LF147 - LF247
LF347
WIDE BANDWIDTH
QUAD J-FET OPERATIONAL AMPLIFIERS
■ LOW POWER CONSUMPTION
■ WIDE COMMON-MODE (UP TO VCC+) AND
DIFFERENTIAL VOLTAGE RANGE
■ LOW INPUT BIAS AND OFFSET CURRENT
■ OUTPUT SHORT-CIRCUIT PROTECTION
N
DIP14
(Plastic Package)
■ HIGH INPUT IMPEDANCE J–FET INPUT
STAGE
■ INTERNAL FREQUENCY COMPENSATION
■ LATCH UP FREE OPERATION
■ HIGH SLEW RATE : 16V/µs (typ)
D
SO14
(Plastic Micropackage)
ORDER CODE
DESCRIPTION
Package
These circuits are high speed J–FET input quad
operational amplifiers incorporating well matched,
high voltage J–FET and bipolar transistors in a
monolithic integrated circuit.
The devices feature high slew rates, low input bias
and offset currents, and low offset voltage temperature coefficient.
Part Number
Temperature Range
LF147
LF247
LF347
Example : LF347IN
-55°C, +125°C
-40°C, +105°C
0°C, +70°C
N
D
•
•
•
•
•
•
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
PIN CONNECTIONS (top view)
Output 1 1
14 Output 4
Inverting Input 1 2
-
-
13 Inverting Input 4
Non-inverting Input 1 3
+
+
12 Non-inverting Input 4
11 VCC -
VCC + 4
Non-inverting Input 2 5
+
+
10 Non-inverting Input 3
Inverting Input 2 6
-
-
9
Inverting Input 3
8
Output 3
Output 2 7
March 2001
1/10
LF147 - LF247 - LF347
SCHEMATIC DIAGRAM (each amplifier)
VCC
Non-inverting input
Inverting input
100W
200 W
Output
100 W
30k
8.2k
1.3k
35k
1.3k
35k
100 W
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vi
Parameter
LF147
Supply voltage - note 1)
Input Voltage - note
2)
Vid
Differential Input Voltage - note
Ptot
Power Dissipation
3)
Output Short-circuit Duration - note 4)
Toper
Operating Free-air Temperature Range
Tstg
Storage Temperature Range
1.
2.
3.
4.
2/10
LF247
LF347
Unit
±18
V
±15
V
±30
V
680
mW
Infinite
-55 to +125
-40 to +105
-65 to +150
0 to +70
°C
°C
All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference
level is the midpoint between VCC + and VCC -.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating
is not exceeded
LF147 - LF247 - LF347
ELECTRICAL CHARACTERISTICS
VCC = ±15V, Tamb = +25°C (unless otherwise specified)
Symbol
Vio
DVio
Parameter
Typ.
Max.
Input Offset Voltage (Rs = 10kΩ)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
3
10
13
Input Offset Voltage Drift
10
Input Offset Current - note
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
Iib
Input Bias Current - note 1
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
mV
100
4
pA
nA
20
200
20
pA
nA
Large Signal Voltage Gain (RL = 2kΩ, Vo = ±10V) ,
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
50
25
200
SVR
Supply Voltage Rejection Ratio (RS = 10kΩ)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
80
80
86
ICC
Supply Current, Per Amp, no Load
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
Vicm
Input Common Mode Voltage Range
CMR
tr
Kov
GBP
Ri
THD
en
V/mV
dB
mA
1.4
±11
+15
-12
Common Mode Rejection Ratio (RS = 10kΩ)
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
70
70
86
Output Short-Circuit Current
Tamb = 25°C
Tmin ≤ Tamb ≤ Tmax
10
10
40
10
12
10
12
12
13.5
12
16
Output Voltage Swing
Tamb = 25°C
SR
µV/°C
5
Avd
±Vopp
Unit
1)
Iio
IOS
Tmin ≤ Tamb ≤ Tmax
2.7
2.7
V
dB
mA
RL = 2kΩ
RL = 10kΩ
RL = 2kΩ
RL = 10kΩ
Slew Rate
Vi = 10V, RL = 2kΩ, CL = 100pF, Tamb = 25°C, unity gain
Rise Time
Vi = 20mV, RL = 2kΩ,CL = 100pF, Tamb = 25°C, unity gain
Overshoot
Vi = 20mV, RL = 2kΩ, CL = 100pF, Tamb = 25°C, unity gain
Gain Bandwidth Product
f =100kHz, Tamb = 25°C, Vin = 10mV, RL =2kΩ, CL = 100pF
Input Resistance
Total Harmonic Distortion
f =1kHz, Av = 20dB, RL = 2kΩ, CL = 100pF
Tamb = 25°C, VO = 2Vpp
Equivalent Input Noise Voltage (RS = 100Ω, f = 1KHz)
∅m Phase Margin
Vo1/Vo2 Channel Separation ( Av = 100)
1.
Min.
60
60
V
V/µs
µs
0.1
%
10
MHz
2.5
4
1012
Ω
%
0.01
15
nV
-----------Hz
45
120
Degrees
dB
The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.
3/10
LF147 - LF247 - LF347
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus FREQUENCY
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus FREQUENCY
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus FREE AIR TEMP.
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus LOAD RESISTANCE
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus SUPPLY VOLTAGE
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE (V)
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus FREQUENCY
4/10
30
25
RL = 10 kΩ
Tamb = +25˚C
20
15
10
5
0
2
4
6
8
10
12
SUPPLY VOLTAGE ( V)
14
16
LF147 - LF247 - LF347
LARGE SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT versus
FREQUENCY
INPUT BIAS CURRENT versus FREE AIR
TEMPERATURE
100
1000
15V
10
DIFFERENTIAL VOLTAGE
AMPLIFICATION (V/V)
INPUT BIAS CURRENT (nA)
V CC =
1
0.1
0.01
-50
400
200
100
40
20
10
4
2
1
-25
0
25
50
75
100
V CC = 15V
V O = 10V
125
R L = 2k Ω
-75
-50
-25
TEMPERATURE (˚C)
DIFFERENTIAL
VOLTAGE
AMPLIFICATION
(left scale)
PHASE SHIFT
(right scale)
180
10
90
R = 2kW
L
C L = 100pF
V CC = 15V
T amb = +125°C
1
100
1K
10K
0
100K
1M
10M
-25
0
25
50
TEMPERATURE (˚C)
100
125
V CC = 15V
No signal
No load
-75
-50
-25
0
25
50
75
100
125
75
100
COMMON MODE REJECTION RATIO versus
FREE AIR TEMPERATURE
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
V CC = 15V
No signal
No load
-50
75
TEMPERATURE (˚C)
SUPPLY CURRENT PER AMPLIFIER versus
FREE AIR TEMPERATURE
-75
50
250
225
200
175
150
125
100
75
50
25
0
FREQUENCY (Hz)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
25
TOTAL POWER DISSIPATION versus FREE AIR
TEMPERATURE
TOTAL POWER DISSIPATION (mW)
DIFFERENTIAL VOLTAGE
AMPLIFICATION (V/V)
LARGE SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT versus
FREQUENCY
100
0
TEMPERATURE (˚C)
125
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
Tamb = +25°C
No signal
No load
0
2
4
6
8
10
12
14
16
SUPPLY VOLTAGE (V)
5/10
LF147 - LF247 - LF347
VOLTAGE FOLLOWER LARGE SIGNAL PULSE
RESPONSE
INPUT AND OUTPUT VOLTAGES
(V)
COMMON MODE REJECTION RATIO versus
FREE AIR TEMPERATURE
COMMON MODE MODE REJECTION
RATIO (dB)
89
R L = 10 kΩ
VC C = 15V
88
87
86
85
84
83
-75
-50
-25
0
25
50
75
100
125
6
4
OUTPUT
0
VCC= 15V
R L = 2 kW
-2
C L= 100pF
Tamb = +25°C
-4
-6
0
0.5
OUTPUT VOLTAGE versus ELAPSED TIME
1.5
2
2.5
3
3.5
EQUIVALENT INPUT NOISE VOLTAGE versus
FREQUENCY
28
70
24
20
90%
16
12
8
V
4
0
tr
0
0.1
CC
= 15V
R L = 2k Ω
Tamb = +25˚C
10%
-4
VCC = 15V
A V = 10
R S = 100 Ω
T amb = +25˚C
60
OVERSHOOT
EQUIVALENT INPUT NOISE
VOLTAGE (nV/VHz)
OUTPUT VOLTAGE (mV)
1
TIME (m s)
TEMPERATURE (˚C)
0.2
0.3
0.4
0.5
0.6
50
40
30
20
10
0
10
0.7
40
100
400
TOTAL HARMONIC DISTORTION versus FREQUENCY
1
TOTAL HARMONIC DISTORTION
(%)
1k
4k
FREQUENCY (Hz)
TIME ( µs)
V VCC = = 15V
15V
CC
A AV V= =1 1
V VO O(rms)
= =6V6V
(rms)
0.4
0.1
0.04
T amb
T amb= =+25˚C
+25˚C
0.01
0.004
0.001
100
400
1k
4k
10k
FREQUENCY (Hz)
6/10
INPUT
2
40k
100k
10k
40k 100k
LF147 - LF247 - LF347
PARAMETER MEASUREMENT INFORMATION
Figure 1 : Voltage Follower
Figure 2 : Gain-of-10 Inverting Amplifier
10k W
eI
1k W
1/4
LF347
eo
RL
CL= 100pF
TYPICAL APPLICATIONS
AUDIO DISTRIBUTOR AMPLIFIER
fO = 100kHz
1M W
1/4
LF347
Output A
1/4
LF347
Output B
1/4
LF347
Output C
1m F
-
1/4
LF347
Input
100k W
100m F
100k W
100k W
100k W
VCC+
-
7/10
LF147 - LF247 - LF347
TYPICAL APPLICATIONS (continued)
POSITIVE FEEDBACK BANDPASS FILTER
16k W
16k W
220pF
220pF
43k W
Input
43k W
43k W
30k W
220pF
4/1
LF347
43k W
220pF
43k W
1.5k W
4/1
LF347
30k W
4/1
LF347
43k W
4/1
LF347
1.5k W
Output B
Ground
Output A
OUTPUT A
SECOND ORDER BANDPASS FILTER
fo = 100kHz; Q = 30; Gain = 16
8/10
OUTPUT B
CASCADED BANDPASS FILTER
fo = 100kHz; Q = 69; Gain = 16
LF147 - LF247 - LF347
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC DIP
Millimeters
Inches
Dim.
Min.
a1
B
b
b1
D
E
e
e3
F
i
L
Z
Typ.
0.51
1.39
Max.
Min.
1.65
0.020
0.055
0.5
0.25
Typ.
0.065
0.020
0.010
20
0.787
8.5
2.54
15.24
0.335
0.100
0.600
7.1
5.1
0.280
0.201
3.3
1.27
Max.
0.130
2.54
0.050
0.100
9/10
LF147 - LF247 - LF347
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)
G
c1
b1
e
a1
b
A
a2
C
L
s
e3
E
D
M
8
1
7
F
14
Millimeters
Inches
Dim.
Min.
A
a1
a2
b
b1
C
c1
D (1)
E
e
e3
F (1)
G
L
M
S
Typ.
Max.
Min.
1.75
0.2
1.6
0.46
0.25
0.1
0.35
0.19
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45° (typ.)
8.55
5.8
8.75
6.2
0.336
0.228
1.27
7.62
3.8
4.6
0.5
0.344
0.244
0.050
0.300
4.0
5.3
1.27
0.68
0.150
0.181
0.020
0.157
0.208
0.050
0.027
8° (max.)
Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com
10/10
很抱歉,暂时无法提供与“LF247DT”相匹配的价格&库存,您可以联系我们找货
免费人工找货- 国内价格
- 1+5.95080
- 10+4.84920
- 30+4.29840
- 100+3.75840
- 500+3.43440
- 1000+3.26160