_standby mode both fail safe low-side switches are switched on to minimize the current drawn by the fail safe block (e.g. oscillator is switched off and Manchester Encoding is deactivated). Short circuit protection to VS is active in both standby modes limiting the current to IOLimit for a filter of tSCF. After this filter time the fail-safe switches are switched off and LSxFSO_OC (SR 3) is set. To reactivate the low-side functionality this bit has to be set back by a read and clear command. In case of VS loss the fail safe switches are biased by their own output voltage to turn on the low-side switches down to VOUT_max. To allow verification of the Fail-Safe path, the low-side switches LS1_FSO and LS2_FSO can be turned on by SPI (Configuration Register 0x3F bit 4: FS_FORCED) Figure 44. LSx_FSO: low-side driver “passively” turned on, taking supply from output pin (if main supply fails), can guarantee VLSx_FSO < VOUT_max &RPSOHWH,& 6XSSO\ )DLO6DIH%ORFN 7[0DQFKHVWHU (QFRGHG6LJQDOV 1RUPDOO\6ZLWFKLQJ  7;6LJQDOV :DWFKGRJ)DLO 9)DLOXUHV 2YHU7HPS 76' 5[6LJQDO &/($5/6[B)62B2& /6B)62B2& )LOWHUV 6WDWH 0DFKLQH /RZ6LGH 'ULYHU /6B)62 /RZ6LGH 'ULYHU /6B)62 /6B)62B2& &ORFN /6B)62B2&  /6B)62B2& 95(* (QDEOH *1' ("1($'5 92/161 DS11567 Rev 5 L99DZ120 Application information Figure 45. Safety concept 7[6LJQDO 0DQFKHVWHU(QFRGHG 6LJQDOV &ORFN 5[6LJQDO 1RUPDO2SHUDWLRQ )DLO6DIH &ORFN)DLOXUH 'DWD)DLOXUH ("1($'5 4.30 Temperature warning and shutdown If any of the cluster (see Section 4.31: Thermal clusters) junction temperatures rises above the temperature warning threshold TW, the temperature warning flag TW (SR 2) is set after the temperature warning filter time tjtft and can be read via SPI. If the junction temperature increases above the temperature shutdown threshold (TSD1), the thermal shutdown bit TSD1 (SR 1) is set and the power transistors of all output stages are switched off to protect the device after the thermal shutdown filter time. The gates of the H-bridge is discharged by the ‘Resistive Low’ mode. After these bits have been cleared, the output stages are reactivated. If the temperature is still above the thermal warning threshold, the thermal warning bit is set after tjtft. Once this bit is set and the temperature is above the temperature shutdown threshold, temperature shutdown is detected after tjtft and the outputs are switched off. Therefore the minimum time after which the outputs are switched off after the bits have been cleared in case the temperature is still above the thermal shutdown threshold is twice the thermal warning/ thermal shutdown filter time tjtft. 4.31 Thermal clusters In order to provide an advanced on-chip temperature control, the power outputs are grouped in six clusters with dedicated thermal sensors. The sensors are suitably located on the device (see Figure 46: Thermal clusters identification). In case the temperature of an output cluster reaches the thermal shutdown threshold, the outputs assigned to this cluster are shut down (all other outputs remain active). Each output cluster has a dedicated temperature warning and shutdown flag (SR 6) and the cluster temperature can be read out by SPI. Hence, the thermal cluster concept allows to identify a group of outputs in which one or more channels are in overload condition. If thermal shutdown has occurred within an output cluster, or if temperature is rising within a cluster, it may be desired to identify which of the output (s) is (are) determining the temperature increase. An additional evaluation, based on current monitoring and cluster temperature read-out, supports identification of the outputs mainly contributing to the temperature increase. The cluster temperatures are available in SR 7, SR 8 and SR 9 and can be calculated from the binary coded register value using the following formula: Decimal code = (350 – Temp) / 0.488 DS11567 Rev 5 93/161 160 Application information L99DZ120 Example: T = -40 °C => decimal code is 799 (0x31F) T = 25 °C => decimal code is 666 (0x29A) Thermal clusters can be configured using bit TSD_CONFIG (Config Reg):  Standard mode (default): as soon as any cluster reaches thermal threshold the device is switched off. V1 regulator remains on and is switched off reaching TSD2.  Cluster mode: only the cluster which reached shutdown temperature is switched off. If Cluster Th_CL6 (global) or Cluster Th_CL5 (Voltage Regulators) reachTSD1, the whole device is OFF (beside V1). Note: Clusters related to power outputs (clusters 1 to 4, see Figure 46: Thermal clusters identification) will be managed digitally only, by mean of the ADC conversion of related thermal sensors, while clusters 5 and 6 will be managed in an analog way (comparators) since ADC can be off, e.g. in V1_standby mode. Temperature reading provided by ADC may differ from real junction temperature of a specific output due to spatial placement of thermal sensor. Such an effect is more visible during fast thermal increases of junction temperature. ',5 1& 9B 15(6(7 1& 1,17 1& 'HEXJ 9B /,1 */ 6+ *+ 6+ *+ */ Figure 46. Thermal clusters identification  :8 ',5+  &30 3:0+ &33 ',5 1& &3 &33 /,1)/$6+ &30 5['B/1,17 1& 7['B/ &61 1& 287 ', 287 '2 287 &/. 287 1& &0 287 287 /6B)62 6*1' /6B)62 287 3*1' 287 96 1& 287 965(* 287B+6 287 287 287 287 287 1& 287 96 96 1& 7KHUPDO&OXVWHU 7KHUPDO&OXVWHU 7KHUPDO&OXVWHU 7KHUPDO&OXVWHU 7KHUPDO&OXVWHU 7KHUPDO&OXVWHU *$3*&)7 94/161 DS11567 Rev 5 L99DZ120 Application information Table 52. Thermal cluster definition Th_CL1 Th_CL2 5 W Driver + OUT15 Door lock + OUT_HS Th_CL3 Th_CL4 Th_CL5 Th_CL6 OUT1 + OUT6 10W driver high ohmic channels VREG 1 VREG 2 Global TW digitally managed TSD1 & TSD2 Both analog managed TW digitally managed TSD1 Analog managed TW & TSD1 Both TW & TSD1 Both TW & TSD1 Both TW & TSD1 Both digitally managed digitally managed digitally managed digitally managed 4.32 VS compensation (duty cycle adjustment) module All stand-alone HS outputs can be programmed to calculate some internal duty cycle adjustment to adapt the duty cycle to a changing supply voltage at VS. This feature is aimed to avoid LED brightness flickering in case of alternating supply voltage. The correction of the duty cycle is based on the following formula: Equation 1: Duty cycle correction V th – V LED DutyCycle = ---------------------------------  DC nom V Bat – V LED Vth = Duty cycle reference voltage: defined as 10 V VBat = Reference voltage: defined as voltage at pin VS VLED = Voltage drop on the external LED DCnom = Nominal Duty Cycle programmed by SPI< PWMx DCx> To be compatible to different LED load characteristics the value for VLED can be programmed for each output by a dedicated control register OUT7_VLED … OUT_HS_VLED (CR 18 to CR 22). Auto compensation features can be activated for all HS outputs each by setting OUTx_AUTOCOMP_EN (CR 18 to CR 22). The programmed LED voltage (OUTx_V_LED (CR18 to CR22)) must be lower than Vth (10 V). Figure 47. Block diagram VS compensation (duty cycle adjustment) module 5HJLVWHU'XW\&\FOH+6 %LWDFFXUDF\ 1RPLQDO 9ROWDJH #9 63, 63, $'&96                     +6$VVLJQPHQWDQG/RDG$GDSWLRQ  ,QWHUQDO $GMXVWPHQW 212))           96&RPSHQVDWLRQ &DOFXODWLRQ %,79/(' YROWDJHOHYHO 99  5HJLVWHUDGMXVWHG 'XW\&\FOH+6 %LWDFFXUDF\                     +6 +6 +6 +6 *$3*&)7 DS11567 Rev 5 95/161 160 Application information 4.33 L99DZ120 Analog digital converter Voltage signals VS, VSREG, VWU and TH_CL1..6 are read out sequentially. The voltage signals are multiplexed to an ADC. The ADC is realized as a 10 Bit SAR, that is sampled with the main clock fclk2 / fADC. Each channel will be converted with a conversion time tcon, therefore an update of the ADC value is available every tcon * 9. In case of WU is directly connected to Clamp 30, the input must be protected by a series resistance of typical 1kΩ to sustain reverse battery condition. Figure 48. Sequential ADC Read Out for VSREG, VS, WU and THCL1 ..THCL6 9LQ 9 :8 N 965(* 96 N S) &KDQQHO 0X[ 7+&/ 7+&/ 7+&/ 7+&/ 7+&/ 7+&/ 95() 9 63,5HJLVWHU %LW 6$5 ("1($'5 96/161 DS11567 Rev 5 L99DZ120 5 Serial Peripheral Interface (SPI) Serial Peripheral Interface (SPI) A 32-bit SPI is used for bi-directional communication with the microcontroller. The SPI is driven by a microcontroller with its SPI peripheral running in the following mode: CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. This device is not limited to microcontroller with a built-in SPI. Only three CMOS-compatible output Pins and one input Pin will be needed to communicate with the device. A fault condition can be detected by setting CSN to low. If CSN = 0, the DO-Pin will reflect the global error flag (fault condition) of the device.  Chip Select Not (CSN) The input Pin is used to select the serial interface of this device. When CSN is high, the output Pin (DO) is in high impedance state. A low signal activates the output driver and a serial communication can be started. The state during CSN = 0 is called a communication frame. If CSN = low for t > tCSNfail the DO output will be switched to high impedance in order to not block the signal line for other SPI nodes.  Serial Data In (DI) The input Pin is used to transfer data serial into the device. The data applied to the DI will be sampled at the rising edge of the CLK signal and shifted into an internal 32-bit shift register. At the rising edge of the CSN signal the content of the shift register will be transferred to Data Input Register. The writing to the selected Data Input Register is only enabled if exactly 32-bit are transmitted within one communication frame (i.e. CSN low). If more or less clock pulses are counted within one frame the complete frame will be ignored. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected IC's is recommended.  Serial Data Out (DO) The data output driver is activated by a logical low level at the CSN input and will go from high impedance to a low or high level depending on the global error flag (fault condition). The first rising edge of the CLK input after a high to low transition of the CSN Pin will transfer the content of the selected status register into the data out shift register. Each subsequent falling edge of the CLK will shift the next bit out.  Serial Clock (CLK) The CLK input is used to synchronize the input and output serial bit streams. The data input (DI) is sampled at the rising edge of the CLK and the data output (DO) will change with the falling edge of the CLK signal. The SPI can be driven with a CLK Frequency up to 4 MHz. 5.1 ST SPI 4.0 The ST-SPI is a standard used in ST Automotive ASSP devices. DS11567 Rev 5 97/161 160 Serial Peripheral Interface (SPI) L99DZ120 This chapter describes the SPI protocol standardization. It defines a common structure of the communication frames and defines specific addresses for product and status information. The ST-SPI allows usage of generic software to operate the devices while maintaining the required flexibility to adapt it to the individual functionality of a particular product. In addition, failsafe mechanisms are implemented to protect the communication from external influences and wrong or unwanted usage. The devices Serial Peripheral Interface are compliant to the ST SPI Standard Rev. 4.0. 5.1.1 Physical layer Figure 49. SPI pin description &61 —& 63,0DVWHU 6&. 6', /'= 6'2 ("1($'5 5.2 Signal description  Chip Select Not (CSN) The communication interface is de-selected, when this input signal is logically high. A falling edge on CSN enables and starts the communication while a rising edge finishes the communication and the sent command is executed when a valid frame was sent. During communication start and stop the Serial Clock (SCK) has to be logically low. The Serial Data Out (SDO) is in high impedance when CSN is high or a communication timeout was detected.  Serial Clock (SCK) This SCK provides the clock of the SPI. Data present at Serial Data Input (SDI) is latched on the rising edge of Serial Clock (SCK) into the internal shift registers while on the falling edge data from the internal shift registers are shifted out to Serial Data Out (SDO).  Serial Data Input (SDI) This input is used to transfer data serially into the device. Data is latched on the rising edge of Serial Clock (SCK).  Serial Data Output (SDO) This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of Serial Clock (SCK). 98/161 DS11567 Rev 5 L99DZ120 Serial Peripheral Interface (SPI) Figure 50. SDO pin 9 (6'SURW 'DWD,Q 'LJLWDO ORJLF (QDEOH 'DWD2XW *1' *1' ("1($'5 5.2.1 Clock and Data Characteristics The ST-SPI can be driven by a microcontroller with its SPI peripheral running in the following mode: CPOL = 0 CPHA = 0 Figure 51. SPI signal description 6&. 6', 06% 6'2 06% § § §§ §§ &61 /6% /6% ("1($'5 The communication frame starts with the falling edge of the CSN (Communication Start). SCK has to be low. The SDI data is then latched at all following rising SCK edges into the internal shift registers. After Communication Start the SDO will leave 3-state mode and present the MSB of the data shifted out to SDO. At all following falling SCK edges data is shifted out through the internal shift registers to SDO. DS11567 Rev 5 99/161 160 Serial Peripheral Interface (SPI) L99DZ120 The communication frame is finished with the rising edge of CSN. If a valid communication took place (e.g. correct number of SCK cycles, access to a valid address), the requested operation according to the Operating Code will be performed (Write or Clear operation). 5.2.2 Communication protocol SDI Frame The devices Data-In Frame consist of 32-bit (OpCode (2 bits) + Address (6 bits) + Data Byte 3 + Data Byte 2 + Data Byte 1). The first two transmitted bits (MSB, MSB-1) contain the Operation Code which represents the instruction which will be performed. The following 6 bits (MSB-2 to MSB-7) represent the address on which the operation will be performed. The subsequent bytes contain the payload. Figure 52. SDI Frame 23&2'( 2& 2& $''5(66 $ $ 06% $ $ '$7$%\WH $ $       WLPH   WLPH '$7$%\WH         WLPH '$7$%\WH        WLPH  /6% ("1($'5 Operating code The operating code is used to distinguish between different access modes to the registers of the slave device. Table 53. Operation codes OC1 OC0 Description 0 0 Write Operation 0 1 Read Operation 1 0 Read & Clear Operation 1 1 Read Device Information A Write Operation will lead to a modification of the addressed data by the payload if a write access is allowed (e.g. Control Register, valid data). Beside this a shift out of the content (data present at Communication Start) of the registers is performed. A Read Operation shifts out the data present in the addressed register at Communication Start. The payload data will be ignored and internal data will not be modified. In addition a Burst Read can be performed. 100/161 DS11567 Rev 5 L99DZ120 Serial Peripheral Interface (SPI) A Read & Clear Operation will lead to a clear of addressed status bits. The bits to be cleared are defined first by address, second by payload bits set to ‘1’. Beside this a shift out of the content (data present at Communication Start) of the registers is performed. Note: Status registers which change status during communication could be cleared by the actual Read & Clear Operation and are neither reported in actual communication nor in the following communications. To avoid a loss of any reported status it is recommended just clear status registers which are already reported in the previous communication (Selective Bitwise Clear). Advanced operation codes To provide the separate write of all control registers and the bitwise clear of all status registers, two Advanced Operation Codes can be used to set all control registers to the default value and to clear all status registers. A ‘set all control registers to default’ command is performed when an OpCode ‘11’ at address b’111111 is performed. Note: Please consider that potential device specific write protected registers cannot be cleared with this command in therefore a device Power-on-Reset is needed. A ‘clear all status registers’ command is performed when an OpCode ‘10’ at address b’111111 is performed. Data-in payload The Payload (Data Byte 1 to Data Byte 3) is the data transferred to the devices with every SPI communication. The Payload always follows the OpCode and the Address bits. For Write access the Payload represents the new data written to the addressed register. For Read & Clear operations the Payload defines which bits of the adressed Status Register will be cleared. In case of a ‘1’ at the corresponding bit position the bit will be cleared. For a Read Operation the Payload is not used. For functional safety reasons it is recommended to set unused Payload to ‘0’. SDO frame The data-out frame consists of 32-bit (GSB + Data Byte 1 to 3). The first eight transmitted bits contain device related status information and are latched into the shift register at the time of the Communication Start. These 8-bit are transmitted at every SPI transaction. The subsequent bytes contain the payload data and are latched into the shift register with the eighth positive SCK edge. This could lead to an inconsistency in data between the GSB and Payload due to different shift register load times. Anyhow, no unwanted Status Register clear should appear, as status information should just be cleared with a dedicated bit clear after. DS11567 Rev 5 101/161 160 Serial Peripheral Interface (SPI) L99DZ120 Figure 53. SDO frame *OREDO6WDWXV%\WH *6% *6%1 567% 63,( 3/( )( '( 06% '$7$%\WH *: )6       WLPH   WLPH '$7$%\WH         WLPH '$7$%\WH         /6% WLPH ("1($'5 Global Status Byte (GSB) The bits (Bit0 to Bit4) represent a logical OR combination of bits located in the Status Registers. Therefore no direct Read & Clear can be performed on these bits inside the GSB. Table 54. Global Status Byte Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 GSBN RSTB SPIE PLE FE DE GW FS Global Status Bit Not (GSBN) The GSBN is a logical NOR combination of Bit 24 to Bit 30. This bit can also be used as Global Status Flag without starting a complete communication frame as it is present directly after pulling CSN low. Reset Bit (RSTB) The RSTB indicates a device reset. In case this bit is set, specific internal Control Registers are set to default and kept in that state until the bit is cleared. The RSTB bit is cleared after a Read & Clear of all the specific bits in the Status Registers which caused the reset event. SPI Error (SPIE) The SPIE is a logical OR combination of errors related to a wrong SPI communication. Physical Layer Error (PLE) The PLE is a logical OR combination of errors related to the LIN transceiver. Functional Error (FE) The FE is a logical OR combination of errors coming from functional blocks (e.g. high-side overcurrent). Device Error (DE) The DE is a logical OR combination of errors related to device specific blocks (e.g. VS overvoltage, overtemperature 102/161 DS11567 Rev 5 L99DZ120 Serial Peripheral Interface (SPI) Global Warning (GW) The GW is a logical OR combination of warning flags (e.g. thermal warning). Fail Safe (FS) The FS bit indicates that the device was forced into a safe state due to mistreatment or fundamental internal errors (e.g. Watchdog failure, Voltage regulator failure). Data-Out Payload The Payload (Data Bytes 1 to 3) is the data transferred from the slave device with every SPI communication to the master device. The Payload always follows the OpCode and the address bits of the actual shifted in data (In-frame-Response). 5.2.3 Address definition Table 55. Device application access Operating Code OC1 OC0 0 0 0 1 1 0 Table 56. Device information read access Operating Code OC1 OC0 1 1 Table 57. RAM address range RAM Address Description Access 3FH Configuration Register R/W 3CH Status Register 12 R/C … … 32H Status Register 2 R/C 31H Status Register 1 R/C … … 22H Control Register 34 R/W 1DH Control Register 29 R/W … 02H … Control Register 2 DS11567 Rev 5 R/W 103/161 160 Serial Peripheral Interface (SPI) L99DZ120 Table 57. RAM address range (continued) RAM Address Description 01H Control Register 1 00H reserved Access R/W Table 58. ROM address range ROM Address Description Access 3FH W 3EH R 20H R 16H R 15H R 14H R 13H R 12H R 11H R 10H R R 06H R 05H R 04H R 03H R 02H R 01H R 00H R … … 0AH … Information registers The Device Information Registers can be read by using OpCode ‘11’. After shifting out the GSB the 8-bit wide payload will be transmitted. By reading Device Information Registers a communication width which is minimum 16-bit plus a multiple by 8 can be used. After shifting out the GSB followed by the 8-bit wide payload a series of ‘0’ is shifted out at the SDO. 104/161 DS11567 Rev 5 L99DZ120 Serial Peripheral Interface (SPI) Table 59. Information Registers Map ROM Adress Description Access Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 3FH 3EH R → 0 0 0 0 0 0 0 0 20H R → 0 1 0 1 0 1 0 1 16H R → C0H 15H R → 7FH 14H R → C0H 13H R → 41H 12H R → 91H 11H R → 28H 10H R → B0H … … 0AH → R … → major revision minor revision → 06H R L99DZ120: 01H 05H R → 06H 04H R → 4DH 03H R → 41H 02H R → 55H 01H R → 01H 00H R → 00H Device Identification Registers These registers represent a unique signature to identify the device and silicon version. : 00H (STMicroelectronics) : 01H (BCD Power Management) : 55H : 41H : 4DH : 06H : for L99DZ120: 01H SPI modes By reading out the register general information of SPI usage of the Device Application Registers can be read. DS11567 Rev 5 105/161 160 Serial Peripheral Interface (SPI) L99DZ120 Table 60. SPI Mode Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 BR DL2 DL1 DL0 0 0 S1 S0 1 0 1 1 0 0 0 0 : B0H (Burst mode read available, 32-bit, no data consistency check) SPI Burst Read Table 61. Burst Read Bit Bit 7 Description 0 BR not available 1 BR available The SPI Burst Read bit indicates if a burst read operation is implemented. The intention of a Burst Read is e.g. used to perform a device internal memory dump to the SPI Master. The start of the Burst Read is like a normal Read Operation. The difference is, that after the SPI Data Length the CSN is not pulled high and the SCK will be continuously clocked. When the normal SCK max count is reached (SPI Data Length) the consecutive addressed data will be latched into the shift register. This procedure is performed every time when the SCK payload length is reached. In case the automatic incremented address is not used by the device, undefined data is shifted out. An automatic address overflow is implemented when address 3FH is reached. The SPI Burst Read is limited by the CSN low timeout. SPI Data Length The SPI Data Length value indicates the length of the SCK count monitor which is running for all accesses to the Device Application Registers. In case a communication frame with an SCK count is not equal to the reported one it will lead to a SPI Error and the data will be rejected. Table 62. SPI Data Length Bit 6 Bit 5 Bit 4 Description DL2 DL1 DL0 0 0 0 invalid 0 0 1 16-bit SPI 0 1 0 24-bit SPI 0 1 1 32-bit SPI … 1 1 Data Consistency Check (Parity/CRC) N/A 106/161 DS11567 Rev 5 1 64-bit SPI L99DZ120 Serial Peripheral Interface (SPI) Table 63. Data Consistency Check Bit 1 Bit 0 Description S1 S0 0 0 not used 0 1 Parity used 1 0 CRC used 1 1 Invalid Watchdog Definition In case a watchdog is implemented the default settings can be read out via the Device Information Registers. Table 64. WD Type/Timing Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 WD1 WD0 0 0 0 1 WT5 WT4 WT3 1 1 0 1 Bit 2 Bit 1 Bit 0 WT2 WT1 WT0 0 0 0 Register is not used Watchdog Timeout / Long Open Window WT[5:0] * 5ms 1 0 OW2 OW1 OW0 CW2 CW1 CW0 1 0 0 1 0 0 0 1 Open Window OW[2:0] * 5ms 1 1 Closed Window CW[2:0] * 5ms Invalid : 28H (Long Open Window: 200ms) : 91H (Open Window. 10ms, Closed Window: 5ms) indicates the Long Open Window (timeout) which is opened at the start of the watchdog. The binary value of WT[5:0] times 5ms indicates the typical value of the Timeout Time. describes the default timing of the window watchdog. The binary value of CW[2:0] times 5ms defines the typical Closed Window time and OW[2:0] times 5ms defines the typical Open Window time. DS11567 Rev 5 107/161 160 Serial Peripheral Interface (SPI) L99DZ120 Figure 54. Window watchdog operation FRUUHFWWULJJHUWLPLQJ W/2: ORQJRSHQZLQGRZ HDUO\WULJJHUWLPLQJ W&: FORVHGZLQGRZ PLVVLQJWULJJHU W2: RSHQZLQGRZ W2:) W&:W2: W&: W2: W/2: W&: W&: W2: W&: W2: W/2: RSHQZLQGRZIDLO W2:) W/2: :' 7LJJHU QRUPDO RSHUDWLRQ PLVVLQJ WULJJHU HDUO\ ZULWH WLPH ("1($'5 The watchdog trigger bit location is defined by the registers. Table 65. WD bit position Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 WB1 WB0 0 0 0 1 WBA5 WBA4 WBA3 0 1 0 0 0 1 1 1 Bit 2 Bit 1 Bit 0 WBA2 WBA1 WBA0 0 0 0 1 1 1 1 1 Register is not used Defines the register addresses of the WD trigger bits 1 0 WBA5 WBA4 WBA3 WBA2 WBA1 WBA0 Defines the stop address of the address range (previous is a WB = ‘01’). The consecutive has to be a WB = ‘11’ 1 1 0 WBP 4 WBP3 WBP2 WBP1 WBP0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 Defines the binary bit position of the WD trigger bit within the register : 41H;watchdog trigger bit located at address 01H (CR1) : C0H; watchdog trigger bit location is bit0 : 7FH;watchdog trigger bit located at address 3FH (Config Register) : C0H; watchdog trigger bit location is bit0 108/161 DS11567 Rev 5 L99DZ120 Serial Peripheral Interface (SPI) Device Application Registers (RAM) The Device Application Registers are all registers accessible using OpCode ‘00’, ‘01’ and ‘10’. The functions of these registers are defined in the device specification. 5.2.4 Protocol failure detection To realize a protocol which covers certain failsafe requirements a basic set of failure detection mechanisms is implemented. Clock monitor During communication (CSN low to high phase) a clock monitor counts the valid SCK clock edges. If the SCK edges do not correlate with the SPI Data Length an SPIE is reported with the next command and the actual communication is rejected. By accessing the Device Information Registers (OpCode = ‘11’) the Clock Monitor is set to a minimum of 16 SCK edges plus a multiple by 8 (e.g. 16, 25, 32, …). Providing no SCK edge during a CSN low to high phase is not recognized as an SPIE. For a SPI Burst Read also the SPI Data Length plus multiple numbers of Payloads SCK edges are assumed as a valid communication. SCK Polarity (CPOL) check To detect the wrong polarity access via SCK the internal Clock monitor is used. Providing first a negative edge on SCK during communication (CSN low to high phase) or a positive edge at last will lead to an SPI Error reported in the next communication and the actual data is rejected. SCK Phase (CPHA) check To verify, that the SCK Phase of the SPI master is set correctly a special Device Information Register is implemented. By reading this register the data must be 55H. In case AAH is read the CPHA setting of the SPI master is wrong and a proper communication cannot be guaranteed. CSN timeout By pulling CSN low the SDO is set active and leaves its 3-state condition. To ensure communication between other SPI devices within the same bus even in case of CSN stuck at low a CSN timeout is implemented. By pulling CSN low an internal timer is started. After timer end is reached the actual communication is rejected and the SDO is set to 3-state condition. SDI stuck at GND As a communication with data all-‘0’ and OpCode ‘00’ on address b’000000 cannot be distinguished between a valid command and a SDI stuck at GND this communication is not allowed. Nevertheless, in case a stuck at GND is detected the communication will be rejected and the SPIE will be set with the next communication. SDI stuck at HIGH As a communication with data all-‘1’ and OpCode ‘11’ on address b’111111 cannot be distinguished between a valid command and a SDI stuck at HIGH this communication is not DS11567 Rev 5 109/161 160 Serial Peripheral Interface (SPI) L99DZ120 allowed. In case a stuck at HIGH is detected the communication will be rejected and the SPIE will be set with the next communication. SDO stuck @ The SDO stuck at GND and stuck at HIGH have to be detected by the SPI master. As the definition of the GSB guarantees at least one toggle, a GSB with all-‘0’ or all –‘1’ reports a stuck at error. 110/161 DS11567 Rev 5 L99DZ120 6 Application Application Figure 55. Typical application diagram 9%$7 93URWHFWHG N aQ) aQ) 93URWHFWHG  aQ) &33 &30 &33 &30 &3 287 96 &KDUJH 3XPS *+  0 */ 287 [ 287 /6B)62 'ULYHU,QWHUIDFH/RJLF 'LDJQRVWLF 3:0+ )DLO6DIH /6B)62  9%$7 287 ',5+ —& RXWSXW —& RXWSXW )DLO6DIH 6ZLWFK2II 6+ [ 965(* 9B —&6XSSO\  15(6(7 95(* —& LQSXW 9B Q)  ([W/RDGV 95(* /,1)/$6+ Q) 7HVWSRLQW 'HEXJ0RGH  —& LQSXW N /,1  7['B/ /,1 'HEXJ 1,17 :8 [7M &O [7M &O —& RXWSXW —& RXWSXW —& RXWSXW —& LQSXW —& LQSXW &61 &/. ', '2 +6 0 /RFN 6DIH/RFN :[: RU/(' 0 : RU/(' 287 +6 287 +6 287 +6 287 +6 287 +6 287 +6 287 +6 287 +6 3&KDQQHO 287B+6 965(* +6 3&KDQQHO 96 %LW $'&6$5 ',5 ',5 63,,QWHUIDFH :LQGRZ :DWFKGRJ /,1 5['B/1,17 —& LQSXW —& RXWSXW 287 %XIIHUHG96  —& RXWSXW &RQWDFW 6XSSO\ —& RXWSXW (6'3URWHFWLRQ IRU(&8SLQV &0 *1' 6*1' 3*1' Q) Q)IRU287287B+6  &DSDFLWDQFHWREHGLPHQVLRQHGDFFRUGLQJWRORDGFXUUHQW UXOHRIWKXPE—)HDFK$ &DSDFLWDQFHWREHGLPHQVLRQHGHJDFFRUGLQJWRYROWDJHGURSRXWUHTXLUHPHQWV 2(0UHTXLUHPHQWVDQGH[WHUQDOFRPSRQHQWVIRU/,1WREHIXOOILOOHG  )RU(0&RSWLPL]DWLRQSXUSRVHVFDSDFLWDQFHVFRXOGEHUHGLPHQVLRQHG —)UHFRPPHQGHG   *$3*&)7 DS11567 Rev 5 111/161 160 SPI Registers L99DZ120 7 SPI Registers 7.1 Global Status Byte GSB Table 66. Global Status Byte (GSB) 31 30 29 28 27 26 25 24 Bit name GSBN RSTB SPIE PLE FE DE GW FS Reset 1 0 0 0 0 0 0 0 Access R Table 67. GSB signals description Bit 31 30 29 112/161 Name Description GSBN Global Status Bit Inverted The GSBN is a logically NOR combination of GSB Bits 24 to Bit 30(1). This bit can also be used as Global Status Flag without starting a complete communication frame as it is present at SDO directly after pulling CSN low. 0: error detected (1 or several GSB bits from 24 to 30 are set) 1: no error detected (default after Power-on) Specific failures may be masked in the Configuration Register 0x3F. A masked failure will still be reported in the GSB by the related failure flag, however it is not reflected in the GSBN (bit 31). RSTB Reset The RSTB indicates a device reset and it is set in case of the following events: – VPOR (SR1 - 0x31) – WDFAIL (SR1 - 0x31) – V1UV (SR1 - 0x31) – FORCED_SLEEP_TSD2/V1SC (SR1 - 0x31) 0: no reset signal has been generated (default) 1: Reset signal has been generated RSTB is cleared by a Read & Clear command to all bits in Status Register 1 causing the Reset event. SPIE(2) SPI Error Bit The SPIE indicates errors related to a wrong SPI communication. – SPI_INV_CMD (SR2 - 0x32) – SPI_SCK_CNT (SR2 - 0x32) The bit is also set in case of an SPI CSN Time-out detection 0: no error (default) 1: error detected SPIE is cleared by a valid SPI command. DS11567 Rev 5 L99DZ120 SPI Registers Table 67. GSB signals description (continued) Bit 28 27 26 Name Description PLE(2) Physical Layer Error The PLE is a logical OR combination of errors related to the LIN transceiver. – LIN_PERM_DOM (SR2 - 0x32) – LIN_TXD_DOM (SR2 - 0x32) – LIN_PERM_REC (SR2 - 0x32) 0: no error (default) 1: error detected PLE is cleared by a Read & Clear command to all related bits in Status Registers 2 and 12. FE Functional Error Bit The FE is a logical OR combination of errors coming from functional blocks. – V2SC (SR2 - 0x32) – DSMON_HSx (SR2 - 0x32) – DSMON_LSx (SR2 - 0x32) – OUTxHS_OC TH EX (SR3 - 0x33) – OUTxLS_OC TH EX (SR3 - 0x33) – OUTHS_OC TH EX (SR3 - 0x33) – OUTx_OC (SR3 - 0x33) – LSxFS_OC (SR3 - 0x33) – OUTxHS_OL (SR5 - 0x35)(3) – OUTxLS_OL (SR5 - 0x35) – OUTx_OL (SR5 - 0x35) – OUTHS_OL (SR5 - 0x35) 0: no error (default) 1: error detected FE is cleared by a Read & Clear command to all related bits in Status Registers 2, 3, 4, 5 DE Device Error Bit DE is a logical OR combination of global errors related to the device. – VS_OV (SR2 - 0x32) – VS_UV (SR2 - 0x32) – VSREG_OV (SR2 - 0x32) – VSREG_UV (SR2 - 0x32) – CP_LOW (SR2 - 0x32) – TSD1_CLx (SR6 - 0x36) 0: no error (default) 1: error detected DE is cleared by a Read & Clear command to all related bits in Status Registers 2 and 6 DS11567 Rev 5 113/161 160 SPI Registers L99DZ120 Table 67. GSB signals description (continued) Bit 25 24 Name Description GW (2) Global Warning Bit GW is a logical OR combination of warning flags. Warning bits do not lead to any device state change or switch off of functions. – VSREG_EW (SR2 - 0x32) – V1_FAIL (SR2 - 0x32) – V2_FAIL (SR2 - 0x32) – TW (3) (SR2 - 0x32) – SPI_INV_CMD (SR2 - 0x32) – SPI_SCK_CNT (SR2 - 0x32) 0: no error (default) 1: error detected GW is cleared by a Read & Clear command to all related bits in Status Register 2. FS Fail Safe The FS bit indicates the device was forced into a safe state due to the following failure conditions: – WDFAIL (SR1 - 0x31) – V1UV (SR1 - 0x31) – TSD2 (SR1 - 0x31) – FORCED_SLEEP_TSD/V1SC (SR1 - 0x31) All Control Registers are set to default Control Registers are blocked for WRITE access except the following bits: – TRIG (CR1 - 0x01) – V2_0 (CR1 - 0x01) – V2_1 (CR1 - 0x01) – Timer settings (bits 8…23) (CR2 - 0x02) – OUTHS_x (bits 0…3) (CR5 - 0x05) – OUT15_x (bits 0…3) (CR6 - 0x06) – CR12 (0x0C) to CR17 (0x11); PWM frequency and duty cycles 0: Fail Safe inactive (default) 1: Fail Safe active FS is cleared upon exit from Fail-Safe mode (refer to chapter ‘Fail-Safe mode’) 1. Individual failure flags may be masked in the Configuration Register (0x3F). 2. Bit may be masked in the Configuration Register (0x3F), i.e. the bit will not be included in the Global Status Bit (GSBN). 3. Open-load status flags may be masked in the Configuration register (0x3F), i.e. the open-load flag will be included in the FE flag, but will not set the GSBN. TW failure status flags may be masked in the Configuration register (0x3F), i.e. the TW flag will be included in the GW flag, but will not set the GSBN. 114/161 DS11567 Rev 5 OUT11_2 OUT11_1 OUT11_0 OUT6_OCR OUT7_OCR OUT8_OCR OUT8_0 OUT8_1 OUT8_2 TIMER_NINT_WAKE_SEL TIMER_NINT_EN T2_RESTART T2_DIR DS11567 Rev 5 LIN_REC_ONLY LIN_TXD_TOUT_EN VSREG_EWTH_7 VSREG_EWTH_6 OUT14_3 OUT14_2 OUT14_1 OUT14_0 OUT15_3 OUTHS_3 OUT15_2 OUTHS_2 OUT15_1 OUTHS_1 OUT6_HS OUT5_OC1 OUT5_OC0 CM_EN Reserved CM_SEL_3 CM_SEL_2 CM_SEL_1 R/W R/W R/W R/W R/W WD_TIME_0 R/W TRIG Access 0 R/W VSREG_EWTH_0 GO_STBY STBY_SEL 1 OUT15_0 OUTHS_0 OUT6_LS WD_TIME_1 V1_RESET_0 PARITY 2 VSREG_EWTH_1 VSREG_EWTH_2 V1_RESET_1 V2_0 3 CM_SEL_0 Reserved VSREG_EWTH_3 4 Reserved VSREG_EWTH_4 OUT5_LS 5 V2_1 Reserved VSREG_EWTH_5 Reserved 6 HEN 7 OUT5_HS 8 Reserved T2_PER_0 VSREG_EWTH_8 OUT13_0 OUT10_0 OUT4_LS OCR_FREQ Addr. Reg. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 Reserved T2_PER_1 VSREG_EWTH_9 OUT13_1 OUT10_1 OUT4_HS Reserved T2_PER_2 Reserved OUT13_2 OUT10_2 Reserved T2_ON_0 Reserved OUT13_3 OUT10_3 T2_ON_1 T2_ON_2 WU_FILT_0 T1_PER_0 Reserved WU_FILT_1 T1_PER_2 VS_UV_SD_EN T1_PER_1 T1_ON_0 WU_PU Reserved WU_EN Reserved 0x00 OUT12_0 OUT12_1 OUT12_2 OUTHS_OCR OUT12_3 OUT11_3 OUT5_OCR VS_OV_SD_EN T1_ON_1 OUT1_LS VSREG_UV_SD_EN OUT7_0 0x07 CR7 OUT9_0 0x05 CR5 OUT4_OCR 0x04 CR4 OUT8_3 T1_ON_2 OUT1_HS VSREG_OV_SD_EN OUT7_1 OUT9_1 T1_DIR 0x03 CR3 VS_LOCK_EN OUT7_2 OUT9_2 T1_RESTART 0x01 CR1 Reserved 0x02 CR2 VSREG_LOCK_EN OUT9_3 7.2 Reserved OUT7_3 0x06 CR6 OUT1_OCR L99DZ120 SPI Registers Control register overview Table 68. Control register overview Bit 115/161 160 Reserved 0x0D CR13 116/161 PMW1_FREQ_0 PMW1_FREQ_1 0x0C CR12 Reserved 0x0F CR15 DIAG_1 0x0B CR11 DS11567 Rev 5 OUT9_OL OUTHS_OC OUT15_OC OUT14_OC OUT13_OC OUT12_OC OUT11_OC OUT10_OC OUT9_OC COPT_0 H_OLTH_HIGH OL_H1L2 OL_H2L1 SLEW_4 SLEW_3 SLEW_2 SLEW_1 SLEW_0 PWM6_DC_8 PWM4_DC_8 PWM2_DC_8 PMW8_FREQ_0 PWM6_DC_7 PWM4_DC_7 PWM2_DC_7 PMW9_FREQ_1 PWM6_DC_6 PWM4_DC_6 PWM2_DC_6 PMW9_FREQ_0 PWM6_DC_5 PWM4_DC_5 PWM2_DC_5 PMW10_FREQ_1 PWM6_DC_4 PWM4_DC_4 PWM2_DC_4 PMW10_FREQ_0 Reserved R/W Reserved Access 0 R/W 1 R/W 2 R/W 3 R/W 4 PWM6_DC_0 PWM4_DC_0 PWM2_DC_0 5 PWM6_DC_1 PWM4_DC_1 PWM2_DC_1 6 PWM6_DC_2 PWM4_DC_2 PWM2_DC_2 7 PWM6_DC_3 PWM4_DC_3 PWM2_DC_3 PMW7_FREQ_0 PMW7_FREQ_1 8 R/W OUT10_OL COPT_1 PWM6_DC_9 PWM4_DC_9 PWM2_DC_9 PMW8_FREQ_1 Reserved OUTHS_OCR_THX_EN OUT8_OCR_THX_EN OUT7_OCR_THX_EN OUT6_OCR_THX_EN OUT5_OCR_THX_EN OUT4_OCR_THX_EN Addr. Reg. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 R/W OUT11_OL COPT_2 Reserved R/W OUT12_OL COPT_3 Reserved PWM5_DC_0 PWM3_DC_0 PWM1_DC_0 PMW6_FREQ_0 PWM5_DC_1 PWM3_DC_1 PWM1_DC_1 PMW6_FREQ_1 OUT13_OL OUT15_OL OUTHS_OL SDS Reserved OUT14_OL Reserved SD PWM5_DC_2 PWM3_DC_2 PWM1_DC_2 PMW5_FREQ_0 OUT8_RDSON DIAG_2 Reserved PWM5_DC_3 PWM3_DC_3 PWM1_DC_3 PMW5_FREQ_1 PWM5_DC_4 PWM3_DC_4 PWM1_DC_4 PMW4_FREQ_0 PWM5_DC_5 PWM3_DC_5 PWM1_DC_5 PMW4_FREQ_1 PWM5_DC_6 PWM3_DC_6 PWM1_DC_6 PMW3_FREQ_0 PWM5_DC_7 PWM3_DC_7 PWM1_DC_7 PMW3_FREQ_1 PWM5_DC_8 PWM3_DC_8 PWM1_DC_8 PMW2_FREQ_0 OUT7_RDSON 0x0A CR10 Reserved OUT1_OCR_THX_EN 0x09 CR9 DIAG_0 0x08 CR8 PWM5_DC_9 PWM3_DC_9 PWM1_DC_9 PMW2_FREQ_1 0x0E CR14 Reserved SPI Registers L99DZ120 Table 68. Control register overview (continued) Bit Reserved OUT9_AUTOCOMP_EN OUT9_VLED_9 OUT9_VLED_8 OUT9_VLED_7 OUT9_VLED_6 OUT9_VLED_5 OUT9_VLED_4 OUT9_VLED_3 OUT9_VLED_2 OUT9_VLED_1 OUT9_VLED_0 Reserved 0x14 CR20 OUT11_AUTOCOMP_EN OUT11_VLED_9 OUT11_VLED_8 OUT11_VLED_7 OUT11_VLED_6 OUT11_VLED_5 OUT11_VLED_4 OUT11_VLED_3 OUT11_VLED_2 OUT11_VLED_1 OUT11_VLED_0 Reserved 0x12 CR18 DS11567 Rev 5 PWM9_DC_3 PWM7_DC_3 PWM9_DC_2 PWM7_DC_2 PWM9_DC_1 PWM7_DC_1 PWM9_DC_0 PWM7_DC_0 OUT7_VLED_3 OUT7_VLED_2 OUT7_VLED_1 OUT7_VLED_0 OUT10_VLED_5 OUT10_VLED_4 OUT10_VLED_3 OUT10_VLED_2 OUT10_VLED_1 OUT12_VLED_5 OUT12_VLED_4 OUT12_VLED_3 OUT12_VLED_2 OUT12_VLED_1 R/W R/W Access 0 R/W PWM10_DC_0 PWM8_DC_0 1 OUT8_VLED_0 PWM10_DC_1 PWM8_DC_1 2 OUT8_VLED_1 PWM10_DC_2 PWM8_DC_2 3 OUT8_VLED_2 PWM10_DC_3 PWM8_DC_3 4 OUT8_VLED_3 PWM10_DC_4 PWM8_DC_4 PWM10_DC_5 PWM8_DC_5 PWM10_DC_6 PWM8_DC_6 5 OUT8_VLED_4 OUT8_VLED_5 OUT8_VLED_6 PWM10_DC_7 PWM8_DC_7 6 R/W OUT10_VLED_6 OUT12_VLED_6 OUT8_VLED_7 PWM10_DC_8 PWM8_DC_8 7 R/W OUT10_VLED_7 OUT12_VLED_7 OUT8_VLED_8 PWM10_DC_9 PWM8_DC_9 8 OUT10_VLED_0 OUT10_VLED_8 OUT12_VLED_8 OUT8_VLED_9 Reserved PWM9_DC_4 PWM7_DC_4 OUT7_VLED_4 Reserved PWM9_DC_5 PWM7_DC_5 OUT7_VLED_5 Reserved PWM9_DC_6 PWM7_DC_6 PWM9_DC_7 PWM7_DC_7 PWM9_DC_8 PWM7_DC_8 Addr. Reg. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 OUT12_VLED_0 OUT10_VLED_9 OUT12_VLED_9 Reserved PWM9_DC_9 PWM7_DC_9 Reserved OUT7_VLED_6 OUT7_VLED_7 OUT7_VLED_8 OUT7_VLED_9 OUT7_AUTOCOMP_EN 0x11 CR17 Reserved 0x10 CR16 OUT12_AUTOCOMP_EN OUT10_AUTOCOMP_EN OUT8_AUTOCOMP_EN 0x13 CR19 Reserved L99DZ120 SPI Registers Table 68. Control register overview (continued) Bit 117/161 160 0x3F Note: 118/161 Conf Reg DS11567 Rev 5 Reserved OUT13_VLED_7 OUT13_VLED_6 OUT13_VLED_5 OUT13_VLED_4 OUT13_VLED_3 OUT13_VLED_2 OUT15_VLED_7 OUT15_VLED_6 OUT15_VLED_5 OUT15_VLED_4 OUT15_VLED_3 OUT15_VLED_2 Reserved OUT13_VLED_0 OUT14_VLED_3 OUTHS_VLED_6 OUTHS_VLED_5 OUTHS_VLED_4 OUTHS_VLED_3 CP_LOW_CONFIG CP_DITH_DIS FS_FORCED OUTHS_VLED_1 OUTHS_VLED_0 R/W ICMP WD_EN R/W TRIG R/W Access 0 R/W 1 OUT14_VLED_0 2 OUT14_VLED_1 3 OUT14_VLED_2 4 OUTHS_VLED_2 5 CP_OFF 6 OUT14_VLED_5 7 OUT14_VLED_6 OUT14_VLED_7 8 Reserved OUT14_VLED_4 OUTHS_VLED_7 CP_OFF_EN Addr. Reg. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 OUT14_VLED_8 OUTHS_VLED_8 MASK_GW OUT14_VLED_9 OUTHS_AUTOCOMP_EN OUT14_AUTOCOMP_EN Reserved OUT15_VLED_0 OUT13_VLED_1 OUT13_VLED_8 OUT15_VLED_8 OUT15_VLED_1 OUT13_VLED_9 OUT15_VLED_9 OUTHS_VLED_9 Reserved MASK_PLE MASK_SPIE MASK_OL Reserved MASK_TW 0x22 CR34 MASK_OL_LS1 MASK_OL_HS1 WD_CONFIG_EN ICMP_CONFIG_EN DM Reserved TSD_CONFIG LIN_HS_EN Reserved 0x16 CR22 OUT15_AUTOCOMP_EN OUT13_AUTOCOMP_EN 0x15 CR21 LIN_WU_CONFIG WU_CONFIG SPI Registers L99DZ120 Table 68. Control register overview (continued) Bit All reserved bits (RES) are read-only (R) and will be read as ‘0’. Writing ‘1’ to a reserved bit is ignored and does not cause an SPI error. 0x33 SR3 0x34 SR4 0x35 SR5 Reserved Reserved Reserved WDFAIL_CNT_2 WDFAIL_CNT_1 WDFAIL_CNT_0 DEVICE_STATE_1 DEVICE_STATE_0 TSD2 TSD1 FORCED_SLEEP_TSD2/V1SC FORCED_SLEEP_WD WDFAIL VPOR SPI_SCK_CNT CP_LOW TW V2SC V2FAIL V1FAIL VSREG_EW VSREG_OV VSREG_UV VS_OV VS_UV OUT8_OC_TH_EX OUT9_OC OUT10_OC OUT11_OC OUT12_OC OUT13_OC OUT14_OC OUT15_OC OUTHS_OC_TH_EX LS2FSO_OC LS1FSO_OC R DS11567 Rev 5 OUT8_OCR_ALERT OUT8_OL OUTHS_OCR_ALERT Reserved R Reserved Reserved OUTHS_OL OUT15_OL OUT14_OL OUT13_OL OUT12_OL OUT11_OL Addr. Reg. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 OUT10_OL OUT9_OL WDFAIL_CNT_3 SPI_INV_CMD V1_RESTART_0 DSMON_LS1 OUT6_LS_OL OUT6_LS_OCR_ALERT OUT6_LS_OC_TH_EX OUT7_OC_TH_EX V1_RESTART_1 DSMON_LS2 OUT6_HS_OL OUT6_HS_OCR_ALERT OUT6_HS_OC_TH_EX R OUT7_OCR_ALERT V1_RESTART_2 DSMON_HS1 OUT5_LS_OL OUT5_LS_OCR_ALERT OUT5_LS_OC_TH_EX R OUT7_OL V1UV DEBUG_ACTIVE WAKE_TIMER WAKE_LIN Reserved WU_WAKE Reserved DSMON_HS2 Reserved OUT5_HS_OL OUT5_HS_OCR_ALERT OUT5_HS_OC_TH_EX OUT4_LS_OL OUT4_LS_OCR_ALERT OUT4_LS_OC_TH_EX OUT4_HS_OL OUT4_HS_OCR_ALERT OUT4_HS_OC_TH_EX LIN_PERM_REC WU_STATE 0x32 SR2 OUT1_LS_OL OUT1_LS_OCR_ALERT OUT1_LS_OC_TH_EX LIN_TXD_DOM 0x31 SR1 Reserved Bit Access 7.3 OUT1_HS_OL OUT1_HS_OCR_ALERT OUT1_HS_OC_TH_EX LIN_PERM_DOM L99DZ120 SPI Registers Status register overview Table 69. Status register overview 8 7 6 5 4 3 2 1 0 R 119/161 160 0x3A SR10 0x3B SR11 120/161 VSREG_3 TEMP_CL6_3 TEMP_CL4_3 TEMP_CL2_3 VSREG_2 TEMP_CL6_2 TEMP_CL4_2 TEMP_CL2_2 VSREG_1 TEMP_CL6_1 TEMP_CL4_1 TEMP_CL2_1 VSREG_0 TEMP_CL6_0 TEMP_CL4_0 TEMP_CL2_0 VS_3 VS_2 VS_1 VS_0 DS11567 Rev 5 VWU_0 VWU_1 VWU_2 VWU_3 VWU_4 5 4 3 2 1 0 TSD1_CL6 TSD1_CL5 TSD1_CL4 TSD1_CL3 TSD1_CL2 TSD1_CL1 TEMP_CL5_4 TEMP_CL3_4 TEMP_CL1_4 TEMP_CL5_3 TEMP_CL3_3 TEMP_CL1_3 TEMP_CL5_2 TEMP_CL3_2 TEMP_CL1_2 TEMP_CL5_1 TEMP_CL3_1 TEMP_CL1_1 TEMP_CL5_0 TEMP_CL3_0 TEMP_CL1_0 Reserved 6 TEMP_CL5_5 TEMP_CL3_5 TEMP_CL1_5 TEMP_CL5_6 TEMP_CL3_6 TEMP_CL1_6 7 VWU_5 VWU_6 TEMP_CL5_7 TEMP_CL3_7 TEMP_CL1_7 TW_CL1 TEMP_CL5_8 TEMP_CL3_8 TEMP_CL1_8 8 VWU_7 TW_CL2 TEMP_CL5_9 TEMP_CL3_9 TEMP_CL1_9 Addr. Reg. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 VWU_8 VWU_9 TW_CL3 TW_CL4 VSREG_4 TEMP_CL6_4 TEMP_CL4_4 TEMP_CL2_4 VS_4 Reserved VSREG_5 TEMP_CL6_5 TEMP_CL4_5 TEMP_CL2_5 VS_5 Reserved VSREG_6 TEMP_CL6_6 TEMP_CL4_6 TEMP_CL2_6 VS_6 Reserved TW_CL5 VSREG_7 TEMP_CL6_7 TEMP_CL4_7 TEMP_CL2_7 VS_7 Reserved Reserved TW_CL6 VSREG_8 TEMP_CL6_8 TEMP_CL4_8 TEMP_CL2_8 WD_TIMER_STATE_0 WD_TIMER_STATE_1 VS_8 Reserved 0x39 SR9 VSREG_9 TEMP_CL6_9 TEMP_CL4_9 TEMP_CL2_9 Reserved 0x38 SR8 VS_9 0x37 SR7 Reserved 0x36 SR6 Reserved Reserved Bit Access SPI Registers L99DZ120 Table 69. Status register overview (continued) Reserved R R R R R R L99DZ120 SPI Registers 7.4 Control registers 7.4.1 Control Register CR1 (0x01) 0 0 0 R 0 0 0 4 3 2 1 0 TRIG 1 5 GO_STBY 0 Reserved 6 STBY_SEL R/W 0 7 PARITY R 0 8 V2_0 R R/W 0 0 9 V2_1 Access 0 TIMER_NINT_EN 0 TIMER_NI0NT_WAKE_SEL 0 WU_FILT_0 1 WU_FILT_1 0 19 18 17 16 15 14 13 12 11 10 Reserved Reset Bit name WU_PU 20 Reserved 21 WU_EN 22 Reserved 23 HEN Table 70. Control Register CR1 0 0 0 0 0 0 0 R/W Table 71. CR1 signals description Bit Name 23 Reserved 22 WU_EN 21 Reserved 20 19 18 WU_PU Reserved 17 WU_FILT_1 16 WU_FILT_0 15 Description — Wake-up Input 1 (WU) enable(1) 0: WU disabled 1: WU enabled (default) — Wake-up Input1 Pull-up/down configuration: configuration of internal current source(1) 0: pull-down (default) 1: pull-up — Wake-up Input1 Filter configuration Bits: configuration of input filter(1) See Table 72: Wake-up input1 filter configuration Select Timer for NINT / Wake: select timer for periodic interrupt in standby modes TIMER_NINT_WAKE_SEL 0: Timer 2 (default) 1: Timer 1 DS11567 Rev 5 121/161 160 SPI Registers L99DZ120 Table 71. CR1 signals description (continued) Bit Name Description 14 TIMER_NINT_EN 13:7 Reserved 6 HEN 5 V2_1 4 V2_0 3 PARITY 2 STBY_SEL 1 GO_STBY 0 TRIG Timer NINT enable: enable timer interrupt in standby modes 0: timer interrupt disabled (default) 1: timer interrupt enabled V1_standby mode: periodic NINT pulse generated by timer (NINT pulse at start of timer on-phase) Vbat_standby mode: device wakes up after timer expiration and generates NReset — Enable H-bridge 0: H-bridge disabled (default) 1: H-bridge enabled Refer to chapter H-bridge Control for details Voltage Regulator V2 Configuration See Table 73: Voltage regulator V2 configuration PARITY: Standby Command Parity Bit STBY SEL: Select Standby mode GO_STBY: Execute transition into Standby mode The STBY_SEL and GO_STBY bits are protected by a parity check. The bits STBY_SEL, GO_STBY and PARITY must represent an even number of '1', otherwise the command is ignored and the SPI_INV_CMD bit is set. Table 74: Standby transition configuration shows the valid settings. All other settings are invalid; command will be ignored and SPI_INV_CMD will be set. The GO_STBY bit is not cleared automatically after wake-up. Watchdog Trigger Bit 1. Setting is only valid if input is configured as wake-up input in Configuration Register (0x3F). Table 72. Wake-up input1 filter configuration WU_FILT_1 WU_FILT_0 0 0 Wake-up inputs monitored in static mode (filter time twu_stat) (default) 0 1 Wake- up inputs monitored in cyclic mode with Timer2 (filter time: tWU_cyc; blanking time 80% of timer ON time) 1 0 Wake- up inputs monitored in cyclic mode with Timer1 (filter time: tWU_cyc; blanking time 80% of timer ON time) 1 1 Invalid setting; command will be ignored and SPI INV CMD will be set Table 73. Voltage regulator V2 configuration 122/161 V2_1 V2_0 0 0 V2 OFF in all modes (default) 0 1 V2 ON in Active mode; OFF in Standby modes DS11567 Rev 5 L99DZ120 SPI Registers Table 73. Voltage regulator V2 configuration (continued) V2_1 V2_0 1 0 V2 ON in Active and V1_standby mode; OFF in Vbat_standby mode 1 1 V2 ON in all modes Table 74. Standby transition configuration 7.4.2 PARITY STBY_SEL GO_STBY 0 1 1 Go to V1 standby 1 0 1 Go to Vbat_standby 0 0 0 1 1 0 No transition to standby Control Register CR2 (0x02) T2_ON_1 T2_ON_0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 WD_TIME_0 T2_ON_2 0 2 WD_TIME_1 T2_DIR 0 3 V1_RESET_0 T2_RESTART 0 4 V1_RESET_1 T1_PER_0 0 5 Reserved T1_PER_1 LIN_TXD_TOUT_EN T1_PER_2 6 LIN_REC_ONLY T1_ON_0 7 T2_PER_0 19 18 17 16 15 14 13 12 11 10 T1_ON_1 8 T2_PER_1 20 Access 9 T2_PER_2 21 T1_ON_2 Reset 22 T1_DIR Bit name 23 T1_RESTART Table 75. Control Register CR2 0 0 0 0 R/W Table 76. CR2 signals description Bit Name 23 T1_RESTART 22 T1_DIR1 21 T1_ON_2 20 T1_ON_1 19 T1_ON_0 Description Timer 1 Restart: Restart of Timer 1 0: timer is running with period and on-time according to configuration (default) 1: restart of timer at CSN low to high transition; starting with ON phase(1) Bit is automatically reset with next SPI frame. T1_DIR1: Timer 1 Direct Drive by DIR1 T1_ON_x: Timer 1 On-Time Bits Configuration of Timer 1 on-time, for details see Table 77 and Figure 56 DS11567 Rev 5 123/161 160 SPI Registers L99DZ120 Table 76. CR2 signals description (continued) Bit Name 18 T1_PER_2 17 T1_PER_1 16 T1_PER_0 15 T2_RESTART 14 T2_DIR1 13 T2_ON_2 12 T2_ON_1 11 T2_ON_0 10 T2_PER_2 9 T2_PER_1 8 T2_PER_0 7 LIN_REC_ONLY 6 5:4 124/161 Description Configuration of Timer 1 Period 000: T1 (default) 001: T2 010: T3 011: T4 100: T5 101: T6 110: T7 111: T8 Timer 2 Restart: restart of timer 2 0: timer is running with period and on-time according to configuration (default) 1: restart of timer at CSN low to high transition; starting with ON phase(1) Bit is automatically reset with next SPI frame. T2_DIR1: Timer 2 Direct Drive by DIR1 T2_ON_x: Timer 2 On-Time Bits Configuration of Timer 2 on-time, for details see Table 77 and Figure 56 Configuration of Timer 2 Period 000: T1 (default) 001: T2 010: T3 011: T4 100: T5 101: T6 110: T7 111: T8 LIN Transceiver Receive Only mode 0: LIN receive only mode disabled (default) 1: LIN receive only mode enabled LIN TxD Timeout Enable LIN_TXD_TOUT_EN 0: LIN TxD timeout detection disabled 1: LIN TxD timeout detection enabled (default) Reserved — DS11567 Rev 5 L99DZ120 SPI Registers Table 76. CR2 signals description (continued) Bit Name 3 V1_RESET_1 2 V1_RESET_0 1 WD_TIME_1 0 WD_TIME_0 Description Voltage Regulator V1 Reset Threshold 00: Vrt4 (default) 01: Vrt3 10: Vrt2 11: Vrt1 thresholds are monitored in Active mode and V1_standby mode Watchdog Trigger Time 00: TSW1 (default) 01: TSW2 10: TSW3 11: TSW4 Writing to WD_TIME_x is blocked unless WD CONFIG EN = 1. The modified WD Trigger Time is valid immediately after the Write command (CSN transition low-high). The watchdog timer is reset when the trigger time is modified (restart at CSN transition low-high). 1. Timer restart behavior:  Write to CR2 when Tx_ON_x and Tx_PERx remain unchanged:  Tx_RESTART = 1: timers restart at end of SPI frame, starting with ON time Tx_RESTART = 0: write operation to CR2 has no effect on timers Write to CR2 when Tx_ON_x and Tx_PERx are modified Tx_RESTART = 1: timers restart at end of SPI frame, starting with ON time and according to new setting (ON time and period) Tx_RESTART = 0: behavior is not defined; if a predictable behavior is needed, it is recommended to set Tx_RESTART = 1 Table 77. Configuration of Timer x on-time Tx_DIR1 Tx_ON_2 Tx_ON_1 Tx_ON_0 0 0 0 0 ton1 (default) 0 0 0 1 ton2 0 0 1 0 ton3 0 0 1 1 ton4 0 1 0 0 ton5 0 1 0 1 0 1 1 0 0 1 1 1 (1) 1 0 0 0 ton1 controlled by DIR1 input signal (logical AND) 1(1) 0 0 1 ton2 controlled by DIR1 input signal (logical AND) 1(1) 0 1 0 ton3 controlled by DIR1 input signal (logical AND) (1) 0 1 1 ton4 controlled by DIR1 input signal (logical AND) (1) 1 0 0 ton5 controlled by DIR1 input signal (logical AND) 1 1 Invalid setting; command will be ignored and SPI INV CMD will be set DS11567 Rev 5 125/161 160 SPI Registers L99DZ120 Table 77. Configuration of Timer x on-time (continued) Tx_DIR1 Tx_ON_2 Tx_ON_1 Tx_ON_0 (1) 1 1 0 1 1(1) 1 1 0 1(1) 1 1 1 Invalid setting; command will be ignored and SPI INV CMD will be set 1. Tx_DIR1 = 1 is only valid for OUT7-OUT15 and OUT_HS control; the DIR1 signal has no influence for WU monitoring if WU is monitored by timer. Figure 56. Timer_x controlled by DIR1 7[',5  7[ WRQ[ 7LPHU; ',5 287[ ("1($'5 7.4.3 Control Register CR3 (0x03) 0 0 0 0 0 Access R/W 126/161 DS11567 Rev 5 0 0 2 1 0 VSREG_EWTH_0 0 3 VSREG_EWTH_1 1 4 VSREG_EWTH_2 1 5 VSREG_EWTH_3 1 6 VSREG_EWTH_4 VS_UV_SD_EN 1 7 VSREG_EWTH_5 VS_OV_SD_EN 1 8 VSREG_EWTH_6 VSREG_UV_SD_EN 1 Reserved 9 VSREG_EWTH_7 19 18 17 16 15 14 13 12 11 10 VSREG_EWTH_8 20 VSREG_EWTH_9 21 VSREG_OV_SD_EN Reset 22 VS_LOCK_EN Bit name 23 VSREG_LOCK_EN Table 78. Control Register CR3 0 0 0 0 0 0 0 0 0 0 L99DZ120 SPI Registers Table 79. CR3 signals description Bit 23 22 21 20 Name Description VSREG_LOCK_EN VSREG lockout enable: Lockout of VSREG related outputs after VSREG overvoltage/ undervoltage shutdown 0: VSREG related Outputs are turned on automatically and status bits (VSREG_UV, VSREG_OV) are cleared 1: VSREG related Outputs remain turned off until status bits (VSREG_UV, VSREG_OV) are cleared (default) Lockout is always disabled in standby modes in order to ensure supply of external contacts and detect wake-up conditions VS_LOCK_EN VS lockout enable: Lockout of VS related outputs after VS over/undervoltage shutdown 0: VS related Outputs are turned on automatically and status bits (VS_UV, VS_OV) are cleared 1: VS related Outputs remain turned off until status bits (VS_UV, VS_OV) are cleared (default) Lockout is always disabled in standby modes in order to ensure supply of external contacts and detect wake-up conditions VSREG_OV_SD_EN VSREG overvoltage shutdown enable: shutdown of VSREG related outputs in case of VSREG overvoltage 0: no shutdown of VSREG related outputs in case of VSREG overvoltage 1: shutdown of VSREG related outputs in case of VSREG overvoltage (default) VSREG_UV_SD_EN VSREG undervoltage shutdown enable: shutdown of VSREG related outputs in case of VSREG undervoltage 0: no shutdown of VSREG related outputs in case of VSREG undervoltage 1: shutdown of VSREG related outputs in case of VSREG undervoltage (default) In case of V1 undervoltage due to VSREG_UV, the device enters Fail-Safe mode and the outputs are turned off VS_OV_SD_EN VS overvoltage shutdown enable: shutdown of VS related outputs in case of VS overvoltage 0: no shutdown of VS related outputs in case of VS overvoltage if charge pump output voltage is still sufficient (until CPLOW threshold is reached) 1: shutdown of VS related outputs in case of VS overvoltage (default) 18 VS_UV_SD_EN VS undervoltage shutdown enable: shutdown of VS related outputs in case of VS undervoltage 0: no shutdown VS related of outputs in case of VS undervoltage 1: shutdown of VS related outputs in case of VS undervoltage (default) In case of V1 undervoltage due to VS_UV, the device enters Fail-Safe mode and the outputs are turned off 17:10 Reserved 19 Reserved DS11567 Rev 5 127/161 160 SPI Registers L99DZ120 Table 79. CR3 signals description (continued) Bit Name 9 VSREG_EW_TH_9 8 VSREG_EW_TH_8 7 VSREG_EW_TH_7 6 VSREG_EW_TH_6 5 VSREG_EW_TH_5 4 VSREG_EW_TH_4 3 VSREG_EW_TH_3 2 VSREG_EW_TH_2 1 VSREG_EW_TH_1 0 VSREG_EW_TH_0 7.4.4 Description VSREG early warning threshold. At VSREG < VSREG_EW_TH, an interrupt is generated at NINT and status bit VSREG_EW in SR2 is set (in Active mode) 0000000000: 0 V (default) feature deactivated ... 1111111111: VAINVS Control Register CR4 (0x04) 0 0 0 0 0 Access 0 0 0 0 0 0 0 0 0 4 0 0 3 2 0 0 1 0 OUT6_LS 0 5 OUT6_HS 0 6 Reserved Reserved 7 OUT5_LS 8 OUT5_HS 9 Reserved 19 18 17 16 15 14 13 12 11 10 OUT4_LS 0 20 OUT4_HS 0 21 OUT1_LS Bit name Reset 22 Reserved 23 OUT1_HS Table 80. Control Register CR4 0 0 R/W Table 81. CR4 signals description Bit Name 23:22 Reserved Reserved OUT1_HS OUT1 high-side Driver control 0: OUT1_HS is turned off (default) 1: OUT1_HS is turned on An internal cross-current protection prevents, that both the low- and high-side drivers of the half-bridge OUT1 are switched on simultaneously. 20 OUT1_LS OUT1 low-side Driver control 0: OUT1_LS is turned off (default) 1: OUT1_LS is turned on An internal cross-current protection prevents, that both the low- and high-side drivers of the half-bridge OUT1 are switched on simultaneously. 19:10 Reserved Reserved 21 128/161 Description DS11567 Rev 5 L99DZ120 SPI Registers Table 81. CR4 signals description (continued) Bit Name Description OUT4_HS OUT4 high-side Driver control 0: OUT4_HS is turned off (default) 1: OUT4_HS is turned on An internal cross-current protection prevents, that both the low- and high-side drivers of the half-bridge OUT4 are switched on simultaneously. 8 OUT4_LS OUT4 low-side Driver control 0: OUT4_LS is turned off (default) 1: OUT4_LS is turned on An internal cross-current protection prevents, that both the low- and high-side drivers of the half-bridge OUT4 are switched on simultaneously. 7:6 Reserved Reserved OUT5_HS OUT5 high-side Driver control 0: OUT5_HS is turned off (default) 1: OUT5_HS is turned on An internal cross-current protection prevents, that both the low- and high-side drivers of the half-bridge OUT5 are switched on simultaneously. 4 OUT5_LS OUT5 low-side Driver control 0: OUT5_LS is turned off (default) 1: OUT5_LS is turned on An internal cross-current protection prevents, that both the low- and high-side drivers of the half-bridge OUT5 are switched on simultaneously. 3:2 Reserved Reserved OUT6_HS OUT6 high-side Driver control 0: OUT6_HS is turned off (default) 1: OUT6_HS is turned on An internal cross-current protection prevents, that both the low-side and high-side drivers of the half-bridge OUT6 are switched on simultaneously. OUT6_LS OUT6 low-side Driver control 0: OUT6_LS is turned off (default) 1: OUT6_LS is turned on An internal cross-current protection prevents, that both the low-side and high-side drivers of the half-bridge OUT6 are switched on simultaneously. 9 5 1 0 7.4.5 Control Register CR5 (0x05) Access 0 0 0 0 0 0 0 0 0 0 0 4 Reserved 0 0 0 0 3 2 1 0 OUTHS_0 OUT8_0 0 5 OUTHS_1 OUT8_1 0 6 OUTHS_2 OUT8_2 0 7 OUTHS_3 OUT8_3 0 8 OUT10_0 OUT7_0 0 Reserved 9 OUT10_1 19 18 17 16 15 14 13 12 11 10 OUT10_2 20 OUT10_3 21 OUT7_1 Reset 22 OUT7_2 Bit name 23 OUT7_3 Table 82. Control Register CR5 0 0 0 0 R/W DS11567 Rev 5 129/161 160 SPI Registers L99DZ120 Table 83. CR5 signals description Bit Name 23 OUT7_3 22 OUT7_2 21 OUT7_1 20 OUT7_0 19 OUT8_3 18 OUT8_2 17 OUT8_1 16 OUT8_0 15:12 Reserved 11 OUT10_3 10 OUT10_2 9 OUT10_1 8 OUT10_0 7:4 Reserved 3 OUTHS_3 2 OUTHS_2 1 OUTHS_1 0 OUTHS_0 Description OUT7 Configuration Bits: high-side Driver OUT7 Configuration For OUT7 bits configuration see Table 84: OUTx Configuration bits OUT8 Configuration Bits: high-side Driver OUT8 Configuration For OUT8 bits configuration see Table 84: OUTx Configuration bits — OUT10 Configuration Bits: high-side Driver OUT10 Configuration For OUT10 bits configuration see Table 84: OUTx Configuration bits — OUTHS Configuration Bits: high-side Driver OUTHS Configuration For OUTHS bits configuration see Table 84: OUTx Configuration bits Table 84. OUTx Configuration bits 130/161 OUTx_3 OUTx_2 OUTx_1 OUTx_0 Description 0 0 0 0 Off (default) 0 0 0 1 On 0 0 1 0 Timer1 0 0 1 1 Timer2 0 1 0 0 PWM1 0 1 0 1 PWM2 0 1 1 0 PWM3 0 1 1 1 PWM4 1 0 0 0 PWM5 1 0 0 1 PWM6 1 0 1 0 PWM7 1 0 1 1 PWM8 1 1 0 0 PWM9 DS11567 Rev 5 L99DZ120 SPI Registers Table 84. OUTx Configuration bits (continued) 7.4.6 OUTx_3 OUTx_2 OUTx_1 OUTx_0 Description 1 1 0 1 PWM10 1 1 1 0 DIR1 1 1 1 1 DIR2 Control Register CR6 (0x06) OUT13_3 OUT15_0 OUT12_0 0 OUT15_1 OUT12_1 1 OUT15_2 OUT12_2 2 OUT15_3 OUT12_3 3 OUT14_0 OUT11_0 4 OUT14_1 OUT11_1 5 OUT14_2 OUT11_2 6 OUT14_3 OUT11_3 7 OUT13_0 19 18 17 16 15 14 13 12 11 10 OUT9_0 8 OUT13_1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 Access 9 OUT13_2 21 OUT9_1 Reset 22 OUT9_2 Bit name 23 OUT9_3 Table 85. Control Register CR6 0 0 0 0 0 0 0 0 0 0 0 R/W Table 86. CR6 signals description Bit Name 23 OUT9_3 22 OUT9_2 21 OUT9_1 20 OUT9_0 19 OUT11_3 18 OUT11_2 17 OUT11_1 16 OUT11_0 15 OUT12_3 14 OUT12_2 13 OUT12_1 12 OUT12_0 11 OUT13_3 10 OUT13_2 9 OUT13_1 8 OUT13_0 Description OUT9 Configuration Bits: high-side Driver OUT9 Configuration For OUT9 bits configuration see Table 84: OUTx Configuration bits OUT11 Configuration Bits: high-side Driver OUT11 Configuration For OUT11 bits configuration see Table 84: OUTx Configuration bits OUT12 Configuration Bits: high-side Driver OUT12 Configuration For OUT12 bits configuration see Table 84: OUTx Configuration bits OUT13 Configuration Bits: high-side Driver OUT13 Configuration For OUT13 bits configuration see Table 84: OUTx Configuration bits DS11567 Rev 5 131/161 160 SPI Registers L99DZ120 Table 86. CR6 signals description (continued) Bit Name 7 OUT14_3 6 OUT14_2 5 OUT14_1 4 OUT14_0 3 OUT15_3 2 OUT15_2 1 OUT15_1 0 OUT15_0 7.4.7 Description OUT14 Configuration Bits: high-side Driver OUT14 Configuration For OUT14 bits configuration see Table 84: OUTx Configuration bits OUT15 Configuration Bits: high-side Driver OUT15 Configuration For OUT15 bits configuration see Table 84: OUTx Configuration bits Control Register CR7 (0x07) Access 0 0 0 0 1 0 CM_SEL_0 0 2 CM_SEL_1 0 3 CM_SEL_2 0 4 CM_SEL_3 0 5 Reserved 0 6 CM_EN 0 7 OUT5_OC0 0 Reserved 8 OUT5_OC1 OUTHS_OCR 0 9 OCR_FREQ OUT8_OCR 0 OUT7_OCR 0 19 18 17 16 15 14 13 12 11 10 OUT6_OCR 0 20 OUT5_OCR Reset 21 Reserved Bit name 22 OUT1_OCR 23 OUT4_OCR Table 87. Control Register CR7 0 0 0 1 0 0 0 0 0 R/W Table 88. CR7 signals description Bit Name 23 OUT1_OCR 22:21 Reserved 20 OUT4_OCR 19 OUT5_OCR 18 OUT6_OCR 17 OUT7_OCR 16 OUT8_OCR 15 OUTHS_OCR 14:9 Reserved 132/161 Description Overcurrent recovery for OUT1 0: overcurrent recovery is turned off (default) 1: overcurrent recovery is turned on — Overcurrent recovery for OUTx 0: overcurrent recovery is turned off (default) 1: overcurrent recovery is turned on Overcurrent recovery for OUTHS 0: overcurrent recovery is turned off (default) 1: overcurrent recovery is turned on — DS11567 Rev 5 L99DZ120 SPI Registers Table 88. CR7 signals description (continued) Bit Name 8 OCR_FREQ 7 OUT5_OC1 6 OUT5_OC0 5 CM_EN 4 Reserved 3 CM_SEL_3 2 CM_SEL_2 1 CM_SEL_1 0 CM_SEL_0 Description Overcurrent recovery frequency 0: freq0 (default) 1: freq1 Overcurrent Threshold for OUT5 00: IOC5_3 overcurrent threshold 3 (default) 01: IOC5_1 overcurrent threshold 1 10: IOC5_2 overcurrent threshold 2 11: IOC5_3 overcurrent threshold 3 Current monitor: 0: off (3-state) 1: on (default) — Current Monitor Select Bits. A current image of the selected binary coded output is multiplexed to the CM output. If a corresponding output does not exist, the current monitor is deactivated. 0000: OUT1 0001: invalid configuration 0010: invalid configuration 0011: OUT4 0100: OUT5 0101: OUT6 0110: OUT7 0111: OUT8 1000: OUT9 1001: OUT10 1010: OUT11 1011: OUT12 1100: OUT13 1101: OUT14 1110: OUT15 1111: OUT_HS DS11567 Rev 5 133/161 160 SPI Registers 7.4.8 L99DZ120 Control Register CR8 (0x08) OUT8_OCR_THX_EN OUTHS_OCR_THX_EN 1 OUT7_OCR_THX_EN 1 19 18 17 16 15 14 13 12 11 10 OUT6_OCR_THX_EN 1 20 OUT5_OCR_THX_EN Reset 21 Reserved Bit name 22 OUT1_OCR_THX_EN 23 OUT4_OCR_THX_EN Table 89. Control Register CR8 1 1 1 1 1 1 Access 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 Resrved 0 0 0 0 0 0 0 0 0 R/W Table 90. CR8 signals description Bit Name 23 OUT1_OCR_THX_EN 22:21 Reserved 20 OUT4_OCR_THX_EN 19 OUT5_OCR_THX_EN 18 OUT6_OCR_THX_EN 17 OUT7_OCR_THX_EN 16 OUT8_OCR_THX_EN 15 OUTHS_OCR_THX_EN 14:0 Reserved 134/161 Description Enable Overcurrent Recovery with Thermal Expiration for OUTx. 0: Overcurrent Recovery with Thermal Expiration is off 1: Overcurrent Recovery with Thermal Expiration is on (default) The output is turned off after Thermal Expiration. — Enable Overcurrent Recovery with Thermal Expiration for OUTx. 0: Overcurrent Recovery with Thermal Expiration is off 1: Overcurrent Recovery with Thermal Expiration is on (default) The output is turned off after Thermal Expiration. Enable Overcurrent Recovery with Thermal Expiration for OUTHS. 0: Overcurrent Recovery with Thermal Expiration is off 1: Overcurrent Recovery with Thermal Expiration is on (default) The output is turned off after Thermal Expiration. — DS11567 Rev 5 L99DZ120 SPI Registers 7.4.9 Control Register CR9 (0x09) Access OUT11_OC OUT10_OC OUT9_OC 0 OUT12_OC 1 OUT13_OC 2 OUT14_OC 0 3 OUT15_OC 0 4 OUTHS_OC 0 5 OUT9_OL 0 6 OUT10_OL 0 7 OUT11_OL 0 8 OUT12_OL Reserved 9 OUT13_OL 19 18 17 16 15 14 13 12 11 10 OUT14_OL 0 20 OUT15_OL 0 21 OUTHS_OL Reset 22 OUT8_RDSON Bit name 23 OUT7_RDSON Table 91. Control Register CR9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R/W Table 92. CR9 signals description Bit Name Description 23 OUT7_RDSON Select Rdson for OUT7 0: ron_low (default) 1: ron_high 22 OUT8_RDSON Select Rdson for OUT8 0: ron_low (default) 1: ron_high 21:16 Reserved 15 OUTHS_OL 14 OUT15_OL 13 OUT14_OL 12 OUT13_OL 11 OUT12_OL 10 OUT11_OL 9 OUT10_OL 8 OUT9_OL 7 OUTHS_OC 6 OUT15_OC 5 OUT14_OC 4 OUT13_OC 3 OUT12_OC 2 OUT11_OC 1 OUT10_OC 0 OUT9_OC — Open-load Threshold for OUTx 0: IOLD1 ; high-current mode (default) 1: IOLD1; low-current mode Overcurrent Threshold for OUTx 0: IOC; high-current mode (default) 1: IOC; low-current mode DS11567 Rev 5 135/161 160 SPI Registers 7.4.10 L99DZ120 Control Register CR10 (0x0A) SLEW_1 SLEW_0 0 SLEW_2 1 SLEW_3 0 2 SLEW_4 0 3 OL_H2L1 1 4 OL_H1L2 1 5 H_OLTH_HIGH 1 6 COPT_0 0 7 COPT_1 0 8 COPT_2 1 Reserved 9 COPT_3 1 19 18 17 16 15 14 13 12 11 10 SDS 1 20 SD 21 DIAG_0 Reset 22 DIAG_1 Bit name 23 DIAG_2 Table 93. Control Register CR10 0 0 1 1 1 1 0 0 0 0 0 0 0 0 Access R/W Table 94. CR10 signals description Bit Name 23 DIAG_2 22 DIAG_1 21 DIAG_0 20:14 Reserved 13 SD 12 SDS 11 COPT_3 10 COPT_2 9 COPT_1 8 COPT_0 7 H_OLTH_HIGH 136/161 Description Drain-source monitoring threshold for external H-bridge 000: VSCd1_HB 001: VSCd2_HB 010: VSCd3_HB 011: VSCd4_HB 100: VSCd5_HB 101: VSCd6_HB 110: VSCd7_HB 111: VSCd7_HB (default) — Slow decay Slow decay single Cross current protection time 0000: not allowed 0001: tccp0001 0010: tccp0010 0011: tccp0011 0100: tccp0100 0101: tccp0101 0110: tccp0110 0111: tccp0111 1000: tccp1000 1001: tccp1001 1010: tccp1010 1011: tccp1011 1100: tccp1100 1101: tccp1101 1110: tccp1110 1111: tccp1111 (default) H-bridge OL high threshold (5/6 * VS) select DS11567 Rev 5 L99DZ120 SPI Registers Table 94. CR10 signals description (continued) Bit Name 6 OL_H1L2 Test open-load condition between H1 and L2 5 OL_H2L1 Test open-load condition between H2 and L1 4 SLEW_4 3 SLEW_3 2 SLEW_2 1 SLEW_1 0 SLEW_0 7.4.11 Description Binary coded slew rate of H-bridge (bit0 = LSB; bit4 = MSB) 00000: Control disabled (default) 11111: IGHxmax Control Register CR11 (0x0B) Table 95. Control Register CR11 23 22 21 20 19 18 17 16 15 14 13 12 11 10 Bit name Reset 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 0 0 0 0 0 3 2 1 0 Reserved 0 0 0 0 0 0 0 0 0 0 0 Access 0 0 0 R/W Table 96. CR11 signals description Bit Name 23:0 Reserved 7.4.12 Description — Control Register CR12 (0x0C) Access PMW5_FREQ_0 PMW6_FREQ_1 PMW6_FREQ_0 PMW7_FREQ_1 PMW10_FREQ_0 PMW5_FREQ_1 4 PMW10_FREQ_1 PMW4_FREQ_0 5 PMW9_FREQ_0 PMW4_FREQ_1 6 PMW9_FREQ_1 PMW3_FREQ_0 7 PMW8_FREQ_0 19 18 17 16 15 14 13 12 11 10 PMW3_FREQ_1 8 PMW8_FREQ_1 20 PMW2_FREQ_0 9 PMW7_FREQ_0 21 PMW2_FREQ_1 Reset 22 PMW1_FREQ_0 Bit name 23 PMW1_FREQ_1 Table 97. Control Register CR12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reserved 0 0 0 0 R/W DS11567 Rev 5 137/161 160 SPI Registers L99DZ120 Table 98. CR12 signals description Bit Name 23 PMW1_FREQ_1 22 PMW1_FREQ_0 21 PMW2_FREQ_1 20 PMW2_FREQ_0 19 PMW3_FREQ_1 18 PMW3_FREQ_0 17 PMW4_FREQ_1 16 PMW4_FREQ_0 15 PMW5_FREQ_1 14 PMW5_FREQ_0 13 PMW6_FREQ_1 12 PMW6_FREQ_0 11 PMW7_FREQ_1 10 PMW7_FREQ_0 9 PMW8_FREQ_1 8 PMW8_FREQ_0 138/161 Description Frequency of PWM channel PWM1 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) Frequency of PWM channel PWM2 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) Frequency of PWM channel PWM3 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) Frequency of PWM channel PWM4 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) Frequency of PWM channel PWM5 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) Frequency of PWM channel PWM6 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) Frequency of PWM channel PWM7 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) Frequency of PWM channel PWM8 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) DS11567 Rev 5 L99DZ120 SPI Registers Table 98. CR12 signals description (continued) Bit Name 7 PMW9_FREQ_1 6 PMW9_FREQ_0 5 PMW10_FREQ_1 Frequency of PWM channel PWM10 00: fPWMx(00) (default) 01: fPWMx(01) PMW10_FREQ_0 10: fPWMx(10) 11: fPWMx(11) 4 3:0 Description Reserved 7.4.13 Frequency of PWM channel PWM9 00: fPWMx(00) (default) 01: fPWMx(01) 10: fPWMx(10) 11: fPWMx(11) — Control Register CR13 (0x0D) to CR17 (0x11) Access 0 0 0 PWMy_DC_0 0 1 PWMy_DC_1 0 2 PWMy_DC_2 0 3 PWMy_DC_3 0 4 PWMy_DC_4 PWMx_DC_0 0 5 PWMy_DC_5 PWMx_DC_1 0 6 PWMy_DC_6 PWMx_DC_2 0 7 PWMy_DC_7 PWMx_DC_3 0 8 PWMy_DC_8 PWMx_DC_4 0 9 PWMy_DC_9 PWMx_DC_5 0 Reserved 19 18 17 16 15 14 13 12 11 10 PWMx_DC_6 0 20 PWMx_DC_7 0 21 PWMx_DC_8 Bit name Reset 22 Reserved 23 PWMx_DC_9 Table 99. Control Register CR13 to CR17 0 0 0 0 0 0 0 0 0 0 R/W Where: x = 1 + (z * 2), z = 0 to 4 y = 2 + (z * 2), z = 0 to 4 Table 100. CR13 to CR17 signals description Bit Name 23:22 Reserved Description — DS11567 Rev 5 139/161 160 SPI Registers L99DZ120 Table 100. CR13 to CR17 signals description (continued) Bit Name 21 PWMx_DC_9 20 PWMx_DC_8 19 PWMx_DC_7 18 PWMx_DC_6 17 PWMx_DC_5 16 PWMx_DC_4 15 PWMx_DC_3 14 PWMx_DC_2 13 PWMx_DC_1 12 PWMx_DC_0 11:10 Reserved 9 PWMy_DC_9 8 PWMy_DC_8 7 PWMy_DC_7 6 PWMy_DC_6 5 PWMy_DC_5 4 PWMy_DC_4 3 PWMy_DC_3 2 PWMy_DC_2 1 PWMy_DC_1 0 PWMy_DC_0 7.4.14 Description Binary coded on-dutycycle of PWM channel PWMx (bit12 = LSB; bit21 = MSB) 00 0000 0000: duty cycle 0% (default) xx xxxx xxxx: duty cycle 100%/1023 x register value 11 1111 1111. duty cycle 100% — Binary coded on-dutycycle of PWM channel PWMy (bit0 = LSB; bit9 = MSB) 00 0000 0000: duty cycle 0% (default) xx xxxx xxxx: duty cycle 100%/1023 x register value 11 1111 1111. Duty cycle 100% Binary coded on-dutycycle of PWM channel PWMy Control Register CR18 (0x12) to CR22 (0x16) 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OUTx_VLED_9 OUTx_VLED_8 OUTx_VLED_7 OUTx_VLED_6 OUTx_VLED_5 OUTx_VLED_4 OUTx_VLED_3 OUTx_VLED_2 OUTx_VLED_1 OUTx_VLED_0 Reserved OUTy_AUTOCOMP_EN OUTy_VLED_9 OUTy_VLED_8 OUTy_VLED_7 OUTy_VLED_6 OUTy_VLED_5 OUTy_VLED_4 OUTy_VLED_3 OUTy_VLED_2 OUTy_VLED_1 OUTy_VLED_0 Reset 22 OUTx_AUTOCOMP_EN Bit name 23 Reserved Table 101. Control Register CR18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Access R/W 140/161 DS11567 Rev 5 L99DZ120 SPI Registers Where: x = 7 + (z * 2), z = 0 to 4 y = 8 + (z * 2), z = 0 to 4 Table 102. CR18 to CR22 signals description Bit Name 23 Reserved 22 OUTx_AUTOCOMP_EN 21 OUTx_VLED_9 20 OUTx_VLED_8 19 OUTx_VLED_7 18 OUTx_VLED_6 17 OUTx_VLED_5 16 OUTx_VLED_4 15 OUTx_VLED_3 14 OUTx_VLED_2 13 OUTx_VLED_1 12 OUTx_VLED_0 11 Reserved 10 OUTy_AUTOCOMP_EN 9 OUTy_VLED_9 8 OUTy_VLED_8 7 OUTy_VLED_7 6 OUTy_VLED_6 5 OUTy_VLED_5 4 OUTy_VLED_4 3 OUTy_VLED_3 2 OUTy_VLED_2 1 OUTy_VLED_1 0 OUTy_VLED_0 Description — Setting this bit to ‘1’ enables the automatic VS compensation for OUTx Binary coded nominal LED voltage of OUTx (bit12 = LSB; bit21 = MSB) 00 0000 0000: VLED = 0 V (default) xx xxxx xxxx: VLED = VAINVS /1023 x register value 01 1101 0000: VLED = VAINVS VLED is clamped at 10 V (0x1D0h) — Setting this bit to ‘1’ enables the automatic VS compensation for OUTy Binary coded nominal LED voltage of OUTy (bit0 = LSB; bit9 = MSB) 00 0000 0000: VLED = 0 V (default) xx xxxx xxxx: VLED = VAINVS /1023 x register value 01 1101 0000: VLED = VAINVS VLED is clamped at 10 V (0x1D0h) DS11567 Rev 5 141/161 160 SPI Registers 7.4.15 L99DZ120 Control Register CR34 (0x22) 21 20 19 18 17 16 15 14 13 12 11 10 Bit name Reset 9 8 7 6 5 4 3 0 0 0 0 0 0 0 Reserved 0 0 0 0 0 0 0 0 0 0 0 Access 0 0 0 2 1 0 WD_EN 22 ICMP 23 CP_OFF Table 103. Control Register CR34 0 0 1 R/W Table 104. CR34 signals description Bit Name 23:3 Reserved — CP_OFF Charge pump control 0: Enabled; charge pump on in active mode (default) 1: Disabled; charge pump off in active mode setting CP_OFF = 1 is only possible when CP_OFF_EN = 1 2 1 ICMP 0 WD_EN 7.4.16 Description V1 load current supervision 0: Enabled; Watchdog is disabled in V1 Standby when Iv1< ICMP (default) 1: Disabled; watchdog is disabled upon transition into V1_standby mode setting ICMP = 1 is only possible when ICMP_config_en = 1 Watchdog Enable 0: Watchdog disabled 1: Watchdog enabled (default) Configuration Register (0x3F) MASK_OL_LS1 MASK_TW Reserved MASK_OL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 TRIG MASK_OL_HS1 0 3 Reserved WD_CONFIG_EN FS_FORCED ICMP_CONFIG_EN 4 CP_DITH_DIS DM 5 CP_LOW_CONFIG Reserved 0 DS11567 Rev 5 6 CP_OFF_EN TSD_CONFIG 1 142/161 7 MASK_GW 19 18 17 16 15 14 13 12 11 10 R/W 8 MASK_PLE 20 Access 9 MASK_SPIE 21 LIN_HS_EN Reset 22 LIN_WU_CONFIG Bit name 23 WU_CONFIG Table 105. Configuration Register 0 1 L99DZ120 SPI Registers Table 106. CR signals description Bit 23 Name WU_CONFIG 22 LIN_WU_CONFIG 21 LIN_HS_EN 20 TSD_CONFIG 19 Reserved 18 17 16 15 14 13 DM ICMP_CONFIG_EN WD_CONFIG_EN Description Configuration of input pin WU Input configured as wake-up input 0: WU configured as wake-up input 1: WU configured for input voltage measurement (default) Configuration of LIN wake-up behaviour 0: wake up at recessive - dominant - recessive with tdom > tdom_LIN (default) (according to LIN 2.2a and Hardware Requirements for Transceivers version 1.3) 1: wake up at recessive - dominant transition Configuration of LIN transceiver bit rate 0: LIN transceiver in normal communication mode (20kbit/s) (default) 1: LIN transceiver in high speed mode for fast Flashing (115kbit/s) Configuration of thermal shutdown behaviour 0: in case of TSD1 all power stages are switched off (default) 1: selective shut down of power stage cluster — H-bridge configuration 0: single motor mode (default) 1: reserved ICMP configuration Enable 0: writing ICMP = 1 is blocked (writing ICMP=0 is possible); (default) 1: writing ICMP = 1 is possible with next SPI command bit is automatically reset to 0 after next SPI command Watchdog configuration Enable 0: writing to WD Configuration (CR2 [0:1] is blocked (default) 1: writing to WD Configuration Bits is possible with next SPI command bit is automatically reset to 0 after next SPI command MASK_OL_HS1 Mask Open-load HS1 0: Open-load condition at HS1 is not masked (default) 1: Open-load condition at HS1 is masked i.e. it is reported as a Functional Error (GSB bit 3) but not as a Global Error (GSB bit 7) MASK_OL_LS1 Mask Open-load LS1 0: Open-load condition at LS1 is not masked (default) 1: Open-load condition at LS1 is masked i.e. it is reported as a Functional Error (GSB bit 3) but not as a Global Error (GSB bit 7) MASK_TW Mask Thermal Warning 0: Thermal warning is not masked (default) 1: Thermal warning is masked i.e. it is reported as a Global Warning (GSB bit 1) but not as a Global Error (GSB bit 7) DS11567 Rev 5 143/161 160 SPI Registers L99DZ120 Table 106. CR signals description (continued) Bit Name 12 Reserved — MASK_OL Mask open-load 0: Open-load condition at all outputs are not masked (default) 1: Open-load condition at all outputs are masked i.e. it is reported as a Functional Error (GSB bit 3) but not as a Global Error (GSB bit 7) 11 10 9 8 7 6 Description MASK_SPIE Mask SPI error 0: SPI errors are not masked (default) 1: SPI errors are masked i.e. reported as am SPI Error (GSB bit 5) but not as a Global Error (GSB bit 7) MASK_PLE Mask physical layer error 0: Physical Layer Errors are not masked (default) 1: Physical Layer Errors are masked i.e. reported as a Physical Layer Error (GSB bit 4) but not as a Global Error (GSB bit 7) MASK_GW Mask global warning 0: Global Warning conditions are not masked (default) 1: Global Warning conditions are masked i.e. reported as a Global Warning (GSB bit 1) but not as a Global Error (GSB bit 7) CP_OFF_EN Charge pump control enable 0: writing CP_OFF = 1 is blocked (writing CP OFF = 0 is possible); (default) 1: writing CP_OFF = 1 is possible with next SPI command Bit is automatically reset to 0 after next SPI command CP_LOW_CONFIG Charge pump low configuration 0: CP_low (SR 2, bit 9) is latched and outputs are off until R&C; (default) 1: CP_low (SR 2, bit 9) is a ‘live’ bit; outputs are re-activated automatically upon recovery of the charge pump output voltage CP_DITH_DIS Charge pump clock dithering 0: CP clock dithering is enabled; (default) 1: CP clock dithering is disabled 4 FS_FORCED Force LSx_FSO ON LSx_FSO low-side outputs are forced ON (to allow diagnosis of the fail-safe path) 0: LSx_FSO outputs are controlled by the Fail-safe logic (default) 1: LSx_FSO outputs are forced ON and the device enters Fail-Safe mode; no NReset is generated 3:1 Reserved 0 TRIG 5 144/161 — Watchdog Trigger bit DS11567 Rev 5 L99DZ120 SPI Registers 7.5 Status Registers 7.5.1 Status Register SR1 (0x31) 7 6 5 4 3 2 WDFAIL_CNT_0 DEVICE_STATE_1 DEVICE_STATE_0 TSD2 TSD1 FORCED_SLEEP_TSD2/V1SC FORCED_SLEEP_WD R 1 0 VPOR 8 WDFAIL 9 WDFAIL_CNT_1 Reserved R/C WDFAIL_CNT_2 WU_WAKE R WDFAIL_CNT_3 Reserved R/C V1_RESTART_0 WU_STATE Access V1_RESTART_1 Bit name V1_RESTART_2 19 18 17 16 15 14 13 12 11 10 V1UV 20 DEBUG_ACTIVE 21 WAKE_TIMER 22 WAKE_LIN 23 Reserved Table 107. Status Register SR1 (0x31) R/C Table 108. SR1 signals description Bit Name 23 Reserved 22 WU_STATE 21 Reserved 20 WU_WAKE 19 Reserved Description — State of WU input 0: input level is low 1: input level is high The bit shows the momentary status of WU and cannot be cleared (“Live bit”) Note: The status is only valid if WU is configured as wake-up input in Configuration Register (0x3F). Otherwise this bit remains at his previous logic state. — Wake-up by WU: shows wake up source 1: wake-up Bits are latched until a “Read and clear” command — 18 WAKE_LIN Wake-up by LIN: shows wake up source 1: wake-up Bits are latched until a “Read and clear” command 17 WAKE_TIMER Wake-up by Timer: shows wake up source 1: wake-up Bits are latched until a “Read and clear” command 16 DEBUG_ACTIVE Debug Mode Active: indicates Device is in Debug mode 1: Debug mode The bit shows the momentary status and cannot be cleared (“Live bit”) DS11567 Rev 5 145/161 160 SPI Registers L99DZ120 Table 108. SR1 signals description (continued) Bit Name Description Indicates undervoltage condition at voltage regulator V1 (V1 < VRTx) 1: undervoltage Bit is latched until a “Read and clear” command 15 V1UV 14 V1_RESTART_2 13 V1_RESTART_1 12 V1_RESTART_0 11 WDFAIL_CNT_3 10 WDFAIL_CNT_2 9 WDFAIL_CNT_1 8 WDFAIL CNT_0 7 DEVICE_STATE_1 6 DEVICE_STATE_0 5 TSD2 Thermal Shutdown 2 was reached Bit is latched until a "Read and clear" command 4 TSD1 Thermal Shutdown 1 was reached (Logical Or combination of all TSD1_CLx; see status register SR6). This bit cannot be cleared directly. It is reset if the corresponding TSD1_CLx bits in SR6 are cleared. 3 FORCED_SLEEP_ TSD2/V1SC 2 FORCED_SLEEP_WD 1 WDFAIL Watchdog failure Bit is latched until a "Read and clear" command 0 VPOR VS Power-on Reset threshold (VPOR) reached Bit is latched until a "Read and clear" command 146/161 Indicates the number of TSD2 events which caused a restart of voltage regulator V1 Bits cannot be cleared; counter will be cleared automatically if no additional TSD2 event occurs within 1 minute. Indicates number of subsequent watchdog failures. Bits cannot be cleared; will be cleared with a valid watchdog trigger State from which the device woke up 00: Active Mode after Read&Clear command or after Flash Mode state 01: Active mode after wake-up from V1_standby mode (before Read&Clear command) 10: Active Mode after Power-on or after wake-up from Vbat_standby Mode (before Read&Clear command) 11: Flash mode (LIN Flash mode) Bit is latched until a “Read and clear” command After a “read and clear access”, the device state will be updated Device entered Forced Vbat_standby mode due to: – Thermal shutdown or – Short circuit on V1 during startup Bit is latched until a "Read and clear" command Device entered Forced Vbat_standby mode due to multiple watchdog failures Bit is latched until a "Read and clear" command DS11567 Rev 5 L99DZ120 7.5.2 SPI Registers Status Register SR2 (0x32) 6 5 4 3 2 SPI_SCK_CNT CP_LOW TW V2SC V2FAIL V1FAIL VSREG_EW VSREG_OV VSREG_UV Reserved Access R/C R 1 0 VS_UV 7 VS_OV 8 SPI_INV_CMD 9 DSMON_LS1 19 18 17 16 15 14 13 12 11 10 DSMON_LS2 LIN_PERM_REC 20 DSMON_HS1 21 DSMON_HS2 22 LIN_TXD_DOM Bit name 23 LIN_PERM_DOM Table 109. Status Register SR2 (0x32) R/C Table 110. SR2 signals description Bit Name 23 LIN_PERM_DOM Description LIN bus signal is dominant for t > tdom(bus) Bit is latched until a “Read and clear” command 22 LIN_TXD_DOM TxDL pin is dominant for t > tdom(TXDL) The LIN transmitter is disabled until the bit is cleared Bit is latched until a “Read and clear” command 21 LIN_PERM_REC LIN bus signal does not follow TxDL within tLIN The LIN transmitter is disabled until the bit is cleared Bit is latched until a “Read and clear” command 20:16 Reserved 15 DSMON_HS2 14 DSMON_HS1 13 DSMON_LS2 12 DSMON_LS1 — Drain-Source Monitoring ‘1’ indicates a short-circuit or open-load condition was detected Bit is latched until a “Read and clear” command 11 SPI_INV_CMD Invalid SPI command ‘1’ indicates one of the following conditions was detected: – access to undefined address – Write operation to Status Register – DI stuck at '0' or '1' – CSN timeout – Parity failure – invalid or undefined setting The SPI frame is ignored Bit is latched until a “Read and clear” command 10 SPI_SCK_CNT SPI clock counter ‘1’ indicates an SPI frame with wrong number of CLK cycles was detected Bit is latched until a valid SPI frame 9 CP_LOW Charge pump voltage low ‘1’ indicates that the charge pump voltage is too low Bit is latched until a “Read and clear” command DS11567 Rev 5 147/161 160 SPI Registers L99DZ120 Table 110. SR2 signals description (continued) Bit 8 7 6 5 Name TW V2SC Description Thermal warning ‘1’ indicates the temperature has reached the thermal warning threshold (logical OR combination of bits TW_CLx in SR6) Bit is latched until a “Read and clear” command V2 short circuit detection ‘1’ indicates a short circuit to GND condition of V2 at turn-on of the regulator (V2 < V2_fail for t > tv2_short) Bit is latched until a “Read and clear” command V2FAIL V2 failure detection ‘1’ indicates a V2 fail event occurred since last readout (V2 < V2_fail for t > tv2_fail) Bit is latched until a “Read and clear” command V1FAIL V1 failure detection ‘1’ indicates a V1 fail event occurred since last readout (V1 < V1_fail for t > tv1_fail) Bit is latched until a “Read and clear” command 4 VSREG_EW VSREG early warning ‘1’ indicates the voltage at VSREG has reached the early warning threshold (configured in CR3) In Active mode, an interrupt pulse is generated at NINT Bit is latched until a “Read and clear” command. Bit needs a "Read and clear" command after wake-up from standby modes 3 VSREG_OV VSREG overvoltage ‘1’ indicates the voltage at VSREG has reached the overvoltage threshold Bit is latched until a “Read and clear” command 2 VSREG_UV VSREG undervoltage ‘1’ indicates the voltage at VSREG has reached the undervoltage threshold Bit is latched until a “Read and clear” command 1 VS_OV VS overvoltage ‘1’ indicates the voltage at VS has reached the overvoltage threshold Bit is latched until a “Read and clear” command 0 VS_UV VS undervoltage ‘1’ indicates the voltage at VS has reached the undervoltage threshold Bit is latched until a “Read and clear” command 148/161 DS11567 Rev 5 L99DZ120 7.5.3 SPI Registers Status Register SR3 (0x33) Access 7 6 5 4 3 2 OUT10_OC OUT11_OC OUT12_OC OUT13_OC OUT14_OC OUT15_OC OUTHS_OC_TH_EX 1 0 LS1FSO_OC 8 LS2FSO_OC 9 OUT9_OC OUT8_OC_TH_EX OUT7_OC_TH_EX OUT6_LS_OC_TH_EX OUT6_HS_OC_TH_EX Reserved OUT5_LS_OC_TH_EX 19 18 17 16 15 14 13 12 11 10 OUT5_HS_OC_TH_EX 20 OUT4_LS_OC_TH_EX 21 OUT4_HS_OC_TH_EX 22 OUT1_LS_OC_TH_EX Bit name 23 OUT1_HS_OC_TH_EX Table 111. Status Register SR3 (0x33) R/C Table 112. SR3 signals description Bit 23 22 21:18 17 16 15 14 13 12 11 10 Name Description OUT1_HS_OC_TH_EX Overcurrent shutdown ‘1’ indicates the output was shut down due to overcurrent condition. If Overcurrent Recovery is disabled (CR7: OUTx_OCR = 0): Bit is set upon overcurrent condition and output is turned off. If Overcurrent Recovery is enabled (CR7: OUTx_OCR = 1): OUT1_LS_OC_TH_EX In case of overcurrent condition this bit is not set. The output goes into Overcurrent Recovery mode and OUTx_OCR_alert in SR4 is set to '1' In case of Thermal Expiration enabled (CR8: OUTx_OCR_THx_en = 1): Bit is set after thermal expiration and output is turned off Bit is latched until a “Read and clear” command Reserved — OUT4_HS_OC_TH_EX Overcurrent shutdown OUT4_LS_OC_TH_EX ‘1’ indicates the output was shut down due to overcurrent condition. If Overcurrent Recovery is disabled (CR7: OUTx_OCR = 0): OUT5_HS_OC_TH_EX Bit is set upon overcurrent condition and output is turned off. OUT5_LS_OC_TH_EX If Overcurrent Recovery is enabled (CR7: OUTx_OCR = 1): OUT6_HS_OC_TH_EX In case of overcurrent condition this bit is not set. The output goes into Overcurrent Recovery mode and OUTx_OCR_alert in SR4 is set to '1' OUT6_LS_OC_TH_EX In case of Thermal Expiration enabled (CR8: OUTx_OCR_THx_en = 1): OUT7_OC_TH_EX Bit is set after thermal expiration and output is turned off Bit is latched until a “Read and clear” command OUT8_OC_TH_EX DS11567 Rev 5 149/161 160 SPI Registers L99DZ120 Table 112. SR3 signals description (continued) Bit Name 9 OUT9_OC 8 OUT10_OC 7 OUT11_OC 6 OUT12_OC 5 OUT13_OC 4 OUT14_OC 3 OUT15_OC Description Overcurrent shutdown ‘1’ indicates the output was shut down due to overcurrent condition. Bit is latched until a “Read and clear” command 2 OUTHS_OC_TH_EX 1 LS2FSO_OC 0 LS1FSO_OC 7.5.4 Overcurrent shutdown ‘1’ indicates the output was shut down due to overcurrent condition. If Overcurrent Recovery is disabled (CR7: OUTx_OCR = 0): Bit is set upon overcurrent condition and output is turned off. If Overcurrent Recovery is enabled (CR7: OUTx_OCR = 1): In case of overcurrent condition this bit is not set. The output goes into Overcurrent Recovery mode and OUTx_OCR_alert in SR4 is set to '1' In case of Thermal Expiration enabled (CR8: OUTx_OCR_THx_en = 1): Bit is set after thermal expiration and output is turned off Bit is latched until a “Read and clear” command Overcurrent shutdown ‘1’ indicates the output was shut down due to overcurrent condition. Bit is latched until a “Read and clear” command Status Register SR4 (0x34) 150/161 DS11567 Rev 5 OUT8_OCR_ALERT 9 8 7 6 5 4 3 2 1 0 Reserved Reserved R OUT7_OCR_ALERT OUT6_LS_OCR_ALERT OUT6_HS_OCR_ALERT OUT5_LS_OCR_ALERT Reserved OUT5_HS_OCR_ALERT 19 18 17 16 15 14 13 12 11 10 OUT4_LS_OCR_ALERT 20 OUT4_HS_OCR_ALERT 21 OUTHS_OCR_ALERT Access 22 OUT1_LS_OCR_ALERT Bit name 23 OUT1_HS_OCR_ALERT Table 113. Status Register SR4 (0x34) R/C R R/C L99DZ120 SPI Registers Table 114. SR4 signals description Bit Name Description 23 OUT1_HS_OCR_ALERT 22 OUT1_LS_OCR_ALERT 21:18 Reserved 17 OUT4_HS_OCR_ALERT 16 OUT4_LS_OCR_ALERT 15 OUT5_HS_OCR_ALERT 14 OUT5_LS_OCR_ALERT 13 OUT6_HS_OCR_ALERT 12 OUT6_LS_OCR_ALERT 11 OUT7_OCR_ALERT 10 OUT8_OCR_ALERT 9:3 Reserved — Autorecovery Alert ‘1’ indicates that the output reached the overcurrent threshold and is in autorecovery mode Bit is not latched and cannot be cleared. — 2 OUTHS_OCR_ALERT 1:0 Reserved 7.5.5 Autorecovery Alert ‘1’ indicates that the output reached the overcurrent threshold and is in autorecovery mode Bit is not latched and cannot be cleared. Autorecovery Alert ‘1’ indicates that the output reached the overcurrent threshold and is in autorecovery mode Bit is not latched and cannot be cleared. — Status Register SR5 (0x35) Access 8 7 6 5 4 3 2 OUT10_OL OUT11_OL OUT12_OL OUT13_OL OUT14_OL OUT15_OL OUTHS_OL 1 0 Reserved 9 OUT9_OL OUT8_OL OUT7_OL OUT6_LS_OL OUT6_HS_OL Reserved OUT5_LS_OL 19 18 17 16 15 14 13 12 11 10 OUT5_HS_OL 20 OUT4_LS_OL 21 OUT4_HS_OL 22 OUT1_LS_OL Bit name 23 OUT1_HS_OL Table 115. Status Register SR5 (0x35) R/C Table 116. SR5 signals description Bit Name 23 OUT1_HS_OL 22 OUT1_LS_OL 21:18 Reserved Description Open-load ‘1’ indicates an open-load condition was detected at the output Bit is latched until a “Read and clear” command — DS11567 Rev 5 151/161 160 SPI Registers L99DZ120 Table 116. SR5 signals description (continued) Bit Name 17 OUT4_HS_OL 16 OUT4_LS_OL 15 OUT5_HS_OL 14 OUT5_LS_OL 13 OUT6_HS_OL 12 OUT6_LS_OL 11 OUT7_OL 10 OUT8_OL 9 OUT9_OL 8 OUT10_OL 7 OUT11_OL 6 OUT12_OL 5 OUT13_OL 4 OUT14_OL 3 OUT15_OL 2 OUTHS_OL 1:0 Reserved 7.5.6 Description Open-load ‘1’ indicates an open-load condition was detected at the output Bit is latched until a “Read and clear” command — Status Register SR6 (0x36) Access R Table 118. SR6 signals description Bit 23 22 152/161 Name Description WD_TIMER_STATE_1 Watchdog timer status 00: 0 - 33% WD_TIMER_STATE_0 01: 33 - 66% 11: 66 - 100% DS11567 Rev 5 5 4 3 2 1 0 TSD1_CL4 TSD1_CL3 TSD1_CL2 TSD1_CL1 6 TSD1_CL5 TW_CL1 R/C 7 TSD1_CL6 8 Reserved 9 TW_CL2 Reserved TW_CL3 19 18 17 16 15 14 13 12 11 10 TW_CL4 20 TW_CL5 21 TW_CL6 22 WD_TIMER_STATE_0 Bit name 23 WD_TIMER_STATE_1 Table 117. Status Register SR6 (0x36) L99DZ120 SPI Registers Table 118. SR6 signals description (continued) Bit Name 21:14 Reserved 13 TW_CL6 12 TW_CL5 11 TW_CL4 10 TW_CL3 9 TW_CL2 8 TW_CL1 7:6 Reserved 5 TSD1_CL6 4 TSD1_CL5 3 TSD1_CL4 2 TSD1_CL3 1 TSD1_CL2 0 TSD1_CL1 7.5.7 Description — Thermal warning for Cluster x ‘1’ indicates Cluster x has reached the thermal warning threshold Bit is latched until a “Read and clear” command — Thermal shutdown of Cluster x ‘1’ indicates Cluster x has reached the thermal shutdown threshold (TSD1) and the output cluster was shut down Bit is latched until a “Read and clear” command Status Register SR7 (0x37) to SR9 (0x39) R TEMP_CLy_8 TEMP_CLy_7 TEMP_CLy_6 TEMP_CLy_5 R/C 4 3 2 1 0 TEMP_CLy_0 5 TEMP_CLy_1 6 TEMP_CLy_2 7 TEMP_CLy_3 8 TEMP_CLy_4 9 TEMP_CLy_9 Reserved TEMP_CLx_0 TEMP_CLx_1 TEMP_CLx_2 TEMP_CLx_3 TEMP_CLx_4 TEMP_CLx_5 R/C 19 18 17 16 15 14 13 12 11 10 TEMP_CLx_6 Access 20 TEMP_CLx_7 Bit name 21 TEMP_CLx_8 22 Reserved 23 TEMP_CLx_9 Table 119. Status Register SR7 (0x37) to SR9 (0x39) R Where: x = 2 + (z * 2), z = 0 to 2 y = 1 + (z * 2), z = 0 to 2 Table 120. SR7 to SR9 signals description Bit Name 23:22 Reserved Description — DS11567 Rev 5 153/161 160 SPI Registers L99DZ120 Table 120. SR7 to SR9 signals description (continued) Bit Name 21 TEMP_CLx_9 20 TEMP_CLx_8 19 TEMP_CLx_7 18 TEMP_CLx_6 17 TEMP_CLx_5 16 TEMP_CLx_4 15 TEMP_CLx_3 14 TEMP_CLx_2 13 TEMP_CLx_1 12 TEMP_CLx_0 11:10 Reserved 9 TEMP_CLy_9 8 TEMP_CLy_8 7 TEMP_CLy_7 6 TEMP_CLy_6 5 TEMP_CLy_5 4 TEMP_CLy_4 3 TEMP_CLy_3 2 TEMP_CLy_2 1 TEMP_CLy_1 0 TEMP_CLy_0 7.5.8 Description Temperature Cluster x: Binary coded voltage of temperature diode for cluster x (bit12 = LSB; bit21 = MSB) (see Section 4.31: Thermal clusters) Bits cannot be cleared. — Temperature Cluster y: binary coded voltage of temperature diode for cluster y (bit0 = LSB; bit9 = MSB) (see Section 4.31: Thermal clusters) Bits cannot be cleared. Status Register SR10 (0x3A) 9 VSREG_0 VSREG_1 VSREG_2 VSREG_3 VSREG_4 VSREG_5 R/C 19 18 17 16 15 14 13 12 11 10 VSREG_6 Access 20 VSREG_7 Bit name 21 VSREG_8 22 Reserved 23 VSREG_9 Table 121. Status Register SR10 (0x3A) Name 23:22 Reserved 154/161 7 6 5 Reserved R R/C Table 122. SR10 signals description Bit 8 Description — DS11567 Rev 5 4 3 2 1 0 L99DZ120 SPI Registers Table 122. SR10 signals description (continued) Bit Name 21 VSREG_9 20 VSREG_8 19 VSREG_7 18 VSREG_6 17 VSREG_5 16 VSREG_4 15 VSREG_3 14 VSREG_2 13 VSREG_1 12 VSREG_0 11:0 Reserved 7.5.9 Description Binary coded voltage at VSREG pin (bit12 = LSB; bit21 = MSB) 00 0000 0000: 0V xx xxxx xxxx: VAINVS/1023 x register value 11 1111 1111: VAINVS Bits cannot be cleared. — Status Register SR11 (0x3B) R VWU_8 VWU_7 VWU_6 VWU_5 R/C 4 3 2 1 0 VWU_0 5 VWU_1 6 VWU_2 7 VWU_3 8 VWU_4 9 VWU_9 Reserved VS_0 VS_1 VS_2 VS_3 VS_4 VS_5 R/C 19 18 17 16 15 14 13 12 11 10 VS_6 Access 20 VS_7 Bit name 21 VS_8 22 Reserved 23 VS_9 Table 123. Status Register SR11 (0x3B) R Table 124. SR11 signals description Bit Name 23:22 Reserved 21 VS_9 20 VS_8 19 VS_7 18 VS_6 17 VS_5 16 VS_4 15 VS_3 14 VS_2 13 VS_1 12 VS_0 11:10 Reserved Description — Binary coded voltage at VS pin (bit12 = LSB; bit21 = MSB) 00 0000 0000: 0V xx xxxx xxxx: VAINVS/1023 x register value 11 1111 1111: VAINVS Bits cannot be cleared. — DS11567 Rev 5 155/161 160 SPI Registers L99DZ120 Table 124. SR11 signals description (continued) Bit Name 9 VWU_9 8 VWU_8 7 VWU_7 6 VWU_6 5 VWU_5 4 VWU_4 3 VWU_3 2 VWU_2 1 VWU_1 0 VWU_0 156/161 Description Binary coded voltage at WU pin (bit0 = LSB; bit9 = MSB) 00 0000 0000: 0V xx xxxx xxxx: VAINVS/1023 x register value 11 1111 1111: VAINVS Bits cannot be cleared. DS11567 Rev 5 L99DZ120 8 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 8.1 LQFP-64 package information Figure 57. LQFP-64 package dimension ("1($'5 Table 125. LQFP-64 mechanical data Millimeters Symbol Min. Typ. Max. Θ 0º 3.5° 6° Θ1 0º 9° 12° Θ2 11º 12° 13° Θ3 11º 12° 13° DS11567 Rev 5 157/161 160 Package information L99DZ120 Table 125. LQFP-64 mechanical data (continued) Millimeters Symbol Min. Typ. A 1.60 A1 0.05 A2 1.35 0.15 1.40 b 0.17 c 0.09 c1 0.09 0.20 0.23 0.20 0.127 D 12.00 BSC D1 10.00 BSC D2 0.16 6.85 5.7 e 0.50 BSC E 12.00 BSC E1 10.00 BSC E2 4.79 E3 3.3 L 0.45 0.60 L1 1.00 N 64 R1 0.08 R2 0.08 S 0.20 aaa 0.20 bbb 0.20 ccc 0.08 ddd 0.08 DS11567 Rev 5 0.75 0.20 Tolerance of form and position 158/161 1.45 0.27 b1 D3 Max. L99DZ120 Package information Figure 58. LQFP-64 footprint ("1($'5 8.2 LQFP-64 marking information Figure 59. LQFP-64 marking information .BSLJOHBSFB .BSLJOHBSFB PS 4QFDJBMGVODUJPOEJHJUT &4&OHJOFFSJOHTBNQMF CMBOL$PNNFSDJBMTBNQMF -2'15017*&8 OPUJOTDBMF ("%(."( Parts marked as ES are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples. DS11567 Rev 5 159/161 160 Revision history 9 L99DZ120 Revision history Table 126. Document revision history 160/161 Date Revision Changes 27-Apr-2016 1 Initial release. 11-May-2016 2 Updated Section 3.3.1: LQFP64 thermal data Updated Table 20 Updated Table 22 Updated Table 40 Updated Figure 59 Updated Section 4.14: Auto-recovery alert and thermal expiration Updated Section 4.22: Programmable soft-start function to drive loads with higher inrush current Updated Figure 43 Updated Table 114 12-Sep-2016 3 Updated Table 29 22-Nov-2016 4 Added AEC-Q100 qualified in Features. Updated Table 4: ESD protection, Added Section 3.4.12: Over Current Recovery settings Updated Section 4.22: Programmable soft-start function to drive loads with higher inrush current AddedTable 18: Half bridges (OUT1, OUT4, OUT5 and OUT6) OCR timing parameters and Table 19: High-side (OUT7, OUT8 and OUT_HS) OCR timing parameters Updated Table 20: Current monitoring Updated Table 110: SR2 signals description Updated Table 124: SR11 signals description 11-Mar-2019 5 Moved “Device summary” table in cover page. Added the "Sustainable Technology" logo to the datasheet in cover page. DS11567 Rev 5 L99DZ120 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS11567 Rev 5 161/161 161
L99DZ120TR 价格&库存

很抱歉,暂时无法提供与“L99DZ120TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货