0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L99PM72GXPTR

L99PM72GXPTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    PowerSSO36

  • 描述:

    ICADVPWRMGMTSYSTEMPWRSSO36

  • 数据手册
  • 价格&库存
L99PM72GXPTR 数据手册
L99PM72GXP Advanced power management system IC with embedded LIN and high speed CAN transceiver supporting CAN Partial Networking Datasheet − production data • 5 fully protected high-side drivers with internal 4-channel PWM generator • 2 low-side drivers with active Zener clamping • 4 Internal PWM timers • 2 operational amplifiers with rail-to-rail outputs (VS) and low voltage inputs *$3*&)7 PowerSSO-36 • Temperature warning and thermal shutdown Features • Two 5 V voltage regulators for microcontroller and peripheral supply • No electrolytic capacitor required on regulator outputs • Ultra low quiescent current in standby modes • Programmable reset generator for power-on and undervoltage Applications • Automotive ECU's such as door zone and body control modules description Description • Advanced high speed CAN transceiver (ISO 11898-2/-5 and SAE J2284 compliant) with local failure and bus failure diagnosis and selective wake-up functionality according to ISO 11898-6 The L99PM72GXP is a power management system IC providing electronic control units with enhanced system power supply functionality including various standby modes as well as LIN and HS CAN physical communication layers. It contains two low drop voltage regulators to supply the system microcontroller and external peripheral loads such as sensors and provides enhanced system standby functionality with programmable local and remote wake up capability. • Complete 3 channel contact monitoring interface with programmable cyclic sense functionality In addition, five high-side drivers, two low-side drivers and two operational amplifiers increase the system integration level. • Programmable periodic system wake-up feature The ST standard SPI Interface (3.0) allows control and diagnosis of the device and enables generic software development. • Configurable window watchdog and fail safe output • LIN 2.1 compliant (SAEJ2602 compatible) transceiver • ST SPI interface for mode control and diagnosis Table 1. Device summary Order code Package PowerSSO-36 April 2014 This is information on a product in full production. Tube Tape and reel L99PM72GXP L99PM72GXPTR DocID024767 Rev 4 1/129 www.st.com Contents L99PM72GXP Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 2.2 Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Voltage regulator: V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Voltage regulator: V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Increased output current capability for voltage regulator V2 . . . . . . . . . 14 2.1.4 Voltage regulator failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.5 Voltage regulator behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Active Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 SW-Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 V1_standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.5 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.6 VBat_standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.7 Wake up from Standby Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.8 Wake up inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.9 Cyclic contact supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.10 Timer interrupt / wake-up of microcontroller by timer . . . . . . . . . . . . . . . 22 2.3 Functional overview (truth table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Configurable window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 2.5 Fail Safe Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1 Single failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.2 Multiple failures – entering forced VBat_standby Mode . . . . . . . . . . . . . . 30 2.6 Reset output (NRESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Operational amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 LIN Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.9 2/129 Change watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.8.1 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.8.2 Wake up (from LIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8.3 LIN Pull-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 High speed CAN bus transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID024767 Rev 4 L99PM72GXP 2.10 3 Contents 2.9.1 CAN transceiver operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.9.2 Sequence for enabling selective wakeup . . . . . . . . . . . . . . . . . . . . . . . 37 2.9.3 CAN error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.9.4 Wake up by CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.9.5 CAN receive only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.9.6 CAN looping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Serial Peripheral Interface (ST SPI Standard 3.0) . . . . . . . . . . . . . . . . . . 40 Protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1 Power supply fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.1 VS overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.2 VS undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Temperature warning and thermal shut-down . . . . . . . . . . . . . . . . . . . . . 44 3.3 High side driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Low side driver outputs REL1, REL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 SPI diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.4.1 5.5 PowerSSO-36 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.5.1 Supply and supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5.3 Power-on reset (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5.4 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5.5 Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.5.6 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5.7 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5.8 High side outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.5.9 Relay drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.5.10 Wake up inputs (WU1 ... WU3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 DocID024767 Rev 4 3/129 5 Contents 6 L99PM72GXP High speed CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.5.12 LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.5.13 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.5.14 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.5.15 Inputs TxDC and TxDL for Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . 73 ST SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1 6.2 4/129 5.5.11 SPI communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1.2 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.3 Global Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.4 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.5 Address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1.6 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1.7 Format of data shifted out at SDO during Write cycle . . . . . . . . . . . . . . 81 6.1.8 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.1.9 Format of data shifted out at SDO during Read cycle . . . . . . . . . . . . . . 83 6.1.10 Read and Clear Status Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.1.11 Read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2.1 Overview command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2.2 Overview control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2.3 Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2.4 Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2.5 Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.6 Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.7 Control Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2.8 Control Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2.9 Control Register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.10 Control Register 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2.11 Control Register 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.12 Control Register 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.13 Control Register 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.14 Control Register 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.15 Control Register 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.16 Control Register 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2.17 Control Register 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 DocID024767 Rev 4 L99PM72GXP 7 8 Contents 6.2.18 Control Register 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.2.19 Control Register 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.20 Control Register 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2.21 Overview status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2.22 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2.23 Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.24 Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.25 Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.26 Status Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.27 Status Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2 PowerSSO-36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 DocID024767 Rev 4 5/129 5 List of tables L99PM72GXP List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 6/129 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CAN wake-up signalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Wake up from Standby Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Functional overview (truth table). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Fail-Safe conditions and exit modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Persisting fail safe conditions and exit modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 PWM configuration for high-side outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Supply and supply monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Power-on reset (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Output (OUT_HS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Outputs (OUT1...4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Relay drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Wake-up inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 CAN communication operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 CAN transmit data input: pin TxDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 CAN receive data output: pin RxDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CAN transmitter and receiver: pins CANH and CANL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CAN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 LIN transmit data input: pin TxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 LIN receive data output: pin RxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 LIN transmitter and receiver: pin LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 LIN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 LIN pull-up: pin LINPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Operational amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Input: CSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Inputs: CLK, DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Output: DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 RXDL/NINT, RXDC/NINT timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Inputs: TxDC and TxDL for Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Command Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 DocID024767 Rev 4 L99PM72GXP Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. List of tables Write command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Write command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Write command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Format of data shifted out at SDO during write cycle: global status register . . . . . . . . . . . 81 Format of data shifted out at SDO during write cycle: data byte 1 . . . . . . . . . . . . . . . . . . . 81 Format of data shifted out at SDO during write cycle: data byte 2 . . . . . . . . . . . . . . . . . . . 81 Read command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Read command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Read command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Format of data shifted out at SDO during read cycle: global status register. . . . . . . . . . . . 83 Format of data shifted out at SDO during read cycle: data byte 1 . . . . . . . . . . . . . . . . . . . 83 Format of data shifted out at SDO during read cycle: data byte 2 . . . . . . . . . . . . . . . . . . . 83 Read and clear status command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Read and clear status command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Read and clear status command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Format of data shifted out at SDO during read and clear status: global status register . . . 84 Format of data shifted out at SDO during read and clear status: data byte 1. . . . . . . . . . . 84 Format of data shifted out at SDO during read and clear status: data byte 2. . . . . . . . . . . 84 Read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ID-header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Family identifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Silicon version identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 SPI-frame-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 SPI register: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SPI register: mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SPI register: CTRL register selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SPI register: STAT register selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Overview of control register data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Control register 1: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Control register 1, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Control register 1, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Control register 2: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Control register 2, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Control register 2, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Control register 3: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Control register 3, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Control register 3, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Control register 4: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Control register 4, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Control register 4, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Control register 5: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Control register 5, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Control register 5, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Control register 6: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Control register 6, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Control register 6, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Control register 7: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Control register 7, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Control register 7, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Control register 8: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Control register 8, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Control register 8, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DocID024767 Rev 4 7/129 8 List of tables Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. Table 133. Table 134. Table 135. Table 136. Table 137. Table 138. Table 139. Table 140. Table 141. Table 142. Table 143. Table 144. Table 145. Table 146. Table 147. Table 148. Table 149. 8/129 L99PM72GXP Control register 9: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Control register 9, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Control register 9, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Control register 10: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Control register 10, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Control register 10, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Control register 11: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Control register 11, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Control register 11, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Control register 12: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Control register 12, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Control register 12, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Control register 13: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Control register 13, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Control register 13, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Control register 14: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Control register 14, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Control register 14, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Control register 15: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Control register 15, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Control register 15, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Control register 16: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Control register 16, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Control register 16, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Control register 34: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Control register 34, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Control register 34, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Control register 35: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Control register 35, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Control register 35, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Overview of status register data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Status register 1: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Status register 1, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Status register 1, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Status register 2: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Status register 2, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Status register 2, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Status register 3: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Status register 3, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Status register 3, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Status register 4: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Status register 4, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Status register 4, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Status register 5: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Status register 5, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Status register 5, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 PowerSSO-36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 DocID024767 Rev 4 L99PM72GXP List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Voltage source with external PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Voltage source with external PNP and current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Voltage source with external NPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Voltage source with external NPN and current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Voltage regulator behaviour and diagnosis during supply voltage ramp-up / ramp-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Sequence to enter and exit SW Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Main operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Watchdog in normal operating mode (no errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Watchdog with error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Watchdog in FLASH Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Change watchdog timing within long open window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Change watchdog timing within window mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 General procedure to change watchdog timing out of Fail safe mode . . . . . . . . . . . . . . . . 28 Change watchdog timing out of Fail safe mode (Watchdog failure) . . . . . . . . . . . . . . . . . . 28 Example: exit Fail-Safe mode from Watchdog failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Master node configuration using LIN_PU (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Transceiver state diagram if selective wake-up is disabled (CR16 SW_EN = 0) . . . . . . . . 35 CAN transceiver state diagram if selective wake-up is enabled (CR16 SW_EN = 1). . . . . 36 CAN wake up capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Overvoltage and undervoltage protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Thermal shutdown protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Phase shifted PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Thermal data of PowerSSO-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 PowerSSO-36 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 PowerSSO-36 thermal resistance junction to ambient vs PCB copper area (V1 ON) . . . . 53 PowerSSO-36 thermal impedance junction to ambient vs PCB copper area (single pulse with V1 ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 PowerSSO-36 thermal fitting model (V1 ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Watchdog timing (long, early, late and safe window) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Watchdog early, late and safe windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 LIN transmit, receive timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 SPI - transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 SPI input timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SPI output timing (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 SPI CSN - output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 SPI - CSN low to high transition and global status bit access . . . . . . . . . . . . . . . . . . . . . . 76 Read configuration register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Write configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Format of data shifted out at SDO during write cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Format of data shifted out at SDO during read cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Format of data shifted out at SDO during read and clear status operation . . . . . . . . . . . . 85 PowerSSO-36 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 DocID024767 Rev 4 9/129 9 Block diagram and pin description 1 L99PM72GXP Block diagram and pin description Figure 1. Block diagram 9V /RZ6LGH P$ 2XWSXW&ODPS 7HPS3UHZDUQLQJ 6KXWGRZQ /RZ6LGH P$ 2XWSXW&ODPS 8QGHUYROWDJH 2YHUYROWDJH 6KXWGRZQ   95(* 9P$  9  9 95(* 9P$ +LJK6LGH 15HVHW P$ FKDQQHO 3:0*HQHUDWRU +LJK6LGH P$ /2*,& +LJK6LGH 7LPHU  P$ +LJK6LGH 7LPHU  P$ +LJK6LGH &61 &/. ', '2 :LQGRZ :DWFKGRJ 'DWD,')LOWHU /,1 6$(- 23 23 23BRXW 287B+6 287 287 287)62 287 :DNH8S,Q :8 :DNH8S,Q :8 :DNH8S,Q :8 %LWWLPH/RJLF +6&$1 ,62 7['B/  /,1FHUWLILHG $*1' 10/129 23 23 23BRXW 63, /,1 5['B/1,17 5(/ P$ 2VF /,138 5(/ 3*1' DocID024767 Rev 4 1& &$16XSSO\ &$1B+ &$1B/ 7['B& 5['B&1,17 ("1($'5 L99PM72GXP Block diagram and pin description Table 2. Pin definitions and functions Pin Symbol 1 AGND 2 Function Analog ground RxDC -> CAN receive data output RxDC/NINT NINT -> indicates remote CAN wake-up events in Active Mode (transceiver in TRX_STBY; CAN_ACT = 0) 3 TxDC CAN transmit data Input 4 CANH CAN high level voltage I/O 5 CANL CAN low level voltage I/O 6 N.C. 7 CANSUP CAN supply input; to allow external CAN supply from V1 or V2 regulator. 8 NRESET NRESET output to microcontroller; Internal pull-up of typ. 100 KΩ (reset state = LOW) 9 V1 Voltage regulator 1 output: 5 V supply e.g. micro controller, CAN transceiver 10 V2 Voltage regulator 2 output: 5 V supply for external loads (IR receiver, potentiometer, sensors) or CAN transceiver. V2 is protected against reverse supply. 11 TxDL 12 TBC LIN transmit data input RxDL -> LIN receive data output RxDL/NINT NINT -> indicates local/remote wake-up events except CAN wake-up in Active Mode provides a programmable timer interrupt signal 13 OP2+ Non inverting input of operational amplifier 2 14 OP2- Inverting input of operational amplifier 2 15 OP2_OUT 16 DI SPI: serial data input 17 DO SPI: serial data output 18 CLK SPI: serial clock input 19 CSN SPI: chip select not input 20…22 WU1…3 23 OP1_OUT 24 OP1- Inverting input of operational amplifier 1 25 OP1+ Non inverting input of operational amplifier 1 26 OUT4 High side driver output (7Ω, typ) 27 Output of operational amplifier 2 Wake-up Inputs 1…3: Input pins for static or cyclic monitoring of external contacts Output of operational amplifier 1 Configurable as: OUT3/FSO – High-side driver output (7Ω, typ) – Fail safe output pin (default) 28 OUT2 High side driver output (7Ω, typ) 29 OUT1 High side driver output (7Ω, typ) 30 OUT_HS High side driver (1 Ω, typ) DocID024767 Rev 4 11/129 128 Block diagram and pin description L99PM72GXP Table 2. Pin definitions and functions (continued) Pin Symbol Function 31 VS 32 LINPU 33 LIN 34 REL1 Low side driver output (2 Ω typ) 35 REL2 Low side driver output (2 Ω typ) 36 PGND Power ground (REL1/2, LIN and CAN GND), to be connected to AGND externally Power supply voltage High side driver output to switch off LIN master pull up resistor LIN bus line Figure 2. Pin connection (top view) AGND 1 36 PGND RxDC / NINT 2 35 REL2 TxDC 3 34 REL1 CANH 4 33 LIN CANL 5 32 LINPU N.C. 6 31 Vs CANSUP 7 30 OUT_HS NRESET 8 29 OUT1 28 OUT2 PowerSSO-36 V1 9 V2 10 27 OUT3/FSO TxDL 11 26 OUT4 RxDL / NINT 12 25 OP1P OP2P OP2M 13 24 OP1M 14 23 OPOUT1 OPOUT2 15 22 WU3 DI 16 21 WU2 DO 17 20 WU1 CLK 18 19 CSN TAB = AGND 12/129 DocID024767 Rev 4 L99PM72GXP Detailed description 2 Detailed description 2.1 Voltage regulators The L99PM72GXP contains two independent and fully protected low drop voltage regulators, which are designed for very fast transient response and do not require electrolytic output capacitors for stability. The output voltage is stable with ceramic load capacitors ≥ 220 nF. 2.1.1 Voltage regulator: V1 The V1 voltage regulator provides 5 V supply voltage and up to 250 mA continuous load current and is mainly intended for supply of the system microcontroller. The V1 regulator is embedded in the power management and Fail_safe functionality of the device and operates according to the selected operating mode. It can be used to supply the internal HS CAN Transceiver via the CANSUP pin externally. In case of a short circuit condition on the CAN bus, the output current of the transmitter is limited to 100 mA and the transceiver is turned off in order to ensure continued supply of the microcontroller. In addition the regulator V1 drives the L99PM72GXP internal 5 V loads. The voltage regulator is protected against overload and overtemperature. An external reverse current protection has to be provided by the application circuitry to prevent the input capacitor from being discharged by negative transients or low input voltage. Current limitation of the regulator ensures fast charge of external bypass capacitors. The output voltage is stable for ceramic load capacitors ≥ 220 nF. If the device temperature exceeds the TSD1 threshold, all outputs (OUTx, RELx, V2, LIN) are deactivated except V1. Hence the micro controller has the possibility for interaction or error logging. In case of exceeding TSD2 threshold (TSD2 > TSD1), also V1 is deactivated (see Figure 23: Thermal shutdown protection and diagnosis). A timer is started and the voltage regulator is deactivated for tTSD = 1 sec. During this time, all other wakeup sources (CAN, LIN, WU1...3 and wake up of µC by timer) are disabled. After 1 sec, the voltage regulator tries to restart automatically. If the restart fails 7 times, within one minute, without clearing and thermal shutdown condition still exists, the L99PM72GXP enters the Forced VBat_standby Mode. In case of short to GND at "V1" after initial turn on (V1 < 2 V for t > tV1 short) the L99PM72GXP enters the Forced VBat_standby Mode. Reactivation (wake-up) of the device can be achieved with signals from CAN, LIN, WU1..3 or periodic wake by timer. 2.1.2 Voltage regulator: V2 The voltage regulator V2 can supply additional 5 V loads (e.g. logic components or the integrated HS CAN transceiver or external loads such as sensors or potentiometers. The maximum continuous load current is 100 mA. The regulator is protected against: • Overload • Overtemperature • Short circuit (short to ground and battery supply voltage) • Reverse biasing DocID024767 Rev 4 13/129 128 Detailed description 2.1.3 L99PM72GXP Increased output current capability for voltage regulator V2 For applications, which require high output currents, the output current capability of the regulator can be increased my means of the integrated operational amplifiers and an external pass transistor. Figure 3. Voltage source with external PNP /30 9V 9 & 5 5 5E 23[B287  0-'& 9  &L 23[ 5 & 23[ &HP & 5 5 ("1($'5 Figure 4. Voltage source with external PNP and current limitation /30 9V 9 5 & 5 %& 5 5E 23[B287  0-'& 9  &L 23[ 5 & 23[ &HP 5 & 5 ("1($'5 Figure 3 shows a possible configuration with a PNP pass element using Voltage Regulator 2 to provide the voltage reference for the regulated output voltage V3. The VS operating range for this circuit is 5.5 V to 18 V. It is important respect the input common mode range specified for the operational amplifiers. The output voltage V3 can be calculated using the following formula (for R3 = R4): V2 R 1 + R2 V 3 = ------- ⋅ --------------------- [ V ] R2 2 14/129 DocID024767 Rev 4 L99PM72GXP Detailed description The circuit in Figure 4 provides additional current limitation using an additional PNP transistor and R6, which allows setting the current limit. Figure 5. Voltage source with external NPN /30 9V 9 & 5 23[B287  0-'&  &L 9 5 23[ & 23[ & 5 &HP 5 ("1($'5 Figure 6. Voltage source with external NPN and current limitation /30 9V 9 & 5 23[B287  0-'&  %& &L 5 23[ 9 5 23[ & &HP 5 & 5 ("1($'5 Figure 5 shows a possible configuration with an NPN pass element using Voltage Regulator 2 to provide the voltage reference for the regulated output voltage V3. This circuit requires fewer components compared to the configuration in Figure 3 but has a limited VS operating range (6 V to 18 V). The output voltage V3 can be calculated using the following formula (for R3 = R4): V2 R 1 + R2 V 3 = ------- ⋅ --------------------- [ V ] R2 2 The circuit in Figure 6 provides additional current limitation using an additional NPN transistor and R5 which allows setting the current limit. DocID024767 Rev 4 15/129 128 Detailed description L99PM72GXP Alternatively, Voltage Regulator 1 can be used to provide the 5 V reference for this topology. However, the additional current consumption through R3 and R4 has to be considered in V1_standby Mode. 2.1.4 Voltage regulator failure The V1 and V2 regulator output voltages are monitored. In case of a drop below the V1, V2 - fail thresholds (V1,2 < 2 V, typ for t > 2 µs), the V1,2 -fail bits are latched. The fail bits can be cleared by a dedicated SPI command. Short to ground detection If 4 ms after turn on of the regulator the V1,2 voltage is below the V1,2 fail thresholds, (independent for V1,2), the L99PM72GXP identifies a short circuit condition at the related regulator output and the regulator are switched off. In case of V1 short to GND failure the device enters VBat_standby mode automatically. Bits Forced VBAT TSD2/SHTV1 and V1_fail were set. In case of a V2 short to GND failure the V2 short and V2 fail bit is set. If the output voltage of the corresponding regulator once exceeded the V1,2_fail thresholds the short to ground detection is disabled. If a short to ground condition occurs the regulator outputs switch of due to Thermal shutdown (V1 at TSD2; V2 at TSD1). 16/129 DocID024767 Rev 4 L99PM72GXP 2.1.5 Detailed description Voltage regulator behavior Figure 7. Voltage regulator behaviour and diagnosis during supply voltage ramp-up / ramp-down conditions 6SHFLILFDWLRQ3DUDPHWHUV WXY 9XQGHUYROWDJHILOWHUWLPH WYIDLO 9IDLOILOWHUWLPH W YVKRUW 9VKRUWILOWHUWLPH W55 5HVHWSXOVHUHDFWLRQWLPH WUG 5HVHWSXOVHGXUDWLRQ 9 V89  9VXQGHUYROWDJHWKUHVKROG 9 SRU 9VSRZHU  RQUHVHWWKUHVKROG 9 UWK  9UHVHWWKUHVKROG 9 IDLO 9IDLOWKUHVKROG 9V >9@  9 1 9 '3 9 689 +LJK=*URXQGHG 9 325 3RZHURQ 5HVHWWKUHVKROG 9 $%6PLQ &RQWURO5HJLVWHUVDUHVHWWRGHIDXOW YDOXHV &ROG6WDUWELWLVVHW 9 >9@ WWXY W!WXY W!WYIDLO 9 VXY ELWLVWVHW XV W!WXY 9 1 9 57+ 9 IDLO 1R5HVHWJHQHUDWHG 1UHVHW>9@ ,IW!WYVKRUW 9VKRUWGHWHFWHG Î 9EDWWVWDQGE\ 9 IDLO ELWLVVHW WUG WUG +LJK W55 W55 /RZ 5HDG &OHDU)62%LW 'LVDEOHG )DLO6DIH2XWSXW 'LVDEOHG ,QDFWLYH $FWLYH ,QDFWLYH &RQWURO5HJLVWHUVDUHVHWWRGHIDXOWYDOXHV 2.2 $*9 Operating modes The L99PM72GXP can be operated in 4 different operating modes: • Active • FLASH • V1_standby • VBat_standby A cyclic monitoring of wake-up inputs and a periodic interrupt / wake-up by timer is available in standby modes. 2.2.1 Active Mode All functions are available and the device is controlled by the ST SPI Interface. 2.2.2 Flash Mode To program the system microcontroller via LIN or HS CAN bus signals, the device can be operated in LIN Flash Mode or CAN Flash Mode where the internal watchdog is disabled. DocID024767 Rev 4 17/129 128 Detailed description L99PM72GXP All other device features in Flash Mode are available as in Active Mode. CAN Transmitter and CAN Receiver are enabled in CAN Flash Mode by default. A transition from Flash Modes to V1_standby or Vbat_standby is not possible. The modes can be entered by applying an external voltage at the respective pin: • VTxDL > Vflash (CAN Flash Mode) • VTxDC > Vflash (LIN Flash Mode) At exit from Flash Modes (VTxD < Vflash) no NRESET pulse is generated and the watchdog starts with a long open window. Note: Setting both TxDL and TxDC to high voltage levels (> Vflash) is not allowed Communication at the respective TxD pin is not possible 2.2.3 SW-Debug Mode To allow software debugging, the watchdog can be deactivated by setting CR34: WDEN = 0. Write access to this bit is only possible during CAN Flash Mode in order to prevent accidental deactivation of the watchdog. After setting the WDEN bit the CAN Flash Mode can be left (VTxDL < VFlash) and the Watchdog remains deactivated (see Figure 8) In SW-Debug Mode, the full device functionality is available. Figure 8. Sequence to enter and exit SW Debug Mode 2SHUDWLQJ 0RGH $FWLYH )ODVK $FWLYH )ODVK $FWLYH 9 7['/ /,1&RPPXQLFDWLRQ 9 :ULWH&5 :'(1  :ULWH&5 :'(1  63,&61 :'DFWLYH ZLWK:'(1  :'LQDFWLYH ("1($'5 2.2.4 V1_standby mode The transition from Active Mode to V1_standby mode is controlled by SPI. To supply the micro controller in a low power mode, the voltage regulator 1 (V1) remains active. In order to reduce the current consumption, the regulator goes in low current mode as soon as the supply current of the microcontroller goes below the ICMP current threshold. At this transition, the L99PM72GXP also deactivates the internal watchdog. Relay outputs, LIN and CAN Transmitters are switched off in V1_standby Mode. High side outputs and the V2 regulator remain in the configuration programmed prior to the standby command. 18/129 DocID024767 Rev 4 L99PM72GXP Detailed description A cyclic supply of external contacts and a synchronized monitoring of the contact state can be activated and configured by SPI. In V1_standby mode various wake-up sources can be individually programmed. Each wakeup event puts the device into Active Mode and forces the RxDL/NINT pin to a low level indicating the wake-up condition to the microcontroller. After Power ON Reset (POR) all wake up sources are activated by default except the periodic interrupt / wake timer. With the interrupt timer the micro controller can be forced from 'stop' to 'run' after a programmable period. The RxDL/NINT pin is forced low after the timer is elapsed. The L99PM72GXP enters active mode and is awaiting a valid watchdog trigger. Both internal timers can be used for this feature. The interrupt timer (TINT) at pin RxDL/NINT is only available in V1_standby mode. Note: Inputs TxDL, TxDC must be at recessive (high) level and CSN must be at high level or at high impedance in order to achieve minimum standby current in V1_standby Mode. Inputs DI and CLK must be at GND or at high impedance to achieve minimum standby current in V1_standby Mode. 2.2.5 Interrupt The interrupt signal (linked to RxDL/NINT) indicates a wake-up event from V1_standby mode. In case of a wake-up by Wake-up Inputs, activity on LIN or CAN, SPI access or TimerInterrupt the RxDL/NINT pin is pulled low for t = tinterrupt. If the CAN transceiver is deactivated during Active Mode (CAN_ACT = 0), a WUP (SWEN = 0) or a WUF (SWEN = 1) generates an interrupt at RxDC/NINT to signalize CAN communication on the bus to the microcontroller. In case of a CAN communication timeout an interrupt at RxDC /NINT is generated and the CAN_TO flag is set. In case of V1_standby mode and (IV1 > ICMP), the device remains in standby mode, the V1 regulator switches to high current mode and the watchdog starts. No Interrupt signal is generated. Table 3. CAN wake-up signalization Operating mode Event Wake-up transition to active WUP or WUF(1) Not applicable Active CAN timeout Status flag Interrupt Transceiver state Wake_CAN WUP or WUP/WUF RxDC TRX_STBY CAN_TO RxDC TRX_STBY WUP or WUF(1) Yes Wake_CAN WUP or WUP/WUF RxDL TRX_STBY CAN timeout No CAN_TO RxDC TRX_STBY V1_standby DocID024767 Rev 4 19/129 128 Detailed description L99PM72GXP Table 3. CAN wake-up signalization (continued) Operating mode Event Wake-up transition to active Status flag Interrupt Transceiver state WUP or WUP/WUF(2) Yes Wake_CAN WUP/WUF Not applicable TRX_STBY CAN timeout Transition to TRX_SLEEP CAN_TO Vbat_standby TRX_SLEEP 1. SW_EN = 0: — wake-up according ISO 11898-5 (WUP) — Flags: Wake_CAN, WUP SW_EN = 1: — wake-up according ISO 11898-6 (on WUP/WUF combination) — Flags: Wake_CAN, WUP, WUF (the WUP flag is set only if the received WUF also contained a WUP) 2. SW_EN = 0: — wake-up according ISO 11898-5 (on WUP) — Flags: Wake_CAN, WUP SW_EN = 1: — wake-up according ISO 11898-6 (on WUP/WUF combination) — After the reception of a wake-up pattern (WUP) the CAN Enhanced Voltage Biasing is turned on until a CAN timeout is detected — Flags: Wake_CAN, WUP, WUF 2.2.6 VBat_standby mode The transition from Active Mode to VBat_standby mode is initiated by an SPI command. In VBat_standby Mode, the V1 voltage regulator, relay outputs, LIN and CAN Transmitters are switched off. High side Outputs and the V2 Regulator remain in the configuration programmed prior to the standby command. In VBat_standby mode the current consumption of the L99PM72GXP is reduced to a minimum level. An NRESET pulse is generated upon wake-up from Vbat_standby Mode. Note: Inputs TXDL, TXDC and CSN must be terminated to GND in Vbat_standby to achieve minimum standby current. This can be achieved with the internal ESD protection diodes of the microcontroller (microcontroller is not supplied in this mode; V1 is pulled to GND). 2.2.7 Wake up from Standby Modes A wake-up from standby mode switches the device to active mode. This can be initiated by one or more of the following events: Table 4. Wake up from Standby Modes Wake up source 20/129 Description LIN bus activity Can be disabled by SPI CAN bus activity Can be disabled by SPI Selective Wake-up can be configured by SPI Level change of WU1 - 3 Can be individually configured or disabled by SPI DocID024767 Rev 4 L99PM72GXP Detailed description Table 4. Wake up from Standby Modes (continued) Wake up source IV1 > ICMP Description Device remains in V1_standby mode but watchdog is enabled (If ICMP = 0) and the V1 regulator goes into High Current Mode (Increased Current Consumption). No interrupt is generated. programmable by SPI – V1_standby Mode: device wakes up and Interrupt signal is generated at Timer Interrupt / RxDL/NINT when programmable timeout has elapsed Wake up of µC by TIMER – VBat_standby Mode: device wakes up, V1 regulator is turned on and NRESET signal is generated when programmable timeout has elapsed SPI Access Always active (except in VBat_standby mode) Wake up event: CSN is low and first rising edge on CLK To prevent the system from a deadlock condition (no wake up possible) a configuration where the periodic timer interrupt and wake up by LIN and HS CAN are disabled, is not allowed. The default configuration is entered for all wake-up sources in case of such an invalid setting. All wake-up events from V1_standby mode (except IV1 > ICMP) are indicated to the microcontroller by a low-pulse (duration: 56 µs) at RxDL/NINT or RxDC/NINT (see Table 3: CAN wake-up signalization) Wake-up from V1_standby by SPI Access might be used to check the interrupt service handler. 2.2.8 Wake up inputs The de-bounced digital inputs WU1...WU3 can be used to wake up the L99PM72GXP from standby modes. These inputs are sensitive to any level transition (positive and negative edge) For static contact monitoring, a filter time of 64µs is implemented at WU1-3. The filter is started when the input voltage passes the specified threshold. In addition to the continuous sensing (static contact monitoring) at the wake up inputs, a cyclic sense functionality is implemented. This feature allows periodical activation of the wake-up inputs to read the status of the external contacts. The periodical activation can be linked to Timer 1 or Timer 2 (see Section 2.2.9). The input signal is filtered with a filter time of 16 µs after a programmable delay (80 µs or 800 µs) according to the configured Timer On-time. A wake-up is processed if the status has changed versus the previous cycle. The Outputs OUT_HS and OUT1-4 can be used to supply the external contacts with the timer setting according to the cyclic monitoring of the wake-up inputs. If the wake-up inputs are configured for cyclic sense mode the input filter timing and input filter delay (WUx_filt in control register 2) must correspond to the setting of the High Side Output which supplies the external contact switches (OUTx in control register 0). In Standby Mode, the inputs WU1-3 are SPI configurable for pull-up or pull-down current source configuration according to the setup of the external. In active mode the inputs have a pull down resistor. In Active Mode, the input status can be read by SPI (Status Register 2). Static sense should be configured (Control Register 2) before the read operation is started (In cyclic sense DocID024767 Rev 4 21/129 128 Detailed description L99PM72GXP configuration, the input status is updated according to the cyclic sense timing; therefore, reading the input status in this mode may not reflect the actual status). 2.2.9 Cyclic contact supply In V1_standby and VBat_standby modes, any high side driver output (OUT1..4, OUTHS) can be used to periodically supply external contacts. The timing is selectable by SPI Timer 1: period is X s. The on-time is 10 ms resp. 20 ms: with X ∈ {1, 2, 3, 4s} Timer 2: period is X ms. The on-time is 100 µs resp. 1 ms: with X ∈ {10, 20, 50, 200 ms} Timer 1 and Timer 2 are re-started with every valid write command to CR3 (CSN low to high transition). The timers start with the off-phase. 2.2.10 Timer interrupt / wake-up of microcontroller by timer During standby modes the cyclic wake up feature, configured via SPI, allows waking up the µC after a programmable timeout according to timer1 or timer 2. From V1_standby mode, the L99PM72GXP wakes up (after the selected timer has elapsed) and sends an interrupt signal (via RxDL/NINT pin) to the µC. The device enters active mode and the watchdog is started with a long open window. The microcontroller can send the device back into V1_standby after finishing its tasks. From Vbat_standby mode, the L99PM72GXP wakes up (after the selected timer has elapsed), turns on the V1 regulator and provides an NRESET signal to the µC. The device enters active mode and the watchdog is started with a long open window. The microcontroller can send the device back into Vbat_standby after finishing its tasks. 2.3 Functional overview (truth table) Table 5. Functional overview (truth table) Operating modes Function Comments Active Mode VBat_standby static mode (cyclic sense) (cyclic sense) (1) Voltage regulator, V1 VOUT=5V On Voltage regulator, V2 VOUT=5V On/ Off(2) On(2) / Off On(2) / Off On On Off On Off (ON: IV1 > ICMPthreshold and ICMP = 0) Off Off Active(3) Active(3) On / Off On(2) / Off On(2) / Off On Off Off Reset generator Window watchdog V1 monitor Wake up HS-cyclic supply Relay driver 22/129 V1_standby static mode Oscillator time base DocID024767 Rev 4 On Off L99PM72GXP Detailed description Table 5. Functional overview (truth table) (continued) Operating modes V1_standby static mode VBat_standby static mode (cyclic sense) (cyclic sense) On Off Off On Off(4) Off(4) On / Off(5) Off(4) Off(4) OUT3/FSO OFF (6) OUT3/FSO OFF(6) OUT3/FSO OFF(6) Oscillator On Off(7) Off(7) VS-Monitor On (8) (8) Function Comments Active Mode Operational amplifiers LIN LIN 2.1 HS_CAN FSO (if configured by SPI), active by default Fail safe output 1. Supply the processor in low current mode. 2. Only active when selected via SPI. 3. Unless disabled by SPI 4. The bus state is internally stored when going to standby mode. A change of bus state leads to a wake-up after exceeding of internal filter time (if wake-up by LIN or CAN is not disabled by SPI). Selective Wake functionality if enabled by SPI 5. After power-on, the HS CAN transceiver is in ‘CAN Trx Standby’ Mode. It is activated by SPI command (CAN_ACT = 1) 6. ON in Failsafe Condition: If Standby mode is entered with active Fail Safe mode, the output remains ON in Standby mode. 7. ON, if cyclic sense is enabled. 8. Cyclic activation = pulsed ON during cyclic sense DocID024767 Rev 4 23/129 128 Detailed description L99PM72GXP Figure 9. Main operating modes 9V!9SRU 9EDWVWDUWXS $OOUHJLVWHUV 6HWWRGHIDXOW &KLS5HVHWELW *65ELW  DFWLYH 97;'/!9IODVK 25 97;'&!9IODVK )ODVK0RGH :DWFKGRJ2)) 97;'/9IODVK $1' 97;'&9IODVK $FWLYH 0RGH 97;'/!9IODVK 25 97;'&!9IODVK 63,FRPPDQG 25 [7KHUPDO6KXWGRZQ 25 9VKRUWWR*1' 99IRUPVDIWHUVZLWFK21  25 [:')DLOXUH 921 5HVHW*HQHUDWRUDFWLYH :DWFKGRJDFWLYH :DNHXS (YHQW 97;'/!9IODVK 25 97;'&!9IODVK 96WDQGE\ 0RGH 9EDW6WDQGE\ 0RGH 92)) 5HVHW*HQHUDWRU2)) 1UHVHW ORZ :DWFKGRJ2)) 63,FRPPDQG :DNHXS (YHQW [7KHUPDO6KXWGRZQ76' 25 [:'IDLO 921 5HVHW*HQHUDWRUDFWLYH :DWFKGRJ 2)) LI,Y,FPSRU,&03  $*9 2.4 Configurable window watchdog During normal operation, the watchdog monitors the micro controller within a programmable trigger cycle: (10 ms, 50 ms, 100 ms, 200 ms) In VBat_standby and Flash program modes, the watchdog circuit is automatically disabled. In V1_standby mode a wake up by timer is programmable in order to wake up the µC (see Section 2.2.10). After wake-up, the Watchdog starts with a long open window. After serving the watchdog, the microcontroller may send the device back to V1_standby mode. After power-on or Standby mode, the watchdog is started with a long open window (65 ms nominal). The long open window allows the micro controller to run its own setup and then to trigger the watchdog via the SPI. The trigger is processed when the CSN input becomes HIGH after the transmission of the SPI word. Writing '1' to the watchdog trigger bit terminates the long open window and start the window watchdog (the timing is programmable by SPI). Subsequently, the micro controller has to 24/129 DocID024767 Rev 4 L99PM72GXP Detailed description serve the watchdog by alternating the watchdog trigger bit within the safe trigger area (refer to Figure 32). A correct watchdog trigger signal immediately starts the next cycle. After 8 watchdog failures in sequence, the V1 regulator is switched off for 200 ms. If subsequently, 7 additional watchdog failures occur, the V1 regulator is completely turned off and the device goes into VBat_standby mode until a wakeup occurs. In case of a Watchdog failure, the outputs (RELx, OUTx, V2) are switched off and the device enters Fail_safe mode (i. e. all control registers are set to default values except the 'OUT3 control bit'). The following diagrams illustrate the Watchdog behavior of the L99PM72GXP. The diagrams are split into 3 parts. First diagram shows the functional behavior of the watchdog without any error. The second diagram covers the behavior covering all the error conditions, which can affect the watchdog behavior. Third diagram shows the transition in and out of FLASH mode. All 3 diagrams can be overlapped to get all the possible state transitions under all circumstances. For a better readability, they were split in normal operating, operating with errors and flash mode. Figure 10. Watchdog in normal operating mode (no errors) 96WE\$1', 9 !,&03 $FWLYHPRGH ORQJ RSHQ ZLQGRZ :DNHXS$1'9!9UVWWKU 9!9UVWWKU 96WE\$1', 9 ,&03 75,* Ã 7$ 2)) 9%$76WDQGE\ 96WDQGE\ JR6WDQGE\ SURSSHUWULJJHULQ :LQGRZ 0RGH JR6WDQGE\ :LQGRZPRGH $FWLYHPRGH ("1($'5 DocID024767 Rev 4 25/129 128 Detailed description L99PM72GXP Figure 11. Watchdog with error conditions :'IDLO 76' ORQJ RSHQ ZLQGRZ $FWLYHPRGH 9!9UWK SURSSHUWULJJHULQ IRUFHG9%$7 99UWK :'IDLO 76' 75,* Ã :' 2)) 9%$76WDQGE\ 96WDQGE\ , 9 ,&03 99UWK :LQGRZ 0RGH :LQGRZPRGH IRUFHG9%$7[:'IDLO [76' 6KRUW9 $FWLYHPRGH $*9 Figure 12. Watchdog in FLASH Mode $FWLYHPRGH ORQJ RSHQ ZLQGRZ ([LW)/$6+PRGH )/$6+PRGH $FWLYHPRGH :LQGRZ 0RGH :' 2)) )/$6+PRGH )/$6+PRGH $*9 2.4.1 Change watchdog timing There are 4 programmable Watchdog timings available, which represent the nominal trigger time in window mode. To change the watchdog timing, a new timing has to be written by SPI. The new timing gets active with the next valid watchdog trigger. The following figures illustrate the sequence, which is recommended to use, changing the timing within long open window and within window mode. 26/129 DocID024767 Rev 4 L99PM72GXP Detailed description Figure 13. Change watchdog timing within long open window :DWFKGRJ 0RGH ZLQGRZPRGH >WLPLQJDVSURJUDPPHGLQSUHYLRXV63,FRPPDQGHJPV@ ORQJRSHQZLQGRZ :'WLPLQJ>HJPV@  &61 63, &RPPDQG ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ  UHDGRSHUDWLRQ &WUO5HJ 63, )HHGEDFN )HHGEDFN )62  ZULWHRSHUDWLRQDFFHSWHG )HHGEDFN FKHFN)62  FKDQJHWLPLQJIRU:' )HHGEDFN FKHFN)62  FKHFN:'WLPH ZULWHRSHUDWLRQ &WUO5HJ7ULJ  $*9 Figure 14. Change watchdog timing within window mode :DWFKGRJ 0RGH ZLQGRZPRGH>PV@ ZLQGRZPRGH>PV@ :'WLPH>PV@  &61 63, &RPPDQG 63, )HHGEDFN :'WLPH>PV@ ZULWHRSHUDWLRQ &WUO5HJSURSHUWULJJHU  ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJSURSHUWULJJHU UHDGRSHUDWLRQ &WUO5HJ )HHGEDFN )62  ZULWHRSHUDWLRQDFFHSWHG )HHGEDFN FKHFN)62  FKDQJHWLPLQJIRU:' )HHGEDFN FKHFN)62  FKHFN:'WLPH ZULWHRSHUDWLRQ &WUO5HJSURSSHUWULJJHU $*9 If the device is in Fail_safe mode, the Control Registers are locked for writing. To change the watchdog timing out of Fail_safe mode, first the Fail_safe condition must be solved, respective confirmed from the microcontroller. Afterwards the new watchdog timing can be programmed using the sequence from Figure 15. Since the actions to remove, a Fail_safe condition can differ from the root cause of the fail safe the following diagram shows the general procedure how to change the watchdog timing out of Fail_safe mode. Figure 16 shows the procedure to change watchdog timing with a previous watchdog failure, since this is a special Fail_safe scenario. DocID024767 Rev 4 27/129 128 Detailed description L99PM72GXP Figure 15. General procedure to change watchdog timing out of Fail safe mode )DLO6DIH0RGHDFWLYH :DWFKGRJ 0RGH )DLO6DIH0RGHLQDFWLYH ZLQGRZPRGH >WLPLQJDVSURJUDPPHGLQSUHYLRXV63,FRPPDQGHJPV@ ORQJRSHQZLQGRZ :'WLPH>HJPV@  &61 63, &RPPDQG ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ  UHDGRSHUDWLRQ &WUO5HJ 63, )HHGEDFN )HHGEDFN )62  ZULWHRSHUDWLRQDFFHSWHG )HHGEDFN FKHFN)62  FKDQJHWLPLQJIRU:' )HHGEDFN FKHFN)62  FKHFN:'WLPH $FWLRQVWRH[LW )DLOVDIH0RGH ZULWHRSHUDWLRQ &WUO5HJ7ULJ  3URFHGXUHWR:ULWHQHZ:DWFKGRJWLPLQJ $*9 Figure 16. Change watchdog timing out of Fail safe mode (Watchdog failure) &KDQJH:DWFKGRJWLPLQJRXWRI)DLO6DIH0RGH 6SHFLDO&DVH)DLO6DIH0RGHEHFDXVHRI:DWFKGRJIDLO )DLO6DIH0RGHDFWLYH :DWFKGRJ 0RGH )DLO6DIH0RGHLQDFWLYH ORQJRSHQZLQGRZ ZLQGRZPRGH >WLPLQJDVSURJUDPPHGLQSUHYLRXV63,FRPPDQGHJPV@ ZLQGRZPRGH>PV@ :'WLPH>PV@ :'WLPH>HJPV@  &61 63, &RPPDQG ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ 63, )HHGEDFN )HHGEDFN )62  ZULWHRSHUDWLRQEORFNHG  ZULWHRSHUDWLRQ &WUO5HJ7ULJ  5HDG*65 ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ  UHDGRSHUDWLRQ &WUO5HJ )HHGEDFN )62  SURYLGHSURSSHUWULJJHU )HHGEDFN FKHFN)62  )HHGEDFN )62  ZULWHRSHUDWLRQDFFHSWHG )HHGEDFN FKHFN)62  FKDQJHWLPLQJIRU:' )HHGEDFN FKHFN)62  FKHFN:'WLPH $FWLRQVWRH[LW )DLOVDIH0RGH 3URFHGXUHWR:ULWHQHZ:DWFKGRJWLPLQJ 2.5 Fail Safe Mode 2.5.1 Single failures L99PM72GXP enters Fail Safe Mode in case of: • Watchdog failure • V1 turn on failure – • V1 undervoltage (V1 < VRTH for t > tUV1) • Thermal Shutdown TSD2 • SPI failure – 28/129 V1 short (V1 < V1fail for t > tV1short) DI stuck to GND or VCC (SPI frame = ’00 00 00’ or ‘FF FF FF’) DocID024767 Rev 4 ZULWHRSHUDWLRQ &WUO5HJSURSHUWULJHU *$3*&)7 L99PM72GXP Detailed description The Fail Safe functionality is also available in V1_standby Mode. During V1_standby Mode the Fail Safe Mode is entered in the following cases: • V1 undervoltage (V1 < VRTH for t > tUV1) • Watchdog failure (if watchdog still running due to IV1 > ICMP) • Thermal shutdown TSD2 In Fail Safe Mode the L99PM72GXP returns to a default. The Fail Safe condition is indicated to the remaining system in the Global Status Register. The conditions during Fails Safe Mode are: • All outputs are turned off • All Control Registers are set to default values (except OUT3/FSO configuration) – This includes the programmed wake-up-frame. Therefore it is mandatory to reprogram the wake-up-frame before entering the selective wake-up mode after a Fail_safe event(a) • Write operations to Control Registers are blocked until the Fail Safe condition is cleared (see Table 6) • LIN and HS CAN transmitter, operational amplifiers and SPI remain on • Corresponding Failure Bits in Status Registers are set. • FSO Bit (Bit 0 Global Status Register) is set • OUT3/FSO is activated if configured as Fail Safe Output If OUT3 is configured as FSO, the internal Fail-Safe Mode can be monitored at OUT3 (High side driver is turned on in Fail-safe Mode). Self-protection features for OUT3 when configured as FSO are active (See Section 3.3: High side driver outputs) OUT3 is configured as Fail Safe Output by default. It can be configured to normal high side driver operation by SPI. It this case, the configuration remains until VS Power On. If the Fail Safe Mode was entered it keeps active until the Fail safe condition is removed and the Fail Safe was read by SPI. Depending on the root cause of the Fail Safe operation, the actions to exit Fail safe Mode are as shown in the following table. Table 6. Fail-Safe conditions and exit modes Failure source µC (oscillator) Failure condition Diagnosis Exit from Fail_safe Mode Watchdog early write failure or expired window Fail_safe = 1; WDfail = n + 1 Short at turn-on Fail_safe = 1; Read & Clear SR3 after Forced_Sleep_TSD2_SHTV1 = 1 wake Undervoltage Fail_safe = 1; V1_fail = 1 (1) V1 TRIG = 1 during LOWi and read Fail_safe bit V1 > VRTH Read Fail_safe bit a. Even though it is still possible after a Fail_safe event to enter the selective-wake-up mode, the device wakes only up with the default values of the configuration register (see Section 6.2.2: Overview control register). DocID024767 Rev 4 29/129 128 Detailed description L99PM72GXP Table 6. Fail-Safe conditions and exit modes (continued) Failure source Failure condition Diagnosis Exit from Fail_safe Mode Temperature Tj > TSD2 Fail_safe = 1; TW = 1; TSD1 = 1; TSD2 = 1 Tj < TSD2 Read & Clear SR3 SPI DI short to GND or VCC Fail_safe = 1 Valid SPI command 1. If V1 < V1_Fail (for t > tv1fail) The Fail_safe Bit is located in the Global Status Register (Bit 0) Figure 17. Example: exit Fail-Safe mode from Watchdog failure ([LW)DLO6DIH0RGH :DWFKGRJIDLO :DWFKGRJ 0RGH )DLO6DIH0RGHDFWLYH )DLO6DIH0RGHLQDFWLYH ORQJRSHQZLQGRZ ZLQGRZPRGH &61 63, &RPPDQG ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ  5HDG*65 63, )HHGEDFN )HHGEDFN )62  ZULWHRSHUDWLRQEORFNHG )HHGEDFN )62  SURYLGHSURSSHUWULJJHU )HHGEDFN FKHFN)62  *$3*&)7 2.5.2 Multiple failures – entering forced VBat_standby Mode If the Fail-Safe condition persists and all attempts to return to normal system operation fail, the L99PM72GXP enters the Forced Vbat_standby Mode in order to prevent damage to the system. The Forced Vbat_standby Mode can be terminated by any regular wake-up event. The root cause of the Forced Vbat_standby is indicated in the SPI Status Registers The forced Vbat_standby Mode is entered in case of: 30/129 • Multiple watchdog failures: forced sleep WD = 1 (15 x watchdog failure) • Multiple thermal shutdown 2: forced sleep TSD2/SHTV1 = 1 (7 x TSD2) • V1 short at turn-on: forced sleep TSD2/SHTV1 = 1 (V1 < V1_Fail for t > tv1fail) DocID024767 Rev 4 L99PM72GXP Detailed description Table 7. Persisting fail safe conditions and exit modes Failure source Failure condition µC (oscillator) V1 Temperature 2.6 Diagnosis Exit from Fail_safe Mode Wake-up TRIG = 1 during LOWi Read & Clear SR3 15 consecutive watchdog failures Fail_safe = 1; Forced_Sleep_WD = 1 short at turn-on Fail_safe = 1; Read & Clear SR3 after Forced_Sleep_TSD2_SHTV1 = 1 wake-up 7 times TSD2 Fail_safe = 1; TW = 1; TSD1 = 1; Read & Clear SR3 after TSD2 = 1; wake-up Forced_Sleep_TSD2_SHTV1=1 Reset output (NRESET) If V1 is turned on and the voltage exceeds the V1 reset threshold, the reset output “NRESET” is pulled up by internal pull up resistor to V1 voltage after a reset delay time (trd). This is necessary for a defined start of the micro controller when the application is switched on. Since the NRESET output is realized as an open drain output it is also possible to connect an external NRESET open drain NRESET source to the output. As soon as the NRESET is released by the L99PM72 the Watchdog timing starts with a long open window. A reset pulse is generated in case of: 2.7 • V1 drops below VRTH (configurable by SPI) for t > tUV1 • watchdog failure • turn-on of the V1 regulator (VS power-on or wake-up from Vbat_standby mode) Operational amplifiers The operational amplifiers are especially designed to be used for sensing and amplifying the voltage drop across ground connected shunt resistors. Therefore the input common mode range includes -0.2 V to 3V. The operational amplifiers are designed for -0.2 V to 3 V input voltage swing and rail-to-rail output voltage range. All pins (positive, negative and outputs) are available to be able to operate in non-inverting and inverting mode. Both operational amplifiers are on-chip compensated for stability over the whole operating range within the defined load impedance. The Operational Amplifiers may also be used to setup an additional high current voltage source with an external pass element. Refer to Section 2.1.3 for a detailed description. DocID024767 Rev 4 31/129 128 Detailed description 2.8 L99PM72GXP LIN Bus Interface Features: • Speed communication up to 20kbit/s. • LIN 2.1 compliant (SAEJ2602 compatible) transceiver. • GND disconnection fail safe at module level. • Off mode: does not disturb network. • GND shift operation at system level. • Micro controller Interface with CMOS compatible I/O pins. • Internal Pull-up resistor • Internal High Side Switch to disconnect Master Pull-up resistor in case of short circuit of bus signal (b) • ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2 • Matched output slopes and propagation delay In order to further reduce the current consumption in standby mode, the integrated LIN bus interface offers an ultra low current consumption. 2.8.1 Error handling The L99PM72GXP provides the following three error handling features which are not described in the LIN Spec. V2.1, but are realized in different stand alone LIN transceivers / micro controllers to switch the application back to normal operation mode. At VS > VPOR (i.e. VS power-on reset threshold), the LIN transceiver is enabled. The LIN transmitter is disabled in case of the following errors: • Dominant TxDL time out • LIN permanent recessive • Thermal Shutdown 1 • VS Over- / Undervoltage The LIN receiver is not disabled in case of any failure condition. Dominant TxDL time out If TXDL is in dominant state (low) for more than 12 ms (typ) the transmitter is disabled, the status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. This feature can be disabled via SPI. Permanent recessive If TXDL changes to dominant (low) state but RXDL signal does not follow within 40 µs the transmitter is disabled, the status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. b. Use of the Master Pull-up switch is optional. 32/129 DocID024767 Rev 4 L99PM72GXP Detailed description Permanent dominant If the bus state is dominant (low) for more than 12 ms a permanent dominant status is detected. The status bit is latched and can be read and optionally cleared by SPI. The transmitter is not disabled. 2.8.2 Wake up (from LIN) In standby mode the L99PM72GXP can receive a wake up from LIN bus. For the wake up feature the L99PM72GXP logic differentiates two different conditions. Normal wake up Normal wake up can occur when the LIN transceiver was set in standby mode while LIN was in recessive (high) state. A dominant level at LIN for tlinbus, switches the L99PM72GXP to active mode. Wake up from short to GND condition If the LIN transceiver was set in standby mode while LIN was in dominant (low) state, recessive level at LIN for tlinbus, switchs the L99PM72GXP to active mode. Note: A wake up caused by a message on the bus starts the voltage regulator and the microcontroller to switch the application back to normal operation mode. 2.8.3 LIN Pull-Up The master node pull-up resistor (1 kΩ) can be connected to VS using the internal LIN_PU high side switch. This high side switch can be controlled by SPI in order to allow disconnection of the pull-up resistor in case of LIN bus short to GND conditions. Figure 18. Master node configuration using LIN_PU (optional) 9V /,1 FRQWURO 76: CONTROL /,138 N /,1 N 0DVWHUQRGH SXOOXS *QG $*9 DocID024767 Rev 4 33/129 128 Detailed description L99PM72GXP LIN_PU high side driver characteristics: 2.9 • Activated by default and can be turned off by SPI Command (CR4) • remains active in standby modes • Switch off only in case of over-temperature (TSD2 = thermal shut down #2) • no over current protection. • Typical RDS(on), 10 Ω High speed CAN bus transceiver General requirements: • Communication Speed up to 1Mbit/s. • ISO 11898-2 and ISO 11898-5 compliant • Selective wake-up functionality according to ISO 11898-6 • Non-selective wake-up functionality according to ISO 11898-5 • SAE J2284 compliant • Function range from -27 V to 40 V DC at CAN pins. • GND disconnection fail safe at module level. • GND shift operation at system level. • Microcontroller Interface with CMOS compatible I/O pins. • ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2 • Matched output slopes and propagation delay • Receive-only mode available For further reducing the current consumption in standby mode, the integrated CAN bus interface offers an ultra-low current consumption. 34/129 DocID024767 Rev 4 L99PM72GXP 2.9.1 Detailed description CAN transceiver operating modes Figure 19. Transceiver state diagram if selective wake-up is disabled (CR16 SW_EN = 0) $&7,9( 5; 2)) 7; 2)) :DNHXS 21 96WDQGE\ 63,FPGJR9VWE\ :DNHXSSDWWHUQ :83 )ODJ:83 5; 21 7; 21 :DNHXS 2)) &$1$&7  5; 2)) 7; 2)) &$175; :DNHXS 21 67%< &$175; 67%< 75; 1RUPDO &$1$&7  :DNHXSSDWWHUQ :83 RU63, )ODJV:$.(&$1:83 63,FPGJR9VWE\ 63,FPGJR9%$7VWE\ 63,FPGJR9%$7VWE\ :DNHXSSDWWHUQ :83 )ODJV:$.(&$1:83 &$175; 67%< 9%$76WDQGE\ 5; 2)) 7; 2)) :DNHXS 21 ("1($'5 DocID024767 Rev 4 35/129 128 Detailed description L99PM72GXP Figure 20. CAN transceiver state diagram if selective wake-up is enabled (CR16 SW_EN = 1) $&7,9( 5; 2)) 7; 2)) :DNHXS 21 96WDQGE\ 63,FPGJR9VWE\ 5; 2)) 7; 2)) &$175; :DNHXS 21 67%< :DNHXSIUDPH :8) )ODJV:83:8) &$1$&7  :DNHXS)UDPH :8) )ODJV:83:8) :$.(&$1 RU 63,FPG 5; 21 7; 21 :DNHXS 2)) &$175; 67%< 75; 1RUPDO &$1$&7  63,FPGJR9VWE\ :DNHXS)UDPH :8) )ODJV:83:8):$.(&$1 RU )UDPH'HWHFWLRQ(UURU )ODJ)'(UU 63,FPGJR9%$7VWE\ 63,FPGJR9%$7VWE\ :DNHXSSDWWHUQ :83 5; 2)) 7; 2)) :DNHXS 21 3175; VHOHFWLYH 6/((3 &$1 &RPXQLFDWLRQ 7LPHRXW )ODJ&$172 75; 6/((3 5; 2)) 7; 2)) :DNHXS 2)) 9%$76WDQGE\ ("1($'5 TRX Normal Mode Full functionality of the CAN-Transceiver is available (transmitter and receiver) and the bus biasing is enabled. State transitions from 'TRX Normal' mode to 'VBat_standby' and 'V1_standby' are possible. No interrupt is generated in this mode. CAN TRX_STBY Mode The CAN-Transmitter is disabled in this mode and the RxDC-pin is kept at high ('recessive') level. If selective wake-up is enabled (SW_EN=1), the receiver, CAN biasing and the reference oscillator are active. Once a wake up frame (WUF) is detected by the internal CAN frame detection logic, this wake-up event is indicated to the micro-controller by an interrupt signal (see Section 2.2.5: Interrupt for more details). A wake-up pattern (WUP) is not required and does not count as a frame error. Since a further CAN-timeout cannot be indicated, if the CAN_TO bit has already been set, it is recommended to clear this bit before entering V1_standby Mode. If selective wake-up is disabled (SW_EN = 0), the CAN-Receiver is capable to detect a wake-up pattern (WUP). In V1_standby Mode and Active Mode, a WUP is indicated to the micro-controller by an interrupt signal (see Section 2.2.5: Interrupt for more details). In this 36/129 DocID024767 Rev 4 L99PM72GXP Detailed description mode (SW_EN = 0) the automatic voltage biasing is disabled and the transceiver biasing works according to ISO 11898-5. There is no automatic state transition into TRX Normal Mode in case of a detected CAN wake-up (WUF or WUP). After serving the interrupt the micro controller can initiate a state transition into TRX Normal Mode by setting the SPI bit CAN_ACT to '1'. TRX_SLEEP (SW_EN=1) The CAN and LIN Transceivers are disabled. The CAN selective wakeup reference oscillator is off, while the receiver is in low power mode. After the detection of CAN communication (WUP), the transceiver enters 'PN_TRX_selective_sleep' mode, starts the oscillator and decodes the CAN frame. 'TRX_SLEEP' mode is entered automatically after a CAN communication timeout. PN TRX Selective Sleep (SW_EN=1) In this mode the CAN frame detection logic is enabled (receiver and reference oscillator enabled). In case of receiving a wake up frame (WUF) a state transition to 'CAN TRX_STBY' is done. After the biasing has been switched on, not more than four CAN frames are ignored before a wake-up frame is recognized and the device wakes up. If there is no CAN communication and the CAN bus is recessive for longer than tsilence, an automatic state transition to 'TRX_SLEEP' is done. In case of a Frame-Detect-Error (SR4, FDERR=1), an automatic wake up is performed and the selective wakeup feature is disabled (SW_EN=0). Oscillator monitoring While selective wake-up is enabled, a timer is started with each recessive to dominant edge. If after the expiration of 300 µs on this timer less than 6 recessive bits are counted, an oscillator fail is detected and the osc_mon bit is set to '1'. Subsequently the device enters wake-up mode according to ISO11898-5 (wake-up pattern wake-up). 2.9.2 Sequence for enabling selective wakeup After power-on reset the selective wakeup feature is disabled. The Configuration Registers 7 to 15 have to be read and verified by the microcontroller in order to ensure a valid configuration. A read operation to Registers 7 to 15 is required to allow enabling the selective wake-up feature (set SW_EN=1). A valid read operation is indicated by the SW_RDxx bits in SR 4. The SW_RDxx bits are reset to 0 with every WRITE operation. When all SW_RD bits are set, the SW_EN bit in CR 16 can be set to enable the Selective Wakeup function. In case the SYSERROR bit in SR 4 is set while Selective Wakeup is enabled, the Selective Wakeup is automatically disabled. In case SYSERROR is set, enabling the Selective Wakeup function is prohibited. 2.9.3 CAN error handling The L99PM72GXP provides the following four error handling features. DocID024767 Rev 4 37/129 128 Detailed description L99PM72GXP After power-on reset (VS > VPOR) the CAN transceiver is disabled. The transceiver is enabled by setting the CAN_ACT bit in Control Register 4. The CAN transmitter is disabled automatically in case of the following errors: • Dominant TxDC time out • CAN permanent recessive • RxDC permanent recessive • Thermal shutdown 1 The CAN receiver is not disabled in case of any failure condition. Dominant TxDC time out If TXDC is in dominant state (low) for t > tdom(TxD) the transmitter is disabled, status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. CAN permanent recessive If TXDC changes to dominant (low) state but CAN bus does not follow for 4 times, the transmitter is disabled, status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. CAN permanent dominant If the bus state is dominant (low) for t > tCAN a permanent dominant status is detected. The status bit is latched and can be read and optionally cleared by SPI. The transmitter is not disabled. RXDC permanent recessive If RXDC pin is clamped to recessive (high) state, the controller is not able to recognize a bus dominant state and could start messages at any time, which results in disturbing the overall bus communication. Therefore, if RXDC does not follow TXDC for 4 times the transmitter is disabled. The status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. 2.9.4 Wake up by CAN The L99PM72GXP supports 2 wakeup modes. The selective wakeup according to ISO 11898-6 or the wakeup by any bus activity according to ISO 11898-2/-5. The wake up behavior can be configured by SPI (see Chapter 6: ST SPI). Wake up by CAN pattern (WUP) The default setting for the wake up behavior after power-on reset is the wake up by regular communication on the CAN bus. When the CAN transceiver is in a Standby Mode (CAN TRX_STBY or TRX_SLEEP) the device can be woken up by sending two consecutive dominant bits separated by a recessive bit. Normal pattern wake up can occur when CAN pattern wake up option is enabled and the CAN transceiver was set in Standby Mode (CAN TRX_STBY or TRX_SLEEP) while CAN 38/129 DocID024767 Rev 4 L99PM72GXP Detailed description bus was in recessive (high) state or dominant (low) state. In order to wake up the L99PM72GXP, the following criteria must be fulfilled: Note: • The CAN interface wake-up receiver must receive a series of two consecutive valid dominant pulses, each of which must be longer than tfilter • The distance between 2 pulses must be longer than tfilter • The two pulses must occur within a time frame of 1.0 ms A wake up caused by a message on the bus starts the voltage regulator and the microcontroller to switch the application back to normal operation mode. Figure 21. CAN wake up capabilities 3DWWHUQ:DNHXS PV !WILOWHU !WILOWHU !WILOWHU &$15; 67$7( $&7,9( 67$1'%< $&7,9( 6WDQGDUG&$1SDWWHUQZDNHXS PV !WILOWHU !WILOWHU !WILOWHU &$15; 67$7( $&7,9( 67$1'%< $&7,9( &$1SDWWHUQZDNHXSZLWKGRPLQDQWEHIRUH6WDQGE\ ("1($'5 Note: Pictures above illustrate the wake up behaviour from V1_standby Mode. For wake up from VBat_standby Mode the NRESET signal (with 2 ms timing) is generated instead of the RXDL(Interrupt) signal. Wakeup by CAN Frame (WUF) Wake from CAN TRX_STBY If the CAN transceiver is in STBY the CAN frame detection logic is active. In case of a valid wake up frame the Interrupt on pin RxDC is generated and the WUF flag for wake up identification is set. There is no automatic state transition from CAN Transceiver point of view. After serving the interrupt the micro can bring the CAN Transceiver into TRX_NORMAL by setting CAN_ACT = 1 (CR 4). Wake up from TRX_SLEEP If the CAN Transceiver is in TRX_SLEEP mode the CAN frame detection logic is disabled. The wake up can be done in two steps. To enable the CAN frame detection logic a wake up DocID024767 Rev 4 39/129 128 Detailed description L99PM72GXP pattern must be sent on the bus. With the detection of the wake up pattern an automatic state transition to ‘PN_TRX_Selective_Sleep’ state is done. WUP flag is set. In ‘PN_TRX_Selective_Sleep’ the CAN frame detection logic is enabled. If a valid wake up frame is detected a state transition to TRX_STBY is done, the WUF flag is set and the micro is powered up. The remote transition request bit is ignored in wake-up frames. Also masking of the data length code (DLC) bits is not supported. After expiration of the frame error counter (FEC), a wake up is performed and the selective wakeup feature is disabled. The frame-error-counter (FEC) is cleared after each expiration of the time tsilence whenever the frame detection logic is enabled. 2.9.5 CAN receive only mode With the CAN_rec_only bit in Control register 4 it is possible to disable the CAN Transmitter in active mode. In this mode it is possible to listen to the bus but not sending to it. The Receiver termination network is still activated in this mode. 2.9.6 CAN looping mode If the CAN_Loop_en bit in Control register 4 is set the TxDC input is mapped directly to the RxDC pin. This mode can be used in combination with the CAN Receive only mode, to run diagnosis for the CAN protocol handler of the micro controller. 2.10 Serial Peripheral Interface (ST SPI Standard 3.0) A 24 bit SPI is used for bi-directional communication with the micro controller. During active mode, the SPI • triggers the watchdog • controls the modes and status of all L99PM72GXP modules (incl. input and output drivers) • provides driver output diagnostic • provide L99PM72GXP diagnostic (incl. over temperature warning, L99PM72GXP operation status) The SPI can be driven by a micro controller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. This device is not limited to micro controller with a built-in SPI. Only three CMOS-compatible output pins and one input pin are needed to communicate with the device. A fault condition can be detected by setting CSN to low. If CSN = 0, the DO pin reflects the global error flag (fault condition) of the device. Chip Select Not (CSN) The input pin is used to select the serial interface of this device. When CSN is high, the output pin (DO) is in high impedance state. A low signal activates the output driver and a 40/129 DocID024767 Rev 4 L99PM72GXP Detailed description serial communication can be started. The state during CSN = 0 is called a communication frame. If CSN = low for t > tCSNfail the DO output is switched to high impedance in order to not block the signal line for other SPI nodes. Serial Data In (DI) The input pin is used to transfer data serial into the device. The data applied to the DI are sampled at the rising edge of the CLK signal and shifted into an internal 24 bit shift register. At the rising edge of the CSN signal the contents of the shift register is transferred to Data Input Register. The writing to the selected Data Input Register is only enabled if exactly 24 bits are transmitted within one communication frame (i.e. CSN low). If more or less clock pulses are counted within one frame the complete frame is ignored. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected IC's is recommended. Serial Data Out (DO) The data output driver is activated by a logical low level at the CSN input and goes from high impedance to a low or high level depending on the global error flag (fault condition). The first rising edge of the CLK input after a high to low transition of the CSN pin transfers the content of the selected status register into the data out shift register. Each subsequent falling edge of the CLK shifts the next bit out. Serial Clock (CLK) The CLK input is used to synchronize the input and output serial bit streams. The data input (DI) is sampled at the rising edge of the CLK and the data output (DO) changes with the falling edge of the CLK signal. The SPI can be driven with a CLK Frequency up to 1 MHz. DocID024767 Rev 4 41/129 128 Protection and diagnosis L99PM72GXP 3 Protection and diagnosis 3.1 Power supply fail Overvoltage and undervoltage detection on VS 3.1.1 VS overvoltage If the supply voltage VS reaches the over voltage threshold (VSOV): • 3.1.2 Outputs OUTx, RELx and LIN are switched to high impedance state (load protection). CAN is not disabled. Recovery of outputs when the overvoltage condition disappears is depending on the setting of VLOCK_OUT_EN bit in Control Register 4. – VLOCK_OUT_EN = 1: Outputs are off until read and clear SR3. – VLOCK_OUT_EN = 0: Outputs switch automatically on when overvoltage condition disappears. • The over voltage bit is set and can be cleared with a ‘Read and Clear’ command. The overvoltage bit is removed automatically if VLOCK_OUT_EN = 0 and the overvoltage condition disappears. • Outputs REL1,2 can be excluded from a shutdown in case of overvoltage by SPI (LS_OV/UV_shutdown_en in CR4) VS undervoltage If the supply voltage VS drops below the under voltage threshold voltage (VSUV) • 42/129 Outputs OUTx, RELx and LIN are switched to high impedance state (load protection). CAN is not disabled. Recovery of outputs when the undervoltage condition disappears is depending on the setting of VLOCK_OUT_EN bit. – VLOCK_OUT_EN = 1: Outputs are off until read and clear SR3. – VLOCK_OUT_EN = 0: Outputs switch on automatically when undervoltage condition disappears. • The undervoltage bit is set and can be cleared with a ‘Read and Clear’ command. The undervoltage bit is removed automatically if VLOCK_OUT_EN = 0 and the undervoltage condition disappears • Outputs REL1,2 can be excluded from a shutdown in case of undervoltage by SPI (LS_OV/UV_shutdown_en in CR4) DocID024767 Rev 4 L99PM72GXP Protection and diagnosis Figure 22. Overvoltage and undervoltage protection and diagnosis $FWLYH 0RGH 6WDQGE\0RGHV GXULQJF\FOLFVHQVH 9V8QGHUYROWDJH 9V9VXY 9V2YHUYROWDJH 9V!9VRY 9V9VRY$1'Ã5HDGDQG&OHDU¶  25 9V9VRY$1'9ORFNRXW  9V!9VXY$1'Ã5HDGDQG&OHDU¶  25 9V!9VXY$1'9ORFNRXW  9V2YHUYROWDJH 6KXWGRZQ 9V8YHUYROWDJH 6KXWGRZQ $OORXWSXWVKLJK,PSHGDQFH H[FHSW5(/RXWSXWVLI /6BRYXY  $OORXWSXWVKLJK,PSHGDQFH H[FHSW5(/RXWSXWVLI /6BRYXY  'LDJQRVLV29  'LDJQRVLV89  $*9 DocID024767 Rev 4 43/129 128 Protection and diagnosis 3.2 L99PM72GXP Temperature warning and thermal shut-down Figure 23. Thermal shutdown protection and diagnosis 7M!76' 76' 76' $OORXWSXWVRII 9RIIIRUVHF 7!VHF 'LDJQRVLV76'  $OORXWSXWVH[FHSW9RII 'LDJQRVLV76'  [76' :DNHXSHYHQW 7M!76' Ã5HDGDQG&OHDU¶ 25 3RZHURQUHVHW 9EDWVWE\ 3RZHURQUHVHW $OORXWSXWVLQFO9RII 7HPSHUDWXUH :DUQLQJ 'LDJQRVLV7:  Ã5HDGDQG&OHDU¶ 25 3RZHURQUHVHW 7M!7Z $FWLYH 0RGH 6WDQGE\0RGHV GXULQJF\FOLFVHQVH 9V!9SRU 3RZHU2Q5HVHW $OORXWSXWVLQFO9RII $*9 Note: 44/129 The Thermal State machine recovers the same state were it was before entering Standby Mode. In case of a TSD2 it enters TSD1 state. DocID024767 Rev 4 L99PM72GXP 3.3 Protection and diagnosis High side driver outputs The component provides a total of 4 high side outputs Out1...4, (7 Ω typ. at 25°C) to drive e.g. LED's or hall sensors and 1 high side output OUT_HS with 1 Ω typ. at 25°C). • The high side outputs switch off in case of: • VS overvoltage and undervoltage • Overcurrent • Overtemperature (TSD1) with pre warning(c) In case of overcurrent or overtemperature (TSD1) condition, the drivers switch off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. In case overvoltage or undervoltage condition, the drivers are switched off. The according status bit is latched and can be read and optionally cleared by SPI. If the VLOCK_OUT_EN bit (Control Register 4) is set to ‘1’ the drivers remain off until the status is cleared. If the VLOCK_OUT_EN bit is set to ‘0’ the drivers switch on automatically if the error condition disappears. In case of open load condition, the according status register is latched. The status can be read and optionally cleared by SPI. The High sides are not switched off. For OUT_HS the auto recovery feature (OUTHS_rec_en bit Control Register 4) can be enabled. If this bit is set to ‘1’ the driver automatically restarts from a overload condition. This overload recovery feature is intended for loads which have an initial current higher than the over current limit of the output (e.g. Inrush current of cold light bulbs). During auto recovery mode the over current status bit can not be read from SPI. The device itself cannot distinguish between a real overload and a non linear load like a light bulb. A real overload condition can only be qualified by time. As an example, the micro controller can switch on light bulbs by setting the over current recovery bit for the first 50 ms. After clearing the recovery bit, the output is automatically disabled if the overload condition still exists. In case of a fail safe condition, the high side drivers are switched off. The control bits are set to default values. (except OUT3/FSO if it is used as a High Side Driver Output) Note: The maximum voltage and current applied to the High Side Outputs is specified in 2.1 ‘Absolute Maximum Ratings’. Appropriate external protection may be required in order to respect these limits under application conditions. Each high side driver can be driven whether with a PWM signal or with a internal Timer (see Table 8). For more details please refer to Section 6.2.3: Control Register 1 Table 8. PWM configuration for high-side outputs High side output PWM channel Internal timer OUT1 PWM 1 Timer 1 OUT2 PWM 2 Timer 2 c. Except OUT3 when configured as FSO DocID024767 Rev 4 45/129 128 Protection and diagnosis L99PM72GXP Table 8. PWM configuration for high-side outputs (continued) High side output PWM channel Internal timer OUT3 PWM 3 - OUT4 PWM 4 Timer 2 OUTHS PWM 3 / PWM 4 Timer 1 / Timer 2 The PWM 1/3 channels start a PWM period with the ON phase, while the PWM 2/4 channels start with the OFF phase. In this way it is possible to use the 4 PWM channels in a phase shifted way. The picture below shows this feature with a duty cycle of 25% for both PWM channels. Figure 24. Phase shifted PWM 287 3:0[) 3:03HULRG 287 3:0[) $*9 3.4 Low side driver outputs REL1, REL2 The outputs REL1, REL2 (RDSon = 2 Ω typ. @25 °C) are specially designed to drive relay loads. The outputs provide an active output zener clamping (45 V typ.) feature for the demagnetization of the relay coil, even though a load dump condition exists. For Fail_safe reasons the relay drivers are linked with the fail safe operation: In case of entering the Fail Safe Mode, the relay drivers switch off and the SPI control bits are set to default (i.e. driver is off). The low side drivers switch off in case of: 46/129 • VS overvoltage and undervoltage • Overcurrent • Overtemperature with pre warning DocID024767 Rev 4 L99PM72GXP Protection and diagnosis In case of overload or overtemperature (TSD1) condition, the drivers switch off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. In case VS overvoltage or undervoltage condition, the drivers are switched off. The according status bit is latched and can be read and optionally cleared by SPI. If the VLOCK_OUT_EN bit (Control Register 4) is set to ‘1’ the drivers remain off until the status is cleared. If the VLOCK_OUT_EN bit is set to ‘0’ the drivers are switched on automatically if the error condition disappears. With the LS_OV/UV_shutdown_en bit (Control Register 4) the drivers can be excluded from a switch off in case of VS overvoltage or undervoltage. If the bit is set to ‘1’ the driver switches off, otherwise the drivers remain on. 3.5 SPI diagnosis Digital diagnosis features are provided by SPI (for details please refer to Section 6.2: SPI registers) • V1 reset threshold programmable • Overtemperature including. pre warning • Open load separately for each output stage except REL1/REL2 • Overload status separately for each output stage • VS-supply overvoltage/undervoltage • V1 and V2 fail bit • V2 output short to GND • Status of the WU1...3 • Wake-up sources (CAN, LIN, SPI, Timer, WU1…3) • Chip reset bit (start from power-on reset) • Number of unsuccessful V1 restarts after thermal shutdown • Number of sequential watchdog failures • LIN diagnosis (permanent recessive/dominant, dominant TxD) • CAN diagnosis (permanent recessive/dominant, dominant TxD, recessive RXD) • Device State (wake-up from V1_standby or Vbat_standby) • Forced Vbat_standby after WD-fail, forced Vbat_standby after overtemperature • Watchdog timer state (diagnosis of watchdog) • Failsafe status • SPI communication error • Diagnosis of selective wake functionality according to ISO 11898-6 DocID024767 Rev 4 47/129 128 Typical application 4 L99PM72GXP Typical application Figure 25. Typical application diagram 9EDW 9V 9V 9EDW 9V 9 ([WHUQDOORDGV 7HPS3UHZDUQLQJ  6KXWGRZQ 9ROWDJH 5HJXODWRU Q) 8QGHUYROWDJH 2YHUYROWDJH 6KXWGRZQ 0 /RZ6LGH 2XWSXW&ODPS 9V 9 5(/ 9ROWDJH 5HJXODWRU /RZ6LGH 5(/ 2XWSXW&ODPS Q) 9ROWDJH 0RQLWRU 23 23   23B287 15(6(7 0LFUR FRQWUROOHU —& $'&  :LQGRZ :DWFKGRJ ', '2  &/.  &61 63, +LJK6LGH 7['/ +LJK6LGH /,1 /,138 /,1 +LJK6LGH /,1 +LJK6LGH 9 23 23B287 /2*,& +LJK6LGH 5['/1,17 23 287B+6 287 287 287)62 5['&1,17 &$1+  +6&$1 HJ/(' +DOO6HQVRU 287 &$1683 7['& HJ%XOE /('+DOO 6HQVRU :DNH8S ,1 :8 :DNH8S ,1 :8 :DNH8S ,1 :8 &\FOLF&RQWDFW 0RQLWRULQJ ([WHUQDO )DLO6DIH /RJLF &$1 &$1/ 1&   /,1FRPSOLDQW 6$(-FRPSDWLEOH 3*1' $*1'   ,62 DQG6$(-FRPSOLDQW ("1($'5 1. In case a LIN/CAN conformance test has to be executed on the device, some capacitances have to be placed on the Fixed-Function-Unit pins: - 22 nF (low ESR and close to the pin) for all power outputs (OUT_HS, OUT1 … 4, REL1 and REL2) and also for the wake-up inputs, if they go out of the PCB. - 47 µF and a 100 nF low ESR capacitance (close to the pin) at the power supply VS. 48/129 DocID024767 Rev 4 L99PM72GXP Electrical specifications 5 Electrical specifications 5.1 Absolute maximum ratings All maximum ratings are absolute ratings. Leaving the limitation of any of these values may cause an irreversible damage of the integrated circuit. Loss of ground or ground shift with externally grounded loads: ESD structures are configured for nominal currents only. If external loads are connected to different grounds, the current load must be limited to this nominal current. Table 9. Absolute maximum ratings Symbol Value [DC Voltage] Unit DC supply voltage / “jump start” -0.3 to +28 V Load dump -0.3 to +40 V -0.3 to (V1 + 0.3) V1 < VS V -0.3 to +28 V Logic input / output voltage range -0.3 to V1 + 0.3 V VTXDC, VTXDL Multi Level Inputs -0.3 to VS + 0.3 V VREL1, VREL2 Low side output voltage range -0.3 to +40 V -0.3 to VS + 0.3 V VS Parameter / Test condition V1 stabilized supply voltage, logic supply V2 stabilized supply voltage VDI, VCLK, VDO, VRXDL, VNRESET, VRXDC, VCSN VOUT1..4, VOUT_HS High side output voltage range VWU1...3 Wake up input voltage range -0.3 to VS + 0.3 V VOP1P, VOP1M, VOP2P, VOP2M, Opamp1 input voltage range Opamp2 input voltage range -0.3 to V1 + 0.3 V VOPOUT1, VOPOUT2 Analog output voltage range -0.3 to VS + 0.3 V -20 to +40 V Current injection into VS related input pins 20 mA Current injection into VS related outputs 20 mA -0.3 to +5.25 V -27 to +40 V -0.3 to VS + 0.3 V VLIN, VLINPU IInput Iout_inj VCANSUP VCANH,VCANL VPin6 LIN bus I/O voltage range CAN supply CAN bus I/O voltage range Not connected DocID024767 Rev 4 49/129 128 Electrical specifications 5.2 L99PM72GXP ESD protection Table 10. ESD protection Parameter All pins Value Unit +/-2 kV +/-4 kV (1) All output pins(2) (2) LIN +/-8 +/-10 (3) +/-6 (4) kV CAN_H, CAN_L +/-8 (2) +/-6 (4) kV All pins (5) +/-500 V +/-750 V +/-200 V Corner pins All pins (5) (6) 1. HBM (Human Body Model, C = 100 pF, R = 1.5 kΩ) according to MIL 883C, Method 3015.7 or EIA/JESD22A114-A. 2. HBM with all none zapped pins grounded. 3. Indirect ESD test according to IEC 61000-4-2 (C = 150 pF, R = 330 Ω) and ‘Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications’ (version 1.1, 2009-12-02). 4. Direct ESD test according to IEC 61000-4-2 (C = 150pF, R = 330 Ω) and ‘Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications’ (version 1.1, 2009-12-02). 5. Charged device model. 6. Machine model: C = 200 pF; R = 0 Ω 5.3 Thermal data Table 11. Operating junction temperature Symbol Tj Rthj_amb Parameter Value Unit -40 to 150 °C See Figure 29 K/W Operating junction temperature Thermal resistance junction ambient Table 12. Temperature warning and thermal shutdown Symbol Parameter Typ. Max. Unit Thermal over temperature warning threshold Tj (1) 120 130 140 °C TSD1_OFF Thermal shut-down junction temperature 1 Tj (1) 130 140 150 °C TSD2_OFF Thermal shut-down junction temperature 2 Tj (1) 150 160 170 °C TW_ON TSD12_hys Hysteresis 1. Non-overlapping. 50/129 Min. DocID024767 Rev 4 5 °C L99PM72GXP Electrical specifications Figure 26. Thermal data of PowerSSO-36 P a d s o ld e re d 35 30 P ow erS S O -3 6 o n 2 s 2 p P ow erS S O -3 6 o n 2 s 2 p th. e n h. ZTH (ºC/W) 25 20 15 10 5 0 0 .0 0 0 1 0 .0 0 1 0 .0 1 0 .1 T im e (s ) DocID024767 Rev 4 1 10 100 1000 AG00022V1 51/129 128 Electrical specifications L99PM72GXP 5.4 Package and PCB thermal data 5.4.1 PowerSSO-36 thermal data Figure 27. PowerSSO-36 PC board $*9 Note: 52/129 Layout condition of Rth and Zth measurements (board finish thickness 1.6 mm +/- 10% board double layer, board dimension 129x60, board Material FR4, Cu thickness 0.070 mm (front and back side), thermal vias separation 1.2 mm, thermal via diameter 0.3 mm +/- 0.08 mm, Cu thickness on vias 0.025 mm). DocID024767 Rev 4 L99PM72GXP Electrical specifications Figure 28. PowerSSO-36 thermal resistance junction to ambient vs PCB copper area (V1 ON) 57+MDPE 57+MBDPE &:  57+MDPE           3&%&XKHDWVLQNDUHD FPA $*9 Figure 29. PowerSSO-36 thermal impedance junction to ambient vs PCB copper area (single pulse with V1 ON) ZTH (°C/W) 100 Cu=8 cm2 Cu=2 cm2 Cu=foot print 10 1 0.01 0.1 1 Time (s) 10 100 1000 AG00025V1 DocID024767 Rev 4 53/129 128 Electrical specifications L99PM72GXP Figure 30. PowerSSO-36 thermal fitting model (V1 ON) $*9 Equation 1: pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Table 13. Thermal parameter Area/island 54/129 (cm2) Footprint 2 8 R1 (°C/W) 2 R2 (°C/W) 8 4 4 R3 (°C/W) 20 15.5 10 R4 (°C/W) 36 29 18 C1 (W.s/°C) 0.01 C2 (W.s/°C) 0.1 0.2 0.2 C3 (W.s/°C) 0.8 1 1.5 C4 (W.s/°C) 2 3 6 DocID024767 Rev 4 L99PM72GXP Electrical specifications 5.5 Electrical characteristics 5.5.1 Supply and supply monitoring The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. Tj = -40°C to 130°C, unless otherwise specified. Table 14. Supply and supply monitoring Symbol Parameter Test condition VS increasing / decreasing Typ. V 0.16 V 22 V 1.5 V 6 12 mA 8 12 28 µA Current consumption in VS = 12 V; both voltage IV(BAT)CS VBat_standby mode with cyclic regulators deactivated; T = 50 ms; tON = 100 µs sense enabled(1) 40 75 125 µA Current consumption in VS = 12 V; both voltage IV(BAT)CW VBat_standby mode with cyclic regulators deactivated during standby phase wake enabled(1) 40 75 125 µA 16 51 76 µA 1200 µA Vhyst_UV VS undervoltage hysteresis VSOV VS overvoltage threshold Vhyst_OV VS overvoltage hysteresis 0.05 VS increasing / decreasing 18.5 hysteresis 0.5 tovuv_filt VS overvoltage /undervoltage filter time IV(act) Current consumption in active mode VS = 12 V; TxDC = high; TxDL = high; V1 = ON; V2 = ON; HS/LS Driver OFF IV(BAT) Current consumption in VBat_standby mode(1) VS = 12V; both voltage regulators deactivated; HS/LS driver OFF; no CAN communication IV(V1stby) IV(SW) Current consumption in V1_standby mode(1) Current consumption in standby mode but selective wakeup enabled and CAN communication on the bus (PN_TRX_selective_Sleep) 5.11 Max. Unit 5.81 VSUV VS undervoltage threshold Min. 0.11 1 64*Tosc VS = 12 V; voltage regulator V1 active (IV1 < ICMP); HS/LS driver OFF VS = 12 V; both voltage regulators deactivated; HS/LS driver OFF (1) 1. Conditions for specified current consumption: VLIN > (VS - 1.5 V) (CAN_H – CAN_L) < 0.4 V or (CAN_H – CAN_L) > 1.2 V VWU < 1 V or VWU > (Vs – 1.5V) The current consumption in standby modes with cyclic sense can be calculated using the following formulas: IV(BAT)CS = IV(BAT) + 55 µA + (2 mA * (tON + 100 µs) / T) I(V1)CS = IV1 + 55 µA + (2 mA * (tON + 100 µs) / T) DocID024767 Rev 4 55/129 128 Electrical specifications 5.5.2 L99PM72GXP Oscillator The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V < VS < 28 V; Tj = -40°C to 130°C, unless otherwise specified. Table 15. Oscillator Symbol FCLK Parameter Test condition Oscillation frequency Min. Typ. Max. Unit 0.80 1.0 1.35 MHz Typ. Max. Unit 3.45 4.5 V 3.5 V All outputs open; Tj = -40°C to 130°C, unless otherwise specified. 5.5.3 Power-on reset (VS) Table 16. Power-on reset (VS) Symbol VPOR Parameter VPOR threshold Test condition Min. VS increasing (1) VS decreasing 2.35 1. This threshold is valid if VS had already reached 7 V previously. 5.5.4 Voltage regulator V1 The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V < VS < 28 V; Tj = -40°C to 130°C, unless otherwise specified. Table 17. Voltage regulator V1 Symbol Parameter Test condition Min. Output voltage V1 Vhc1 VSTB1 VDP1 ICC1 ICCmax1 56/129 Typ. Max. Unit 5.0 Output voltage tolerance active mode Output voltage tolerance; active mode; high current Output voltage tolerance V1_standby mode Drop-out voltage V ILOAD = 4 mA to 100 mA; VS = 13.5 V -2 2 % ILOAD = 100 mA to 250 mA; VS = 13.5 V -3 3 % ILOAD = 250 mA; VS = 13.5 V -5 5 % ILOAD = 0 µA to 4 mA; VS = 13.5 V -2 4 % ILOAD = 50 mA; VS = 5 V 0.2 0.4 V ILOAD = 100 mA; VS = 4.5 V 0.2 0.5 V ILOAD = 100 mA; VS = 5 V 0.3 0.5 V ILOAD = 150 mA; VS = 4.5 V 0.45 0.6 V ILOAD = 150 mA; VS = 5.0 V 0.45 0.6 V 250 mA 900 mA Output current in active mode Max. continuous load current Short circuit output current Current limitation DocID024767 Rev 4 340 600 L99PM72GXP Electrical specifications Table 17. Voltage regulator V1 (continued) Symbol Cload1 tTSD Parameter Test condition Load capacitor 1 Ceramic (+/- 20%) Min. 0.22 Typ. Max. Unit (1) µF V1 deactivation time after thermal shutdown 1 sec ICMP_ris Current comp. rising threshold Rising current 1.0 2.5 4.0 mA ICMP_fal Current comp. falling threshold 0.8 1.95 3.1 mA Falling current ICMP_hys Current comp. hysteresis 0.5 mA 2 V V1fail V1 fail threshold tV1fail V1 fail filter time 2 µs V1 short filter time 4 ms tV1short V1 forced 1. Nominal capacitor value required for stability of the regulator. Tested with 220nF ceramic (+/- 20%). Capacitor must be located close to the regulator output pin. 5.5.5 Voltage regulator V2 The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V < VS < 28 V; Tj = -40°C to 130°C, unless otherwise specified. Table 18. Voltage regulator V2 Symbol Parameter Test condition Min. Typ. Max. V2 Output voltage V2 Output voltage tolerance; active mode ILOAD = 1 mA to 50 mA; VS = 13.5 V -3 3 % Vhc1 Output voltage tolerance; active mode ILOAD = 50 mA to 80 mA; VS = 13.5 V -4 4 % Output voltage tolerance; active mode; high current ILOAD = 100 mA; VS = 13.5 V -6 6 % VSTB2 Output voltage tolerance V1_standby mode ILOAD = 1 mA; VS = 13.5 V -6.5 6.5 % VDP2 Drop-out voltage ICC2 Output current in active mode Max. continuous load current Short circuit output current Current limitation 150 Cload Load capacitor Ceramic (+/- 20%) 0.22(1) V2fail V2 fail threshold V2 forced V2 ICCmax2 5.0 Unit V ILOAD = 25 mA; VS = 5.25 V 0.3 0.4 V ILOAD = 50 mA; VS = 5.25 V 0.4 0.7 V 100 mA 450 mA DocID024767 Rev 4 280 µF 2 V 57/129 128 Electrical specifications L99PM72GXP Table 18. Voltage regulator V2 (continued) Symbol tV2fail tV2short Parameter Test condition Min. Typ. Max. Unit V2 fail filter time 2 µs V2 short filter time 4 ms 1. Nominal capacitor value required for stability of the regulator. Tested with 220 nF ceramic (+/- 20%). Capacitor must be located close to the regulator output pin 5.5.6 Reset output The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 4.0 V < VS < 28 V; Tj = -40°C to 130°C, unless otherwise specified. Table 19. Reset output Symbol Parameter Test condition Min. Typ. Max. Unit VRT1 Reset threshold voltage 1 VV1 decreasing 3.7 3.9 4.1 V VRT2 Reset threshold voltage 2 VV1 decreasing 4.2 4.3 4.45 V VRT3 Reset threshold voltage 3 VV1 decreasing 4.25 4.4 4.55 V 4.60 4.75 V Reset threshold voltage 4 VV1 decreasing 4.5 VRT4 VV1 increasing 4.7 4.8 4.9 V 0.2 0.4 V 110 150 kΩ 40 μs VRESET Reset pin low output voltage V1 > 1 V; IRESET = 5 mA RRESET Reset pull up int. resistor 5.5.7 tRR Reset reaction time tUV1 V1 undervoltage filter time Trd Reset pulse duration 80 ILOAD = 1 mA 6 μs 16 1.46 2.0 2.5 ms Watchdog 4.5 V < VS < 28 V; 4.8 V < V1 < 5.2 V; Tj = -40°C to 130°C, unless otherwise specified, see Figure 31 and Figure 32. Table 20. Watchdog Symbol tLW 58/129 Parameter Test condition Long open window Min. Typ. Max. Unit 48.75 65 81.25 ms 4.5 ms TEFW1 Early failure window 1 TLFW1 Late failure window 1 20 TSW1 Safe window 1 7.5 TEFW2 Early failure window 2 TLFW2 Late failure window 2 100 TSW2 Safe window 2 37.5 TEFW3 Early failure window 3 DocID024767 Rev 4 ms 12 ms 22.3 ms ms 60 ms 45 ms L99PM72GXP Electrical specifications Table 20. Watchdog (continued) Symbol Parameter Test condition Min. TLFW3 Late failure window 3 200 TSW3 Safe window 3 75 TEFW4 Early failure window 4 TLFW4 Late failure window 4 400 TSW4 Safe window 4 150 Typ. Max. Unit ms 120 ms 90 ms ms 240 ms Figure 31. Watchdog timing (long, early, late and safe window) 1RUPDOVWDUWXSRSHUDWLRQDQGWLPHRXWIDLOXUHV 4 /: ORQJZLQGRZPV 7&: FORVHGZLQGRZPV FRUUHFWWULJJHUWLPLQJ 72:  RSHQZLQGRZPV 7:'5  ZDWFKGRJUHVHW PV HDUO\WULJJHUWLPLQJ PLVVLQJWULJJHU 7&: 72: 7 &: 72: 7&: 7/: :' WULJJHU WULJJHUVLJQDO 7/: 7/: 15(6 2XW 7:'5 7:'5 QRUPDORSHUDWLRQ  WLPHPV PLVVLQJ WULJJHU HDUO\ ZULWH WLPHPV 0LVVLQJX&WULJJHUVLJQDO :' WULJJHU 7/: 7/: 7/: WLPHPV 15(6 2XW 7:'5 7:'5 7:'5 WLPHPV  ("1($'5 DocID024767 Rev 4 59/129 128 Electrical specifications L99PM72GXP Figure 32. Watchdog early, late and safe windows 76:Q 6DIHZLQGRZ 7():Q (DUO\)DLOXUHZLQGRZ 7/):Q /DWHIDLOXUHZLQGRZ 7/):QBPLQ 76:QBPD[ 76:QBPLQ 7():QBPD[ (DUO\ :DWFKGRJ IDLOXUH XQGHILQHG SAFETRIGGERAREA /DWH ZDWFKGRJ IDLOXUH XQGHILQHG WLPH *$3*&)7 5.5.8 High side outputs The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tj = -40°C to 130°C, unless otherwise specified. Table 21. Output (OUT_HS) Symbol Parameter Test condition Typ. Max. Unit Static drain source onresistance (IOUT_HS = 150 mA) Tj = 25°C 1.0 2.0 Ω Tj = 125°C 1.6 3 Ω td(on) Switch on delay time 0.2 VS 5 35 60 µs td(off) Switch off delay time 0.8 VS 40 95 150 µs tSCF Short circuit filter time Tested by scan chain 64 * TOSC Auto recovery filter time Tested by scan chain 400 * TOSC RDS(on) td_ARHS dVOUT/dt Slew rate 0.18 0.5 0.8 V/µs IOUT Short circuit shut down current 480 900 1320 mA IOLD Open load detection current 40 80 120 mA tOLDT Open load detection time IFW (1) Loss of GND current (ESD structure) Tested by scan chain 1. Parameter guaranteed by design. 60/129 Min. DocID024767 Rev 4 64 * TOSC 100 mA L99PM72GXP Electrical specifications Table 22. Outputs (OUT1...4) Symbol Parameter Test condition Static drain source onRDS(ON) resistance (IOUT_HS = 150 mA) Min. Typ. Max. Unit 7 13 Ω 140 235 350 mA 0.9 2 4.5 mA 0.2 0.5 0.8 V/µs ILOAD = 60 mA; Tj = 25°C IOUT Short circuit shut down current IOLD Open load detection current 8 V < VS < 16 V dVOUT/dt Slew rate td(on) Switch ON delay time 0.2 VS 5 35 60 µs td(off) Switch OFF delay time 0.8 VS 30 95 150 µs tSCF Short circuit filter time Tested by scan chain IFW (1) Loss of GND current (ESD structure) tOLDT Open load detection time 64 * TOSC 100 Tested by scan chain mA 64 * TOSC 1. Parameter guaranteed by design. 5.5.9 Relay drivers The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tj = -40 to 130°C, unless otherwise specified. Table 23. Relay drivers Symbol RDS(on) IOUT VZ Parameter Test condition Min. DC output resistance ILOAD = 100 mA at Tj = 25°C Short circuit shut down current 8 V < VS < 16 V 250 ILOAD = 100 mA 40 Output clamp voltage (1) Typ. Max. Unit 2 3 Ω 375 500 mA 48 V tONHL Turn on delay time to 10% VOUT 5 50 100 µs tOFFLH Turn off delay time to 90% VOUT 5 50 100 µs tSCF Short circuit filter time 4 V/µs Tested by scan chain dVOUT/dt Slew rate 64*TOSC 0.2 2 1. The output is capable to switch off relay coils with the impedance of RL = 160 Ω; L = 300 mH (RL = 220 Ω; L = 420 mH); at VS = 40 V (Load dump condition) DocID024767 Rev 4 61/129 128 Electrical specifications 5.5.10 L99PM72GXP Wake up inputs (WU1 ... WU3) The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; Tj = -40 to 130°C, unless otherwise specified. Table 24. Wake-up inputs Symbol Parameter Test condition Typ. Max. Unit VWUthp Wake-up negative edge threshold voltage 0.4 VS 0.45 VS 0.5 VS V VWUthn Wake-up positive edge threshold voltage 0.5 VS 0.55 VS 0.6 VS V VHYST Hysteresis 0.05 VS 0.1 VS 0.15 VS V tWU_stat Static wake filter time IWU_stdby 64 * TOSC Input current in standby mode VWU < 1 V or VWU > (VS – 1.5 V) Input resistor to GND in active mode and in RWU_act standby mode during wake-up input sensing tWU_cyc 5.5.11 Min. µs 9 15 28 µA 80 160 300 kΩ Cyclic wake filter time 16 µs High speed CAN transceiver(d) Selective wake functionality according to ISO 11898-6 Table 25. CAN communication operating range Symbol VSCOM Parameter Test condition Supply voltage operating range for CAN communication Active mode, V1 = VCANSUP Min. Typ. Max. Unit 5.5 — 18 V The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < VCANSUP. < 5.2 V; Tjunction = -40°C to 130°C, unless otherwise specified. -12 V = (CANH + CANL) / 2 = 12 V. Table 26. CAN transmit data input: pin TxDC Symbol Parameter Test condition Typ. 1.35 1.8 VTXDCLOW Input voltage dominant level Active mode, V1 = 5 V VTXDCHIGH Input voltage recessive level Active mode, V1 = 5 V VTXDCHYS VTXDCHIGH - VTXDCLOW Active mode, V1 = 5 V 0.7 1 RTXDCPU Active Mode, V1 = 5 V 10 20 TxDC pull up resistor d. ISO 11898-2 and ISO 11898-5 compliant. SAE J2284 compliant. 62/129 Min. DocID024767 Rev 4 2.5 Max. Unit V 3 V V 35 kΩ L99PM72GXP Electrical specifications Table 27. CAN receive data output: pin RxDC Symbol Parameter Test condition Min. VRXDCLOW Output voltage dominant level Active mode, V1 = 5 V; 2 mA VRXDCHIGH Output voltage recessive level Active mode, V1 = 5 V; 2 mA Typ. Max. Unit 0.2 0.5 V 4.5 V Table 28. CAN transmitter and receiver: pins CANH and CANL Symbol Parameter Test condition Min. Typ. Max. Unit VCANHdom CANH voltage level in dominant state Active mode; VTXDC = VTXDCLOW; RL = 65 Ω; RL = 50 Ω 2.75 4.5 V VCANLdom Active mode; CANL voltage level in VTXDC = VTXDCLOW; dominant state RL = 65 Ω; RL = 50 Ω 0.5 2.25 V Differential output voltage in dominant state: VCANHdom VCANLdom 1.5 3 V VDIFF,domOUT Active mode; VTXDC = VTXDCLOW; RL = 65 Ω; RL = 50 Ω Active mode; VTXDC = VTXDCLOW; Driver symmetry: 1.1 * 0.9 * = 250kHz; V f VCANHdom+VCANLdom TXDC VCANSUP CANSUP VCANSUP rectangular, 50% duty cycle V VCANHrec CANH voltage level in recessive state (Normal Mode) Active mode; VTXDC = VTXDCHIGH; No load 2 2.5 3 V VCANLrec CANL voltage level in Active mode; recessive state VTXDC = VTXDCHiGH; (Normal Mode) No load 2 2.5 3 V VCM(1) VCANHrecLP CANH voltage level in recessive state (Low Power Mode) V1_standby mode; VTXDC = VTXDCHIGH; No load -0.1 0 0.1 V VCANLrecLP CANL voltage level in V1_standby mode; recessive state (Low VTXDC = VTXDCHiGH; Power Mode) No load -0.1 0 0.1 V VDIFF,recOUT Differential output Active mode; voltage in recessive VTXDC = VTXDCHIGH; state (Normal Mode): No load VCANHrec - VCANLrec -50 50 mV Differential output voltage in recessive state (Low Power Mode): VCANHrec VCANLrec -50 50 mV VDIFF,recOUTLP V1_standby mode; VTXDC = VTXDCHIGH; No load DocID024767 Rev 4 63/129 128 Electrical specifications L99PM72GXP Table 28. CAN transmitter and receiver: pins CANH and CANL (continued) Symbol VCANHL,CM Common mode Bus voltage Test condition Min. Measured with respect to the ground of each CAN node -12 IOCANH,dom (0V) Active mode; CANH output current VTXDC = VTXDCLOW; in dominant state VCANH = 0 V IOCANL,dom (5V) CANL output current in dominant state Typ. Max. Unit 12 V -160 -75 -45 mA Active mode; VTXDC = VTXDCLOW; VCANL = 5 V 45 75 160 mA Active mode; VTXDC = VTXDCLOW; CANH output current VCANH = 40 V; IOCANH,dom (40V) in dominant state VCANL = 0 V; VS = 40 V 0 2 5 mA Active mode; VTXDC = VTXDCLOW; VCANL = 40 V; VCANH = 0 V; VS = 40 V 47 75 160 mA Ileakage,CANH Unpowered device; VBUS = 5 V; – Vcansupply connect Input leakage current 0 Ω to GND – Vcansupply connect 47 kΩ to GND(2) -10 — 10 µA Ileakage,CANL Unpowered device; VBUS = 5 V; – Vcansupply connect Input leakage current 0 Ω to GND – Vcansupply connect 47 kΩ to GND(2) -10 — 10 µA Internal resistance Active mode & V1- standby mode; VTXDC = VTXDCHIGH; No load 20 27.5 38 kΩ Internal Resistor matching CANH,CANL Active mode & V1_standby mode; VTXDC = VTXDCHIGH; No load; Rin(CANH) – Rin(CANL) 3 % Differential internal resistance Active mode & V1_standby mode; VTXDC = VTXDCHIGH; No load 60 75 kΩ Internal capacitance Guaranteed by design 20 40 pF IOCANL,dom (40V) Rin Rin,matching Rin,diff Cin 64/129 Parameter CANL output current in dominant state DocID024767 Rev 4 50 L99PM72GXP Electrical specifications Table 28. CAN transmitter and receiver: pins CANH and CANL (continued) Symbol Parameter Test condition Min. Typ. Max. Unit 10 20 pF Cin,diff Differential internal capacitance Guaranteed by design VTHdom(1) Differential receiver threshold voltage recessive to dominant state (Normal Mode) Active mode 0.9 V VTHdomLP(1) Differential receiver threshold voltage recessive to dominant state (Low Power Mode) V1_standby mode 1.15 V VTHrec(1) Differential receiver threshold voltage dominant to recessive state (Normal Mode) Active mode 0.5 V VTHrecLP(1) Differential receiver threshold voltage dominant to recessive state (Low Power Mode) V1_standby mode 0.4 V 1. Parameter evaluated with specific Rtest = 60 Ω, guaranteted by characterization. 2. Guaranteed by design. Table 29. CAN transceiver timing Symbol Parameter Test condition Min. Typ. Max. Unit tTXpd,hl Propagation delay Active mode; RL = 60 Ω; TxDC to RxDC (high to CL = 100 pF; CRXDC = 15 pF; low) fTXDC = 250 kHz 255 ns tTXpd,lh Propagation delay TxDC to RxDC (low to high) Active mode; RL = 60 Ω; CL = 100 pF; CRXDC = 15 pF; fTXDC = 250 kHz 255 ns 5 µs 5 ms tfilter tdom(TxDC) tCAN tsilence Wake up filter time 0.5 TxDC dominant timeout Tested by scan and oscillator 0.8 CAN permanent dominant time-out 2 700 CAN timeout 600 DocID024767 Rev 4 700 µs 1200 ms 65/129 128 Electrical specifications L99PM72GXP Table 29. CAN transceiver timing Symbol tBIAS tV1swon 66/129 Parameter Test condition RL = 60 Ω; CL = 100 pF; CGND = 100 pF Bias reaction time V1 switch-on time after reception of a valid WUF in VBat-standby Mode DocID024767 Rev 4 Min. Typ. Max. Unit 200 µs 50 µs L99PM72GXP 5.5.12 Electrical specifications LIN transceiver(e) The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tjunction = -40°C to 130°C, unless otherwise specified. Table 30. LIN transmit data input: pin TxD Symbol Parameter Test condition VTXDLOW Input voltage dominant level Active mode; V1 = 5 V Min. Typ. 1,35 1.8 VTXDHIGH Input voltage recessive level Active mode; V1 = 5 V 2.5 Max. Unit V 3 V VTXDHYS VTXDHIGH - VTXDLOW Active mode; V1 = 5 V 0.7 1 RTXDPU TXD pull up resistor Active Mode; V1 = 5 V 10 20 35 kΩ Typ. Max. Unit 0.2 0.5 V V Table 31. LIN receive data output: pin RxD Symbol Parameter Test condition Min. VRXDLOW Output voltage dominant level Active mode; V1 = 5 V; 2 mA VRXDHIGH Output voltage recessive level Active mode; V1 = 5 V; 2 mA 4.5 V Table 32. LIN transmitter and receiver: pin LIN Symbol Parameter VTHdom Receiver threshold voltage recessive to dominant state 0.4 VS 0.45 VS 0.5 VS V VBusdom Receiver dominant state 0.4 VS V VTHrec Receiver threshold voltage dominant to recessive state 0.5 * VS 0.6 * VS V VBusrec Receiver recessive state 0.6 VS VTHhys Receiver threshold hysteresis: VTHrec VTHdom 0.07 * VS 0.1 * VS 0.175 * VS V VTHcnt Receiver tolerance center value: (VTHrec +VTHdom)/2 0.475 * VS 0.5 * VS 0.525 * VS V 1.0 1.5 2 V VTHwkup Test condition Receiver wakeup threshold voltage Min. Typ. 0.55 * VS Max. Unit V e. LIN 2.1 compliant for Baud rates up to 20 kBit/s. SAE J2602 compatible. DocID024767 Rev 4 67/129 128 Electrical specifications L99PM72GXP Table 32. LIN transmitter and receiver: pin LIN (continued) Symbol Parameter Test condition Min. VTHwkdwn Receiver wakeup threshold voltage tlinbus Dominant time for wakeup via bus Sleep mode; Edge: rec-dom ILINDomSC Transmitter input current limit in dominant state VTXD = VTXDLOW; VLIN = VBATMAX = 18 V 40 Input leakage current at the Ibus_PAS_dom receiver incl. pullup resistor VTXD = VTXDHIGH; VLIN = 0 V; VBAT = 12 V(1) -1 Transmitter input Ibus_PAS_rec current in recessive state In stanby Modes; VTXD = VTXDHIGH; VLIN > 8 V; VBAT < 18 V; VLIN ≥ VBAT Typ. Max. Unit VS - 3.5 VS - 2.5 VS - 1.5 V 64 * TOSC µs 100 180 mA mA 20 µA 1 mA Ibus_NO_GND Input current if loss GND = VS; 0 V < VLIN < 18 V; of GND at Device VBAT = 12 V Ibus Input current if loss GND = VS; 0 V < VLIN < 18 V of VBAT at Device 100 µA VLINdom LIN voltage level in Active mode; dominant state VTXD = VTXDLOW; ILIN = 40 mA 1.2 V VLINrec LIN voltage level in Active mode; recessive state VTXD = VTXDHIGH; ILIN = 10 µA 1 V RLINup LIN output pull up resistor 60 kΩ 90 pF Max. Unit 6 µs 2 µs CLIN VLIN = 0 V -1 0.8 * VS 20 40 LIN input capacitance 1. Slave mode. Table 33. LIN transceiver timing Symbol tRXpd tRXpd_sym 68/129 Parameter Receiver propagation delay time Test condition Min. tRXpd = max(tRXpdr,tRXpdf); tRXpdf = t(0.5 VRXD) - t(0.45 VLIN); tRXpdr = t(0.5 VRXD) - t(0.55 VLIN); VS = 12 V; CRXD = 20 pF; Rbus = 1 kΩ; Cbus = 1 nF; Rbus = 660 Ω; Cbus = 6.8 nF; Rbus = 500 Ω; Cbus = 10 nF Symmetry of =t -t ; t receiver propagation RXpd_sym RXpdr RXpdf VS = 12 V; Rbus = 1 kΩ; delay time (rising vs. Cbus = 1 nF; CRXD = 20 pF falling edge) DocID024767 Rev 4 -2 Typ. L99PM72GXP Electrical specifications Table 33. LIN transceiver timing (continued) Symbol D1 D2 D3 D4 Parameter Test condition Duty Cycle 1 THRec(max) = 0.744 * VS; THDom(max) = 0.581 * VS; VS = 7 V to 18 V; tbit = 50 µs; D1 = tbus_rec(min) / (2 * tbit); Rbus = 1 kΩ; Cbus = 1 nF; Rbus = 660 Ω; Cbus = 6.8 nF; Rbus = 500 Ω; Cbus = 10 nF Duty Cycle 2 THRec(min) = 0.422 * VS; THDom(min) = 0.284 * VS; VS = 7.6 V to 18 V; tbit = 50us; D2 = tbus_rec(max) / (2 * tbit); Rbus = 1 kΩ; Cbus = 1 nF; Rbus = 660 Ω; Cbus = 6.8 nF; Rbus = 500 Ω; Cbus = 10 nF Duty Cycle 3 THRec(max) = 0.778 * VS; THDom(max) = 0.616 * VS; VS = 7 V to 18 V; tbit = 96 µs; D3 = tbus_rec(min) / (2 * tbit); Rbus = 1 kΩ; Cbus = 1 nF; Rbus = 660 Ω; Cbus = 6.8 nF; Rbus = 500 Ω; Cbus = 10 nF Duty Cycle 4 THRec(min) = 0.389 * VS; THDom(min) = 0.251 * VS; VS = 7.6 V to 18 V; tbit = 96 µs; D4 = tbus_rec(max) / (2 * tbit); Rbus = 1 kΩ; Cbus = 1 nF; Rbus = 660 Ω; Cbus = 6.8 nF; Rbus = 500 Ω; Cbus = 10 nF Min. Typ. Max. Unit 0.396 0.581 0.417 0.590 TXDL dominant time-out 12 ms tLIN LIN permanent recessive time-out 40 µs Tdom(bus) LIN Bus permanent dominant time-out 12 ms tdom(TXDL) Table 34. LIN pull-up: pin LINPU Symbol RDS(on) Ileak Parameter Test condition Min. Typ. Max. Unit ON resistance — 10.5 16 Ω Leakage current — 1 µA DocID024767 Rev 4 69/129 128 Electrical specifications L99PM72GXP Figure 33. LIN transmit, receive timing W 7;SGI W 7;SGU 9 7[' WLPH 9 /,1UHF  9 /,1 9 7+UHF 9 7+GRP  9 /,1GRP WLPH 9 5[' WLPH W 5;SGI W 5;SGU $*9 5.5.13 Operational amplifier The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; Tj = -40°C to 130°C, unless otherwise specified. Table 35. Operational amplifier Symbol GBW AVOLDC PSRR Note: 70/129 Parameter Test condition Min. Typ. Max. Unit GBW product 1 3.5 7.0 MHz DC open loop gain 80 dB 80 dB Power supply rejection DC, VIN = 150 mV Voff Input offset voltage -5 +5 mV VICR Common mode input range 3 V VOH Output voltage range high ILOAD = 1 mA to GND VS - 0.2 VS V VOL Output voltage range low ILOAD = 1 mA to VS 0 0.2 V ILim+ Output current limitation + DC 10 15 30 mA Ilim- Output current limitation - DC -10 -15 -30 mA SR+ Slew rate positive 1 4 10 V/µs SR- Slew rate negative -1 -4 -10 V/µs -0.2 0 The operational amplifier is on-chip stabilized for external capacitive loads CL < 25pF (all operating conditions) DocID024767 Rev 4 L99PM72GXP 5.5.14 Electrical specifications SPI The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.5 V < V1 < 5.3 V; all outputs open; Tj = -40°C to 130°C, unless otherwise specified. Table 36. Input: CSN Symbol Parameter Test condition VCSNLOW Input voltage low level Normal mode, V1 = 5 V VCSNHIGH Input voltage high level Normal mode, V1 = 5 V VCSNHYS VCSNHIGH - VCSNLOW Normal mode, V1 = 5 V ICSNPU CSN pull up resistor Normal mode, V1 = 5 V Min. Typ. 1.35 1.8 Max. Unit V 2 2.9 V 0.6 1.0 1.5 V 10 20 35 kΩ Typ. Max. Unit 160 300 µs Table 37. Inputs: CLK, DI Symbol Parameter Test condition Min. Delay time from standby to active mode Switching from standby to active mode. Time until output drivers are enabled after CSN going to high. VIN L Input low level V1 = 5 V 1.35 2.05 2.75 V VIN H Input high level V1 = 5 V 1.9 2.8 3.7 V VIN Hyst Input hysteresis V1 = 5 V 0.4 0.75 1.5 V Pull down current at input VIN = 1.5 V 5 30 60 µA 10 15 pF 1 MHz Max. Unit tset I in Cin (1) fCLK Input capacitance at input CSN, CLK, 0 V < V1 < 5.3 V DI and PWM1,2 SPI input frequency at CLK 1. Value of input capacity is not measured in production test. Parameter guaranteed by design. Table 38. DI timing(1) Symbol Parameter Test condition Min. Typ. tCLK clock period V1 = 5 V 1000 — ns tCLKH clock high time V1 = 5 V 400 — ns tCLKL clock low time V1 = 5 V 400 — ns tset CSN CSN setup time, CSN low before rising edge of CLK V1 = 5 V 400 — ns tset CLK CLK setup time, CLK high before rising edge of CSN V1 = 5 V 400 — ns DI setup time V1 = 5 V 200 — ns tset DI DocID024767 Rev 4 71/129 128 Electrical specifications L99PM72GXP Table 38. DI timing(1) (continued) Symbol thold DI Parameter Test condition DI hold time V1 = 5 V Min. Typ. 200 — Max. Unit ns tr in rise time of input signal DI, CLK, V1 = 5 V CSN — 100 ns tf in fall time of input signal DI, CLK, CSN — 100 ns Typ. Max. Unit 0.5 V V1 = 5 V 1. See Figure 35: SPI input timing. Table 39. Output: DO Symbol 1. Parameter Test condition Min. VDOL output low level V1 = 5 V; ID = -4 mA VDOH output high level V = 5 V; ID = 4 mA 4.5 IDOLK tristate leakage current VCSN = V1; 0 V < VDO < V1 -10 CDO tristate input capacitance VCSN = V1; 0 V < V1 < 5.3 V(1) V 10 10 µA 15 pF Value of input capacity is not measured in production test. Parameter guaranteed by design. Table 40. DO timing(1) Symbol Parameter Test condition Min. Typ. Max. Unit tr DO DO rise time CL = 100 pF; ILOAD = -1 mA — 50 100 ns tf DO DO fall time CL = 100 pF; ILOAD = 1 mA — 50 100 ns ten DO tri L DO enable time from CL = 100 pF; ILOAD = 1 mA; tristate to low level pull-up load to V1 — 50 250 ns tdis DO L tri DO disable time from CL = 100 pF; ILOAD = 4 mA; low level to tristate pull-up load to V1 — 50 250 ns ten DO tri H DO enable time from CL = 100 pF; ILOAD = -1 mA; tristate to high level pull-down load to GND — 50 250 ns tdis DO H tri DO disable time from CL = 100 pF; ILOAD = -4 mA; high level to tristate pull-down load to GND — 50 250 ns VDO < 0.3 V1; VDO > 0.7 V1; CL = 100 pF — 50 250 ns Typ. Max. Unit td DO DO delay time 1. See Figure 36: SPI output timing (part 1). Table 41. CSN timing(1) Symbol Parameter tCSN_HI,min Minimum CSN HI time, active mode tCSNfail CSN low timeout Test condition Min. Transfer of SPI-command to Input Register 6 20 1. See Figure 37: SPI CSN - output timing. 72/129 DocID024767 Rev 4 µs 35 50 ms L99PM72GXP Electrical specifications The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; all outputs open; Tj = -40°C to 130°C, unless otherwise specified Table 42. RXDL/NINT, RXDC/NINT timing 5.5.15 Symbol Parameter Test condition tInterupt Interrupt pulse duration Min. Typ. Max. Unit — 56 — µs Inputs TxDC and TxDL for Flash Mode 6 V ≤ VS ≤ 18 V; 4.5 V ≤ V1 ≤ 5.3 V; Tj = -40°C to 130°C; voltages are referred to PGND, all outputs open Table 43. Inputs: TxDC and TxDL for Flash Mode Symbol Parameter Test condition Min. Typ. Max. Unit VflashL Input low level (VTXDC/L for exit from Flash Mode) V1 = 5 V 7.1 8.4 9.0 V VflashH Input high level (VTXDC/L for transition into Flash Mode) V1 = 5 V 8.3 9.4 10.0 V Input voltage hysteresis V1 = 5 V 0.8 1.0 1.2 V VflashHYS Figure 34. SPI - transfer timing diagram &61KLJKWRORZ'2HQDEOHG &61 WLPH &/.         ; ;         WLPH ',GDWDZLOOEHDFFHSWHGRQWKHULVLQJHGJHRI&/.VLJQDO ',         ; ;         &RPPDQG%\WH 'DWD '2GDWDZLOOFKDQJHRQWKHIDOOLQJHGJHRI&/.VLJQDO '2 ,QSXW 'DWD 5HJLVWHU         ; ;       WLPH  *OREDO6WDWXV%\WH &61ORZWRKLJKDFWXDOGDWDLV WUDQVIHUHGWRRXWSXWSRZHUVZLWFKHV *OREDO(UURU ROGGDWD  WLPH QHZGDWD WLPH $*9 The SPI can be driven by a micro controller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. DocID024767 Rev 4 73/129 128 Electrical specifications L99PM72GXP Figure 35. SPI input timing  9&& &61  9&& WVHW &61 W&/.+ WVHW &/.  9&& &/.  9&& WVHW ', WKROG ', W&/./  9&& ', 9DOLG 9DOLG  9&& $*9 74/129 DocID024767 Rev 4 L99PM72GXP Electrical specifications Figure 36. SPI output timing (part 1) 7I&/. 7U&/. 9FF &/. 9FF 9FF 7U'2 9FF '2 ORZWRKLJK 9FF 7G'2 7I '2 9FF '2 KLJKWRORZ 9FF 7I&61 7U&61 9FF &61 9FF 9FF  7HQ'2BWULB/ 7GLV'2B/BWUL  7HQ'2BWULB+ 7GLV'2B+BWUL $*9 DocID024767 Rev 4 75/129 128 Electrical specifications L99PM72GXP Figure 37. SPI CSN - output timing & 61 ORZ WR KLJK GDWD IURP VKLIW UHJLVWHU LV WUDQVIHUUHG WR RXWSXW SRZHU V ZLWFKHV W U LQ W I LQ W &61B+,PLQ      & 61 WG 2)) RXWSXW FXUUHQW RI D GULYHU 2 1 VWDWH    2) ) VWDWH  W 2)) WG 21 W 21 RXWSXW FXUUHQW RI D GULYHU 2 )) VWDWH      2 1 VWDWH $*9 Figure 38. SPI - CSN low to high transition and global status bit access & 6 1 KLJ K WR OR Z D Q G &/ . V WD\V OR Z  VWDWXV LQIRU PDWLR Q RI G DWD ELW  ID XOW F R Q GLWLR Q LV WUD QV IHUH G WR ' 2 &61 WLP H &/. WLP H ', WLP H ', G DWD LV Q RW DFF H SWH G '2  WLP H ' 2 VWDWXV LQIRU P DWLRQ RI GDWD ELW  IDXOW F R QGLWLR Q Z LOO VWD\ DV OR QJ DV & 6 1 LV OR Z $*9 76/129 DocID024767 Rev 4 L99PM72GXP ST SPI 6 ST SPI 6.1 SPI communication flow 6.1.1 General description The SPI communication is based on a standard SPI interface structure using CSN (Chip Select Not), SDI (Serial Data In), SDO (Serial Data Out/Error) and SCK (Serial Clock) signal lines. At device start-up the master reads the register (ROM address 3EH) of the slave device. This 8-bit register indicates the SPI frame length (24bit) and the availability of additional features. Each communication frame consists of an instruction byte which is followed by two data bytes. The data returned on SDO within the same frame always starts with the register. It provides general status information about the device. It is followed by two data bytes (i. e. ‘In-frame-response’). For Write cycles the register is followed by the previous content of the addressed register. For Read cycles the register is followed by the content of the addressed register. A Write command is only accepted as a valid command by the device if the counted number of clocks is exact 24, otherwise the command is rejected. Command Byte Each communication frame starts with a command byte. It consists of an operating code which specifies the type of operation (, , , ) and a 6 bit address. If less than 6 address bits are required, the remaining bits are unused but are reserved. Table 44. Command Byte MSB LSB Op Code OC1 OC0 Address A5 A4 A3 A2 A1 A0 OCx: Operating Code Ax: Address DocID024767 Rev 4 77/129 128 ST SPI 6.1.2 L99PM72GXP Operating code definition Table 45. Operating code definition OC1 OC0 Meaning 0 0 0 1 1 0 1 1 The and operations allow access to the RAM of the device, i. e. to write to control registers or read status information. A operation addressed to a device specific status register reads back and subsequently clear this status register. A operation with address 3FH clears all status registers (including the Global Status Register). Configuration Register is read by this operation. allows access to the ROM area which contains device related information such as the product family, product name, silicon version, register width and availability of a watchdog. More detailed descriptions of the Device Information are available in ‘Read Device Information’. 6.1.3 Global Status Register Table 46. Global status register 6.1.4 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Comm error Not (chip reset OR comm error) TSD2 TSD1 V1 Fail VS Fail (OV/UV) Fail safe Configuration register(f) The register is accessible at RAM address 3FH. For the Config Register, the 8 bits are located in the low byte (LSB). The Configuration Register is implemented for compliance purpose to ST SPI Standard. Table 47. Configuration register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 WD trigger : This Bit is reserved to serve the watchdog. f. See Section 6.2 for details. 78/129 DocID024767 Rev 4 L99PM72GXP ST SPI Figure 39. Read configuration register &61 6',                                        75,* &RPPDQG 127 &KLS 6'2 *() &RP 5HV (UURU 25 &RPP (UU 76' 76' 9 9V )DLO   )DLO )DLO 6DIH *OREDO6WDWXV $*9 1. The configuration register is implemented for compliance with ST standard SPI 3.0 and contains only the watchdog trigger bit at D0. Figure 40. Write configuration register &61 6',                        75,* Q                75,* Q &RPPDQG 6'2 &RP *() (UURU 127 &KLS 5HV 76' 25  &RPP (UU 76' 9 9V )DLO  )DLO )DLO 6DIH *OREDO6WDWXV $*9 1. The configuration register is implemented for compliance with ST standard SPI 3.0 and contains only the watchdog trigger bit at D0. DocID024767 Rev 4 79/129 128 ST SPI 6.1.5 L99PM72GXP Address mapping Table 48. Address mapping RAM Address Description Access ROM Address Description Access 3FH R/W 3FH Reserved N/A … … … 3EH R 13H Status Register 3 R 12H Status Register 2 R 11H Status Register 1 R … … … … Unused N/A 06H Control Register 6 R/W 05H Control Register 5 R/W 04H Control Register 4 R/W 03H Control Register 3 R/W 03H R 02H Control Register 2 R/W 02H R 01H Control Register 1 R/W 01H R 00H Reserved R/W 00H R The RAM memory area consists of 16 bit registers. For the device information (ROM memory area) the eight most significant bits of the memory cell are used. The remaining 8 are zero. All unused RAM and ROM addresses are read as ‘0’. Note: The register definition for RAM address 00H is unused. A register value of all 0 must cause the device to enter a Fail-Safe state (interpreted as ‘SDI stuck to GND’ failure). Note: ROM address 3FH is unused. An attempt to access this address must be recognized as a communication error (‘SDI stuck to VCC’ failure) and must cause the device to enter a Fail-Safe state. 6.1.6 Write operation The write operation starts with a Command Byte followed by 2, data bytes. The number of data bytes is specified in the . Write command format Table 49. Write command format: command byte MSB LSB Op Code 0 80/129 Address 0 A5 A4 DocID024767 Rev 4 A3 A2 A1 A0 L99PM72GXP ST SPI Table 50. Write command format: data byte 1 MSB D15 LSB D14 D13 D12 D11 D10 D9 D8 Table 51. Write command format: data byte 2 MSB D7 LSB D6 D5 D4 D3 D2 D1 D0 OC0, OC1: operating code (00 for ‘write’ mode) A0 to A5: address bits An attempt to write 00H at RAM address 00H is recognized as a failure (SDI stuck to GND). The device enters a Fail-Safe state. 6.1.7 Format of data shifted out at SDO during Write cycle Table 52. Format of data shifted out at SDO during write cycle: global status register Bit 7 Bit 6 Bit 5 Global error Communication Not (chip reset flag (GEF) error or comm error) Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TSD2 TSD1 V1 Fail VS Fail (OV/UV) Fail safe Table 53. Format of data shifted out at SDO during write cycle: data byte 1 MSB D15 Previous content of addressed register D14 D13 D12 D11 D10 LSB D9 D8 Table 54. Format of data shifted out at SDO during write cycle: data byte 2 MSB D7 Previous content of addressed register D6 D5 D4 D3 D2 LSB D1 D0 Failures are indicated by activating the corresponding bit of the register. The returned data byte(s) represent(s) the previous content of the accessed register DocID024767 Rev 4 81/129 128 ST SPI L99PM72GXP Figure 41. Format of data shifted out at SDO during write cycle &61 6',   $ $ $ $ $ $ ' ' ' ' ' ' &RPPDQG 6'2 &RP *() (UURU 127 &KLS 5HV 76' 25  &RPP (UU ' ' ' ' ' ' ' ' ' ' VW 'DWDE\WH QG 'DWDE\WH 76' 9 9V )DLO ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '  )DLO )DLO 6DIH VW 'DWDE\WH *OREDO6WDWXV QG 'DWDE\WH SUHYLRXVFRQWHQWRIUHJLVWHU SUHYLRXVFRQWHQWRIUHJLVWHU $*9 6.1.8 Read operation Table 55. Read command format: command byte MSB LSB Op Code 0 Address 1 A5 A4 A3 A2 A1 A0 Table 56. Read command format: data byte 1 MSB 0 LSB 0 0 0 0 0 0 0 Table 57. Read command format: data byte 2 MSB 0 LSB 0 0 0 OC0, OC1: operating code (01 for ‘read’ mode) A0 to A5: Address Bits 82/129 DocID024767 Rev 4 0 0 0 0 L99PM72GXP 6.1.9 ST SPI Format of data shifted out at SDO during Read cycle Table 58. Format of data shifted out at SDO during read cycle: global status register Bit 7 Bit 6 Global error flag (GEF) Bit 5 Communication Not (chip reset error OR comm error) Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TSD2 TSD1 V1 Fail VS Fail (OV/UV) Fail safe Table 59. Format of data shifted out at SDO during read cycle: data byte 1 MSB Previous content of addressed register D15 D14 D13 D12 D11 LSB D10 D9 D8 Table 60. Format of data shifted out at SDO during read cycle: data byte 2 MSB Previous content of addressed register D7 D6 D5 D4 D3 LSB D2 D1 D0 Failures are indicated by activating the corresponding bit of the register. The returned data byte(s) represent(s) the content of the register to be read. Figure 42. Format of data shifted out at SDO during read cycle &61 6',   $ $ $ $ $ $                 &RPPDQG 127 &KLS 6'2 *() &RP 5HV (UURU 25 76' 76' 9 9V )DLO ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '   )DLO )DLO 6DIH &RPP (UU *OREDO6WDWXV VW 'DWDE\WH QG 'DWDE\WH $*9 DocID024767 Rev 4 83/129 128 ST SPI 6.1.10 L99PM72GXP Read and Clear Status Operation The ‘Read and Clear Status’ operation starts with a Command Byte followed 2 data bytes. The number of data bytes is specified in the . The content of the data bytes is ‘don’t care’. The content of the addressed Status Register is transferred to SDO within the same frame (‘in-frame response’) and is subsequently cleared. A ‘Read and Clear Status’ operation with address 3FH clears all Status registers (incl. the register). The Configuration Register is read by this operation. Table 61. Read and clear status command format: command byte MSB LSB Op Code 1 Address 0 A5 A4 A3 A2 A1 A0 Table 62. Read and clear status command format: data byte 1 MSB 0 LSB 0 0 0 0 0 0 0 Table 63. Read and clear status command format: data byte 2 MSB 0 LSB 0 0 0 0 0 0 0 OC0, OC1: operating code (10 for ‘read and clear status’ mode) A0 to A5: address bits Format of data shifted out at SDO during ‘Read and Clear Status’ operation Table 64. Format of data shifted out at SDO during read and clear status: global status register Bit 7 Global error flag (GEF) Bit 6 Bit 5 Communication Not (chip reset OR error comm error) Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TSD2 TSD1 V1 Fail VS Fail (OV/UV) Fail safe Table 65. Format of data shifted out at SDO during read and clear status: data byte 1 MSB D15 Previous content of addressed register D14 D13 D12 D11 D10 LSB D9 D8 Table 66. Format of data shifted out at SDO during read and clear status: data byte 2 MSB D7 84/129 Previous content of addressed register D6 D5 D4 DocID024767 Rev 4 D3 D2 LSB D1 D0 L99PM72GXP ST SPI Failures are indicated by activating the corresponding bit of the register. The returned data byte(s) represent(s) the content of the register to be read. Figure 43. Format of data shifted out at SDO during read and clear status operation &61 6',   $ $ $ $ $ $                 &RPPDQG 127 &KLS 6'2 *() &RP 5HV (UURU 25 76' 76' 9 9V )DLO ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '   )DLO )DLO 6DIH &RPP (UU *OREDO6WDWXV VW 'DWDE\WH QG 'DWDE\WH &RQWHQWRIDGGUHVVHG6WDWXV5HJLVWHU &RQWHQWRIDGGUHVVHG6WDWXV5HJLVWHU $*9 6.1.11 Read device information The device information is stored at the ROM addresses defined below and is read using the respective operating code. Table 67. Read device information Op Code ROM address Device information OC1 OC0 1 1 3FH Reserved 1 1 3EH Includes frame width and availability of watchdog 1 1 04H to 3DH 1 1 1 Value 00 42 Hex unused 00 03H Unique product identifier 27h 1 02H Unique product identifier 4Bh 1 1 01H Indicates Design Version 05h 1 1 00H Device family max address of device information DocID024767 Rev 4 43 Hex 85/129 128 ST SPI L99PM72GXP The (ROM address 00H) indicates the product family and specifies the highest address which contains product information Table 68. ID-header Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 0 0 0 0 1 1 Family Identifier Highest address containing device information : 01 Hex (BCD) : 03 Hex Table 69. Family identifier Bit 7 Bit 6 Meaning 0 0 VIPower 0 1 BCD 1 0 VIPower hybrid 1 1 — The (ROM address 02H) and (ROM address 03H) represents a unique code to identify the product name. : 4BHex : 27 Hex The (ROM address 01H) provides information about the silicon version according to the table below: Table 70. Silicon version identifier Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Reserved Bit 1 Bit 0 Silicon version The (ROM address 3EH) provides information about the register width (1, 2, 3 bytes) and the availability of ‘Burst Mode Read’ and watchdog. Table 71. SPI-frame-ID Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 0 0 0 0 1 0 BR WD X X X 32-bit 24-bit 16-bit BR: Burst-Mode read (1 = Burst-Mode read is supported) WD: Watchdog (1 = available, 0 = not available) 32-, 24-, 16-bit: width of SPI frame 86/129 DocID024767 Rev 4 L99PM72GXP ST SPI : not supported : available : 24 bit 6.2 SPI registers 6.2.1 Overview command byte Table 72. SPI register: command byte Read/write x Address x x x x x x x Table 73. SPI register: mode selection Read/write Mode selection 0 0 Write 0 1 Read 1 0 Read and clear 1 1 Read device info Table 74. SPI register: CTRL register selection CTRL register 1…6 CTRL register selection 0 0 0 0 0 1 CTRL register1 0 0 0 0 1 0 CTRL register2 0 0 0 0 1 1 CTRL register3 0 0 0 1 0 0 CTRL register4 0 0 0 1 0 1 CTRL register5 0 0 0 1 1 0 CTRL register6 0 0 0 1 1 1 CTRL register7 0 0 1 0 0 0 CTRL register8 0 0 1 0 0 1 CTRL Register9 0 0 1 0 1 0 CTRL Register10 0 0 1 0 1 1 CTRL Register11 0 0 1 1 0 0 CTRL Register12 0 0 1 1 0 1 CTRL Register13 0 0 1 1 1 0 CTRL Register14 0 0 1 1 1 1 CTRL Register15 0 1 0 0 0 0 CTRL Register16 DocID024767 Rev 4 87/129 128 ST SPI L99PM72GXP Table 74. SPI register: CTRL register selection (continued) CTRL register 1…6 CTRL register selection 1 0 0 0 1 0 CTRL Register34 1 0 0 0 1 1 CTRL Register35 1 1 1 1 1 1 Configuration Register Table 75. SPI register: STAT register selection STAT register. 1…3 6.2.2 STAT register selection 0 1 0 0 0 1 STAT register1 0 1 0 0 1 0 STAT register2 0 1 0 0 1 1 STAT register3 0 1 0 1 0 0 STAT Register4 0 1 0 1 0 1 STAT Register5 Overview control register Table 76. Overview of control register data bytes 1st 2nd data byte data byte Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Function OUTHS OUTHS OUT4 OUT4 OUTHS_EXT OUT3 OUT2 OUT1 REL2 REL1 V2 V2 Parity Stby sel Go Stby Control register 1, data Trig Group HS control LS Output, V2 and mode control Group 88/129 0 0 0 WU1_Filt Reserved WU3_Pu/Pd WU2_Pu/Pd Wake-up control 0 0 1 1 1 WU1_EN 0 WU2_EN 0 WU3_EN 0 Reserved 0 WU1_Pu/Pd 0 WU1_Filt Reserved 0 WU2_Filt 0 WU2_Filt Function 0 WU3_Filt Default WU3_Filt Control register 2, data Wake-up control DocID024767 Rev 4 Group 1 1 1 0 0 Function Reserved Lin TxD Tout En CAN_ACT CAN_Loop_En Function Reserved T1_On T1_Per_MSB T1_Per_LSB Reserved T2_On T2_Per_MSB T2_Per_LSB 0 Timer Settings PWM4 setting DocID024767 Rev 4 Control (other) 0 1 1 0 0 WD_time_LSB LIN WU En CAN WU En Wake Timer En Wake Time Sel Reserved 0 WD_time_MSB 0 0 PWM2 setting 1 0 0 0 0 0 Reserved CAN_Rec_Only 0 PWM1 setting Control register 6, data PWM1_ON_DC_0 0 LIN Pu En 0 0 0 0 0 0 PWM3_ON_DC_0 0 V1Reset_Level 0 PWM1_ON_DC_1 1 V1Reset_Level 0 PWM3_ON_DC_1 0 LS OV/UV shutdown_en 0 PWM1_ON_DC_2 0 PWM1_ON_DC_5 1 Reserved 0 0 0 0 0 0 PWM1_ON_DC_3 0 PWM1_ON_DC_6 0 VLOCK_OUT_EN 0 PWM1_ON_DC_4 1 PWM Freq 0 OUTHS_rec_en 0 PWM3_ON_DC_2 1 PWM3_ON_DC_5 1 PWM2_OFF_DC_0 0 ICMP Default PWM3_ON_DC_3 1 PWM3_ON_DC_6 1 PWM2_OFF_DC_1 PWM2_OFF_DC_5 Default Reserved 1st data byte PWM3_ON_DC_4 1 Reserved Function 1 PWM4_OFF_DC_0 1 PWM4_OFF_DC_1 Group 1 PWM2_OFF_DC_2 Function 1 PWM2_OFF_DC_3 1 PWM2_OFF_DC_4 1 PWM4_OFF_DC_2 1 PWM4_OFF_DC_5 0 PWM2_OFF_DC_6 Group PWM4_OFF_DC_3 0 PWM4_OFF_DC_6 Default Reserved Group PWM4_OFF_DC_4 Default Reserved L99PM72GXP ST SPI Table 76. Overview of control register data bytes (continued) 2nd data byte Control register 3, data Watchdog and cyclic wake up settings Control register 4, data 0 Transceiver settings Control register 5, data PWM3 setting 89/129 128 ST SPI L99PM72GXP Table 76. Overview of control register data bytes (continued) 1st data byte 2nd data byte 0 0 0 EXT_ID_0 0 EXT_ID_1 EXT_ID_10 0 EXT_ID_2 EXT_ID_11 0 EXT_ID_3 EXT_ID_12 0 EXT_ID_4 EXT_ID_13 0 EXT_ID_5 EXT_ID_14 Group 0 EXT_ID_6 Function 0 0 0 0 0 0 0 0 0 0 0 ID_4 0 EXT_ID_7 0 ID_5 0 EXT_ID_8 0 ID_6 0 EXT_ID_9 0 ID_7 Default EXT_ID_15 Control register 7, data Selective Wakeup Settings EXT_ID_17 EXT_ID_16 Group ID_0 0 ID_1 0 ID_2 Reserved 0 0 0 0 0 0 0 CAN_IDE 0 ID_3 Function 0 ID_8 0 ID_9 Default ID_10 Control register 8, data 0 Selective Wakeup Settings 0 0 0 Function 0 0 0 0 0 Reserved Group DLC_0 0 DLC_1 0 DLC_2 Default DLC_3 Control register 9, data 0 0 0 0 0 0 0 0 0 0 Selective Wakeup Settings Control register 10, data Default 0 0 0 Function 0 0 0 0 0 0 0 0 Data Byte 2 Data Byte 1 Group Selective Wakeup Settings Control register 11, data Default 0 0 0 Function 0 0 0 0 0 0 0 0 Data Byte 4 0 0 Data Byte 3 Group Selective Wakeup Settings Control register 12, data Default Function Group 90/129 0 0 0 0 0 0 0 0 0 0 Data Byte 6 0 0 0 Data Byte 5 Selective Wakeup Settings DocID024767 Rev 4 L99PM72GXP ST SPI Table 76. Overview of control register data bytes (continued) 1st data byte 2nd data byte Control register 13, data Default 0 0 0 Function 0 0 0 0 0 0 0 0 Data Byte 8 0 0 0 0 0 Data Byte 7 Group Selective Wakeup Settings 0 0 0 EXT_ID_ Mask_0 0 EXT_ID_ Mask_1 EXT_ID_ Mask_10 0 EXT_ID_ Mask_2 EXT_ID_ Mask_11 0 EXT_ID_ Mask_3 EXT_ID_ Mask_12 0 EXT_ID_ Mask_4 EXT_ID_ Mask_13 0 EXT_ID_ Mask_5 EXT_ID_ Mask_14 Group 0 EXT_ID_ Mask_6 Function 0 0 0 0 0 0 0 0 0 0 0 ID_Mask_4 0 EXT_ID_ Mask_7 0 ID_Mask_5 0 EXT_ID_ Mask_8 0 ID_Mask_6 0 EXT_ID_ Mask_9 0 ID_Mask_7 Default EXT_ID_ Mask_15 Control register 14, data Selective Wakeup Settings ID_Mask_3 ID_Mask_2 ID_Mask_1 ID_Mask_0 EXT_ID_ Mask_17 EXT_ID_ Mask_16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Function Reserved Samp 2 ID_Mask_8 0 CR16_10 ID_Mask_9 Defaults CR16_11 0 CR16_12 0 CR16_13 0 CR16_14 0 CR16_20 0 CR16_21 0 CR16_30 Defaults ID_Mask_10 Control register 15, data Function Reserved Group Selective Wakeup Settings Samp 0 Reserved 0 0 0 0 0 1 1 0 1 1 CR35_23 CR35_22 CR35_21 CR35_20 BR1 BR2 SW_EN Samp 1 0 CR35_24 Group CR35_25 Control register 16, data Selective Wakeup Settings Control register 34, data 0 0 0 0 0 0 0 Function 0 0 0 1 WD_EN Defaults Reserved Control Register 35, data Function 0 0 0 0 0 0 0 0 0 Reserved DocID024767 Rev 4 0 CR35_10 Defaults 91/129 128 ST SPI L99PM72GXP Table 76. Overview of control register data bytes (continued) 1st data byte 2nd data byte Configuration Register, data 0 0 0 0 0 0 0 Function Note: 0 0 0 0 0 0 0 0 0 TRIG Defaults Reserved Reserved bit must be kept at their default values. Writing to other register address is not allowed 6.2.3 Control Register 1 Table 77. Control register 1: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address 0 0 0 0 0 1 Table 78. Control register 1, data bytes Defaults 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Function OUTHS_1 OUT4_2 OUT4_1 OUTHS_EXT OUT3 OUT2 OUT1 REL2 REL1 V2_2 V2_1 Parity STBY_SEL GO_STBY 2nd data byte OUTHS_2 1st data byte Trig Group HS control LS Output, V2 and mode control Table 79. Control register 1, bits Bit Name 15 OUTHS 14 92/129 Comment Select mode of OUTHS OUTHS_EXT OUTHS_2 OUTHS_1 0 0 0 HS off 0 0 1 HS cyclic on with timer 1 0 1 0 HS controlled by PWM4 0 1 1 Active and standby HS cyclic on with Timer 2 mode 1 1 0 PWM3 1 x 1 HS on DocID024767 Rev 4 Mode L99PM72GXP ST SPI Table 79. Control register 1, bits (continued) Bit Name 13 OUT4 12 Comment Select mode of OUT4 OUT4_2 OUT4_1 Mode 0 0 HS off 0 1 HS on 1 0 HS controlled by PWM4 1 1 HS cyclic on with Timer 2 Active and standby mode 11 OUTHS_EXT Extended function of OUTHS; see OUTHS 10 OUT3 Select mode of OUT3 OUT3 9 OUT2 Mode 0 Select FSO 1 Select PWM3 Select mode of OUT2 OUT2 8 OUT1 Active and standby mode Mode 0 Select PWM2 1 Select timer2 Active and standby mode Select mode of OUT1 OUT1 Mode 0 Select PWM1 1 Select timer1 Active and standby mode DocID024767 Rev 4 93/129 128 ST SPI L99PM72GXP Table 79. Control register 1, bits (continued) Bit Name 7 REL2 Comment Select mode of REL2 REL2 6 REL1 Mode 0 REL2 off Active and standby mode 1 REL2 on Active mode Select mode of REL1 REL1 5 0 REL1 off Active and standby mode 1 REL1 on Active mode V2 4 3 Mode Parity V2_2 V2_1 0 0 V2 OFF in all modes 0 1 V2 ON in active mode; OFF in V1/VBat_standby mode 1 0 V2 ON in Active/V1_standby mode; OFF in VBat_standby mode 1 1 V2 ON in all modes The Stby_sel and Go_stby bits are protected by a parity check The bits Stby_sel, Go_stby and Parity must represent an even number of '1', otherwise the command is ignored and the Communication Error bit is set in the Global Status Register. Following are the valid settings Parity 94/129 STBY_SEL GO_STBY Command 0 1 1 Go to V1_standby 1 0 1 Go to VBat_standby 0 0 0 No transition to standby 1 1 0 No transition to standby DocID024767 Rev 4 L99PM72GXP ST SPI Table 79. Control register 1, bits (continued) Bit Name 2 STBY_SEL 1 Select standby mode GO_STBY 0 0 VBat_standby mode 1 V1_standby mode Execute standby mode TRIG 0 No action 1 Execute standby mode Trigger Bit for Watchdog Control Register 2 Table 80. Control register 2: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address x 0 0 0 0 1 0 Table 81. Control register 2, data bytes Group 0 0 0 0 0 0 WU1_Filt_MSB WU1_Filt_LSB Reserved WU3_Pu/Pd WU2_Pu/Pd WU1_Pu/Pd Wakeup control 1 1 1 WU1_EN 0 WU2_EN 0 WU3_EN 0 Reserved 0 WU2_Filt_LSB 0 WU2_Filt_MSB Function 0 WU3_Filt_LSB Defaults 2nd data byte data byte WU3_Filt_MSB 1st Reserved 6.2.4 Comment Wakeup control Table 82. Control register 2, bits Bit Name Comment 15 Reserved Must be kept at default 14 Reserved Must be kept at default DocID024767 Rev 4 95/129 128 ST SPI L99PM72GXP Table 82. Control register 2, bits (continued) Bit Name 13, 12 WU3_Filt 11, 10 WU2_Filt MSB LSB 9, 8 WU1_Filt 0 0 Static, 64 µs 0 1 Enabled with timer 2; 80 µs blank 1 0 Enabled with timer 2; 800 µs blank 1 1 Enabled with timer 1; 800 µs blank 7 6.2.5 Comment Wakeup filter configuration Reserved Must be kept at default 6 WU3_Pu/Pd Pull up or pull down configuration 5 WU2_Pu/Pd 0 Pull down 4 WU1_Pu/Pd 1 Pull up 3 Reserved Must be kept at default 2 WU3_EN Enable Wake up source 1 WU2_EN 0 Disable 0 WU1_EN 1 Enable Control Register 3 Table 83. Control register 3: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address 0 0 0 0 1 1 Table 84. Control register 3, data bytes 0 0 0 0 0 Function Reserved T1_On T1_Per_MSB T1_Per_LSB Reserved T2_On T2_Per_MSB T2_Per_LSB Group 96/129 Timer Settings DocID024767 Rev 4 0 0 Reserved 0 0 1 1 0 0 Wake_timer_select 0 Wake_timer_en 0 CAN_WU_En 0 LIN_WU_En Defaults WD_time_LSB 2nd data byte 1 data byte WD_time_MSB st Watchdog and cyclic wake up settings L99PM72GXP ST SPI Table 85. Control register 3, bits Bit Name 15 Reserved 14 T1_On 13 T1_Per_MSB 12 T1_Per_LSB Comment Must be kept at default Timer 1 “ON” time selections 0 10 ms 1 20 ms Timer 1 period selection MSB LSB 0 0 1s 0 1 2s 1 0 3s 1 1 4s Timer 1 is restarted with a valid write command to control register 3 11 Reserved 10 T2_On 9 T2_Per_MSB 8 T2_Per_LSB Must be kept at default Timer 2 “ON” time selection 0 0.1 ms 1 1 ms Timer 2 period selection MSB LSB 0 0 10 ms 0 1 20 ms 1 0 50 ms 1 1 200 ms Timer 2 is restarted with a valid write command to control register 3 7 Reserved Must be kept at default 6 Reserved Must be kept at default DocID024767 Rev 4 97/129 128 ST SPI L99PM72GXP Table 85. Control register 3, bits (continued) Bit Name 5 WD_time_MSB 4 WD_time_LSB 3 LIN_WU_En 2 CAN_WU_En 1 Wake_timer_En 0 6.2.6 Comment Trigger window selection MSB LSB 0 0 10 ms 0 1 50 ms 1 0 100 ms 1 1 200 ms Enable LIN as wake up source 0 Disabled 1 Enabled Enable CAN as wake up source 0 Disabled 1 Enabled Enable wake up by timer from V1_standby mode (Interrupt) or VBat_standby Mode (NRESET) 0 Disabled 1 Enabled Wake_timer_select Timer selection for timer interrupt / wake-up of µC by timer 0 Timer 2 1 Timer 1 Control Register 4 Table 86. Control register 4: command and data bytes Command byte Read/write x 98/129 x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address 0 0 0 1 0 0 DocID024767 Rev 4 L99PM72GXP ST SPI Table 87. Control register 4, data bytes 2nd data byte Defaults 0 0 0 1 0 1 0 0 1 1 1 0 0 Function Reserved ICMP OUTHS_rec_en VLOCK_OUT_EN Reserved LS_OV/UV_shutdown_en V1Reset_level_2 V1Reset_level_1 LIN_PU_EN Reserved Lin_TxD_Tout_En CAN_ACT CAN_Loop_En 1 data byte Group Control (other) 0 0 0 Reserved CAN_Rec_only st Transceiver settings Table 88. Control register 4, bits Bit Name 15 Reserved 14 ICMP 13 OUTHS_rec_en Comment Must be kept at default V1 load current supervision 0 Enabled; Watchdog is disabled in V1 Standby when the V1loadcurrent < Icmpthreshold 1 Disabled; Watchdog is automatically disabled when V1 standby is entered Overcurrent Auto recovery mode for OUTHS 0 Disabled 1 Enabled 12 VLOCK_OUT_EN Voltage lock out: OV/UV status 11 Reserved 10 LS_OV/UV shutdown_en 0 Overvoltage/undervoltage status recovers automatically when condition disappears 1 Overvoltage/undervoltage status is latched until a read and clear command is performed Must be kept at default Shutdown of low-side drivers in case of overvoltage/undervoltage 0 No shutdown of low-sides in case of overvoltage/undervoltage 1 Shutdown low-sides in case of overvoltage/undervoltage DocID024767 Rev 4 99/129 128 ST SPI L99PM72GXP Table 88. Control register 4, bits (continued) Bit Name Comment 9 V1Reset_level_1 Select reset level 8 V1Reset_level_2 V1Reset_level_ V1Reset_level_1 2 7 6 5 4 LIN_PU_EN Reserved V1 reset level 0 0 4.6 V 0 1 4.35 V 1 0 4.1 V 1 1 3.8 V Enable internal LIN pull up 0 No LIN master pull-up 1 LIN master pull-up Must be kept at default Lin_TxD_Tout_En Enable / disable monitoring via TxD CAN_ACT 0 No TxD monitoring 1 TxD monitoring; LIN transmitter is switched off if TXDL is dominant for t > 12 ms Activate CAN transceiver Controls the CAN transceiver mode transition between 'CAN Trx Standby' Mode and 'Trx Normal' mode. The bit CAN_ACT is automatically reset to '0' when the device enters V1_standby Mode or VBat_standby Mode. 0 CAN Trx Standby Mode 1 Trx Normal Mode See Section 2.9.1 for details. 3 100/129 CAN_Loop_En Enable looping of CANTX to CANRXD 0 No looping 1 TXDC is looped to RXDC 2 Reserved Must be kept at default 1 Reserved Must be kept at default DocID024767 Rev 4 L99PM72GXP ST SPI Table 88. Control register 4, bits (continued) Bit Name Comment 0 CAN_Rec_only Enable CAN receive only mode 0 CAN in transceiver mode 1 CAN in receive only mode Active mode Control Register 5 Table 89. Control register 5: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address 0 0 0 1 0 1 Table 90. Control register 5, data bytes 0 PWM1_ON_DC_6 PWM1_ON_DC_5 PWM2 setting DocID024767 Rev 4 0 0 0 0 0 PWM1_ON_DC_0 0 PWM1_ON_DC_1 0 PWM1_ON_DC_2 1 PWM1_ON_DC_3 1 PWM1_ON_DC_4 1 PWM_Freq PWM2_OFF_DC_5 Group 1 PWM2_OFF_DC_0 Function 1 PWM2_OFF_DC_1 1 PWM2_OFF_DC_2 1 PWM2_OFF_DC_3 0 2nd data byte PWM2_OFF_DC_4 Defaults PWM2_OFF_DC_6 1st data byte Reserved 6.2.7 PWM1 setting 101/129 128 ST SPI L99PM72GXP Table 91. Control register 5, bits Bit Name 15 Reserved Must be kept at default 14 PWM2_ PWM2 duty cycle OFF_DC_6 13 PWM2_ OFF_DC_5 12 PWM2_ OFF_DC_4 1 1 1 1 1 1 1 0%, HS OFF 11 PWM2_ OFF_DC_3 1 1 1 1 1 1 0 200/128 % 10 PWM2_ OFF_DC_2 1 1 1 1 1 1 1 300/128 % 9 PWM2_ OFF_DC_1 8 7 PWM2_ OFF_DC_0 PWM2 PWM2 PWM2 PWM2 PWM2 PWM2 PWM2 OFF_ OFF_ OFF_ OFF_ OFF_ OFF_ OFF_ DC_6 DC_5 DC_4 DC_3 DC_2 DC_1 DC_0 PWM2 duty cycle ... 0 0 0 0 0 1 0 12600/128 % 0 0 0 0 0 0 1 12700/128 % 0 0 0 0 0 0 0 100% HS ON PWM_FREQ Select PWM frequency 0 128 Hz 1 256 Hz 6 PWM1_ ON_DC_6 PWM1 duty cycle 5 PWM1_ ON_DC_5 PWM1 PWM1 PWM1 PWM1 PWM1 PWM1 PWM1 ON_ ON_ ON_ ON_ ON_ ON_ ON_ DC_6 DC_5 DC_4 DC_3 DC_2 DC_1 DC_0 4 PWM1_ ON_DC_4 1 1 1 1 1 1 1 100%, HS ON 3 PWM1_ ON_DC_3 1 1 1 1 1 1 0 12600/128 % 2 PWM1_ ON_DC_2 1 1 1 1 1 1 1 12500/128 % 1 PWM1_ ON_DC_1 0 102/129 Comment PWM1_ ON_DC_0 PWM1 duty cycle ... 0 0 0 0 0 1 0 200/128 % 0 0 0 0 0 0 1 100/128 % 0 0 0 0 0 0 0 0% HS OFF DocID024767 Rev 4 L99PM72GXP Control Register 6 Table 92. Control register 6: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address x 0 0 0 1 1 0 Table 93. Control register 6, data bytes Group PWM4 setting 0 0 0 PWM3_ON_DC_0 0 PWM3_ON_DC_1 0 PWM3_ON_DC_2 0 PWM3_ON_DC_3 0 PWM3_ON_DC_4 0 PWM3_ON_DC_6 1 Reserved 1 PWM4_OFF_DC_0 1 PWM4_OFF_DC_1 1 PWM4_OFF_DC_2 1 PWM4_OFF_DC_3 1 PWM4_OFF_DC_4 1 PWM4_OFF_DC_5 Function 0 PWM4_OFF_DC_6 Defaults 2nd data byte PWM3_ON_DC_5 1st data byte Reserved 6.2.8 ST SPI PWM3 setting Table 94. Control register 6, bits Bit Name 15 Reserved Comment Must be kept at default 14 PWM4_ PWM4 duty cycle OFF_DC_6 13 PWM4 PWM4 PWM4 PWM4 PWM4 PWM4 PWM4 PWM4_ OFF_ OFF_ OFF_ OFF_ OFF_ OFF_ OFF_ OFF_DC_5 DC_6 DC_5 DC_4 DC_3 DC_2 DC_1 DC_0 12 PWM4_ OFF_DC_4 1 1 1 1 1 1 1 0%, HS OFF 11 PWM4_ OFF_DC_3 1 1 1 1 1 1 0 200/128 % 10 PWM4_ OFF_DC_2 1 1 1 1 1 1 1 300/128 % 9 PWM4_ OFF_DC_1 8 7 PWM4_ OFF_DC_0 Reserved PWM4 duty cycle ... 0 0 0 0 0 1 0 12600/128 % 0 0 0 0 0 0 1 12700/128 % 0 0 0 0 0 0 0 100% HS ON Must be kept at default DocID024767 Rev 4 103/129 128 ST SPI L99PM72GXP Table 94. Control register 6, bits (continued) Bit Comment 6 PWM3_ PWM3 duty cycle ON_DC_6 5 PWM3_ ON_DC_5 4 PWM3_ ON_DC_4 1 1 1 1 1 1 1 100%, HS ON 3 PWM3_ ON_DC_3 1 1 1 1 1 1 0 12600/128 % 2 PWM3_ ON_DC_2 1 1 1 1 1 1 1 12500/128 % 1 PWM3_ ON_DC_1 0 104/129 Name PWM3_ ON_DC_0 PWM3 PWM3 PWM3 PWM3 PWM3 PWM3 PWM3 ON_ ON_ ON_ ON_ ON_ ON_ ON_ DC_6 DC_5 DC_4 DC_3 DC_2 DC_1 DC_0 PWM3 duty cycle ... 0 0 0 0 0 1 0 200/128 % 0 0 0 0 0 0 1 100/128 % 0 0 0 0 0 0 0 0% HS OFF DocID024767 Rev 4 L99PM72GXP Control Register 7 Table 95. Control register 7: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address x 0 0 0 1 1 1 Table 96. Control register 7, data bytes EXT_ID_11 EXT_ID_10 0 0 0 0 0 0 0 EXT_ID_0 EXT_ID_12 0 EXT_ID_1 EXT_ID_13 Group 0 EXT_ID_2 Function 0 EXT_ID_3 0 EXT_ID_4 0 EXT_ID_5 0 EXT_ID_6 0 EXT_ID_7 0 EXT_ID_8 0 2nd data byte EXT_ID_9 Defaults EXT_ID_14 1st data byte EXT_ID_15 6.2.9 ST SPI Selective Wakeup Settings Table 97. Control register 7, bits Bit Name 15 EXT_ID_15 14 EXT_ID_14 13 EXT_ID_13 12 EXT_ID_12 11 EXT_ID_11 10 EXT_ID_10 9 EXT_ID_9 8 EXT_ID_8 7 EXT_ID_7 6 EXT_ID_6 5 EXT_ID_5 4 EXT_ID_4 3 EXT_ID_3 2 EXT_ID_2 1 EXT_ID_1 0 EXT_ID_0 Comment Extended CAN Identifier Definition of which Extended CAN Identifier will wake up To run matching on Extended CAN Identifier also CAN IDE (Control Register 9 must be set) DocID024767 Rev 4 105/129 128 ST SPI 6.2.10 L99PM72GXP Control Register 8 Table 98. Control register 8: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address x 0 0 1 0 0 0 Table 99. Control register 8, data bytes Group 0 0 0 0 0 0 0 0 ID_1 ID_0 EXT_ID_17 EXT_ID_16 0 ID_2 0 ID_3 0 ID_4 0 ID_5 Reserved 0 ID_6 0 2nd data byte ID_7 0 ID_8 Function 0 ID_9 Defaults ID_10 1st data byte Selective Wakeup Settings Table 100. Control register 8, bits Bit Name 15 Reserved 14 Reserved 13 Reserved 12 ID_10 11 ID_9 10 ID_8 9 ID_7 8 ID_6 7 ID_5 6 ID_4 5 ID_3 4 ID_2 3 ID_1 2 ID_0 1 0 106/129 Comment Must be kept at default Standard CAN Identifier Definition of which Standard CAN Identifier will wake up EXT_ID_17 Extended CAN Identifier Definition of which Extended CAN Identifier will wake up EXT_ID_16 To run matching on Extended CAN Identifier also CAN IDE (Control Register 9 must be set) DocID024767 Rev 4 L99PM72GXP Control Register 9 Table 101. Control register 9: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address 0 0 1 0 0 1 Table 102. Control register 9, data bytes 0 0 0 Function 0 0 0 0 0 0 Reserved Group 0 0 0 0 0 DLC_0 0 DLC_1 0 DLC_2 Defaults 2nd data byte DLC_3 1st data byte CAN_IDE 6.2.11 ST SPI Selective Wakeup Settings Table 103. Control register 9, bits Bit Name 15 Reserved 14 Reserved 13 Reserved 12 Reserved 11 Reserved 10 Reserved 9 Reserved 8 Reserved 7 Reserved 6 Reserved 5 Reserved 4 CAN_IDE 3 DLC_3 2 DLC_2 1 DLC_1 0 DLC_0 Comment Must be kept at default CAN IDE bit 1 CAN Identifier Matching based on CAN Extended Message Format 0 CAN Identifier matching based on CAN Standard Message Format Data Length Code Defines the amount of Data Bytes used for the data matching. Possible values up to 8 Byte according to CAN message format DocID024767 Rev 4 107/129 128 ST SPI 6.2.12 L99PM72GXP Control Register 10 Table 104. Control register 10: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address x 0 0 1 0 1 0 Table 105. Control register 10, data bytes 1st data byte Defaults 0 0 0 0 Function 0 2nd data byte 0 0 0 0 0 0 Data Byte2 0 0 0 0 0 Data Byte1 Group Selective Wakeup Settings Table 106. Control register 10, bits Bit 6.2.13 Name Comment 15 - 8 Data Byte2 Data field for data matching 7-0 Data Byte1 Data field for data matching Control Register 11 Table 107. Control register 11: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address 0 0 1 0 1 1 Table 108. Control register 11, data bytes st 2nd data byte 1 data byte Defaults 0 Function 0 0 0 0 0 0 0 0 0 0 Data Byte4 Group 108/129 0 Data Byte3 Selective Wakeup Settings Table 109. Control register 11, bits Bit 0 Name Comment 15 - 8 Data Byte4 Data field for data matching 7-0 Data Byte3 Data field for data matching DocID024767 Rev 4 0 0 0 L99PM72GXP 6.2.14 ST SPI Control Register 12 Table 110. Control register 12: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address x 0 0 1 1 0 0 Table 111. Control register 12, data bytes 1st data byte Defaults 0 0 0 0 Function 0 2nd data byte 0 0 0 0 0 0 Data Byte6 0 0 0 0 0 Data Byte5 Group Selective Wakeup Settings Table 112. Control register 12, bits Bit 6.2.15 Name Comment 15 - 8 Data Byte6 Data field for data matching 7-0 Data Byte5 Data field for data matching Control Register 13 Table 113. Control register 13: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address 0 0 1 1 0 1 Table 114. Control register 13, data bytes 1st Defaults 0 Function 0 0 2nd data byte data byte 0 0 0 0 0 0 0 0 Data Byte8 Group 0 0 0 0 0 Data Byte7 Selective Wakeup Settings Table 115. Control register 13, bits Bit Name Comment 15 - 8 Data Byte8 Data field for data matching 7-0 Data Byte7 Data field for data matching DocID024767 Rev 4 109/129 128 ST SPI 6.2.16 L99PM72GXP Control Register 14 Table 116. Control register 14: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address x 0 0 1 1 1 0 Table 117. Control register 14, data bytes EXT_ID_MSK_12 EXT_ID_MSK_11 EXT_ID_MSK_10 0 0 0 0 0 0 0 EXT_ID_MSK_0 EXT_ID_MSK_13 0 EXT_ID_MSK_1 EXT_ID_MSK_14 Group 0 EXT_ID_MSK_2 Function 0 EXT_ID_MSK_3 0 EXT_ID_MSK_4 0 EXT_ID_MSK_5 0 EXT_ID_MSK_6 0 EXT_ID_MSK_7 0 EXT_ID_MSK_8 0 2nd data byte EXT_ID_MSK_9 Defaults EXT_ID_MSK_15 1st data byte Selective Wakeup Settings Table 118. Control register 14, bits 110/129 Bit Name Comment 15 EXT_ID_MSK_15 Masking Bits for Extended CAN Identifier 14 EXT_ID_MSK_14 1 Extended CAN Identifier Bit is ignored for matching 13 EXT_ID_MSK_13 0 Extended CAN Identifier Bit is matched 12 EXT_ID_MSK_12 11 EXT_ID_MSK_11 To run matching on Extended CAN Identifier also CAN_IDE (Control Register 9 must be set) 10 EXT_ID_MSK_10 9 EXT_ID_MSK_9 8 EXT_ID_MSK_8 7 EXT_ID_MSK_7 6 EXT_ID_MSK_6 5 EXT_ID_MSK_5 4 EXT_ID_MSK_4 3 EXT_ID_MSK_3 2 EXT_ID_MSK_2 1 EXT_ID_MSK_1 0 EXT_ID_MSK_0 DocID024767 Rev 4 L99PM72GXP Control Register 15 Table 119. Control register 15: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address x 0 0 1 1 1 1 Table 120. Control register 15, data bytes Group 0 0 0 0 0 0 0 0 0 0 ID_MSK_2 ID_MSK_1 ID_MSK_0 EXT_ID_MSK_17 EXT_ID_MSK_16 0 ID_MSK_3 0 ID_MSK_4 Reserved 0 ID_MSK_5 0 ID_MSK_6 0 2nd data byte ID_MSK_7 Function 0 ID_MSK_8 Defaults ID_MSK_9 1st data byte ID_MSK_10 6.2.17 ST SPI Selective Wakeup Settings Table 121. Control register 15, bits Bit Name Comment 15 Reserved 14 Reserved 13 Reserved 12 ID_MSK_10 11 ID_MSK_9 1 Standard CAN Identifier Bit is ignored for matching 10 ID_MSK_8 0 Standard CAN Identifier Bit is matched 9 ID_MSK_7 8 ID_MSK_6 7 ID_MSK_5 6 ID_MSK_4 5 ID_MSK_3 4 ID_MSK_2 3 ID_MSK_1 2 ID_MSK_0 1 EXT_ID_MSK_17 0 EXT_ID_MSK_16 Must be kept at default Masking Bits for Standard CAN Identifier Masking Bits for Extended CAN Identifier 1 Extended CAN Identifier Bit is ignored for matching 0 Extended CAN Identifier Bit is matched To run matching on Extended CAN Identifier also CAN_IDE (Control Register 9 must be set) DocID024767 Rev 4 111/129 128 ST SPI 6.2.18 L99PM72GXP Control Register 16 Table 122. Control register 16: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address x 0 1 0 0 0 0 Table 123. Control register 16, data bytes CR16_14 CR16_13 CR16_12 0 0 0 0 0 0 0 SW_EN CR16_20 0 BR_0 CR16_21 Group 0 BR_1 Function 0 Reserved 0 Sample_0 0 Sample_1 0 Sample_2 0 Reserved 0 CR16_10 0 2nd data byte CR16_11 Defaults CR16_30 1st data byte Selective Wakeup Settings Table 124. Control register 16, bits Bit Name Comment 15 CR16_30(1) 14 CR16_21 13 CR16_20 12 CR16_14 11 CR16_13 10 CR16_12 9 CR16_11 8 CR16_10 7 Reserved Must be kept at default 6 Sample_2 Sample point 5 Sample_1 Sample_2 Sample_1 Sample_0 4 Sample_0 0 0 0 71.5 % 0 0 1 73.5 % 0 1 0 75.5 % 0 1 1 77.5 % 1 0 0 79.5 % 1 0 1 81.5 % (Optimum sample point(2)) 1 1 0 83.5 % 1 1 1 85.5 % Must be kept at default 112/129 DocID024767 Rev 4 Sample point L99PM72GXP ST SPI Table 124. Control register 16, bits (continued) Bit Name 3 Reserved 2 BR_1 1 BR_0 0 SW_EN(3) Comment Must be kept at default CAN baud rate BR_1 BR_0 Baud rate 0 0 500 kbit/s 0 1 250 kbit/s 1 0 Oscillator stopped (see Oscillator monitoring) 1 1 125 kbit/s Selective Wakeup Enable 0 No selective wakeup 1 Selective wakeup enabled See Section 2.9.2 1. Changing the default configuration of CR16 (bits 1 to 15) is only possible when selective wake is disabled (SW_EN = 0). Setting SW_EN = 0 is always possible. Setting SW_EN = 1 must follow the procedure as described in Section 2.9.2. 2. The sampling point bits [6:4] have to be programmed to “101” (81.5%) before enabling the selective wakeup feature. 3. SW_EN enables CAN WUF independently from the status of CAN_WAKE_EN. DocID024767 Rev 4 113/129 128 ST SPI 6.2.19 L99PM72GXP Control Register 34 Table 125. Control register 34: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address 1 0 0 0 1 0 Table 126. Control register 34, data bytes Defaults 0 0 0 0 0 0 2nd data byte 0 Function 0 0 0 0 0 0 0 0 Reserved Group Selective Wakeup Settings Table 127. Control register 34, bits Bit Name 15 Reserved 14 Reserved 13 Reserved 12 Reserved 11 Reserved 10 Reserved 9 Reserved 8 Reserved 7 Reserved 6 Reserved 5 Reserved 4 Reserved 3 Reserved 2 Reserved 1 Reserved 0 WD_EN Comment Must be kept at default Watchdog enabled bit 0 Watchdog disabled 1 Watchdog enabled Writing to this bit is only possible during CAN Flash Mode (VTxDL > VFlash). See Section 2.2.2: Flash Mode. 114/129 DocID024767 Rev 4 1 WD_EN 1st data byte L99PM72GXP Control Register 35 Table 128. Control register 35: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Data, 8 bit Data, 8 bit Address 1 0 0 0 1 1 Table 129. Control register 35, data bytes 0 0 0 0 Reserved Group 0 0 1 1 0 1 1 0 CR35_10 0 CR35_20 0 CR35_21 Function 0 CR35_22 0 CR35_23 Defaults 2nd data byte CR35_24 1st data byte CR35_25 6.2.20 ST SPI Selective Wakeup Settings Table 130. Control register 35, bits Bit Name 15 Reserved 14 Reserved 13 Reserved 12 Reserved 11 Reserved 10 Reserved 9 Reserved 8 Reserved 7 Reserved 6 CR35_25 5 CR35_24 4 CR35_23 3 CR35_22 2 CR35_21 1 CR35_20 0 CR35_10 Comment Must be kept at default Must be kept at default Must be kept at default DocID024767 Rev 4 115/129 128 Function Group 116/129 Reserved OSC_FAIL FECNT_0 Diagnosis 9 DocID024767 Rev 4 Diagnosis 5 Diagnosis 7 Reserved Diagnosis 10 OC_REL2 OC_REL1 CAN_TxD_ perm_dom WD_timer_state FD_ERR OC_OUT2 OC_OUT3 OC_OUT4 OC_HS CAN_perm_dom Status register 4, data WD_timer_state Diagnosis 6 CAN_silent Status register 3, data OC_OUT1 Diagnosis 4 CAN_perm_rec Status register 2, data Forced_sleep_ TSD2_SHTV1 CAN_RxD_ perm_rec Diagnosis 2 WUF Forced_sleep_WD Diagnosis 3 WUP Diagnosis 1 LIN_perm_rec LIN_TxD_perm_dom V2_short V2_fail 1 data byte WD_fail WD_fail LIN_perm_dom Wake_Timer_int Wake_LIN Wake_CAN WU1_Wake OL_OUT1 OL_OUT2 st CAN_TO TX_SYNC WD_fail WD_fail V1_restart V1_restart V1_restart WU2_wake WU3_wake OL_OUT3 OV SYS_ERR SWRD_7 SWR_D 8 SWRD_9 SWRD_10 V1_fail Device_state WU1_state OL_OUT4 OL_HS UV FECNT_1 FECNT_2 SWRD_11 Group SWRD_12 Group FECNT_3 Group Device_state WU2_state Group FECNT_4 Function TW SWRD_13 Function SWRD_14 Function WU3_state Function TSD1 6.2.21 SWRD_15 ST SPI L99PM72GXP Overview status register Table 131. Overview of status register data bytes 2nd data byte Status register 1, data Diagnosis 8 Status register 5, data Osc_Mon L99PM72GXP 6.2.22 ST SPI Global status register The Global Error Flag is set once the watchdog failure counter (SR3) is unequal to 0 (see also Section 2.5: Fail Safe Mode). Table 132. Global status register Fail safe(6) Bit 0 VS Fail (OV/UV) (5) Bit 1 V1 Fail Bit 2 TSD1 Bit 3 TSD2(4) Bit 4 NOT (chip reset or comm error)(3) Bit 5 Communication error (2) Bit 6 Global error flag (1) Bit 7 Active high/low High High Low High High High High High Default value in Normal Mode - after correct WD trigger or after Read & Clear on Error Flags 0 0 1 0 0 0 0 0 20 Power ON 1 0 0 0 0 0 0 0 80 1 0 0 0 0 0 1 0 82 Communication error 1 1 0 0 0 0 0 0 C0 VS overvoltage or undervoltage 1 0 1 0 0 0 1 0 A2 WD failure 1 0 1 0 0 0 0 1 A1 SPI Error (DI Stuck) 1 0 1 0 0 0 0 1 A1 TSD1 1 0 1 0 1 0 0 0 A8 TSD2 1 0 1 1 1 0 0 1 B9 V1 Fail 1 0 1 0 0 1 0 0 A4 1 0 1 0 0 0 0 0 A0 Power ON weak battery Other Device (7) Failure(8) Hex value 1. The following Status Bits are reported in the Global Error Flag: Global Status Register: Bits 6-0 Status Register 1: Bits 10-0 Status Register 3: Bits 15, 11, 7-2 2. Communication Error: invalid number of CLOCK cycles during CSN low or failed parity check on standby command. 3. Cleared with CLR command on SR3. 4. Cleared with “READ and CLEAR” on SR3 (-> TSD1) 5. Diagnosis bit only, VS Fail is not a Fail-Safe event; cleared by Read&Clear. Bit is automatically cleared at (VS > VSUV) and (VS < VSOV) if Vlock_out_en = 0 6. Cleared with a valid WD trigger (WD fail) or by clearing the corresponding status register related to failure. It is recommended that the microcontroller does not enter standby mode, if a fail-safe event is indicated in the Global Status Register. The selective wake-up configuration in CR 7 to 15 has to be re-written before sending the standby command. 7. Slow VS ramp-up (VS undervoltage is filtered with 64µs after power-on reset) 8. The Global Error Flag is raised due to a failure condition which is not reported in the Global Status Register. The Failure is reported in the Status Registers 1-5 DocID024767 Rev 4 117/129 128 ST SPI 6.2.23 L99PM72GXP Status Register 1 Table 133. Status register 1: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Bit Bit Data, 8bit Data, 8 bit Address 0 1 0 0 0 1 Table 134. Status register 1, data bytes Group Diagnosis 1 Diagnosis 2 Table 135. Status register 1, bits Bit Name 15 OL_HS Comment Information storage 14 OL_OUT4 13 OL_OUT3 Open-load event occurred since last read out Bit is latched until a “read and clear” access 12 OL_OUT2 11 OL_OUT1 10 UV VLOCKOUTEN (CR4) Under voltage event on VS occurred since last read out 118/129 Information storage 0 automatically reset when UV condition disappears 1 Bit is latched until a “read and clear” access 9 V2_fail V2 fail (V2 < 2 V for t> 2 µs) event occurred since last Bit is latched until a “Read and clear” access readout 8 V2_short V2 short (V2 < 2 V for t > 4ms during start up) event Bit is latched until a “Read and clear” access occurred since last readout DocID024767 Rev 4 OC_REL1 OC_REL2 OC_OUT1 OC_OUT2 OC_OUT3 OC_OUT4 OV OC_HS V2_short UV 2nd data byte V2_fail OL_OUT1 OL_OUT2 OL_OUT3 OL_OUT4 Function OL_HS 1st data byte L99PM72GXP ST SPI Table 135. Status register 1, bits (continued) Bit Name 7 OV Comment Information storage VLOCKOUTEN (CR4) Over voltage event on VS occurred since last read out 6 OC_HS 5 OC_OUT4 4 OC_OUT3 3 OC_OUT2 2 OC_OUT1 1 OC_REL2 0 OC_REL1 Information storage 0 automatically reset when OV condition disappears 1 Bit is latched until a “read and clear” access Over current event Bit is latched until a “read and clear” access occurred since last read out DocID024767 Rev 4 119/129 128 ST SPI 6.2.24 L99PM72GXP Status Register 2 Table 136. Status register 2: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Bit Bit Data, 8bit Data, 8 bit Address x 0 1 0 0 1 0 Table 137. Status register 2, data bytes Group Diagnosis 3 CAN_TxD_perm_dom CAN_perm_dom CAN_perm_rec CAN_RxD_perm_rec LIN_perm_rec LIN_TxD_perm_dom LIN_perm_dom Wake_Timer_int Wake_LIN 2nd data byte Wake_CAN WU1_wake WU2_wake WU3_wake WU1_state WU2_state Function WU3_state 1st data byte Diagnosis 4 Table 138. Status register 2, bits 120/129 Bit Name Comment 15 WU3_state 14 WU2_state 13 WU1_state 12 WU3_wake 11 WU2_wake 10 WU1_wake (1) 9 WAKE_CAN 8 WAKE_LIN 7 Wake_TIMER_int Information storage State of WUx input; “Live bits” not clearable Shows wake up source (‘1’ = wake-up) Bits are latched until a “Read and clear” access DocID024767 Rev 4 L99PM72GXP ST SPI Table 138. Status register 2, bits (continued) Bit Name Comment Information storage 6 LIN_perm_DOM 5 LIN_TxD_perm_DOM TxDL pin is dominant for t > 12 ms; Transmitter is disabled 4 LIN_perm_REC LIN bus does not follow TxDL within 40 µs; Transmitter is disabled 3 CAN_RxD_perm_rec 2 CAN_perm_REC CAN has not followed TxDC for 4 times; Transmitter is disabled 1 CAN_perm_DOM CAN bus is dominant for t > 700 µs 0 CAN_TxD_perm_DOM TxDC pin is dominant for t > 700 µs; Transmitter is disabled LIN bus is dominant for t > 12 ms Bits are latched until a “Read and clear” access RxDC has not followed TxDC for 4 times; Transmitter is disabled 1. The bit is set only if CAN_WU_EN = 1; the bit does not indicate a wake-up by CAN wake-up frame (WUF). Status Register 3 Table 139. Status register 3: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Bit Bit Data, 8bit Data, 8 bit Address 0 1 0 0 1 1 Table 140. Status register 3, data bytes Group Diagnosis 5 WD_timer_state_0 WD_timer_state_1 Forced_sleep_TSD2_SHTV1 Forced_sleep_WD WD_fail_0 WD_fail_1 WD_fail_2 WD_fail_3 V1_restart_0 2nd data byte V1_restart_1 V1_restart_2 V1_fail TW Device_state_0 Function Device_state_1 1st data byte TSD1 6.2.25 Diagnosis 6 Table 141. Status register 3, bits Bit Name 15 TSD1 14 TW Comment Thermal warning / shutdown1 occurred since last readout DocID024767 Rev 4 Information storage Bit is latched until a “read and clear access” 121/129 128 ST SPI L99PM72GXP Table 141. Status register 3, bits (continued) Bit Name 13 State from which the device woke up 12 Device_state 11 V1_fail 10 V1_restart_2 9 V1_restart_1 8 V1_restart_0 7 WD_fail_3 6 WD_fail_2 5 WD_fail_1 4 WD_fail_0 3 Forced_sleep_WD 2 Forced_sleep_ TSD2_SHTV1 1 0 State from which the device woke up Device state_2 Device state_1 0 0 Active 0 1 V1_standby 1 0 VBat_standby 1 1 Flash V1 fail (V1 < 2 V for t > 2 µs) event occurred since last read out Bit is latched until a “read and clear access” after a “read and clear access”, the device state is updated. After a wake up, device state is: 01: V1_standby or 10: VBat_standby Bit is latched until a “read and clear access” Bits are not clearable; is cleared Number of TSD2 events which caused a restart of V1 automatically if no regulator (7 TSD2 events forces the device into additional TSD2 VBat_standby) event occurs within 1 min. Number of missing watchdog triggers (15 missing watchdog trigger forces the device into VBat_standby) Bits are not clearable; is cleared with a proper Watchdog trigger Device was forced to VBat_standby mode because of multiple watchdog errors Bits are latched until a read and clear Device was forced to VBat_standby or multiple thermal access shutdown events or a short on V1 during startup. WD_timer_state_1 Status of watchdog counter of selected watchdog WD_timer_state_0 timing WD_timer_state WD_timer_state _1 _0 122/129 Information storage Comment Counter 0 0 0 – 33% 0 1 33 – 66% 1 1 66 – 100% DocID024767 Rev 4 Bits are not clearable L99PM72GXP Status Register 4 Table 142. Status register 4: command and data bytes Command byte Read/write x x 1st data byte 2nd data byte Bit Bit Data, 8bit Data, 8 bit Address 0 1 0 1 0 0 Table 143. Status register 4, data bytes Group Diagnosis 5 FD_ERR CAN_ silent WUF WUP CAN_TO TX_ SYNC SYS_ERR SWRD_7 SWRD_8 2nd data byte SWRD_9 SWRD_10 SWRD_11 SWRD_12 SWRD_13 Function SWRD_14 1st data byte SWRD_15 6.2.26 ST SPI Diagnosis 6 Table 144. Status register 4, bits Bit Name 15 SWRD_15 14 SWRD_14 13 9 SWRD_13 Status flag for Read operation to Selective Wakeup SWRD_12 relevant Registers 0: Read not done SWRD_11 1: Read done SWRD_10 See also Section 2.10: Serial Peripheral Interface (ST SWRD_9 SPI Standard 3.0) 8 SWRD_8 7 SWRD_7 6 This bit is a logical OR combination of NOT(SWRD_x) OR OSC_Fail OR FD_ERR The selective wake feature cannot be enabled SYS_ERR (SW_EN = 1) if SYS_ERR = 1 In case of a SYS_ERR the selective wake-up feature is disabled (SW_EN = 0) Live bit be updated while the change of SWRD_x, OSC_Fail and FD_ERR. If SWRD_x are all 1, OSC_Fail is 0 and FD_ERR is 0, this bit is 0, otherwise this bit is 1. 5 Status flag for Synchronous Reference oscillator of the Transceiver. Indicates that the last received frame was TX_SYNC decoded correctly 0: Not synchron 1: Synchron Live bit updated after each sent CAN frame 12 11 10 Comment DocID024767 Rev 4 Information storage Automatically cleared by a write 123/129 128 ST SPI L99PM72GXP Table 144. Status register 4, bits (continued) Bit Name Comment CAN timeout, bit is set if there is no communication on the bus for longer than tsilence Vbat_standby Mode: CAN_TO indicates that there was a transition from PN_TRX_selective_sleep to TRX_SLEEP Bit is latched until a read and clear access During TRX_STBY Mode (CAN_ACT = 0, Active Mode and V1_standby Mode(1)) this bit indicates a CAN communication timeout. An interrupt on RxDC/NINT is generated in this case. 4 CAN_TO 3 WUP Wake up flag for Remote Wake up pattern Bit is latched until a read and clear access 2 WUF Wake up flag for Remote Wake up Frame Bit is latched until a read and clear access 1 0 Online monitoring bit to see if there is silence on the bus for longer than tsilence. CAN_Silent This flag shows the actual status of the CAN bus Auto cleared and set (activity/silence). A microcontroller in Stop Mode may check this flag periodically FD_ERR Frame Detect Error. This bit is set at overflow of the Frame Error Counter (FECNT) in SR5 In case of a Frame Detect Error, the device will wake up from PN_Trx_selective_sleep 1. It is recommended to clear the bit CAN_TO prior to transition into V1_standby mode. 124/129 Information storage DocID024767 Rev 4 Bit is latched until a read and clear access L99PM72GXP Status Register 5 Table 145. Status register 5: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Bit Bit Data, 8bit Data, 8 bit Address x 0 1 0 1 0 1 Table 146. Status register 5, data bytes Group Diagnosis 5 Osc_mon Osc_mon Osc_mon Osc_mon Reserved Osc_mon OSC_FAIL FECNT_0 2nd data byte FECNT_1 Reserved FECNT_2 Function FECNT_3 1st data byte FECNT_4 6.2.27 ST SPI Diagnosis 6 Table 147. Status register 5, bits Bit Name Comment 15 Reserved 14 Reserved 13 Reserved 12 FECNT_4 11 FECNT_3 10 FECNT_2 9 FECNT_1 8 FECNT_0 7 OSC_FAIL OSC Failure Flag (used device internally) 6 Reserved 5 Reserved 4-0 Osc_mon Information storage Must be kept at default Frame Detect Error Counter This counter is increased by 1 in case a frame was not received/decoded correctly (CRC error, stuff-bit error, form error). Live bit updated after each sent CAN frame The counter is decreased by 1 with every frame which is decoded correctly If FECNT = 31, the next erroneous frame will wakeup the device, set FDERR = 1 and reset FECNTx = 0 Bit is latched until a read and clear access Must be kept at default Monitoring of internal oscillator (used internally) DocID024767 Rev 4 Live bit updated after each sent CAN frame 125/129 128 Package information L99PM72GXP 7 Package information 7.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.2 PowerSSO-36 mechanical data Figure 44. PowerSSO-36 package dimensions AG00066V1 126/129 DocID024767 Rev 4 L99PM72GXP Package information Table 148. PowerSSO-36 mechanical data Millimeters Symbol Min. Typ. Max. A - - 2.45 A2 2.15 - 2.35 a1 0 - 0.1 b 0.18 - 0.36 c 0.23 - 0.32 D 10.10 - 10.50 E 7.4 - 7.6 e - 0.5 - e3 - 8.5 - F - 2.3 - G - - 0.1 G1 - - 0.06 H 10.1 - 10.5 h - - 0.4 k 0° - 8° L 0.55 - 0.85 M - 4.3 - N - - 10 deg O - 1.2 - Q - 0.8 - S - 2.9 - T - 3.65 - U - 1.0 - X 4.1 - 4.7 Y 6.5 - 7.1 DocID024767 Rev 4 127/129 128 Revision history 8 L99PM72GXP Revision history Table 149. Document revision history 128/129 Date Revision Changes 10-Jun-2013 1 Initial release. 19-Sep-2013 2 Updated Disclaimer. 03-Mar-2014 3 Updated Section 2.2.5: Interrupt Added Section : Oscillator monitoring Updated Section 2.9.4: Wake up by CAN Table 14: Supply and supply monitoring – Vhyst_UV: updated values Table 28: CAN transmitter and receiver: pins CANH and CANL: – VCANHdom, VCANLdom, VDIFF,domOUT: updated test condition – VCM: updated test condition and added note – VTHdom, VTHdomLP, VTHrec, VTHrecLP: added note Table 29: CAN transceiver timing: – tTXpd,hl, tTXpd,hl: updated test condition Table 91: Control register 5, bits: – PWM2 duty cycle, PWM1 duty cycle: updated values Table 94: Control register 6, bits: – PWM4 duty cycle, PWM3 duty cycle: updated values Table 124: Control register 16, bits: – SW_EN: added note – BR_0: updated comment Table 138: Status register 2, bits: – WAKE_CAN: added note Table 144: Status register 4, bits: – Removed note 24-Apr-2014 4 Updated Section 2.2.2: Flash Mode DocID024767 Rev 4 L99PM72GXP Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID024767 Rev 4 129/129 129
L99PM72GXPTR 价格&库存

很抱歉,暂时无法提供与“L99PM72GXPTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
L99PM72GXPTR
  •  国内价格 香港价格
  • 1000+25.835771000+3.23147

库存:980

L99PM72GXPTR
  •  国内价格 香港价格
  • 1+57.965761+7.25019
  • 10+44.4858810+5.56417
  • 25+41.1222525+5.14345
  • 100+37.42673100+4.68123
  • 250+35.66409250+4.46076
  • 500+34.60198500+4.32792

库存:980