0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LSM303DLMTR

LSM303DLMTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VFLGA28

  • 描述:

    Accelerometer, Magnetometer, 3 Axis Sensor I²C Output

  • 数据手册
  • 价格&库存
LSM303DLMTR 数据手册
LSM303DLM Sensor module: 3-axis accelerometer and 3-axis magnetometer Preliminary data Features ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Analog supply voltage: 2.16 V to 3.6 V Digital supply voltage IOs: 1.8 V Power-down mode 3 magnetic field channels and 3 acceleration channels ±1.3 to ±8.1 gauss magnetic field full-scale ±2 g/±4 g/±8 g dynamically selectable fullscale High performance g-sensor I2C serial interface 2 independent programmable interrupt generators for free-fall and motion detection Accelerometer sleep-to-wakeup function 6D orientation detection ECOPACK®, RoHS, and “Green” compliant The various sensing elements are manufactured by using specialized micromachining processes, while the IC interfaces are realized using a CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the sensing element characteristics. The LSM303DLM has a linear acceleration full-scale of ±2 g / ±4 g / ±8 g and a magnetic field full-scale of ±1.3 / ±1.9 / ±2.5 / ±4.0 / ±4.7 / ±5.6 / ±8.1 gauss, both fully selectable by the user. The LSM303DLM includes an I2C serial bus interface that supports standard mode (100 kHz) and fast mode (400 kHz). The system can be configured to generate an interrupt signal by inertial wakeup/free-fall events, as well as by the position of the device itself. Thresholds and timing of interrupt generators are programmable on the fly by the end user. Magnetic and accelerometer parts can be enabled or put into power-down mode separately. The LSM303DLM is available in a plastic land grid array package (LGA), and is guaranteed to operate over an extended temperature range from -40 to +85 °C. Table 1. Device summary Temp. range [°C] Package Packing Tray -40 to +85 LSM303DLMTR LGA-28 Tape and reel LGA-28L (5x5x1.0 mm) Applications ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Compensated compass Map rotation Position detection Motion-activated functions Free-fall detection Intelligent power-saving for handheld devices Display orientation Gaming and virtual reality input devices Impact recognition and logging Vibration monitoring and compensation Description The LSM303DLM is a system-in-package featuring a 3D digital linear acceleration sensor and a 3D digital magnetic sensor. Part number LSM303DLM April 2011 Doc ID 018725 Rev 1 1/38 www.st.com 38 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. Contents LSM303DLM Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 2.2 2.3 Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 Sensor I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 4.2 4.3 Linear acceleration sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1 6.2 6.3 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 High current wiring effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7.1.1 7.1.2 7.1.3 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Linear acceleration digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Magnetic field digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 9 2/38 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Doc ID 018725 Rev 1 LSM303DLM Contents 9.1 Linear acceleration register description . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.1.8 9.1.9 9.1.10 9.1.11 9.1.12 9.1.13 9.1.14 9.1.15 9.1.16 9.1.17 9.1.18 9.1.19 CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CTRL_REG5_A (24h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ) 26 HP_FILTER_RESET_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 REFERENCE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STATUS_REG_A(27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 27 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . 27 OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . 27 INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 INT2_CFG_A (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 INT2_SRC_A (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 INT2_THS_A (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 INT2_DURATION_A (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.2 Magnetic field sensing register description . . . . . . . . . . . . . . . . . . . . . . . 32 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.2.6 9.2.7 9.2.8 9.2.9 CRA_REG_M (00h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CRB_REG_M (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 MR_REG_M (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 OUT_X_H_M (03), OUT_X_LH_M (04h) . . . . . . . . . . . . . . . . . . . . . . . . 33 OUT_Z_H_M (05), OUT_Z_L_M (06h) . . . . . . . . . . . . . . . . . . . . . . . . . 34 OUT_Y_H_M (07), OUT_Y_L_M (08h) . . . . . . . . . . . . . . . . . . . . . . . . . 34 SR_REG_M (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 IR_REG_M (0Ah/0Bh/0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 WHO_AM_I _M (0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10 11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Doc ID 018725 Rev 1 3/38 List of tables LSM303DLM List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 16 SAD and read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 17 SAD and read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 21 Normal-mode output data rate configurations and low-pass cut-off frequencies . . . . . . . . 22 CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 High-pass filter cut-off frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Sleep-to-wakeup configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 REFERENCE_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STATUS_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 INT1_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 INT1_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 INT1_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 INT2_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 INT2_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 INT2_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Interrupt mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 INT2_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4/38 Doc ID 018725 Rev 1 LSM303DLM Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. List of tables INT2_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 INT2_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 INT2_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CRA_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CRA_REG_M description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Data rate configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CRA_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Gain setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 MR_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 MR_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Magnetic sensor operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 SR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 IRA_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 IRB_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 IRC_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 WHO_AM_I_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Doc ID 018725 Rev 1 5/38 Block diagram and pin description LSM303DLM 1 1.1 Block diagram and pin description Block diagram Figure 1. Block diagram A/D converter Control Logic Sensing Block X+ Y+ Z+ Sensing Interface CHARGE AMPLIFIER I (a) MUX ZYXX+ Y+ SDA_A + SCL_A - SDA_M DI I2C SCL_M INT1 CHARGE AMPLIFIER + MUX INT2 I (M) Z+ ZYX- INTERRUPT GEN. REFERENCE TRIMMING CIRCUITS CLOCK OFFSET CIRCUITS BUILT-IN SET/RESET CIRCUITS AM09239V1 6/38 Doc ID 018725 Rev 1 LSM303DLM Block diagram and pin description 1.2 Pin description Figure 2. Pin connection Table 2. Pin# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Pin description Name Reserved GND Reserved SA0_A NC Vdd Reserved Reserved Reserved Reserved Reserved SET2 Reserved Reserved C1 SET1 Reserved DRDY_M SDA_M Connect to GND 0 V supply Connect to GND Linear acceleration signal I2C less significant bit of the device address (SA0) Internally not connected Power supply Connect to Vdd Leave unconnected Leave unconnected Leave unconnected Leave unconnected S/R capacitor connection (C2) Leave unconnected Leave unconnected Reserved capacitor connection (C1) S/R capacitor connection (C2) Connect to GND Magnetic signal interface data ready Magnetic signal interface I2C serial data (SDA) Function Doc ID 018725 Rev 1 7/38 Block diagram and pin description Table 2. Pin# 20 21 22 23 24 25 26 27 28 LSM303DLM Pin description (continued) Name SCL_M NC Vdd_IO Reserved SCL_A SDA_A INT1 INT2 Reserved 2 Function Magnetic signal interface I C serial clock (SCL) Internally not connected Signal interface power supply for I/O pins Connect to Vdd_IO Linear acceleration signal interface I2C serial clock (SCL) Linear acceleration signal interface I2C serial data (SDA) Inertial Interrupt 1 Inertial Interrupt 2 Connect to GND 8/38 Doc ID 018725 Rev 1 LSM303DLM Module specifications 2 2.1 Module specifications Sensor characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted(a). Table 3. Symbol Sensor characteristics Parameter Linear acceleration measurement range(2) Test conditions FS bit set to 00 Min. Typ.(1) ±2.0 ±4.0 ±8.0 ±1.3 ±1.9 ±2.5 ±4.0 ±4.7 ±5.6 ±8.1 1 2 3.9 1100 980 855 760 670 600 450 400 400 355 330 295 230 205 LSB/ gauss mg/digit gauss g Max. Unit LA_FS FS bit set to 01 FS bit set to 11 GN bits set to 001 GN bits set to 010 GN bits set to 011 M_FS Magnetic measurement range GN bits set to 100 GN bits set to 101 GN bits set to 110 GN bits set to 111 FS bit set to 00 12-bit representation LA_So Linear acceleration sensitivity FS bit set to 01 12-bit representation FS bit set to 11 12-bit representation GN bits set to 001 (X,Y) GN bits set to 001 (Z) GN bits set to 010 (X,Y) GN bits set to 010 (Z) GN bits set to 011 (X,Y) GN bits set to 011 (Z) M_GN Magnetic gain setting GN bits set to 100 (X,Y) GN bits set to 100 (Z) GN bits set to 101 (X,Y) GN bits set to 101 (Z) GN bits set to 110 (X,Y) GN bits set to 110 (Z) GN bits set to 111(2) (X,Y) GN bits set to 111(2) (Z) a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V. Doc ID 018725 Rev 1 9/38 Module specifications Table 3. Symbol LA_TCSo LSM303DLM Sensor characteristics (continued) Parameter Linear acceleration sensitivity change vs. temperature Linear acceleration typical Zero-g level offset accuracy(3),(4) Test conditions FS bit set to 00 Min. Typ.(1) ±0.01 Max. Unit %/°C mg mg/°C %FS/ gauss 10000 5 Sensitivity starts to degrade. Use S/R pulse to restore sensitivity -40 20 +85 gauss mgauss gauss °C LA_TyOff FS bit set to 00 ±60 LA_TCOff M_CAS M_EF M_R M_DF Top Linear acceleration Zero-g level Max. delta from 25 °C change vs. temperature Magnetic cross-axis sensitivity Maximum exposed field Magnetic resolution Disturbing field Operating temperature range Cross field = 0.5 gauss H applied = ±3 gauss No permitting effect on zero reading ±0.5 ±1 1. Typical specifications are not guaranteed. 2. Verified by wafer level test and measurement of initial offset and sensitivity. 3. Typical Zero-g level offset value after MSL3 preconditioning. 4. Offset can be eliminated by enabling the built-in high-pass filter. 2.2 Electrical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted. Table 4. Symbol Vdd Vdd_IO Idd IddPdn Top Electrical characteristics Parameter Supply voltage Module power supply for I/O Current consumption in normal mode(2) Current consumption in powerdown mode Operating temperature range -40 Test conditions Min. 2.16 1.71 1.8 360 2 +85 Typ.(1) Max. 3.6 Vdd+0.1 Unit V V µA µA °C 1. Typical specifications are not guaranteed. 2. Magnetic sensor setting ODR = 7.5 Hz. Accelerometer sensor ODR = 50 Hz. 10/38 Doc ID 018725 Rev 1 LSM303DLM Module specifications 2.3 2.3.1 Communication interface characteristics Sensor I2C - inter IC control interface Subject to general operating conditions for Vdd and top. Table 5. Symbol f(SCL) tw(SCLL) tw(SCLH) tsu(SDA) th(SDA) I2C slave timing values I2C standard mode (1) Parameter Min. SCL clock frequency SCL clock low time SCL clock high time SDA setup time SDA data hold time SDA and SCL rise time SDA and SCL fall time START condition hold time Repeated START condition setup time STOP condition setup time Bus free time between STOP and START condition 4 4.7 4 4.7 0 4.7 4.0 250 0.01 3.45 1000 300 Max. 100 Min. 0 1.3 µs 0.6 100 0.01 20 + 0.1Cb(2) 20 + 0.1Cb(2) 0.6 0.6 µs 0.6 1.3 0.9 300 ns 300 ns µs Max. 400 KHz I2C fast mode (1) Unit tr(SDA) tr(SCL) tf(SDA) tf(SCL) th(ST) tsu(SR) tsu(SP) tw(SP:SR) 1. Data based on standard I2C protocol requirement, not tested in production. 2. Cb = total capacitance of one bus line, in pF. Figure 3. I2C slave timing diagram (b) b. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports. Doc ID 018725 Rev 1 11/38 Absolute maximum ratings LSM303DLM 3 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 6. Symbol Vdd Vdd_IO Vin APOW Supply voltage I/O pins supply voltage Input voltage on any control pin (SCL, SDA) Acceleration (any axis, powered, Vdd = 2.5 V) 10,000 for 0.1 ms 3,000 for 0.5 ms AUNP TOP TSTG Acceleration (any axis, unpowered) 10,000 for 0.1 ms Operating temperature range Storage temperature range -40 to +85 -40 to +125 Absolute maximum ratings Ratings Maximum value -0.3 to 4.8 -0.3 to 4.8 -0.3 to Vdd_IO +0.3 3,000 for 0.5 ms Unit V V V g g g g °C °C This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part. This is an ESD sensitive device, improper handling can cause permanent damage to the part. 12/38 Doc ID 018725 Rev 1 LSM303DLM Terminology 4 4.1 Terminology Linear acceleration sensitivity Linear acceleration sensitivity describes the gain of the accelerometer sensor and can be determined by applying 1 g acceleration to it. As the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing to the sky) and noting the output value again. By doing so, a ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors. 4.2 Zero-g level Zero-g level Offset (LA_TyOff) describes the deviation of an actual output signal from the ideal output signal if no linear acceleration is present. A sensor in steady-state on a horizontal surface measures 0 g on both the X and Y axes, whereas the Z axis measures 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called Zero-g offset. Offset is, to some extent, a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Linear acceleration Zero-g level change vs. temperature” (LA_TCOff) in Table 3. The Zero-g level tolerance (TyOff) describes the standard deviation of the range of Zero-g levels of a group of sensors. 4.3 Sleep-to-wakeup The “sleep-to-wakeup” function, in conjunction with low-power mode, allows further reduction of system power consumption and the development of new smart applications. The LSM303DLM may be set to a low-power operating mode, characterized by lower data rate refreshing. In this way, the device, even if sleeping, continues sensing acceleration and generating interrupt requests. When the sleep-to-wakeup function is activated, the LSM303DLM is able to automatically wake up as soon as the interrupt event has been detected, increasing the output data rate and bandwidth. With this feature the system may be efficiently switched from low-power mode to full-performance depending on user-selectable positioning and acceleration events, therefore ensuring power-saving and flexibility. Doc ID 018725 Rev 1 13/38 Functionality LSM303DLM 5 Functionality The LSM303DLM is a system-in-package featuring a 3D digital linear acceleration and 3D digital magnetic field detection sensor. The system includes specific sensing elements and an IC interface capable of measuring both the linear acceleration and the magnetic field applied on it and to provide a signal to the external world through an I2C serial interface with separated digital output. The sensing system is manufactured using specialized micromachining processes, while the IC interfaces are realized using a CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the sensing element characteristics. The LSM303DLM features two data-ready signals (RDY) which indicate when a new set of measured acceleration data and magnetic data are available, therefore simplifying data synchronization in the digital system that uses the device. The LSM303DLM may also be configured to generate an inertial wakeup and free-fall interrupt signal according to a programmed acceleration event along the enabled axes. Both free-fall and wakeup can be used simultaneously on two different accelerometer interrupts. 5.1 Factory calibration The IC interface is factory calibrated for linear acceleration sensitivity (LA_So), and linear acceleration Zero-g level (LA_TyOff). The trimming values are stored inside the device in non-volatile memory. When the device is turned on, the trimming parameters are downloaded into the registers to be used during normal operation. This allows the use of the device without further calibration. 14/38 Doc ID 018725 Rev 1 LSM303DLM Application hints 6 Application hints Figure 4. LSM303DLM electrical connection - recommended for I2C fast mode Vdd_IO Electrical connection Z Vdd_IO Rpu Rpu=10kOhm Vdd 1 Y SDA_A INT2 INT1 SCL_A DIRECTIONS OF DETECTABLE MAGNETIC FIELDS C4 = 100uF RES RES Vdd_IO X C3 = 10uF Vdd_IO Z 28 1 Y 22 Rpu Rpu=10kOhm RES GND GND X 1 21 NC SCL_M SDA_M SA0 DIRECTIONS OF DETECTABLE ACCELERATIONS NC VDD RES LSM303DLM (TOP VIEW) DRDY_M RES SET1 C1=4.7uF 7 8 SET2 RES RES RES RES RES 15 14 RES C1 C2=0.22uF GND AM09240V1 6.1 External capacitors The C1 and C2 external capacitors should have a low SR value ceramic type construction. Reservoir capacitor C1 is nominally 4.7 µF in capacitance, with the set/reset capacitor C2 nominally 0.22 µF in capacitance. The device core is supplied through the Vdd line. Power supply decoupling capacitors (C4=100 nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin of the device (common design practice). All the voltage and ground supplies must be present at the same time to obtain proper behavior of the IC (refer to Figure 4). The functionality of the device and the measured acceleration/magnetic field data is selectable and accessible through the I2C interface. The functions, the threshold, and the timing of the two interrupt pins (INT 1 and INT 2) can be completely programmed by the user through the I2C interface. Doc ID 018725 Rev 1 15/38 Application hints LSM303DLM 6.2 Soldering information The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Leave “pin 1 indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com. 6.3 High current wiring effects High current in the wiring and printed circuit traces can be the cause of errors in magnetic field measurements for compassing. Conductor-generated magnetic fields add to the Earth’s magnetic field, creating errors in compass heading computation. Keep currents that are higher than 10 mA a few millimeters further away from the sensor IC. 16/38 Doc ID 018725 Rev 1 LSM303DLM Digital interfaces 7 Digital interfaces The registers embedded inside the LSM303DLM are accessible through two separate I2C serial interfaces; one for the accelerometer core and the other for the magnetometer core. The two interfaces can be connected together on the PCB. Table 7. Serial interface pin description Pin description I2 C serial clock (SCL) for accelerometer Pin name SCL_A SDA_A SCL_M SDA_M I2C serial data (SDA) for accelerometer I2C serial clock (SCL) for magnetometer I2C serial data (SDA) for magnetometer 7.1 I2C serial interface The LSM303DLM I2C is a bus slave. The I2C is employed to write the data into the registers whose content can also be read back. The relevant I2C terminology is given in the table below. Table 8. Term Transmitter Receiver Master Slave Serial interface pin description Description The device which sends data to the bus The device which receives data from the bus The device which initiates a transfer, generates clock signals, and terminates a transfer The device addressed by the master There are two signals associated with the I2C bus; the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Doc ID 018725 Rev 1 17/38 Digital interfaces LSM303DLM 7.1.1 I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the 8th bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the LSM303DLM behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted; the 7 LSBs represent the actual register address while the MSB enables address autoincrement. If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow multiple data read/write. Table 9. Master Slave Transfer when master is writing one byte to slave ST SAD + W SAK SUB SAK DATA SAK SP Table 10. Master Slave Transfer when master is writing multiple bytes to slave ST SAD + W SAK SUB SAK DATA SAK DATA SAK SP Table 11. Master Slave ST Transfer when master is receiving (reading) one byte of data from slave SAD + W SAK SUB SAK SR SAD + R SAK DATA NMAK SP Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to receive because it is performing a real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. 18/38 Doc ID 018725 Rev 1 LSM303DLM Digital interfaces 7.1.2 Linear acceleration digital interface For linear acceleration, the default (factory) 7-bit slave address is 001100xb. The SDO/SA0 pad can be used to modify the least significant bit of the device address. If the SA0 pad is connected to voltage supply, the LSB is ‘1’ (address 0011001b) otherwise, if the SA0 pad is connected to ground, the LSB value is ‘0’ (address 0011000b). This solution permits connecting and addressing two different accelerometers to the same I2C lines. The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write), the master transmits to the slave with the direction unchanged. Table 12 explains how the SAD+read/write bit pattern is composed, listing all the possible configurations. Table 12. SAD and read/write patterns SAD[6:1] 001100 001100 001100 001100 SAD[0] = SA0 0 0 1 1 R/W 1 0 1 0 SAD+R/W 00110001 (31h) 00110000 (30h) 00110011 (33h) 00110010 (32h) Command Read Write Read Write In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of the first register to be read. In the presented communication format, MAK is master acknowledge and NMAK is no master acknowledge. Table 13. Master Slave Transfer when master is receiving (reading) multiple bytes of data from slave ST SAD+W SAK SUB SAK SR SAD+R SAK DATA MAK DATA MAK DATA NMAK SP 7.1.3 Magnetic field digital interface For magnetic sensors the default (factory) 7-bit slave address is 0011110xb. The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write), the master transmits to the slave with the direction unchanged. Table 14 explains how the SAD is composed. Table 14. SAD and read/write patterns SAD[6:0] 0011110 0011110 R/W 1 0 SAD+R/W 00111101 (3Dh) 00111100 (3Ch) Command Read Write Doc ID 018725 Rev 1 19/38 Digital interfaces LSM303DLM Magnetic signal interface reading/writing The interface uses an address pointer to indicate which register location is to be read from or written to. These pointer locations are sent from the master to this slave device and succeed the 7-bit address plus 1 bit read/write identifier. To minimize communication between the master and magnetic digital interface of LSM303DLM, the address pointer updates automatically without master intervention. This automatic address pointer update has two additional features. First, when address 12 or higher is accessed, the pointer updates to address 00, and secondly, when address 08 is reached, the pointer rolls back to address 03. Logically, the address pointer operation functions as shown below. If (address pointer = 08) then the address pointer = 03 Or else, if (address pointer >= 12) then the address pointer = 0 Or else, (address pointer) = (address pointer) + 1 The address pointer value itself cannot be read via the I2C bus. Any attempt to read an invalid address location returns 0, and any write to an invalid address location, or an undefined bit within a valid address location, is ignored by this device. 20/38 Doc ID 018725 Rev 1 LSM303DLM Register mapping 8 Register mapping Table 15 provides a listing of the 8-bit registers embedded in the device and the related addresses: Table 15. Register address map Name Slave address Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 12 Table 14 Table 14 Table 14 Register address Type Hex -rw rw rw rw rw r rw r r r r r r r -rw r rw rw rw r rw rw -rw rw rw 00 - 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E - 2F 30 31 32 33 34 35 36 37 38 - 3F 00 01 02 Binary -010 0000 010 0001 010 0010 010 0011 010 0100 010 0101 010 0110 010 0111 010 1000 010 1001 010 1010 010 1011 010 1100 010 1101 -011 0000 011 0001 011 0010 011 0011 011 0100 011 0101 011 0110 011 0111 -00000000 00000001 00000010 -00000111 00000000 00000000 00000000 00000000 -00000000 00000000 output output output output output output -00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 -00010000 00100000 00000011 Reserved Reserved Dummy register Reserved Default Comment Reserved (do not modify) CTRL_REG1_A CTRL_REG2_A CTRL_REG3_A CTRL_REG4_A CTRL_REG5_A HP_FILTER_RESET_A REFERENCE_A STATUS_REG_A OUT_X_L_A OUT_X_H_A OUT_Y_L_A OUT_Y_H_A OUT_Z_L_A OUT_Z_H_A Reserved (do not modify) INT1_CFG_A INT1_SOURCE_A INT1_THS_A INT1_DURATION_A INT2_CFG_A INT2_SOURCE_A INT2_THS_A INT2_DURATION_A Reserved (do not modify) CRA_REG_M CRB_REG_M MR_REG_M Doc ID 018725 Rev 1 21/38 Register mapping Table 15. Register address map (continued) Name OUT_X_H_M OUT_X_L_M OUT_Y_H_M OUT_Y_L_M OUT_Z_H_M OUT_Z_L_M SR_REG_Mg IRA_REG_M IRB_REG_M IRC_REG_M Reserved (do not modify) WHO_AM_I_M Reserved (do not modify) Slave address Table 14 Table 14 Table 14 Table 14 Table 14 Table 14 Table 14 Table 14 Table 14 Table 14 Table 14 Table 14 Table 14 Register address Type Hex r r r r r r r r r r -r -03 04 07 08 05 06 09 0A 0B 0C 0D - 0E 0F 10 - 3A Binary 00000011 00000100 00000101 00000110 00000111 00001000 00001001 00001010 00001011 00001100 -00001111 -output output output output output output 00000000 01001000 00110100 00110011 -00111100 -Default LSM303DLM Comment Reserved Who am I ID Reserved Registers marked as “reserved” must not be changed. Writing to these registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibrated values. Their content is automatically restored when the device is powered up. 22/38 Doc ID 018725 Rev 1 LSM303DLM Register description 9 Register description The device contains a set of registers which are used to control its behavior and to retrieve acceleration data. The register address, made up of 7 bits, is used to identify them and to write the data through the serial interface. 9.1 9.1.1 Linear acceleration register description CTRL_REG1_A (20h) Table 16. PM2 CTRL_REG1_A register PM1 PM0 DR1 DR0 Zen Yen Xen Table 17. PM2 - PM0 DR1, DR0 Zen Yen Xen CTRL_REG1_A description Power mode selection. Default value: 000 (000: power-down; others: refer to Table 18) Data rate selection. Default value: 00 (00:50 Hz; others: refer to Table 19) Z axis enable. Default value: 1 (0: Z axis disabled; 1: Z axis enabled) Y axis enable. Default value: 1 (0: Y axis disabled; 1: Y axis enabled) X axis enable. Default value: 1 (0: X axis disabled; 1: X axis enabled) PM bits allow selection between power-down and two operating active modes. The device is in power-down mode when the PD bits are set to “000” (default value after boot). Table 18 shows all the possible power mode configurations and respective output data rates. Output data in the low-power modes are computed with a low-pass filter cut-off frequency defined by DR1 and DR0 bits. DR bits, in normal-mode operation, select the data rate at which acceleration samples are produced. In low-power mode they define the output data resolution. Table 19 shows all the possible configurations for the DR1 and DR0 bits. Table 18. PM2 0 0 0 Power mode and low-power output data rate configurations PM1 0 0 1 PM0 0 1 0 Power mode selection Power-down Normal mode Low-power Output data rate [Hz] ODRLP -ODR 0.5 Doc ID 018725 Rev 1 23/38 Register description Table 18. PM2 0 1 1 1 LSM303DLM Power mode and low-power output data rate configurations (continued) PM1 1 0 0 1 PM0 1 0 1 0 Power mode selection Low-power Low-power Low-power Low-power Output data rate [Hz] ODRLP 1 2 5 10 Table 19. Normal-mode output data rate configurations and low-pass cut-off frequencies DR0 0 1 0 1 Output data rate [Hz] ODR 50 100 400 1000 Low-pass filter cut-off frequency [Hz] 37 74 292 780 DR1 0 0 1 1 9.1.2 CTRL_REG2_A (21h) Table 20. BOOT CTRL_REG2_A register HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0 Table 21. BOOT CTRL_REG2_A description Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) High-pass filter mode selection. Default value: 00 (00: normal mode; others: refer to Table 22) Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register) High-pass filter enabled for Interrupt 2 source. Default value: 0 (0: filter bypassed; 1: filter enabled) High-pass filter enabled for Interrupt 1 source. Default value: 0 (0: filter bypassed; 1: filter enabled) High-pass filter cut-off frequency configuration. Default value: 00 (00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64) HPM1, HPM0 FDS HPen2 HPen1 HPCF1, HPCF0 The BOOT bit is used to refresh the content of internal registers stored in the Flash memory block. At device power-up, the content of the Flash memory block is transferred to the internal registers related to trimming functions to permit good device behavior. If, for any 24/38 Doc ID 018725 Rev 1 LSM303DLM Register description reason, the content of the trimming registers has changed, it is sufficient to use this bit to restore the correct values. When the BOOT bit is set to ‘1’ the content of the internal Flash is copied to the corresponding internal registers and is used to calibrate the device. These values are factory-trimmed and are different for every accelerometer. They permit good device behavior and normally do not have to be modified. At the end of the boot process, the BOOT bit is again set to ‘0’. Table 22. HPM1 0 0 1 High-pass filter mode configuration HPM0 0 1 0 High-pass filter mode Normal mode (reset reading HP_RESET_FILTER) Reference signal for filtering Normal mode (reset reading HP_RESET_FILTER) HPCF[1:0]. These bits are used to configure the high-pass filter cut-off frequency (ft), which is given by: fs 1f t = ln ⎛ 1 – -----------⎞ ⋅ -----⎝ ⎠ 2π HPc The equation can be simplified to the following approximated equation: fs f t = --------------------6 ⋅ HPc Table 23. HPcoeff2,1 00 01 10 11 High-pass filter cut-off frequency configuration ft [Hz] Data rate = 50 Hz 1 0.5 0.25 0.125 ft [Hz] Data rate = 100 Hz 2 1 0.5 0.25 ft [Hz] ft [Hz] Data rate = 400 Hz Data rate = 1000 Hz 8 4 2 1 20 10 5 2.5 9.1.3 CTRL_REG3_A (22h) Table 24. IHL CTRL_REG3_A register PP_OD LIR2 I2_CFG1 I2_CFG0 LIR1 I1_CFG1 I1_CFG0 Table 25. IHL PP_OD CTRL_REG3_A description Interrupt active high, low. Default value: 0 (0: active high; 1: active low) Push-pull/open drain selection on interrupt pad. Default value 0. (0: push-pull; 1: open drain) Doc ID 018725 Rev 1 25/38 Register description Table 25. LIR2 I2_CFG1, I2_CFG0 LIR1 I1_CFG1, I1_CFG0 LSM303DLM CTRL_REG3_A description (continued) Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by reading INT2_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) Data signal on INT 2 pad control bits. Default value: 00. (see Table 26) Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by reading INT1_SRC register. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) Data signal on INT 1 pad control bits. Default value: 00. (see Table 26) Table 26. Data signal on INT 1 and INT 2 pad I1(2)_CFG0 0 1 0 1 INT 1(2) Pad Interrupt 1 (2) source Interrupt 1 source OR Interrupt 2 source Data ready Boot running I1(2)_CFG1 0 0 1 1 9.1.4 CTRL_REG4_A (23h) Table 27. BDU CTRL_REG4_A register BLE FS1 FS0 0 0 0(1) --- 1. This bit must be set to ‘0’ for correct working of the device. Table 28. BDU BLE FS1, FS0 CTRL_REG4_A description Block data update. Default value: 0 (0: continuos update; 1: output registers not updated between MSB and LSB reading) Big/little endian data selection. Default value 0. (0: data LSB @ lower address; 1: data MSB @ lower address) Full-scale selection. Default value: 00. (00: ±2 g; 01: ±4 g; 11: ±8 g) The BDU bit is used to inhibit output register updates between the reading of the upper and lower register parts. In default mode (BDU = ‘0’), the lower and upper register parts are updated continuously. If it is not certain whether to read faster than the output data rate, it is recommended to set BDU bit to ‘1’. In this way, after the reading of the lower (upper) register part, the content of that output register is not updated until the upper (lower) part is read also. This feature avoids reading LSB and MSB related to different samples. 26/38 Doc ID 018725 Rev 1 LSM303DLM Register description 9.1.5 CTRL_REG5_A (24h) Table 29. 0 CTRL_REG5_A register 0 0 0 0 0 TurnOn1 TurnOn0 Table 30. TurnOn1, TurnOn0 CTRL_REG5_A description Turn-on mode selection for sleep-to-wakeup function. Default value: 00. TurnOn bits are used for turning on the sleep-to-wakeup function. Table 31. TurnOn1 0 1 Sleep-to-wakeup configuration TurnOn0 0 1 Sleep-to-wakeup status Sleep-to-wakeup function is disabled Turned on: the device is in low-power mode (ODR is defined in CTRL_REG1_A) By setting the TurnOn [1:0] bits to 11, the “sleep-to-wakeup” function is enabled. When an interrupt event occurs, the device goes into normal mode, increasing the ODR to the value defined in CTRL_REG1_A. Although the device is in normal mode, CTRL_REG1_A content is not automatically changed to “normal mode” configuration. 9.1.6 HP_FILTER_RESET_A (25h) Dummy register. Reading at this address instantaneously zeroes the content of the internal high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to 0 g. This makes it possible to surmount the settling time of the high-pass filter. 9.1.7 REFERENCE_A (26h) Table 32. Ref7 REFERENCE_A register Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0 Table 33. Ref7 - Ref0 REFERENCE_A description Reference value for high-pass filter. Default value: 00h. This register sets the acceleration value taken as a reference for the high-pass filter output. When the filter is turned on (at least one FDS, HPen2, or HPen1 bit is equal to ‘1’) and HPM bits are set to “01”, filter out is generated taking this value as a reference. Doc ID 018725 Rev 1 27/38 Register description LSM303DLM 9.1.8 STATUS_REG_A(27h) Table 34. ZYXOR STATUS_REG_A register ZOR YOR XOR ZYXDA ZDA YDA XDA Table 35. ZYXOR STATUS_REG_A description X, Y, and Z axis data overrun. Default value: 0 (0: no overrun has occurred, 1: new data has overwritten the previous one) Z axis data overrun. Default value: 0 (0: no overrun has occurred, 1: new data for the Z-axis has overwritten the previous one) Y axis data overrun. Default value: 0 (0: no overrun has occurred, 1: new data for the Y-axis has overwritten the previous one) X axis data overrun. Default value: 0 (0: no overrun has occurred, 1: new data for the X-axis has overwritten the previous one) X, Y, and Z axis new data available. Default value: 0 (0: a new set of data is not yet available, 1: a new set of data is available) Z axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available, 1: new data for the Z-axis is available) Y axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available, 1: new data for the Y-axis is available) X axis new data available. Default value: 0 (0: new data for the X-axis is not yet available, 1: new data for the X-axis is available) ZOR YOR XOR ZYXDA ZDA YDA XDA 9.1.9 OUT_X_L_A (28h), OUT_X_H_A (29h) X-axis acceleration data. The value is expressed as 2’s complement. 9.1.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) Y-axis acceleration data. The value is expressed as 2’s complement. 9.1.11 OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh) Z-axis acceleration data. The value is expressed as 2’s complement. 9.1.12 INT1_CFG_A (30h) Table 36. AOI INT1_CFG_A register 6D ZHIE ZLIE YHIE YLIE XHIE XLIE 28/38 Doc ID 018725 Rev 1 LSM303DLM Register description Table 37. AOI 6D INT1_CFG_A description AND/OR combination of interrupt events. Default value: 0 (see Table 38). 6-direction detection function enable. Default value: 0 (see Table 38). Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value lower than preset threshold) Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value lower than preset threshold) Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value lower than preset threshold) ZHIE ZLIE YHIE YLIE XHIE XLIE Configuration register for Interrupt 1 source. Table 38. AOI 0 0 1 1 Interrupt 1 source configurations 6D 0 1 0 1 Interrupt mode OR combination of interrupt events 6-direction movement recognition AND combination of interrupt events 6-direction position recognition 9.1.13 INT1_SRC_A (31h) Table 39. 0 INT1_SRC register IA ZH ZL YH YL XH XL Doc ID 018725 Rev 1 29/38 Register description LSM303DLM Table 40. IA ZH ZL YH YL XH XL INT1_SRC_A description Interrupt active. Default value: 0 (0: no interrupt has been generated, 1: one or more interrupts have been generated) Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) Z low. Default value: 0 (0: no interrupt, 1: Z low event has occurred) Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) X low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 1 source register. Read-only register. Reading at this address clears the INT1_SRC_A IA bit (and the interrupt signal on the INT 1 pin) and allows the refreshing of data in the INT1_SRC_A register if the latched option was chosen. 9.1.14 INT1_THS_A (32h) Table 41. 0 INT1_THS register THS6 THS5 THS4 THS3 THS2 THS1 THS0 Table 42. INT1_THS description Interrupt 1 threshold. Default value: 000 0000 THS6 - THS0 9.1.15 INT1_DURATION_A (33h) Table 43. 0 INT1_DURATION_A register D6 D5 D4 D3 D2 D1 D0 Table 44. D6 - D0 INT2_DURATION_A description Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration steps and maximum values depend on the ODR chosen. 30/38 Doc ID 018725 Rev 1 LSM303DLM Register description 9.1.16 INT2_CFG_A (34h) Table 45. AOI INT2_CFG_A register 6D ZHIE ZLIE YHIE YLIE XHIE XLIE Table 46. AOI 6D INT2_CFG_A description AND/OR combination of interrupt events. Default value: 0 (see Table 47). 6-direction detection function enable. Default value: 0 (see Table 47). Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value lower than preset threshold) Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value lower than preset threshold) Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request, 1: enable interrupt request on measured accel. value lower than preset threshold) ZHIE ZLIE YHIE YLIE XHIE XLIE Configuration register for Interrupt 2 source. Table 47. AOI 0 0 1 1 Interrupt mode configuration 6D 0 1 0 1 Interrupt mode OR combination of interrupt events 6-direction movement recognition AND combination of interrupt events 6-direction position recognition Doc ID 018725 Rev 1 31/38 Register description LSM303DLM 9.1.17 INT2_SRC_A (35h) Table 48. 0 INT2_SRC_A register IA ZH ZL YH YL XH XL Table 49. IA ZH ZL YH YL XH XL INT2_SRC_A description Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) X Low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 2 source register. Read-only register. Reading at this address clears the INT2_SRC_A IA bit (and the interrupt signal on the INT 2 pin) and allows the refreshing of data in the INT2_SRC_A register if the latched option was chosen. 9.1.18 INT2_THS_A (36h) Table 50. 0 INT2_THS register THS6 THS5 THS4 THS3 THS2 THS1 THS0 Table 51. INT2_THS description Interrupt 1 threshold. Default value: 000 0000 THS6 - THS0 9.1.19 INT2_DURATION_A (37h) Table 52. 0 INT2_DURATION_A register D6 D5 D4 D3 D2 D1 D0 32/38 Doc ID 018725 Rev 1 LSM303DLM Register description Table 53. D6 - D0 INT2_DURATION_A description Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration time steps and maximum values depend on the ODR chosen. 9.2 9.2.1 Magnetic field sensing register description CRA_REG_M (00h) Table 54. 0(1) CRA_REG_M register 0(1) 0(1) DO2 DO1 DO0 0(1) 0(1) 1. This bit must be set to ‘0’ for correct working of the device. Table 55. DO2 to DO0 CRA_REG_M description Data output rate bits. These bits set the rate at which data is written to all three data output registers (refer to Table 56). Default value: 100 Table 56. DO2 0 0 0 0 1 1 1 1 Data rate configurations DO1 0 0 1 1 0 0 1 1 DO0 0 1 0 1 0 1 0 1 Minimum data output rate (Hz) 0.75 1.5 3.0 7.5 15 30 75 220 9.2.2 CRB_REG_M (01h) Table 57. GN2 CRA_REG register GN1 GN0 0(1) 0(1) 0(1) 0(1) 0(1) 1. This bit must be set to ‘0’ for correct working of the device. CRA_REG description GN1-0 Gain configuration bits. The gain configuration is common for all channels (refer to Table 58) Doc ID 018725 Rev 1 33/38 Register description LSM303DLM Table 58. GN2 Gain setting GN0 Sensor input field range [Gauss] ±1.3 ±1.9 ±2.5 ±4.0 ±4.7 ±5.6 ±8.1 Gain X/Y and Z [LSB/Gauss] 1100 855 670 450 400 330 230 Gain Z [LSB/Gauss] 980 760 600 400 355 295 205 0xF800–0x07FF (-2048–2047) Output range GN1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 9.2.3 MR_REG_M (02h) Table 59. 0(1) MR_REG 0(1) 0(1) 0(1) 0(1) 0(1) MD1 MD0 1. This bit must be set to ‘0’ for correct working of the device Table 60. MD1-0 MR_REG description Mode select bits. These bits select the operation mode of this device (refer to Table 61) Table 61. MD1 0 0 1 1 Magnetic sensor operating mode MD0 0 1 0 1 Continuous-conversion mode Single-conversion mode Sleep-mode. Device is placed in sleep-mode Sleep-mode. Device is placed in sleep-mode Mode 9.2.4 OUT_X_H_M (03), OUT_X_LH_M (04h) X-axis magnetic field data. The value is expressed as 2’s complement. 9.2.5 OUT_Z_H_M (05), OUT_Z_L_M (06h) Z-axis magnetic field data. The value is expressed as 2’s complement. 9.2.6 OUT_Y_H_M (07), OUT_Y_L_M (08h) Y-axis magnetic field data. The value is expressed as 2’s complement. 34/38 Doc ID 018725 Rev 1 LSM303DLM Register description 9.2.7 SR_REG_M (09h) Table 62. -- SR register -----LOCK DRDY Table 63. LOCK DRDY SR register description Data output register lock. Once a new set of measurements is available, this bit is set when the first magnetic field data register has been read. Data ready bit. This bit is when a new set of measurements is available. 9.2.8 IR_REG_M (0Ah/0Bh/0Ch) Table 64. 0 IRA_REG_M 1 0 0 1 0 0 0 Table 65. 0 IRB_REG_M 0 1 1 0 1 0 0 Table 66. 0 IRC_REG_M 0 1 1 0 0 1 1 9.2.9 WHO_AM_I _M (0F) Table 67. 0 WHO_AM_I_M 0 1 1 1 1 0 0 Doc ID 018725 Rev 1 35/38 Package information LSM303DLM 10 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark. Figure 5. LGA-28: mechanical data and package dimensions Dimensions Ref. Min. A1 A2 A3 D1 E1 L1 L2 N1 M T1 T2 d k h 0.040 0.260 0.360 4.850 4.850 0.785 0.200 5.000 5.000 1.650 3.300 0.550 0.100 0.300 0.400 0.200 0.050 0.100 0.160 0.340 0.440 5.150 5.150 mm Typ. Max. 1 Outline and mechanical data LGA-28 (5x5x1) Land Grid Array Packages 8192208_B 36/38 Doc ID 018725 Rev 1 LSM303DLM Revision history 11 Revision history Table 68. Date 11-Apr-2011 Document revision history Revision 1 Initial release. Changes Doc ID 018725 Rev 1 37/38 LSM303DLM Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 38/38 Doc ID 018725 Rev 1
LSM303DLMTR 价格&库存

很抱歉,暂时无法提供与“LSM303DLMTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货