0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM324ADT

LM324ADT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC14_150MIL

  • 描述:

    低功耗四路运算放大器

  • 数据手册
  • 价格&库存
LM324ADT 数据手册
LM224A - LM324A Low Power Quad Operational Amplifiers ■ ■ ■ ■ ■ ■ ■ ■ ■ Wide gain bandwidth: 1.3MHz Large voltage gain: 100dB Very low supply current/ampli: 375µA Low input bias current: 20nA Low input offset voltage: 3mV max. Low input offset current: 2nA Wide power supply range: Single supply: +3V to +30V Dual supplies: ±1.5V to ±15V Input common-mode voltage range includes ground ESD internal protection: 2KV N DIP14 (Plastic Package) Description These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. All the pins are protected against electrostatic discharges up to 2KV (as a consequence, the input voltages must not exceed the magnitude of VCC+ or VCC-.) D SO-14 (Plastic Micropackage) P TSSOP-14 (Thin Shrink Small Outline Package) Order Codes Part Number LM224AN LM224AD/ADT LM224APT LM324AN LM324AD/ADT LM324APT Temperature Range Package DIP SO TSSOP (Thin Shrink Outline Package) DIP SO TSSOP (Thin Shrink Outline Package) Packaging Tube Tube or Tape & Reel Tape & Reel Tube Tube or Tape & Reel Tape & Reel -40°C, +105°C 0°C, +70°C February 2005 Revision 2 1/16 LM224A-LM324A Pin & Schematic Diagram 1 Pin & Schematic Diagram Figure 1: Pin connections (top view) Output 1 1 Inverting Input 1 2 Non-inverting Input 1 3 VCC + 4 Non-inverting Input 2 Inverting Input 2 5 6 + + + + 14 Output 4 13 Inverting Input 4 12 Non-inverting Input 4 11 VCC 10 Non-inverting Input 3 9 8 Inverting Input 3 Output 3 Output 2 7 Figure 2: Schematic diagram (1/4 LM124A) 2/16 Absolute Maximum Ratings 2 Absolute Maximum Ratings LM224A-LM324A Table 1: Key parameters and their absolute maximum ratings Symbol VCC Vi Vid Ptot Supply voltage Input Voltage Differential Input Voltage 1 Power DissipationN Suffix D Suffix Output Short-circuit Duration 2 Iin Toper Tstg Rthja Input Current Operating Free-air Temperature Range Storage Temperature Range Thermal Resistance Junction to Ambient SO14 TSSOP14 DIP14 3 Parameter LM124A LM224A ±16 or 32 -0.3 to Vcc + 0.3 32 LM324A Unit V V V 500 500 400 Infinite 50 500 400 mW mW mA -55 to +125 -40 to +105 -65 to +150 103 100 66 0 to +70 °C °C °C/W 1) Either or both input voltages must not exceed the magnitude of VCC+ or VCC-. 2) Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 3) This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 3/16 LM224A-LM324A 3 Electrical Characteristics Electrical Characteristics Table 2: VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified Symbol Vio Input Offset Voltage - note Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Input Offset Current Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Input Bias Current - note 2 Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Large Signal Voltage Gain VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) SVR VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Supply Current, all Amp, no load Tamb = +25°C VCC = +5V VCC = +30V Tmin ≤ Tamb ≤ Tmax VCC = +5V VCC = +30V Input Common Mode Voltage Range VCC = +30V - note 3 Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Output Current Source (Vid = +1V) VCC = +15V, Vo = +2V Output Sink Current (Vid = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V High Level Output Voltage VCC = +30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Tamb = +25°C Tmin ≤ Tamb ≤ Tmax VCC = +5V, RL = 2kΩ Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 65 65 110 1 Parameter Min. Typ. 2 Max. 3 5 Unit mV nA 2 20 40 nA 20 100 200 V/mV 50 25 100 Iio Iib Avd dB mA 0.7 1.5 0.8 1.5 1.2 3 1.2 3 V 0 0 VCC 1.5 VCC -2 dB 70 60 20 10 12 80 mA 40 20 50 70 mA µA V RL = 2kΩ RL = 10kΩ 26 26 27 27 3.5 3 27 28 ICC Vicm CMR Isource Isink VOH 4/16 Electrical Characteristics LM224A-LM324A Table 2: VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified Symbol VOL Parameter Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax Slew Rate VCC = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain Gain Bandwidth Product VCC = 30V, f =100kHz,Vin = 10mV, RL = 2kΩ, CL = 100pF Total Harmonic Distortion f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC = 30V Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω, VCC = 30V Input Offset Voltage Drift Input Offset Current Drift 4 Min. Typ. 5 Max. 20 20 Unit mV SR GBP THD en DVio DIIio V/µs 0.4 MHz 1.3 % 0.015 40 7 10 120 30 200 nV ----------Hz µV/°C pA/°C dB Vo1/Vo2 Channel Separation - note 1kHz ≤ f ≤ 20kHZ 1) Vo = 1.4V, Rs = 0Ω, 5V < VCC+ < 30V, 0 < Vic < VCC + - 1.5V 2) The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3) The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 4) Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. 5/16 LM224A-LM324A Figure 3: Input bias current vs. ambient temperature INPUT BIAS CURRENT versus AMBIENT TEMPERATURE IB (nA) Electrical Characteristics Figure 6: Current limiting 24 21 18 15 12 9 6 3 0 -55-35-15 5 25 45 65 85 105 125 AMBIENT TEMPERATURE (°C) Figure 4: Input voltage range Figure 7: Supply current SUPPLY CURRENT 4 VCC SUPPLY CURRENT (mA) 3 mA - ID 2 + 1 Tamb = 0°C to +125°C Tamb = -55°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) Figure 5: Gain bandwidth product Figure 8: Common mode rejection ratio 6/16 Electrical Characteristics Figure 9: Electrical curves LM224A-LM324A 7/16 LM224A-LM324A Figure 10: Input current Electrical Characteristics Figure 12: Voltage gain Figure 11: Power supply & common mode rejection ratio Figure 13: Large signal voltage gain 8/16 Typical Single - Supply Applications 4 Typical Single - Supply Applications LM224A-LM324A Figure 17: High input Z adjustable gain DC instrumentation amplifier Figure 14: AC coupled interting amplifier if R1 = R5 and R3 = R4 = R6 = R7 Figure 15: AC coupled non inverting amplifier 2R 1 e0 = 1 + ---------R 2 (e2 -e1) As shown e0 = 101 (e2 - e1). Figure 18: DC summing amplifier Figure 16: Non-inverting DC gain e0 = e1 +e2 -e3 -e4 Where (e1 +e2) ≥ (e3 +e4) to keep e0 ≥ 0V 9/16 LM224A-LM324A Figure 19: Low drift peak detector Typical Single - Supply Applications Figure 21: High input Z, DC differential amplifier R1 R4 For ------ = ------R R 2 3 (CMRR depends on this resistor ratio match) Figure 20: Activer bandpass filter e0 ⎛ 1 + R4⎞ ------⎝ R3⎠ (e2 - e1) As shown e0 = (e2 - e1) Figure 22: Using symetrical amplifiers to reduce input current (general concept) Fo = 1kHz Q = 50 Av = 100 (40dB) 10/16 Typical Single - Supply Applications Table 3: Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified) Symbol Vio Avd Icc Vicm VOH VOL Ios GBP SR RL = 2kΩ (VCC RL = 10kΩ Vo = +2V, VCC = +15V RL = 2kΩ, CL = 100pF RL = 2kΩ, CL = 100pF +=15V) LM224A-LM324A Conditions RL = 2kΩ No load, per amplifier Value 0 100 350 0 to +13.5 +13.5 5 +40 1.3 0.4 Unit mV V/mV µA V V mV mA MHz V/µs 11/16 LM224A-LM324A 5 Macromodel Macromodel Warning: Please consider following remarks before using this macromodel: All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM324 1 2 3 4 5 *************************** .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 ENDS 12/16 Package Mechanical Data 6 Package Mechanical Data LM224A-LM324A 6.1 DIP14 Package Plastic DIP-14 MECHANICAL DATA mm. DIM. MIN. a1 B b b1 D E e e3 F I L Z 1.27 3.3 2.54 0.050 8.5 2.54 15.24 7.1 5.1 0.130 0.100 0.51 1.39 0.5 0.25 20 0.335 0.100 0.600 0.280 0.201 1.65 TYP MAX. MIN. 0.020 0.055 0.020 0.010 0.787 0.065 TYP. MAX. inch P001A 13/16 LM224A-LM324A 6.2 SO-14 Package SO-14 MECHANICAL DATA DIM. A a1 a2 b b1 C c1 D E e e3 F G L M S 3.8 4.6 0.5 8.55 5.8 1.27 7.62 4.0 5.3 1.27 0.68 0.149 0.181 0.019 8.75 6.2 0.35 0.19 0.5 45˚ (typ.) 0.336 0.228 0.1 mm. MIN. TYP MAX. 1.75 0.2 1.65 0.46 0.25 0.013 0.007 0.003 MIN. Package Mechanical Data inch TYP. MAX. 0.068 0.007 0.064 0.018 0.010 0.019 0.344 0.244 0.050 0.300 0.157 0.208 0.050 0.026 8 ˚ (max.) PO13G 14/16 Package Mechanical Data 6.3 TSSOP14 Package TSSOP14 MECHANICAL DATA mm. DIM. MIN. A A1 A2 b c D E E1 e K L 0˚ 0.45 0.60 0.05 0.8 0.19 0.09 4.9 6.2 4.3 5 6.4 4.4 0.65 BSC 8˚ 0.75 0˚ 0.018 0.024 1 TYP MAX. 1.2 0.15 1.05 0.30 0.20 5.1 6.6 4.48 0.002 0.031 0.007 0.004 0.193 0.244 0.169 0.197 0.252 0.173 0.0256 BSC 0.004 0.039 MIN. TYP. inch LM224A-LM324A MAX. 0.047 0.006 0.041 0.012 0.0089 0.201 0.260 0.176 8˚ 0.030 A A2 A1 b e K c L E D E1 PIN 1 IDENTIFICATION 1 0080337D Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 15/16 LM224A-LM324A 7 Summary of Changes Date 01 March 2001 01 Feb. 2005 Revision 1 2 First Release Summary of Changes Description of Changes - Table 1 on page 3: explanation of Vid and Vi limits - Macromodel updated 16/16
LM324ADT 价格&库存

很抱歉,暂时无法提供与“LM324ADT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LM324ADT
    •  国内价格
    • 1+1.11930
    • 30+1.07932
    • 100+1.03935
    • 500+0.95940
    • 1000+0.91942
    • 2000+0.89544

    库存:42