0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LNBK13SP

LNBK13SP

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    LNBK13SP - LNB SUPPLY AND CONTROL VOLTAGE REGULATOR PARALLEL INTERFACE - STMicroelectronics

  • 数据手册
  • 价格&库存
LNBK13SP 数据手册
® LNBK10 SERIES LNBK20 LNB SUPPLY AND CONTROL VOLTAGE REGULATOR (PARALLEL INTERFACE) s s s s s s s s s s s s REDUCED OUTPUT CURRENT VERSION OF LNBP1X AND LNBP20 SERIES COMPLETE INTERFACE FOR TWO LNBs REMOTE SUPPLY AND CONTROL LNB SELECTION AND STAND-BY FUNCTION BUILT-IN TONE OSCILLATOR FACTORY TRIMMED AT 22KHz FAST OSCILLATOR START-UP FACILITATES DiSEqC™ ENCODING TWO SUPPLY INPUTS FOR LOWEST DISSIPATION BYPASS FUNCTION FOR SLAVE OPERATION LNB SHORT CIRCUIT PROTECTION AND DIAGNOSTIC AUXILIARY MODULATION INPUT EXTENDS FLEXIBILITY CABLE LENGTH COMPENSATION INTERNAL OVER TEMPERATURE PROTECTION BACKWARD CURRENT PROTECTION Multiwatt-15 10 1 PowerSo-20 PowerSO-10 DESCRIPTION Intended for analog and digital satellite receivers, the LNBK is a monolithic linear voltage regulator, assembled in Multiwatt-15, PowerSO-20 and PowerSO-10, specifically designed to provide the powering voltages and the interfacing signals to the LNB downconverter situated in the antenna via the coaxial cable. It has the same functionality of the LNBP1X and LNBP20 series, at a reduced output current capability. Since most satellite receivers have two antenna ports, the output voltage of the regulator is available at one of two logic-selectable output pins (LNBA, LNBB). When the IC is powered and put in Stand-by (EN pin LOW), both regulator outputs are disabled to allow the antenna downconverters to be supplied/controlled by others satellite receivers sharing the same coaxial lines. In this occurrence the device will limit at 3 mA (max) the backward current that could flow from LNBA and LNBB output pins to GND. For slave operation in single dish, dual receiver systems, the bypass function is implemented by an electronic switch between the Master Input pin September 1998 (MI) and the LNBA pin, thus leaving all LNB powering and control functions to the Master Receiver. This electronic switch is closed when the device is powered and EN pin is LOW. The regulator outputs can be logic controlled to be 13 or 18 V (typ.) by mean of the VSEL pin for remote controlling of LNBs. Additionally, it is possible to increment by 1V (typ.) the selected voltage value to compensate the excess voltage drop along the coaxial cable (LLC pin HIGH). In order to reduce the power dissipation of the device when the lowest output voltage is selected, the regulator has two Supply Input pins VCC1 and VCC2. They must be powered respectively at 16V (min) and 23V (min), and an internal switch automatically will select the suitable supply pin according to the selected output voltage. If adequate heatsink is provided and higher power losses are acceptable, both supply pins can be powered by the same 23V source without affecting any other circuit performance. The ENT (Tone Enable) pin activates the internal oscillator so that the DC output is modulated by a ±0.3 V, 22KHz (typ.) square wave. This internal 1/18 LNBK10 SERIES - LNBK20 oscillator is factory trimmed within a tolerance of ±2KHz, thus no further adjustments neither external components are required. A burst coding of the 22KHz tone can be accomplished thanks to the fast response of the ENT input and the prompt oscillator start-up. This helps designers who want to implement the DiSEqC™ protocols (*). In order to improve design flexibility and to allow implementation of newcoming LNB remote control standards, an analogic modulation input pin is available (EXTM). An appropriate DC blocking capacitor must be used to couple the modulating signal source to the EXTM pin. When external modulation is not used, the relevant pin can be left open. Two pins are dedicated to the overcurrent protection/monitoring: CEXT and OLF. The overcurrent protection circuit works dynamically: as soon as an overload is detected in either LNB output, the output is shut-down for a time Toff determined by the capacitor connected between CEXT and GND. Simultaneously the OLF pin, that is an open collector diagnostic output flag, from HIGH IMPEDANCE state goes LOW. After the time has elapsed, the output is resumed for a time ton=1/15toff (typ.) and OLF goes in HIGH IMPEDANCE. If the overload is still present, the protection circuit will cycle again through t off and ton until the overload is removed. Typical ton+toff value is 1200ms when a 4.7µF external capacitor is used. This dynamic operation can greatly reduce the power dissipation in short circuit condition, still ensuring excellent power-on start up even with highly capacitive loads on LNB outputs. The device is packaged in Multiwatt15 for thru-holes mounting and in PowerSO-20 for surface mounting. When a limited functionality in a smaller package matches design needs, a range of cost-effective PowerSO-10 solutions is also offered. All versions have built-in thermal protection against overheatingdamage. (*): External components are needed to comply to level 2.x and above (bidirectional) DiSEqC™ bus hardware requirements. DiSEqC ™ is a trademark of EUTELSAT. ORDERING NUMBERS Type LNBK10 LNBK11 LNBK12 LNBK13 LNBK14 LNBK15 LNBK16 LNBK20 (*) Available on request Multiwatt-15 PowerSO-20 PowerSO-10 LNBK10SP (*) LNBK11SP (*) LNBK12SP (*) LNBK13SP (*) LNBK14SP (*) LNBK15SP (*) LNBK16SP (*) LNBK20CR (*) LNBK20PD PIN CONFIGURATIONS Multiwatt-15 2/18 PowerSO-20 PowerSO-10 LNBK10 SERIES - LNBK20 TABLE A: PIN CONFIGURATIONS SYMBOL NAME FUNCTION PIN NUMBER vs SALES TYPE (LNBK) 20CR 20PD 10SP 11SP 12SP 13SP 14SP 15SP 16SP V CC1 Supply Input 1 15V to 27V supply. It is automatically selected when VOUT = 13 or 14V 22V to 27V supply. It is automatically selected when VOUT = 18 or 19V See truth tables for voltage and port selection. In stand-by mode this port is powered by the MI pin via the internal Bypass Switch Logic control input: See truth table Logic control input: See truth table Logic control input: See truth table Circuit Ground. It is internally connected to the die frame Logic control input: See truth table Timing capacitor used by the Dynamic Overload Protection. Typical application is 4.7 µF for a 1200 ms cycle External Modulation Input. Needs DC decoupling to the AC source. If not used, can be left open. 1 2 1 1 1 1 1 1 1 V CC2 Supply Input 2 2 3 2 2 2 2 2 2 2 LNBA Output Port 3 4 3 3 3 3 3 3 3 VSEL Output Voltage Selection: 13 or 18V (typ) Port Enable Port Selection G round 4 5 4 4 4 4 4 4 4 EN OSEL GND 5 7 8 6 7 1 10 11 20 13 14 5 9 6 5 NA 6 5 NA 6 5 NA 6 5 NA 6 5 NA 6 5 NA 6 ENT CEXT 22 KHz Tone Enable External Capacitor 9 10 7 8 7 8 7 8 7 8 7 8 7 8 7 8 EXTM External Modulation 11 15 NA NA NA 9 NA 9 9 LLC OLF Line Length Logic control input: See Compens (+1V typ) truth table Over Load F lag Logic output (open Collector). Normally in HIGH IMPEDANCE, goes LOW when current or thermal overload occurs. In stand-by mode, the voltage on MI is routed to LNBA pin. Can be left open if bypass function is not needed See truth tables for voltage and port selection. 12 13 16 17 NA NA NA 9 9 NA NA NA 9 10 NA 10 10 NA MI Master Input 14 18 NA 10 10 10 NA NA NA LNBB Output Port 15 19 10 NA NA NA NA NA NA NOTE: The limited pin availability of the PowerSO-10 package leads to drop some functions. 3/18 LNBK10 SERIES - LNBK20 ABSOLUTE MAXIMUM RATING Symbol Vi Io Vi I SW Pt ot T stg To p Output Current (LNBA, LNBB) Logic Input Voltage (ENT, EN, OSEL, VSEL, LLC) Bypass Switch Current Power Dissipation at Tcase < 85 C Storage Temperature Range Operating Junction Temperature Range o Parameter DC Input Voltage (VCC1, VCC2, MI) Value 28 Internally limited -0.5 to 7 900 14 - 40 to 150 - 40 to 125 Unit V V mA W o o C C Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied THERMAL DATA Symbol Parameter Value 2 Unit o R t hj- case Thermal Resistance Junction-case C/W LOGIC CONTROLS TRUTH TABLES Control I/O OUT IN IN IN IN IN EN L H H H H H H H H OSEL X L L L L H H H H VSEL X L H L H L H L H Pin Name O LF ENT EN OSEL VSEL LLC LLCP X L L H H L L H H L I OUT > I OMAX or Tj > 150 C 22KHz tone O FF See table below See table below See table below See table below VLNBA V MI -0.4V (typ.) 13V (typ.) 18V (typ.) 14V (typ.) 19V (typ.) Disabled Disabled Disabled Disabled O H I OUT < I OMAX 22KHz tone ON See table below See table below See table below See table below VLNBB Disabled Disabled Disabled Disabled Disabled 13V (typ.) 18V (typ.) 14V (typ.) 19V (typ.) NOTE: All logic input pins have internal pull-down resistor (typ. = 250KΩ) 4/18 LNBK10 SERIES - LNBK20 BLOCK DIAGRAM 5/18 LNBK10 SERIES - LNBK20 ELECTRICAL CHARACTERISTICS FOR LNBK SERIES (Tj = 0 to 85 oC, Ci = 0.22 µF, Co = 0.1 µF, EN=H, ENT=L, LLC= L, VIN1 = 16V, VIN2 = 23V, IOUT = 50mA, (unless otherwise specified) Symbol V IN1 V IN2 V O1 V O2 ∆VO ∆ VO SVR I MAX t OFF tON F TONE A TONE D T ONE tr, tf G EXT M V EXTM Z EXT M V SW V OL I OZ V IL VI H I IH I CC I CC I OBK T SHDN Parameter VCC1 Supply Voltage VCC2 Supply Voltage Output Voltage Output Voltage Line Regulation Load Regulation Supply Voltage Rejection Output Current Limiting Dynamic Overload Protection OFF Time Dynamic Overload Protection ON Time Tone Frequency Tone Amplitude Tone Duty Cucle Tone Rise or Fall Time External Modulation Gain External Modulation Input Voltage External Modulation Impedance Bypass Switch Voltage Drop (MI to LNBA) Overload Flag Pin Logic Low Overload Flag Pin OFF State Leakage Current Control Input Pin Logic Low Control Input Pin Logic High Control Pins Input Current Supply Current Supply Current Output Backward Current Thermal Shutdown Threshold VIH = 5V Outputs Disabled (EN=L) ENT=H, IOUT = 400 mA EN=L, VLNBA = VLNBB = 18V VIN1 = VIN2 = 22V or floating Output shorted, CEXT = 4.7µF Output shorted, CEXT = 4.7µF ENT=H ENT=H ENT=H ENT=H ∆VOUT/∆VEXTM, f = 10Hz to 40KHz AC Coupling f = 10Hz to 40KHz EN=L, ISW= 300mA, VCC2-VMI = 4V IOL = 8mA VOH = 6V 400 0.35 0.28 0.6 0.5 10 0.8 2.5 20 0.3 3.1 0.2 150 1 6 3 20 0.4 40 5 Test Conditions IO = 400mA, ENT=H, VSEL=L, LLC=L IO = 400mA, ENT=H, VSEL=L, LLC=H IO = 400mA, ENT=VSEL=H, LLC=L IO = 400mA, ENT=VSEL=H, LLC=H IO = 400 mA, VSEL=H, LLC=L IO = 400 mA, VSEL=H, LLC=H IO = 400 mA, VSEL=L, LLC=L IO = 400 mA, VSEL=L, LLC=H VIN1 = 15 to 19 V, VOUT = 13 V VIN2 = 22 to 26 V, VOUT = 18 V VIN1 = VIN2 = 22 V, VOUT = 13 or 18V, IO = 50 to 400 mA VIN1 = VIN2 = 23 ± 0.5Vac, fac = 50 KHz 400 Min. 15 16 22 23 17.3 12.5 18 19 13 14 5 5 65 45 500 1100 t OFF /15 22 0.6 50 10 5 400 mV pp Ω V V µA V V µA mA mA mA o Typ. Max. 27 27 27 27 18.7 13.5 50 50 150 Unit V V V V V V V V mV mV mV dB 600 mA ms ms 24 0.8 60 15 KHz Vpp % µs C 6/18 LNBK10 SERIES - LNBK20 TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified T j=25oC) Output Voltage vs Output Current Tone Frequency vs Temperature Tone Duty Cycle vs Temperature Tone Rise Time vs Temperature Tone Fall Time vs Temperature Tone Amplitude vs Temperature 7/18 LNBK10 SERIES - LNBK20 TYPICAL PERFORMANCE CHARACTERISTICS (continued) S.V.R. vs Frequency LNBA External Modulation Gain vs Frequency External Modulation vs Temperature Bypass Switch Drop vs Output Current Bypass Switch Drop vs Output Current Overload Flag pin Logic Low vs Flag Current 8/18 LNBK10 SERIES - LNBK20 TYPICAL PERFORMANCE CHARACTERISTICS (continued) Supply Current vs Temperature Supply Current vs Temperature Dynamic Overload protection (ISC vs Time) Tone Enable Tone Disable 22 KHz Tone 9/18 LNBK10 SERIES - LNBK20 TYPICAL PERFORMANCE CHARACTERISTICS (continued) Enable Time Disable Time 18V to 13V Change 13V to 18V Change 10/18 LNBK10 SERIES - LNBK20 TYPICAL APPLICATION SCHEMATICS TWO ANTENNA PORTS RECEIVER MCU+V 10uF C2 AUX DATA R1 11 EXTM VCC1 VCC2 LNBA LNBB MI CEXT 1 2 3 15 14 10 4.7µF C1 + GND 8 17V 24V ANT CONNECTORS JA 47K 13 OLF JB TUNER C3 C4 C5 C6 4 9 5 7 12 VSEL ENT EN OSEL LLC LNBK20CR 2x 0.1µ F 2x 47nF Vcc I/Os MCU I/Os SINGLE ANTENNA RECEIVER WITH MASTER RECEIVER PORT MCU+V 10uF C2 AUX DATA R1 47K 13 11 EXTM VCC1 VCC2 LNBA LNBB MI CEXT 1 2 3 15 14 10 17V 24V ANT OLF MASTER TUNER C3 C4 C5 47nF 2x 0.1µ F 4 9 5 7 12 VSEL ENT EN OSEL LLC LNBK20CR 4.7µF C1 + GND 8 Vcc I/Os MCU I/Os 11/18 LNBK10 SERIES - LNBK20 TYPICAL APPLICATION SCHEMATICS (continued) USING SERIAL BUS TO SAVE MPU I/Os 17V MCU+V C2 R1 47K 10uF 13 OLF VSEL EN T EN OSEL LLC LNBK20CR AUX DATA 11 EXTM VCC1 VCC2 LNBA LNBB MI CEXT 1 2 3 15 14 10 4.7µF C1 + GND 8 2x 0.1µ F 2x 47nF C3 C4 C5 C6 TUNER 24V JA JB 1 2 3 15 STR D CLK OE Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 QS QS 4 5 6 7 14 13 12 11 9 10 4 9 5 7 12 4094 SERIAL BUS MCU+V I/Os Vcc MCU TWO ANTENNA PORTS RECEIVER: LOW COST SOLUTION 17V 24V ANT CONNECTORS VCC1 VCC2 LNBA LNBB 1 2 3 10 JB 4 7 5 9 VSEL ENT EN OSEL GND LNBK10SP MCU+V 6 2x 0.1µF 2x 47nF CEXT 8 4.7µF C1 + C3 C4 C5 C6 TUNER JA Vcc I/Os MCU I/Os 12/18 LNBK10 SERIES - LNBK20 TYPICAL APPLICATION SCHEMATICS (continued) CONNECTING TOGETHER VCC1 AND VCC2 24V ANT CONNECTORS VCC1 VCC2 LNBA LNBB 1 2 3 10 JB 4 7 5 9 VSEL ENT EN OSEL CEXT 8 4.7µF 6 0.1µF 2x 47nF C1 + C4 C5 C6 TUNER JA GND LNBK10SP MCU+V Vcc I/Os MCU I/Os SINGLE ANTENNA RECEIVER WITH MASTER RECEIVER PORT: LOW COST SOLUTION 17V C2 AUX DATA 10µF 9 EXTM VCC1 VCC2 LNBA MI 4 7 5 VSEL ENT EN 6 GND LNBK13SP MCU+V 2x 0.1µF CEXT 10 8 4.7µ F C1 + C3 C4 1 2 3 24V ANT MASTER TUNER C5 47nF Vcc I/Os MCU I/Os 13/18 LNBK10 SERIES - LNBK20 TYPICAL APPLICATION SCHEMATICS (continued) SINGLE ANTENNA RECEIVER WITH OVERLOAD DIAGNOSTIC 17V MCU+V C2 AUX DATA R1 10µF 10 47K OLF 8 4.7µF 6 2x 0.1µ F C1 + C3 C4 9 EXTM VCC1 VCC2 LNBA 1 2 3 24V ANT 4 VSEL 7 ENT 5 EN CEXT TUNER C5 47nF GND LNBK15SP Vcc I/Os MCU I/Os 14/18 LNBK10 SERIES - LNBK20 MULTIWATT-15 MECHANICAL DATA DIM. A B C D E F G G1 H1 H2 L L1 L2 L3 L4 L7 M M1 S S1 Dia1 mm TYP. inch TYP. MIN. MAX. 5 2.65 1.6 0.55 0.75 1.52 18.03 20.2 22.5 22.5 18.1 17.75 10.9 2.9 4.85 5.53 2.6 2.6 3.85 MIN. MAX. 0.197 0.104 0.063 0.022 0.030 0.060 0.710 0.795 0.886 0.886 0.713 0.699 0.429 0.114 0.191 0.218 0.102 0.102 0.152 1 0.49 0.66 1.02 17.53 19.6 21.9 21.7 17.65 17.25 10.3 2.65 4.25 4.63 1.9 1.9 3.65 0.019 0.026 0.040 0.690 0.772 0.862 0.854 0.695 0.679 0.406 0.104 0.167 0.182 0.075 0.075 0.144 0.039 1.27 17.78 0.050 0.700 22.2 22.1 17.5 10.7 4.55 5.08 0.874 0.870 0.689 0.421 0.179 0.200 0016036 15/18 LNBK10 SERIES - LNBK20 PowerSO-20 MECHANICAL DATA DIM. A a1 a2 a3 b c D (1) E e e3 E1 (1) E2 G h L N S T mm TYP. inch TYP. MIN. 0.10 0 0.40 0.23 15.80 13.90 MAX. 3.60 0.30 3.30 0.10 0.53 0.32 16.00 14.50 MIN. 0.0039 0 0.0157 0.009 0.6220 0.5472 MAX. 0.1417 0.0118 0.1299 0.0039 0.0209 0.0126 0.6299 0.570 1.27 11.43 10.90 0 0.80 11.10 2.90 0.10 1.10 1.10 0.4291 0 0.0314 10o (max.) 8o (max.) 0.050 0.450 0.437 0.1141 0.0039 0.0433 0.0433 10.0 0.3937 (1) ”D and E1” do not include mold flash or protusions - Mold flash or protusions shall not exceed 0.15mm (0.006”) N N a2 b e e3 A R c DETAILB a1 E DETAILA D lead 20 11 DETAILA a3 DETAILB E2 T E1 Gage Plan e 0.35 slug -C- S L SEATING PLANE G C (COPLANARITY) 1 10 h x 45° PSO20MEC 0056635 16/18 LNBK10 SERIES - LNBK20 PowerSO-10 MECHANICAL DATA DIM. MIN. A A1 B c D D1 E E1 E2 E3 E4 e F H h L q α 0 o mm TYP. MAX. 3.65 0.10 0.60 0.55 9.60 7.60 9.50 7.40 7.60 6.35 6.10 1.27 1.25 13.80 0.50 1.20 1.70 8o 1.80 0.047 1.35 14.40 0.049 0.543 MIN. 0.132 0.000 0.016 0.013 0.370 0.291 0.366 0.283 0.283 0.240 0.232 3.35 0.00 0.40 0.35 9.40 7.40 9.30 7.20 7.20 6.10 5.90 inch TYP. MAX. 0.144 0.004 0.024 0.022 0.378 0.300 0.374 0.291 0.300 0.250 0.240 0.050 0.053 0.567 0.002 0.071 0.067 B 0.10 A B 10 = H = A F A1 = 6 = = = E = 1 5 e 0.25 M = E2 E3 E1 E4 = = A = SEATING PLANE DETAIL ”A” Q B C h D = D1 = = = SEATING PLANE = A1 L DETAIL ”A” α 0068039-C 17/18 LNBK10 SERIES - LNBK20 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics © 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. . 18/18
LNBK13SP 价格&库存

很抱歉,暂时无法提供与“LNBK13SP”相匹配的价格&库存,您可以联系我们找货

免费人工找货