0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LIS2HH12TR

LIS2HH12TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LGA12_2X2MM

  • 描述:

    MEMS数字输出运动传感器:超低功率高性能3轴“微微”加速度计

  • 数据手册
  • 价格&库存
LIS2HH12TR 数据手册
LIS2HH12 MEMS digital output motion sensor: ultra-low-power high-performance 3-axis "pico" accelerometer Datasheet - production data Description The LIS2HH12 is an ultra-low-power highperformance three-axis linear accelerometer belonging to the “pico” family. The LIS2HH12 has full scales of 2g/4g/8g and is capable of measuring accelerations with output data rates from 10 Hz to 800 Hz. LGA-12 (2.0x2.0x1.0 mm) The self-test capability allows the user to check the functioning of the sensor in the final application. Features  Wide supply voltage, 1.71 V to 3.6 V  Independent IOs supply (1.8 V) and supply voltage compatible  Ultra-low power consumption The LIS2HH12 has an integrated first-in, first-out (FIFO) buffer allowing the user to store data in order to limit intervention by the host processor. The LIS2HH12 is available in a small thin plastic land grid array package (LGA) and it is guaranteed to operate over an extended temperature range from -40 °C to +85 °C  2g/4g/8g full-scale  I2C/SPI digital output interface  16-bit data output  Embedded temperature sensor Table 1. Device summary  Embedded self-test Order codes  Embedded FIFO  10000 g high shock survivability  ECOPACK®, RoHS and “Green” compliant Temperature Package Packaging range [C] LIS2HH12 -40 to +85 LGA-12 Tray LIS2HH12TR -40 to +85 LGA-12 Tape and reel Applications  Motion-controlled user interfaces  Gaming and virtual reality  Pedometers  Intelligent power saving for handheld devices  Display orientation  Click/double-click recognition  Impact recognition and logging  Vibration monitoring and compensation December 2015 This is information on a product in full production. DocID025344 Rev 5 1/47 www.st.com Contents LIS2HH12 Contents 1 2 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Terminology and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6.3 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.8 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 5 2/47 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1 Activity/Inactivity function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2 Data stabilization time / ODR change . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3.4 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3.5 Bypass-to-Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DocID025344 Rev 5 LIS2HH12 6 Contents 5.3.6 Bypass-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3.7 Retrieving data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3.8 FIFO multiple reads (burst) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.1 6.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.1 TEMP_L (0Bh), TEMP_H (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.2 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.3 ACT_THS (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.4 ACT_DUR (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.5 CTRL1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8.6 CTRL2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.7 CTRL3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.8 CTRL4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.9 CTRL5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.10 CTRL6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.11 CTRL7 (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.12 STATUS (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.13 OUT_X_L (28h) - OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.14 OUT_Y_L (2Ah) - OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.15 OUT_Z_L (2Ch) - OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.16 FIFO_CTRL (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.17 FIFO_SRC (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.18 IG_CFG1 (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8.19 IG_SRC1 (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8.20 IG_THS_X1 (32h), IG_THS_Y1 (33h), IG_THS_Z1 (34h) . . . . . . . . . . . . 40 DocID025344 Rev 5 3/47 47 Contents 9 10 4/47 LIS2HH12 8.21 IG_DUR1 (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.22 IG_CFG2 (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.23 IG_SRC2 (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.24 IG_THS2 (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.25 IG_DUR2 (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.26 XL_REFERENCE (3Ah), XH_REFERENCE (3Bh) . . . . . . . . . . . . . . . . . 42 8.27 YL_REFERENCE (3Ch), YH_REFERENCE (3Dh) . . . . . . . . . . . . . . . . . 42 8.28 ZL_REFERENCE (3Eh), ZH_REFERENCE (3Fh) . . . . . . . . . . . . . . . . . . 42 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.1 LGA-12 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.2 LGA-12 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DocID025344 Rev 5 LIS2HH12 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Mechanical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted . . . . . . . . . 10 Electrical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted . . . . . . . . . . . 11 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Activity/Inactivity function control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Number of samples to be discarded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 25 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 25 Register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 WHO_AM_I register default values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ACT_THS register default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ACT_DUR register default values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Control register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Control register 1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ODR register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Low-pass cutoff frequency in high resolution mode (HR = 1) . . . . . . . . . . . . . . . . . . . . . . . 32 Control register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Control register 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Control register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Control register 3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Control register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Control register 4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Control register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Control register 5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Self-test mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Control register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Control register 6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Control register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Control register 7 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Status register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 FIFO control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 FIFO control register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 FIFO mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 FIFO status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 FIFO status register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 IG_CFG1 configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 IG_CFG1 configuration register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 IG1_SRC1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DocID025344 Rev 5 5/47 47 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. 6/47 LIS2HH12 IG1_SRC1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 IG1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 IG1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 IG_DUR1 duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 IG_DUR1 duration description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 IG_CFG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 IG_CFG2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 IG_SRC2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 IG_SRC2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 IG_THS2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 IG_THS2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 IG_DUR2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 IG_DUR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 LGA-12 2x2x1 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Reel dimensions for carrier tape of LGA-12 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 DocID025344 Rev 5 LIS2HH12 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C slave timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 LIS2HH12 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 FIFO multiple reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LGA-12 2x2x1 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Carrier tape information for LGA-12 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 LGA-12 package orientation in carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Reel information for carrier tape of LGA-12 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 DocID025344 Rev 5 7/47 47 Block diagram and pin description LIS2HH12 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram X+ Y+ a CS CHARGE AMPLIFIER Z+ CONTROL LOGIC SDA/SDI/SDO A/D CONVERTER1 MUX SCL/SPC I2C SPI SDO/SA0 ZYX- INT1 TEMP. SENSOR SELF TEST 1.2 REFERENCE INT2 A/D CONVERTER2 TRIMMING CIRCUITS FIFO CLOCK Pin description 11 12 12 11 SDA/SDI/SDO 4 CS 5 5 (BOTTOM VIEW) DIRECTION OF THE DETECTABLE ACCELERATIONS 8/47 4 6 (BOTTOM VIEW) (TOP VIEW) DocID025344 Rev 5 SCL/SPC 1 CSSCL/SPC 7 X Pin 1 indicator 1 SDO/SA0 SDO/SA0 Vdd 8 7 GND Y 14 INT1 RES INT2 RES Vdd RES GND GND 1 10 GND Vdd_IO Vdd_IO RES INT 1 RES Z INT 2 RES Figure 2. Pin connections SDA/SDI/SDO LIS2HH12 Block diagram and pin description Table 2. Pin description Pin# Name 1 SCL SPC Function I2C serial clock (SCL) SPI serial port clock (SPC) SPI enable I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) 2 CS 3 SDO SA0 SPI serial data output (SDO) I2C less significant bit of the device address (SA0) 4 SDA SDI SDO I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) 5 RES Connect to GND 6 GND 0 V supply 7 GND 0 V supply 8 GND 0 V supply 9 Vdd Power supply 10 Vdd_IO 11 INT2 Interrupt pin 2 12 INT1 Interrupt pin 1 Power supply for I/O pins DocID025344 Rev 5 9/47 47 Mechanical and electrical specifications LIS2HH12 2 Mechanical and electrical specifications 2.1 Mechanical characteristics Table 3. Mechanical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted (1) Symbol FS So Parameter Measurement range Test conditions Min. Max. Unit ±2.0 g ±4.0 g ±8.0 g @ FS ±2.0 g 0.061 mg/digit @ FS ±4.0 g 0.122 mg/digit @ FS ±8.0 g 0.244 mg/digit (3) Sensitivity Typ.(2) TCSo Sensitivity change vs. temperature 0.01 %/°C TyOff Typical zero-g level offset accuracy(4) ±30 mg TCOff Zero-g level change vs. temperature(4) Delta from 25 °C ±0.25 mg/°C Ton Turn-on time Number of samples to be discarded from power-down to active mode CTRL4 (23h) (BW_SCALE_ODR) = 0 ST Self-test positive difference(5) 70 1500 mg Top Operating temperature range -40 +85 °C # of samples 1 1. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V. 2. Typical specifications are not guaranteed. 3. Verified by wafer level test and measurement of initial offset and sensitivity. 4. Offset can be eliminated by enabling the built-in high-pass filter. 5. “Self-test positive difference” is defined as: OUTPUT[mg](CTRL5 ST2, ST1 bits=01) - OUTPUT[mg](CTRL5 ST2, ST1 bits=00). 10/47 DocID025344 Rev 5 LIS2HH12 2.2 Mechanical and electrical specifications Electrical characteristics Table 4. Electrical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted (1) Symbol Vdd Vdd_IO IddA IddPdn Parameter Test conditions Supply voltage I/O pins supply voltage (3) Max. Unit 1.71 2.5 3.6 V Vdd+0.1 V ODR 100-800 Hz 180 μA ODR 50 Hz 110 μA ODR 10 Hz 50 μA 5 μA Current consumption in power-down mode Digital high-level input voltage VIL Digital low-level input voltage Top Typ.(2) 1.71 Current consumption in active mode VIH Tboot Min. Boot time 0.8*Vdd_IO V 0.2*Vdd_IO V 20 ms +85 °C (4) Operating temperature range -40 1. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V. 2. Typical specifications are not guaranteed. 3. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off. 4. Time to complete the entire boot sequence: from Vdd on until all configuration and calibration parameters are correctly loaded into device registers. 2.3 Temperature sensor characteristics @ Vdd =2.5 V, T=25 °C unless otherwise noted Table 5. Temperature sensor characteristics Symbol Parameter Min. Typ.(1) Max. Unit TSDr Temperature sensor output change vs. temperature 8 digit/°C(2) TODR Temperature refresh rate 10 Hz Top Operating temperature range -40 +85 °C 1. Typical specifications are not guaranteed. 2. 11-bit resolution. DocID025344 Rev 5 11/47 47 Mechanical and electrical specifications LIS2HH12 2.4 Communication interface characteristics 2.4.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 6. SPI slave timing values Value(1) Symbol Parameter Unit Min tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 6 th(CS) CS hold time 8 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) SDO output disable time Max 100 ns 10 MHz ns 50 9 50 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. Figure 3. SPI slave timing diagram CS tc(SPC) tsu(CS) th(CS) SPC tsu(SI) SDI th(SI) LSB IN M SB IN tv(SO) SDO Note: 12/47 tdis(SO) th(SO) M SB OUT LSB O UT Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. DocID025344 Rev 5 LIS2HH12 Mechanical and electrical specifications I2C - inter-IC control interface 2.4.2 Subject to general operating conditions for Vdd and Top. Table 7. I2C slave timing values Symbol f(SCL) I2C standard mode (1) Parameter SCL clock frequency I2C fast mode (1) Min Max Min Max 0 100 0 400 tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0.01 3.45 START condition hold time 4 0.6 tsu(SR) Repeated START condition setup time 4.7 0.6 tsu(SP) STOP condition setup time 4 0.6 4.7 1.3 tw(SP:SR) Bus free time between STOP and START condition kHz μs ns 0.01 th(ST) Unit 0.9 μs μs 1. Data based on standard I2C protocol requirement, not tested in production Figure 4. I2C slave timing diagram REPEATED START START tsu(SR) START tw(SP:SR) SDA tsu(SDA) th(SDA) tsu(SP) STOP SCL th(ST) Note: tw(SCLL) tw(SCLH) Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports. DocID025344 Rev 5 13/47 47 Mechanical and electrical specifications 2.5 LIS2HH12 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 8. Absolute maximum ratings Symbol Vdd Vdd_IO Vin Note: Ratings Maximum value Unit Supply voltage -0.3 to 4.8 V I/O pins supply voltage -0.3 to 4.8 V -0.3 to Vdd_IO +0.3 V 3000 for 0.5 ms g 10000 for 0.2 ms g 3000 for 0.5 ms g 10000 for 0.2 ms g Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) APOW Acceleration (any axis, powered, Vdd = 2.5 V) AUNP Acceleration (any axis, unpowered) TOP Operating temperature range -40 to +85 °C TSTG Storage temperature range -40 to +125 °C ESD Electrostatic discharge protection 2 (HBM) kV Supply voltage on any pin should never exceed 4.8 V This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part. This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part. 14/47 DocID025344 Rev 5 LIS2HH12 2.6 Mechanical and electrical specifications Terminology and functionality Terminology 2.6.1 Sensitivity Sensitivity describes the gain of the sensor and can be determined by applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors. 2.6.2 Zero-g level Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on the X-axis and 0 g on the Y-axis whereas the Z-axis will measure 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as two’s complement number). A deviation from ideal value in this case is called Zero-g offset. Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Zero-g level change vs. temperature”. The Zero-g level tolerance (TyOff) describes the standard deviation of the range of Zero-g levels of a population of sensors. Functionality 2.6.3 Self-test The self-test allows checking the sensor functionality without moving it. The self-test function is off when the self-test bits (ST) are programmed to ‘00‘. When the self-test bits are changed, an actuation force is applied to the sensor, simulating a definite input acceleration. In this case the sensor outputs will exhibit a change in their DC levels which are related to the selected full scale through the device sensitivity. When the self-test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified in Table 3, then the sensor is working properly and the parameters of the interface chip are within the defined specifications. 2.7 Sensing element A proprietary process is used to create a surface micromachined accelerometer. The technology allows processing suspended silicon structures which are attached to the substrate in a few points called anchors and are free to move in the direction of the sensed acceleration. In order to be compatible with the traditional packaging techniques, a cap is placed on top of the sensing element to avoid blocking the moving parts during the molding phase of the plastic encapsulation. DocID025344 Rev 5 15/47 47 Factory calibration LIS2HH12 When an acceleration is applied to the sensor the proof mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the capacitor. At steady-state the nominal value of the capacitors are a few pF and when an acceleration is applied, the maximum variation of the capacitive load is in the fF range. 2.8 IC interface The complete measurement chain is composed of a low-noise capacitive amplifier which converts the capacitive unbalancing of the MEMS sensor into an analog voltage using an analog-to-digital converter. The acceleration data may be accessed through an I2C/SPI interface thus making the device particularly suitable for direct interfacing with a microcontroller. The LIS2HH12 features a data-ready signal which indicates when a new set of measured acceleration data is available, thus simplifying data synchronization in the digital system that uses the device. 3 Factory calibration The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff). The trim values are stored inside the device in nonvolatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during the active operation. This allows using the device without further calibration. 16/47 DocID025344 Rev 5 LIS2HH12 4 Application hints Application hints Figure 5. LIS2HH12 electrical connections Vdd_IO 100nF SCL/SPC 1 INT 1 INT 2 Vdd 11 10μF 12 10 CS Vdd_IO Vdd SDO/SA0 GND 4 RES 5 6 7 GND GND SDA/SDI/SDO 100nF GND Digital signal from/to signal controller.Signal levels are defined by proper selection of Vdd_IO The device core is supplied through the Vdd line while the I/O pads are supplied through the Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should be placed as near as possible to pin 9 of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5). It is possible to remove Vdd while maintaining Vdd_IO without blocking the communication bus, in this condition the measurement chain is powered off. The functionality of the device and the measured acceleration data are selectable and accessible through the I2C or SPI interfaces. When using the I2C, CS must be tied high (i.e. connected to Vdd_IO). The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be completely programmed by the user through the I2C/SPI interface. 4.1 Soldering information The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Leave “Pin 1 Indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com. DocID025344 Rev 5 17/47 47 Digital main blocks LIS2HH12 5 Digital main blocks 5.1 Activity/Inactivity function The Activity/Inactivity recognition function allows reducing the power consumption of the system in order to develop new smart applications. When the Activity/Inactivity recognition function is activated, the LIS2HH12 is able to automatically go to 10Hz sampling rate and to wake up as soon as the interrupt event has been detected, increasing the output data rate and bandwidth. With this feature the system may be efficiently switched from low-power mode to full performance depending on user-selectable positioning and acceleration events, thus ensuring power saving and flexibility. The Activity/Inactivity recognition function is activated by writing the desired threshold in the ACT_THS (1Eh) register. The high-pass filter is automatically enabled. Table 9. Activity/Inactivity function control registers Register LSB value ACT_THS Full scale / 128 [mg] ACT_DUR 8/ODR [s] When the acceleration falls below the threshold for a duration of at least (8 ACT_DUR +1)/ODR, the CTRL1 (20h) (ODR [2:0]) bits of CTRL1 are bypassed (Inactivity) and internally set to 10Hz (ODR [2:0] = 001), but the content of the CTRL1 (20h) (ODR [2:0]) bits are left untouched. When the acceleration exceeds the threshold (ACT_THS (1Eh)), the ODR setting in CTRL1 (20h) is restored immediately (Activity). Once the Activity/Inactivity detection function is enabled, the status can be brought out on INT1 by setting the CTRL3 (22h) (INT1_INACT) bit to 1. To disable the Activity/Inactivity detection function, set the content of the ACT_THS (1Eh) register to 00h. 18/47 DocID025344 Rev 5 LIS2HH12 5.2 Digital main blocks Data stabilization time / ODR change The data stabilization time required when an ODR change is applied in order to have valid usable data depends on the BW and ODR selected. The table below provides the number of samples to be discarded in order to obtain valid usable data. Table 10. Number of samples to be discarded ODR [Hz] 5.3 BW = 400 Hz BW = 200 Hz BW = 100 Hz BW = 50 Hz 10 1 - - - 50 1 - - - 100 1 1 1 1 200 1 1 1 4 400 1 1 4 7 800 1 4 7 14 FIFO The LIS2HH12 embeds an acceleration data FIFO for each of the three output channels, X, Y and Z. This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO. This buffer can work according to the following different modes: Bypass mode, FIFO-mode, Stream mode, Stream-to-FIFO mode, Bypass-to-Stream, Bypass-to-FIFO. Each mode is selected by the FIFO_MODE bits in the FIFO_CTRL (2Eh) register. Programmable FIFO threshold level, FIFO empty or FIFO overrun events are available in the FIFO_CTRL (2Eh) register and can be set to generate dedicated interrupts on the INT1 or INT2 pin. FIFO_SRC (2Fh) (EMPTY) is equal to '1' when no samples are available. FIFO_SRC (2Fh)(FTH) goes to '1' if new data arrives and FIFO_SRC (2Fh)(FSS [4:0]) is greater than or equal to FIFO_CTRL (2Eh) (FTH [4:0]). FIFO_SRC (2Fh) (FTH) goes to '0' if reading X, Y, Z data slot from FIFO and FIFO_SRC (2Fh) (FSS [4:0]) is less than or equal to FIFO_CTRL (2Eh) (FTH [4:0]). FIFO_SRC (2Fh) (OVR) is equal to '1' if a FIFO slot is overwritten. The FIFO feature is enabled by writing the CTRL3 (22h) (FIFO_EN) bit to '1' in control register 3. In order to guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded. 5.3.1 Bypass mode In Bypass mode (FIFO_CTRL (2Eh) (FMODE [2:0])= 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode. DocID025344 Rev 5 19/47 47 Digital main blocks 5.3.2 LIS2HH12 FIFO mode In FIFO mode (FIFO_CTRL (2Eh) (FMODE [2:0])= 001) data from the X, Y and Z channels are stored in the FIFO until it is full. An overrun interrupt can be enabled, CTRL3 (22h) (INT1_OVR)= '1', in order to be raised when the FIFO stops collecting data. When the overrun interrupt occurs, the first set of data has been overwritten and the FIFO stops collecting data from the input channels. To reset the FIFO content, Bypass mode should be written in the FIFO_CTRL (2Eh) register, setting the FMODE [2:0] bits to '000'. After this reset command, it is possible to restart FIFO mode, writing the value '001' in FIFO_CTRL (2Eh) (FMODE [2:0]). The FIFO buffer can memorize 32 slots of X, Y and Z data, but the depth of the FIFO can be reduced using the CTRL3 (22h) (STOP_ FTH) bit. Setting the STOP_FTH bit to '1', FIFO depth is limited to FIFO_CTRL (2Eh) (FTH [4:0]) - 1. 5.3.3 Stream mode Stream mode (FIFO_CTRL (2Eh) (FMODE [2:0]) = 010) provides a continuous FIFO update: as new data arrives, the older data is discarded. An overrun interrupt can be enabled, CTRL3 (22h) (INT1_OVR) = '1', in order to read the entire content of the FIFO at once. If in the application no data can be lost and it is not possible to read at least one sample for each axis within one ODR period, a watermark interrupt can be enabled in order to read partially the FIFO and leave free memory slots for incoming data. Setting the FIFO_CTRL (2Eh) (FTH [4:0]) to value N, the number of X, Y and Z data samples that should be read at the rise of the watermark interrupt is up to (N+1). In the latter case, reading all FIFO content before an overrun interrupt has occurred, the first data read is equal to the last data already read in previous burst, so the number of new data available in the FIFO depends on the previous reading (see FIFO_SRC (2Fh)behavior depicted in the following figures). Figure 6. Stream mode 20/47 DocID025344 Rev 5 LIS2HH12 Digital main blocks A watermark interrupt CTRL3 (22h) (INT1_FTH), CTRL6 (25h)(INT2_FTH) can be enabled in order to read data from the FIFO and leave free memory slots for incoming data. Setting the FIFO_CTRL (2Eh) (FTH [4:0]) to value N, the number of X, Y and Z data samples that should be read at the rise of the watermark interrupt, in order to read the entire FIFO content, is N + 1. 5.3.4 Stream-to-FIFO mode In Stream-to-FIFO mode (FIFO_CTRL (2Eh)(FMODE2:0) = 011), FIFO behavior changes according to the IG_SRC1 (31h) (IA) bit. When the IG_SRC1 (31h) (IA) bit is equal to '1' FIFO operates in FIFO mode, when the IG_SRC1 (31h) (IA) bit is equal to '0', FIFO operates in Stream mode. Interrupt generator 1 should be set to the desired configuration using IG_CFG1 (30h), IG_THS_X1 (32h), IG_THS_Y1 (33h), IG_THS_Z1 (34h). The CTRL7 (26h) (LIR1) bit should be set to '1' in order to have latched interrupt. 5.3.5 Bypass-to-Stream mode In Bypass-to-Stream mode (FIFO_CTRL (2Eh) (FMODE [2:0]) = '100'), X, Y and Z measurement storage inside FIFO operates in Stream mode when IG_SRC1 (31h) (IA) is equal to '1', otherwise FIFO content is reset (Bypass mode). Interrupt generator 1 should be set to the desired configuration using IG_CFG1 (30h), IG_THS_X1 (32h), IG_THS_Y1 (33h), IG_THS_Z1 (34h). The CTRL7 (26h) (LIR1) bit should be set to '1' in order to have latched interrupt. 5.3.6 Bypass-to-FIFO mode In Bypass-to-FIFO mode (FIFO_CTRL (2Eh) (FMODE [2:0]) = '111', FIFO behavior changes according to the IG_SRC1 (31h) (IA) bit. When the IG_SRC1 (31h)(IA) bit is equal to '1', FIFO operates in FIFO mode, when the IG_SRC1 (31h) (IA) bit is equal to '0', FIFO operates in Bypass mode (FIFO content reset). If a latched interrupt is generated, FIFO starts collecting data until the first data in the FIFO buffer is overwritten. Interrupt generator 1 should be set to the desired configuration using IG_CFG1 (30h), IG_THS_X1 (32h), IG_THS_Y1 (33h), IG_THS_Z1 (34h). The CTRL7 (26h) (LIR1) bit should be set to '1' in order to have latched interrupt. 5.3.7 Retrieving data from FIFO FIFO data is read through the OUT_X_L (28h) - OUT_X_H (29h), OUT_Y_L (2Ah) OUT_Y_H (2Bh), OUT_Z_L (2Ch) - OUT_Z_H (2Dh) registers. A read operation by means of serial interface of OUT_X, OUT_Y or OUT_Z output registers provides the data stored into the FIFO. Each time data is read from the FIFO, the oldest X, Y and Z data are placed into the OUT_X, OUT_Y and OUT_Z registers and both single read and read_burst operations can be used. DocID025344 Rev 5 21/47 47 Digital main blocks 5.3.8 LIS2HH12 FIFO multiple reads (burst) Starting from Addr 28h multiple reads can be performed. Once the read reaches Addr 2Dh the system automatically restarts from Addr 28h. Figure 7. FIFO multiple reads Read #1 Read #n 22/47 x,y,z OUT_X (28-29) OUT_Y (2A-2B) OUT_Z (2C-2D) OUT_X (28-29) OUT_Y (2A-2B) OUT_Z (2C-2D) x,y,z DocID025344 Rev 5 LIS2HH12 6 Digital interfaces Digital interfaces The registers embedded inside the LIS2HH12 may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped to the same pins. To select/exploit the I2C interface, the CS line must be tied high (i.e. connected to Vdd_IO). Table 11. Serial interface pin description 6.1 Pin name Pin description CS SPI enable I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) SCL SPC I2C serial clock (SCL) SPI serial port clock (SPC) SDA SDI SDO I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) SA0 SDO I2C address selection (SA0) SPI serial data output (SDO) I2C serial interface The LIS2HH12 I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back. The relevant I2C terminology is given in the table below. Table 12. I2C terminology Term Transmitter Receiver Description The device which sends data to the bus The device which receives data from the bus Master The device which initiates a transfer, generates clock signals and terminates a transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through an external pullup resistor. When the bus is free, both the lines are high. The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with normal mode. In order to disable the I2C block, CTRL4 (23h) (I2C_DISABLE) = 1 must be set. DocID025344 Rev 5 23/47 47 Digital interfaces 6.1.1 LIS2HH12 I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a high-to-low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. The Slave Address (SAD) associated to the LIS2HH12 is 00111xxb where the xx bits are modified by the SA0/SDO pin in order to modify the device address. If the SA0/SDO pin is connected to the supply voltage, the address is 0011101b, otherwise if the SA0/SDO pin is connected to ground, the address is 0011110b. This solution permits to connect and address two different accelerometers to the same I2C lines. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the LIS2HH12 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSb represents the actual register address while the CTRL4 (23h) (IF_ADD_INC) bit defines the address increment. The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated START (SR) condition must be issued after the two sub-address bytes. If the bit is ‘0’ (Write) the master will transmit to the slave with direction unchanged. Table 13 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Table 13. SAD+Read/Write patterns Command SAD[6:2] SAD[1] = SA0 SAD[0] = SA0 R/W SAD+R/W Read 00111 1 0 1 00111101 Write 00111 1 0 0 00111100 Read 00111 0 1 1 00111011 Write 00111 0 1 0 00111010 Table 14. Transfer when master is writing one byte to slave Master Slave 24/47 ST SAD + W SUB SAK DocID025344 Rev 5 DATA SAK SP SAK LIS2HH12 Digital interfaces Table 15. Transfer when master is writing multiple bytes to slave Master ST SAD + W SUB Slave SAK DATA DATA SAK SP SAK SAK Table 16. Transfer when master is receiving (reading) one byte of data from slave Master ST SAD + W Slave SUB SAK SR SAD + R SAK NMAK SAK SP DATA Table 17. Transfer when master is receiving (reading) multiple bytes of data from slave Master Slave ST SAD+W SUB SAK SR SAD+R SAK MAK SAK DATA MAK DAT A NMAK SP DATA Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low-to-high transition on the SDA line while the SCL line is high is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge. 6.2 SPI bus interface The LIS2HH12 SPI is a bus slave. The SPI allows to write and read the registers of the device. The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO. Figure 8. Read and write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DocID025344 Rev 5 25/47 47 Digital interfaces LIS2HH12 CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiple of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive SDO at the start of bit 8. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands additional blocks of 8 clock periods will be added. When the CTRL4 (23h) (IF_ADD_INC) bit is ‘0’, the address used to read/write data remains the same for every block. When the CTRL4 (23h) (IF_ADD_INC) bit is ‘1’, the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. 6.2.1 SPI read Figure 9. SPI read protocol CS SPC SDI RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first). bit 16-... : data DO(...-8). Additional data in multiple byte reads. 26/47 DocID025344 Rev 5 LIS2HH12 Digital interfaces Figure 10. Multiple byte SPI read protocol (2-byte example) CS SPC SDI RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 6.2.2 DO15DO14DO13DO12DO11DO10DO9 DO8 SPI write Figure 11. SPI write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1 -7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). bit 16-... : data DI(...-8). Additional data in multiple byte writes. Figure 12. Multiple byte SPI write protocol (2-byte example) CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8 RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 DocID025344 Rev 5 27/47 47 Digital interfaces 6.2.3 LIS2HH12 SPI read in 3-wire mode 3-wire mode is entered by setting the CTRL4 (23h) (SIM) bit equal to ‘1’ (SPI serial interface mode selection). Figure 13. SPI read protocol in 3-wire mode CS SPC SDI/O DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 RW AD6 AD5 AD4 AD3 AD2 AD1 AD0 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode. 28/47 DocID025344 Rev 5 LIS2HH12 7 Register mapping Register mapping The table given below provides a list of the 8/16 bit registers embedded in the device and the corresponding addresses. Table 18. Register map Register address Name Type Hex Default Comment - RESERVED Binary RESERVED r 00-0A TEMP_L r 0B 00001011 output TEMP_H r 0C 00001100 output RESERVED r 0E WHO_AM_I r 0F ACT_THS r/w ACT_DUR - RESERVED 00001111 01000001 Who I am ID 1E 00011110 00000000 r/w 1F 00011111 00000000 CTRL1 r/w 20 00100000 00000111 CTRL2 r/w 21 00100001 00000000 CTRL3 r/w 22 00100010 00000000 CTRL4 r/w 23 00100011 00000100 CTRL5 r/w 24 00100100 00000000 CTRL6 r/w 25 00100101 00000000 CTRL7 r/w 26 00100110 00000000 STATUS r 27 00100111 output Status data register OUT_X_L r 28 00101000 OUT_X_H r 29 00101001 OUT_Y_L r 2A 00101010 OUT_Y_H r 2B 00101011 output Output registers OUT_Z_L r 2C 00101100 OUT_Z_H r 2D 00101101 FIFO_CTRL r/w 2E 00101110 00000000 FIFO_SRC r 2F 00101111 output IG_CFG1 r/w 30 00110000 00000000 Interrupt generator 1 configuration IG_SRC1 r 31 00110001 output Interrupt generator 1 status register IG_THS_X1 r/w 32 00110010 00000000 Interrupt generator 1 threshold X DocID025344 Rev 5 Control registers FIFO registers 29/47 47 Register mapping LIS2HH12 Table 18. Register map (continued) Register address Name Type Hex Binary Default Comment IG_THS_Y1 r/w 33 00110011 00000000 Interrupt generator 1 threshold Y IG_THS_Z1 r/w 34 00110100 00000000 Interrupt generator 1 threshold Z IG_DUR1 r/w 35 00110101 00000000 Interrupt generator 1 duration IG_CFG2 r/w 36 00110110 00000000 Interrupt generator 2 configuration IG_SRC2 r 37 00110111 output Interrupt generator 2 status register IG_THS2 r/w 38 00111000 00000000 Interrupt generator 2 threshold IG_DUR2 r/w 39 00111001 00000000 Interrupt generator 2 duration XL_ REFERENCE r/w 3A 00111010 00000000 Reference X low XH_ REFERENCE r/w 3B 00111011 00000000 Reference X high YL_ REFERENCE r/w 3C 00111100 00000000 Reference Y low YH_ REFERENCE r/w 3D 00111101 00000000 Reference Y high ZL_ REFERENCE r/w 3E 00111110 00000000 Reference Z low ZH_ REFERENCE r/w 3F 00111111 00000000 Reference Z high Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up. 30/47 DocID025344 Rev 5 LIS2HH12 Register description 8 Register description 8.1 TEMP_L (0Bh), TEMP_H (0Ch) Temperature output register (r). The value is expressed in two’s complement. 8.2 WHO_AM_I (0Fh) Who_AM_I register (r). This register is a read-only register. Its value is fixed at 41h. Table 19. WHO_AM_I register default values 0 8.3 1 0 0 0 0 0 1 ACT_THS (1Eh) Activity threshold register (r/w). Its value is fixed at 0x00. Inactivity threshold. Table 20. ACT_THS register default values 0(1) THS6 THS5 THS4 THS3 THS2 THS1 THS0 1. This bit must be set to ‘0’ for the correct operation of the device. 8.4 ACT_DUR (1Fh) Activity duration register (r/w). Its value is fixed at 0x00. Activity duration. Table 21. ACT_DUR register default values DUR7 8.5 DUR6 DUR5 DUR4 DUR3 DUR2 DUR1 DUR0 YEN XEN CTRL1 (20h) Control register 1(r/w) Table 22. Control register 1 HR ODR2 ODR1 ODR0 BDU ZEN Table 23. Control register 1 description HR High resolution bit. Default value: 0 0: normal mode, 1: high resolution (see Table ) ODR [2:0] Output data rate & power mode selection. Default value: 000 (see Table ) BDU Block data update. Default value: 0 0: continuous update; 1:output registers not updated until MSB and LSB read) ZEN Z-axis enable. Default value: 1 (0: Z-axis disabled; 1: Z-axis enabled) YEN Y-axis enable. Default value: 1 (0: Y-axis disabled; 1: Y-axis enabled) XEN X-axis enable. Default value: 1 (0: X-axis disabled; 1: X-axis enabled) DocID025344 Rev 5 31/47 47 Register description LIS2HH12 ODR [2:0] is used to set the power mode and ODR selection. The following table lists the bit settings for power-down mode and each available frequency. Table 24. ODR register setting ODR2 ODR1 Power-down and ODR selection ODR0 0 0 0 Power-down 0 0 1 10 Hz 0 1 0 50 Hz 0 1 1 100 Hz 1 0 0 200 Hz 1 0 1 400 Hz 1 1 0 800 Hz 1 1 1 N.A. The BDU bit is used to inhibit the update of the output registers until both upper and lower register parts are read. In default mode (BDU = ‘0’) the output register values are updated continuously. When the BDU is activated (BDU = ‘1’), the content of the output registers is not updated until both MSB and LSB are read which avoids reading values related to different sample times. Table 25. Low-pass cutoff frequency in high resolution mode (HR = 1) HR 32/47 CTRL2 (DFC [1:0]) LP cutoff freq. [Hz] 1 00 ODR/50 1 01 ODR/100 1 10 ODR/9 1 11 ODR/400 DocID025344 Rev 5 LIS2HH12 8.6 Register description CTRL2 (21h) Control register 2 (r/w) Table 26. Control register 2 (1) 0 DFC1 DFC0 HPM1 HPM0 FDS HPIS1 HPIS2 1. This bit must be set to ‘0’ for the correct operation of the device. Table 27. Control register 2 description DFC1 [1:0] High-pass filter cutoff frequency selection: the bandwidth of the high-pass filter depends on the selected ODR and on the settings of the DFC [1:0] bits HPM [1:0] High-pass filter mode selection. Default value: 00 “00” or “10” = Normal mode; “01” = Reference signal for filtering; “11” = Not available FDS High-pass filter data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO) HPIS1 HPIS2 High-pass filter enabled for interrupt generator function on Interrupt 1. Default value: 0 (0: filter bypassed; 1: filter enabled) High-pass filter enabled for interrupt generator function on Interrupt 2. Default value: 0 (0: filter bypassed; 1: filter enabled) DocID025344 Rev 5 33/47 47 Register description 8.7 LIS2HH12 CTRL3 (22h) Control register 3 (r/w). INT1 control register. Table 28. Control register 3 FIFO_EN STOP_FTH INT1 _INACT INT1 _IG2 INT1 _IG1 INT1 _OVR INT1 _FTH INT1 _DRDY Table 29. Control register 3 description FIFO_EN FIFO enable. Default value 0. (0: disable; 1: enable) STOP_FTH Enable FIFO threshold level use. Default value 0. (0: disable; 1: enable) INT1_INACT Inactivity interrupt on INT1. Default value 0. (0: disable; 1: enable) 8.8 INT1_IG2 Interrupt generator 2 on INT1. Default value 0. (0: disable; 1: enable) INT1_IG1 Interrupt generator 1 on INT1. Default value 0. (0: disable; 1: enable) INT1_OVR FIFO overrun signal on INT1. INT1_FTH FIFO threshold signal on INT1. INT1_DRDY Data Ready signal on INT1. CTRL4 (23h) Control register 4 (r/w) Table 30. Control register 4 BW2 BW1 FS1 FS0 BW_SCALE_ODR IF_ADD_INC I2C_DISABLE SIM Table 31. Control register 4 description 34/47 BW [2:1] Anti-aliasing filter bandwidth. Default value: 00 (00: 400 Hz; 01: 200 Hz; 10: 100 Hz; 11: 50 Hz) FS [1:0] Full-scale selection. Default value: 00 (00: ±2 g; 01: Not available; 10: ±4 g; 11: ±8 g) BW_SCALE_ODR If '0', bandwidth is automatically selected as follows: BW = 400 Hz when ODR = 800 Hz, 50 Hz, 10 Hz; BW = 200 Hz when ODR = 400 Hz; BW = 100 Hz when ODR = 200 Hz; BW = 50 Hz when ODR = 100 Hz; If '1', bandwidth is selected according to BW [2:1] excluding ODR = 50 Hz, 10 Hz, BW = 400 Hz IF_ADD_INC Register address automatically incremented during multiple byte access with a serial interface (I2C or SPI). (0: disabled; 1: enabled) I2C_DISABLE Disable I2C interface. Default value: 0 (0: I2C enabled; 1: I2C disabled) SIM SPI serial interface mode selection. Default value: 0 0: 4-wire interface; 1: 3-wire interface DocID025344 Rev 5 LIS2HH12 8.9 Register description CTRL5 (24h) Control register 5 (r/w) Table 32. Control register 5 DEBUG SOFT_RESET DEC1 DEC0 ST2 ST1 H_LACTIVE PP_OD Table 33. Control register 5 description DEBUG Debug stepping action selected. Default value: 0 (0: disabled; 1: enabled) SOFT_RESET Soft reset, it acts as POR when 1, then goes to 0 DEC [1:0] Decimation of acceleration data on OUT REG and FIFO 00 -> no decimation 01 -> update every 2 samples 10 -> update every 4 samples 11 -> update every 8 samples ST [2:1] Self-test enable. Default value: 00 (00: Self-test disabled; Other: see table below) H_LACTIVE Interrupt active high, low. Default value: 0 (0: active high; 1: active low) PP_OD Push-pull/Open-drain selection on interrupt pad. Default value: 0 (0: push-pull; 1: open-drain) Table 34. Self-test mode selection ST2 ST1 Self-test mode 0 0 Normal mode 0 1 Positive sign self-test 1 0 Negative sign self-test 1 1 Not allowed DocID025344 Rev 5 35/47 47 Register description 8.10 LIS2HH12 CTRL6 (25h) Control register 6 (r/w) Table 35. Control register 6 INT2 _BOOT 0(1) BOOT INT2 _IG2 INT2 _IG1 INT2 _EMPTY INT2 _FTH INT2 _DRDY 1. This bit must be set to ‘0’ for the correct operation of the device. Table 36. Control register 6 description 8.11 BOOT Force reboot, cleared as soon as the reboot is finished. Active high. Default value 0. INT2_BOOT BOOT interrupt on INT2. Default value: 0 (0: disable; 1: enable) INT2_IG2 Interrupt generator 2 on INT2. Default value: 0 (0: disable; 1: enable) INT2_IG1 Interrupt generator 1 on INT2. Default value: 0 (0: disable; 1: enable) INT2_EMPTY FIFO empty flag on INT2. Default value: 0 INT2_FTH FIFO threshold signal on INT2. Default value: 0 INT2_DRDY Data Ready signal on INT2. Default value: 0 CTRL7 (26h) Control Register 7 (r/w) Table 37. Control register 7 0(1) 0(1) DCRM2 DCRM1 LIR2 LIR1 4D_IG2 4D_IG1 1. This bit must be set to ‘0’ for the correct operation of the device. Table 38. Control register 7 description 36/47 DCRM [2:1] DCRM is used to select the reset mode of the duration counter. Default value: 0 If DCRM = ‘0’, the counter is reset when the interrupt is no longer active, else if DCRM = ‘1’ the duration counter is decremented. 1LSB LIR [2:1] Latched Interrupt [2:1] Default value: 00 (0: interrupt request not latched; 1: interrupt request latched) Cleared by reading the IG_SRC1 (31h) and IG_SRC2 (37h) registers. 4D_IG [2:1] Interrupt [2:1] 4D option enabled. Default value: 00 When set, IG_CFG1 (30h) and IG_CFG2 (36h) use 4D for position recognition. DocID025344 Rev 5 LIS2HH12 8.12 Register description STATUS (27h) Status register (r/w) Table 39. Status register ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA Table 40. Status register description 8.13 ZYXOR X-, Y- and Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous set) ZOR Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data) YOR Y-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data) XOR X-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data) ZYXDA X-, Y- and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) XDA X-axis new data available. Default value: 0 (0: new data for the X-axis is not yet available; 1: new data for the X-axis is available) OUT_X_L (28h) - OUT_X_H (29h) X-axis output register (r) 8.14 OUT_Y_L (2Ah) - OUT_Y_H (2Bh) Y-axis output register (r) 8.15 OUT_Z_L (2Ch) - OUT_Z_H (2Dh) Z-axis output register (r) DocID025344 Rev 5 37/47 47 Register description 8.16 LIS2HH12 FIFO_CTRL (2Eh) FIFO control register (r/w) Table 41. FIFO control register FMODE2 FMODE1 FMODE0 FTH4 FTH3 FTH2 FTH1 FTH0 Table 42. FIFO control register description FMODE [2:0] FIFO mode selection bits. Default: 000. For further details refer to table below FTH [4:0] FIFO threshold. Default: 00000. It is the FIFO depth if the STOP_FTH bit in the CTRL3 (22h) register is set to ‘1’. Table 43. FIFO mode selection FMODE2 FMODE1 FMODE0 Mode 0 0 0 Bypass mode. FIFO turned off 0 0 1 FIFO mode. Stops collecting data when FIFO is full. 0 1 0 Stream mode. If the FIFO is full, the new sample overwrites the older one 0 1 1 Stream mode until trigger is deasserted, then FIFO mode 1 0 0 Bypass mode until trigger is deasserted, then Stream mode 1 0 1 Not used 1 1 0 Not used 1 1 1 Bypass mode until trigger is deasserted, then FIFO mode The FIFO trigger is the IG_SRC1 (31h) event. (Refer to IG_SRC1 (31h)). 8.17 FIFO_SRC (2Fh) FIFO status control register (r) Table 44. FIFO status register FTH OVR EMPTY FSS4 FSS3 FSS2 FSS1 FSS0 Table 45. FIFO status register description 38/47 FTH FIFO threshold status. 0: FIFO filling is lower than FTH level; 1: FIFO filling is equal to or higher than threshold level OVR Overrun bit status. 0: FIFO is not completely filled; 1: FIFO is completely filled EMPTY FIFO empty bit. 0: FIFO not empty; 1: FIFO empty) FSS [4:0] FIFO stored data level DocID025344 Rev 5 LIS2HH12 8.18 Register description IG_CFG1 (30h) Interrupt generator 1 configuration register (r/w) Table 46. IG_CFG1 configuration register AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE Table 47. IG_CFG1 configuration register description 8.19 AOI And/Or combination of Interrupt events. Default value: 0 6D 6-direction detection function enabled. Default value: 0 ZHIE Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) ZLIE Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) YHIE Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) YLIE Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) XHIE Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) XLIE Enable interrupt generation on X low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) IG_SRC1 (31h) Interrupt generator 1 status register (r) Table 48. IG1_SRC1 register - IA ZH ZL YH YL XH XL Table 49. IG1_SRC1 register description IA Interrupt Active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt event has been generated) ZH Z High. Default value: 0 (0: no interrupt; 1: ZH event has occurred) ZL Z Low. Default value: 0 (0: no interrupt; 1: ZL event has occurred) YH Y High. Default value: 0 (0: no interrupt; 1: YH event has occurred) YL Y Low. Default value: 0 (0: no interrupt; 1: YL event has occurred) XH X High. Default value: 0 (0: no interrupt; 1: XH event has occurred) XL X Low. Default value: 0 (0: no interrupt; 1: XL event has occurred) DocID025344 Rev 5 39/47 47 Register description 8.20 LIS2HH12 IG_THS_X1 (32h), IG_THS_Y1 (33h), IG_THS_Z1 (34h) Interrupt generator 1 threshold registers (r/w) Table 50. IG1_THS register THS7 THS6 THS5 THS4 THS3 THS2 THS1 THS0 DUR1_1 DUR1_0 XHIE XLIE Table 51. IG1_THS description THS [7:0] 8.21 Interrupt 1 thresholds. Default: 00000000 IG_DUR1 (35h) Interrupt generator 1 duration register (r/w) Table 52. IG_DUR1 duration WAIT1 DUR1_6 DUR1_5 DUR1_4 DUR1_3 DUR1_2 Table 53. IG_DUR1 duration description 8.22 WAIT1 Wait function enable on duration counter. Default value: 0 (0: Wait function off; 1: Wait function on) DUR1_[6:0] Duration value Default: 0000000 IG_CFG2 (36h) Interrupt generator 2 configuration register (r/w) Table 54. IG_CFG2 register AOI 6D ZHIE ZLIE YHIE YLIE Table 55. IG_CFG2 register description 40/47 AOI And/Or combination of Interrupt events. Default value: 0 6D 6-direction detection function enabled. Default value: 0 ZHIE Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) ZLIE Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) YHIE Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) YLIE Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) XHIE Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) XLIE Enable interrupt generation on X low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request) DocID025344 Rev 5 LIS2HH12 8.23 Register description IG_SRC2 (37h) Interrupt generator 2 status register (r) Table 56. IG_SRC2 register - IA ZH ZL YH YL XH XL Table 57. IG_SRC2 register description 8.24 IA Interrupt Active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events has been generated) ZH Z High. Default value: 0 (0: no interrupt; 1: ZH event has occurred) ZL Z Low. Default value: 0 (0: no interrupt; 1: ZL event has occurred) YH Y High. Default value: 0 (0: no interrupt; 1: YH event has occurred) YL Y Low. Default value: 0 (0: no interrupt; 1: YL event has occurred) XH X High. Default value: 0 (0: no interrupt; 1: XH event has occurred) XL X Low. Default value: 0 (0: no interrupt; 1: XL event has occurred) IG_THS2 (38h) Interrupt generator 2 threshold register (r/w) Table 58. IG_THS2 register THS7 THS6 THS5 THS4 THS3 THS2 THS1 THS0 DUR2_1 DUR2_0 Table 59. IG_THS2 register description THS [7:0] 8.25 Interrupt generator 2 thresholds. Default 00000000 IG_DUR2 (39h) Interrupt generator 2 duration register (r/w) Table 60. IG_DUR2 register WAIT2 DUR2_6 DUR2_5 DUR2_4 DUR2_3 DUR2_2 Table 61. IG_DUR2 register description WAIT2 Wait function enable on duration counter. Default value: 0 (0: Wait function off; 1: Wait function on) DUR2_[6:0] Duration value. Default: 0000000 DocID025344 Rev 5 41/47 47 Register description 8.26 LIS2HH12 XL_REFERENCE (3Ah), XH_REFERENCE (3Bh) In normal mode (HPM [1:0] = ‘00’ or ‘10’) when one of these registers (XL_REFERENCE or XH_REFERENCE) is read, the x output of the hp filter is set to ‘0’. In reference mode (HPM [1:0] =”01”) the reference value is subtracted from the X output of the hp filter. 8.27 YL_REFERENCE (3Ch), YH_REFERENCE (3Dh) See previous section concerning the X Reference (r/w) registers. 8.28 ZL_REFERENCE (3Eh), ZH_REFERENCE (3Fh) See previous section concerning the X Reference (r/w) registers. 42/47 DocID025344 Rev 5 LIS2HH12 9 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 9.1 LGA-12 package information Table 62. LGA-12 2x2x1 package mechanical data Ref. Min. Typ. A1 Max. 1 A2 0.785 A3 0.200 D1 1.850 2.000 2.150 E1 1.850 2.000 2.150 L1 1.500 N1 0.500 T1 0.275 T2 0.250 P2 0.075 r 45° M 0.100 K 0.050 Figure 14. LGA-12 2x2x1 package outline 8365767_A DocID025344 Rev 5 43/47 47 Package information 9.2 LIS2HH12 LGA-12 packing information Figure 15. Carrier tape information for LGA-12 package Figure 16. LGA-12 package orientation in carrier tape 44/47 DocID025344 Rev 5 LIS2HH12 Package information Figure 17. Reel information for carrier tape of LGA-12 package 7 PPPLQ $FFHVVKROHDW VORWORFDWLRQ % & $ 1 ' )XOOUDGLXV *PHDVXUHGDWKXE  7DSHVORW LQFRUHIRU WDSHVWDUW PPPLQZLGWK Table 63. Reel dimensions for carrier tape of LGA-12 package Reel dimensions (mm) A (max) 330 B (min) 1.5 C 13 ±0.25 D (min) 20.2 N (min) 60 G 12.4 +2/-0 T (max) 18.4 DocID025344 Rev 5 45/47 47 Revision history 10 LIS2HH12 Revision history Table 64. Document revision history 46/47 Date Revision Changes 26-Nov-2013 1 Initial release 27-Nov-2013 2 General document review 24-Sep-2014 3 Document status promoted from preliminary to production data Updated Figure 2: Pin connections and Figure 5: LIS2HH12 electrical connections Added Table 9: Activity/Inactivity function control registers 09-Nov-2015 4 Added Section 9.2: LGA-12 packing information 14-Dec-2015 5 Updated HPIS1 and HPIS2 bits in CTRL2 (21h) Updated Table 8: Absolute maximum ratings Updated Figure 17: Reel information for carrier tape of LGA-12 package DocID025344 Rev 5 LIS2HH12 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID025344 Rev 5 47/47 47
LIS2HH12TR 价格&库存

很抱歉,暂时无法提供与“LIS2HH12TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LIS2HH12TR

库存:7

LIS2HH12TR
  •  国内价格
  • 1+8.29470

库存:0