LSM320DL
Linear sensor module
3D accelerometer sensor and 2D gyroscope sensor
Preliminary data
Features
■
Analog supply voltage 2.4 V to 3.6 V
■
Digital supply voltage IOs, 1.8 V
■
Low power mode
■
Power-down mode
■
3 independent acceleration channels and 2
angular rate channels (pitch and yaw)
■
±2g/±4g/±8/±16g dynamically selectable fullscale
■
±250/±500/±2000 dps dynamically selectable
full-scale
■
Embedded temperature sensor
■
SPI/I2C serial interface (16-bit data output)
■
Programmable interrupt generator for free-fall
and motion detection
■
ECOPACK® RoHS and “Green” compliant
LGA 28L 7.5 x 4.4 x 1.1 mm
Applications
■
GPS navigation systems
■
Impact recognition and logging
■
Gaming and virtual reality input devices
■
Motion activated functions
■
Intelligent power saving for handheld devices
■
Vibration monitoring and compensation
■
Free-fall detection
■
6D orientation detection
The various sensing elements are manufactured
using specialized micromachining processes,
while the IC interfaces are realized using a CMOS
technology that allows to design a dedicated
circuit which is trimmed to better match the
sensing element characteristics.
LSM320DL has a dynamic user selectable fullscale acceleration range of ±2g/±4g/±8/±16g and
angular rate of ±250/±500/±2000 deg/sec.
The accelerometer and gyroscope sensors can
be either activated or put in low power/powerdown mode separately for application optimized
power saving.
The LSM320DL is available in a plastic land grid
array (LGA) package.
Several years ago ST successfully pioneered the
use of this package for accelerometers. Today, ST
has the widest manufacturing capability and
strongest expertise in the world for production of
sensors in a plastic LGA package.
Table 1.
Device summary
Order codes
Description
The LSM320DL is a system-in-package featuring
a 3D digital accelerometer and a 2D digital
gyroscope.
Temperature
Package
range [°C]
LSM320DL
Packing
Tray
-40 to +85
LSM320DLTR
LGA 28L
Tape and
reel
The ST modules family uses a robust and mature
manufacturing process already used for the
production of micromachined accelerometers.
May 2011
Doc ID 018845 Rev 1
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
1/53
www.st.com
53
Contents
LSM320DL
Contents
1
2
3
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2
I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2
Zero level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1
4
2.4.1
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1
External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1
5.2
6
2/53
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Doc ID 018845 Rev 1
LSM320DL
7
Contents
Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1
CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2
CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3
CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4
CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5
CTRL_REG5_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.6
CTRL_REG6_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.7
REFERENCE/DATACAPTURE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.8
STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.9
OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.10
OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.11
OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.12
FIFO_CTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.13
FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.14
INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.15
INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.16
INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.17
INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.18
CLICK_CFG _A (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.19
CLICK_SRC_A (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.20
CLICK_THS_A (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.21
TIME_LIMIT_A (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.22
TIME_LATENCY_A (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.23
TIME WINDOW_A (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.24
CTRL_REG1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.25
CTRL_REG2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.26
CTRL_REG3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.27
CTRL_REG4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.28
CTRL_REG5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.29
REFERENCE/DATACAPTURE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.30
OUT_TEMP_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.31
STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.32
OUT_X_L_G (28h), OUT_X_H_G (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 45
Doc ID 018845 Rev 1
3/53
Contents
LSM320DL
7.33
OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.34
FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.35
FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.36
INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.37
INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.38
INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.39
INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.40
INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.41
INT1_THS_ZL_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.42
INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4/53
Doc ID 018845 Rev 1
LSM320DL
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Part list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 23
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 23
Linear acceleration SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Angular rate SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CTRL_REG6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STATUS_REG_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
FIFO_CTRL_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FIFO_CTRL_REG_A register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
FIFO_SRC_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INT1_CFG_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INT1_CFG_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INT1_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT1_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT1_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
INT1_DURATION_Aregister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Doc ID 018845 Rev 1
5/53
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
6/53
LSM320DL
INT1_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CLICK_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CLICK_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CLICK_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CLICK_THS_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TIME_LIMIT_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TIME_LIMIT_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TIME_LATENCY_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
TIME_LATENCY_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
TIME_WINDOW_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
TIME_WINDOW_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CTRL_REG1_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Power mode selection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CTRL_REG2_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
High pass filter cut-off frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG3_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG4_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
CTRL_REG4_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
CTRL_REG5_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
CTRL_REG5_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Out_Sel configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT_SEL configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
OUT_TEMP_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
OUT_TEMP_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STATUS_REG_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FIFO_SRC_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FIFO_SRC_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
INT1_SRC_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_THS_XH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_THS_ZH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Doc ID 018845 Rev 1
LSM320DL
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
List of tables
INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
LGA 28L 7.5 x 4.4 x 1.1 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Doc ID 018845 Rev 1
7/53
List of figures
LSM320DL
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
8/53
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
LSM320DL electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Multiple bytes SPI read protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
LGA 28L 7.5 x 4.4 x 1.1 package drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Doc ID 018845 Rev 1
LSM320DL
Block diagram and pin description
1
Block diagram and pin description
1.1
Block diagram
Figure 1.
Block diagram
Sensing Block
Sensing Interface
X+
Y+
CS_A/G
CHARGE
AMPLIFIER
Z+
SDA/SDI_A/G
I (a)
+
ZY-
Control
Logic
I2C/SPI
A/D
converter
MUX
SDO_A/G
INT1_A
INT2_A
X-
INT_G
CHARGE
AMPLIFIER
X+
DRDY_G
DEMODULATOR
Z+
+
I (Ω)
MUX
LOW-PASS
FILTER
SCL_A/G
-
ZX-
ANALOG
CONDITIONING
Feedback+
Feedback-
AUTOMATIC
GAIN
CONTROL
DriveVOLTAGE
GAIN
AMPLIFIER
Drive+
REFERENCE
TRIMMING
CIRCUITS
CLOCK
CONTROL LOGIC
&
INTERRUPT GEN.
SET/RESET
CIRCUITS
PHASE
GENERATOR
AM09273V1
Doc ID 018845 Rev 1
9/53
X
28
VCONT
GND
CS_G
11
LSM320DL
(BOTTOM FILTVDD
VIEW)
Res
Z
INT2_A
10
1
VddIO_A
+Ω
z
SDA/SDI_G
DIRECTION OF
DETECTABLE
ACCELERATIONS
SDO_G
Y
1
INT1_A
Z
DRDY_G
Pin connection
SDO_A
Figure 2.
SCL_A
Pin description
Res
1.2
LSM320DL
SDA/SDI_A
Block diagram and pin description
Res
Vdd_IO_G
SCL_G
14
25
Res
1
15
Res
CS_A
Res
Res
Res
INT_G
Vdd
FILTIN Y
Vdd
24
Res
X
DIRECTION OF
DETECTABLE
ANGULAR RATE
Res
+Ω
X
AM09274V1
Table 2.
Pin#
Name
Function
Accelerometer:
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
1
SDA/SDI_A
2
Res
3
SDO_A
Accelerometer:
SPI serial data output (SDO)
I2C least significant bit of the device address (SA0)
4
SCL_A
Accelerometer:
I2C serial clock (SCL)
SPI serial port clock (SPC)
5
DRDY_G
6
INT1_A
Accelerometer interrupt signal
7
SDO_G
Gyroscope:
SPI serial data output (SDO)
I2C least significant bit of the device address (SA0)
8
INT2_A
Accelerometer interrupt signal
9
10/53
Pin description
SDA/SDI_G
Reserved connect to GND
Gyroscope data ready
Gyroscope:
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
Doc ID 018845 Rev 1
LSM320DL
Block diagram and pin description
Table 2.
Pin#
Pin description (continued)
Name
10
CS_G
11
Res
12
VddIO_G
Function
Gyroscope:
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
Reserved connect to GND
Gyroscope power supply for IO pins
13
SCL_G
Gyroscope:
I2C serial clock (SCL)
SPI serial port clock (SPC)
14
Res
Reserved connect to GND
15
Vdd
Power supply
16
Res
Reserved connect to GND
Accelerometer:
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
17
CS_A
18
Res
Reserved connect to GND
19
Res
Reserved connect to GND
20
Res
Reserved connect to GND
21
INT_G
Gyroscope interrupt signal
22
Vdd
Power supply
23
Res
Reserved connect to GND
24
Res
Reserved connect to GND
25
GND
0 V power supply
26
VCONT
27
Res
28
VddIO_A
PLL filter connection
Reserved connect to GND
Accelerometer power supply for IO pins
Doc ID 018845 Rev 1
11/53
Module specifications
LSM320DL
2
Module specifications
2.1
Mechanical characteristics
@ Vdd = 3V, T = 25 °C unless otherwise noted(a).
Table 3.
Symbol
LA_FS
G_FS
LA_So
G_So
Mechanical characteristics
Parameter
Linear acceleration
measurement range(2)
Angular rate
measurement range(2)
Linear acceleration
sensitivity
Angular rate sensitivity
Test conditions
Min.
Typ.(1)
Max.
Unit
FS bit set to 00
±2.0
FS bit set to 01
±4.0
FS bit set to 10
±8.0
FS bit set to 11
±16.0
FS bit set to 00
±250
FS bit set to 01
±500
FS bit set to 10
±2000
FS bit set to 00
1
FS bit set to 01
2
FS bit set to 10
4
FS bit set to 11
12
FS bit set to 00
8.75
FS bit set to 01
17.5
FS bit set to 10
70
±0.05
%/°C
g
dps
mg/digit
mdps/
digit
LA_So
Linear acceleration
sensitivity change vs.
temperature
FS bit set to 00
G_So
Angular rate sensitivity
change vs. temperature
From -40 to +85 °C
±2
%
LA_TyOff
Typical Zero-g level offset
accuracy(3)
FS bit set to 00
±60
mg
G_TyOff
Typical zero-rate level(4)
FS bit set to 00
10
LSb
LA_TCOff
Zero-g level change vs.
temperature
Max. delta from 25 °C
±0.5
mg/°C
G_TCOff
Zero-rate level change vs.
temperature
FS bit set to 00
from -40 to +85 °C
±0.03
dps/°C
An
Acceleration noise density
FS bit set to 00
Normal mode, ODR bit set to
1001
220
µg/
Hz
Rn
Rate noise density
FS bit set to 00
0.03
°/s/
Hz
Top
Operating temperature range
-40
+85
a. The product is factory calibrated at 3 V. The operational power supply range is from 2.4 V to 3.6 V.
12/53
Doc ID 018845 Rev 1
°C
LSM320DL
Module specifications
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical Zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high pass filter.
2.2
Electrical characteristics
@ Vdd = 3 V, T = 25 °C unless otherwise noted.
Table 4.
Symbol
Vdd
Electrical characteristics
Parameter
Test conditions
Min.
Typ.(1)
Max.
Unit
Supply voltage
2.4
3.6
V
Vdd_IO
Power supply for I/O
1.71
Vdd+0.1
V
LA_Idd
LA current consumption in
normal mode
ODR = 50Hz
11
ODR = 1Hz
2
LA current consumption in low
power mode
ODR = 50Hz
6
µA
LA_IddPdn
LA current consumption in
power-down mode
T = 25°C
0.5
µA
G_Idd
AR current consumption in
normal mode
6
mA
1.5
mA
5
µA
LA_IddLowP
G_IddSL
Supply current
in sleep mode(2)
G_IddPdn
AR current consumption in
power-down mode
VIH
Digital high level input voltage
VIL
Digital low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
Top
Operating temperature range
µA
T = 25 °C
0.8*Vdd_IO
V
0.2*Vdd_IO
0.9*Vdd_IO
-40
V
V
0.1*Vdd_IO
V
+85
°C
1. Typical specifications are not guaranteed.
2. Sleep mode introduces a faster turn-on time compared to power-down mode.
Doc ID 018845 Rev 1
13/53
Module specifications
2.3
LSM320DL
Temperature sensor characteristics
@ Vdd =3.0 V, T= 25 °C, unless otherwise noted.(b)
Table 5.
Symbol
Temperature sensor characteristics
Parameter
Test condition
TSDr
Temperature sensor
output change vs.
temperature
TODR
Temperature refresh
rate
Top
-
Operating
temperature range
-40
1. Typical specifications are not guaranteed.
b. The product is factory calibrated at 3.0 V.
14/53
Min.
Doc ID 018845 Rev 1
Typ.(1)
Max.
Unit
-1
°C/digit
1
Hz
+85
°C
LSM320DL
Module specifications
2.4
Communication interface characteristics
2.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 6.
SPI slave timing values
Value (1)
Symbol
Parameter
Unit
Min.
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
6
th(CS)
CS hold time
8
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
Max.
100
ns
10
MHz
ns
50
9
SDO output disable time
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
Figure 3.
CS
SPI slave timing diagram (c)
(3)
(3)
tc(SPC)
tsu(CS)
SPC
(3)
(3)
tsu(SI)
SDI
(3)
th(SI)
LSB IN
MSB IN
tv(SO)
SDO
th(CS)
(3)
tdis(SO)
th(SO)
MSB OUT
(3)
LSB OUT
(3)
3. When no communication is on-going, data on CS, SPC, SDI, and SDO are driven by internal pull-up resistors.
c.
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
Doc ID 018845 Rev 1
15/53
Module specifications
LSM320DL
I2C - inter IC control interface
2.4.2
Subject to general operating conditions for Vdd and Top.
Table 7.
I2C slave timing values
I2C standard mode(1)
Symbol
I2C fast mode (1)
Parameter
f(SCL)
Unit
SCL clock frequency
Min.
Max.
Min.
Max.
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0,01
KHz
µs
ns
3.45
0
0.9
tr(SDA) tr(SCL)
SDA and SCL rise time
1000
20 + 0.1Cb (2)
300
tf(SDA) tf(SCL)
SDA and SCL fall time
300
20 + 0.1Cb (2)
300
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
µs
ns
µs
tw(SP:SR)
Bus free time between STOP
and START condition
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
Figure 4.
I2C slave timing diagram (d)
REPEATED
START
START
tsu(SR)
tw(SP:SR)
SDA
tf(SDA)
tsu(SDA)
tr(SDA)
START
th(SDA)
tsu(SP)
STOP
SCL
th(ST)
tw(SCLL)
tw(SCLH)
tr(SCL)
tf(SCL)
AM09238V1
d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
16/53
Doc ID 018845 Rev 1
LSM320DL
2.5
Module specifications
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8.
Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Vin
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
I/O pins supply voltage
-0.3 to 4.8
V
-0.3 to Vdd_IO +0.3
V
Input voltage on any control pin (SCL, SDA/SDI)
3000 g for 0.5 ms
APOW
Acceleration (any axis, powered, Vdd = 3 V)
AUNP
Acceleration (any axis, unpowered)
TOP
Operating temperature range
-40 to +85
°C
TSTG
Storage temperature range
-40 to +125
°C
ESD
Electrostatic discharge protection
2 (HBM)
kV
10000 g for 0.1 ms
3000 g for 0.5 ms
10000 g for 0.1 ms
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part
This is an ESD sensitive device, improper handling can cause permanent damage to
the part
Doc ID 018845 Rev 1
17/53
Module specifications
2.6
Terminology
2.6.1
Sensitivity
LSM320DL
Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration
to the device. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the Earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and also very little over time. The sensitivity
tolerance describes the range of sensitivities of a large population of sensors.
Angular rate sensitivity describes the angular rate gain of the sensor and can be determined
by applying a defined angular velocity to it. This value changes very little over temperature
and also very little over time.
2.6.2
Zero level
Linear acceleration Zero-g level offset (TyOff) describes the deviation of an actual output
signal from the ideal output signal if no acceleration is present. A sensor in a steady-state on
a horizontal surface measures 0 g in the X axis and 0 g in the Y axis, whereas the Z axis
measures 1 g. The output is ideally in the middle of the dynamic range of the sensor
(content of OUT registers 00h, data expressed as 2’s complement number). A deviation
from the ideal value in this case is called Zero-g offset. Offset is, to some extent, a result of
stress to the MEMS sensor and therefore the offset can slightly change after mounting the
sensor onto a printed circuit board or exposing it to extensive mechanical stress. The offset
changes little over temperature, see “Zero-g level change vs. temperature”. The Zero-g level
tolerance (TyOff) describes the standard deviation of the range of Zero-g levels of a
population of sensors.
Angular rate zero-rate level describes the actual output value if there is no angular rate
present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress
to the sensor and therefore zero-rate level can slightly change after mounting the sensor
onto a printed circuit board or after exposing it to extensive mechanical stress. This value
changes very little over temperature and also very little over time.
18/53
Doc ID 018845 Rev 1
LSM320DL
3
Functionality
Functionality
The LSM320DL is a system-in-package featuring a 3D digital accelerometer and a 2D digital
gyroscope.
The complete device includes specific sensing elements and two IC interfaces able to
measure both the acceleration and angular rate applied to the module and to provide a
signal to the external world through an SPI/I2C serial interface.
The various sensing elements are manufactured using specialized micromachining
processes, while the IC interfaces are realized using a CMOS technology that allows to
design a dedicated circuit which is trimmed to better match the sensing element
characteristics.
The LSM320DL may also be configured to generate an inertial wake-up and free-fall
interrupt signal according to a programmed acceleration event along the enabled axes.
3.1
Factory calibration
The IC interface is factory calibrated for sensitivity and zero level. The trimming values are
stored inside the device by a non-volatile memory. Any time the device is turned on, the
trimming parameters are downloaded into the registers to be used during the normal
operation. This allows the user to use the device without further calibration.
Doc ID 018845 Rev 1
19/53
Application hints
4
LSM320DL
Application hints
Figure 5.
LSM320DL electrical connection
Reserved pins have to be connected to GND
Z
Vdd_IO
Y
1
Vdd_IO
C5
X
SDA/SDI_A
Res
SDO_A
SCL_A
DRDY_G
INT1_A
SDO_G
INT2_A
CS_G
SDA/SDI_G
GND
DIRECTION OF
DETECTABLE
ACCELERATIONS
+Ω
Z
z
1
+Ω
10
X
1
X
Res
11
DIRECTION OF
DETECTABLE
ANGULAR RATE
C1
VCONT
14
25
15
VddIO_A
Res
(TOP VIEW)
FILTVDD
SCL_G
Res
28
LSM320DL
Vdd_IO_G
GND
24
FILTIN Y
C2
R2
Res
Res
Vdd
INT_G
Res
Res
Res
CS_A
Res
Vdd
GND
C3
Vdd
GND
C4
Digital signal from/to signal controller.Signals levels are defined by proper selection of Vdd
AM09275V1
Table 9.
4.1
Part list
Component
Typical value
C1
10 nF
C2
470 nF
C3
10 µF
C4
100 nF
C5
100 nF
R2
10 kOhm
External capacitors
The device core is supplied through Vdd line. Power supply decoupling capacitors (C4=100
nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin of the
device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5).
The functionality of the device and the measured acceleration/angular rate data is
selectable and accessible through the SPI/I2C interface.
20/53
Doc ID 018845 Rev 1
LSM320DL
Application hints
The functions, the threshold, and the timing of the two interrupt pins for each sensor can be
completely programmed by the user though the SPI/I2C interface.
4.2
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020D.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems.
Doc ID 018845 Rev 1
21/53
Digital interfaces
5
LSM320DL
Digital interfaces
The registers embedded inside the LSM320DL may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
To select/exploit the I2C interface, CS line must be tied high (i.e. connected to Vdd_IO).
Table 10.
Serial interface pin description
Pin name
CS_A
Linear acceleration SPI enable
Linear acceleration I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
CS_G
Angular Rate SPI enable
Angular Rate I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
SCL_A
SCL_G
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA/SDI_A
SDA/SDI_G
SDO_A
SDO_G
5.1
Pin description
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
I2C less significant bit of the device address (SA0)
SPI serial data output (SDO)
I2C serial interface
The LSM320DL I2C is a bus slave. The I2C is employed to write the data into the registers
whose content can also be read back.
The relevant I2C terminology is given in the table below.
Table 11.
Serial interface pin description
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface.
22/53
Doc ID 018845 Rev 1
LSM320DL
5.1.1
Digital interfaces
I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM320DL behaves as a slave device and the following
protocol must be adhered to. After the start condition (ST), a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the
7 LSb represent the actual register address while the MSB enables address auto increment.
If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to
allow multiple data read/write.
Table 12.
Transfer when master is writing one byte to slave
Master
ST
SAD + W
SUB
Slave
SAK
Table 13.
Master
SAD + W
Slave
SAK
DATA
DATA
SAK
SAK
SP
SAK
Transfer when master is receiving (reading) one byte of data from slave:
ST
SAD + W
Slave
Master
SAK
SUB
SAK
Table 14.
Table 15.
SP
Transfer when master is writing multiple bytes to slave:
ST
Slave
Master
DATA
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Transfer when master is receiving (reading) multiple bytes of data from slave
ST SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DATA
NMAK
SP
DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW, to force the transmitter into a wait
Doc ID 018845 Rev 1
23/53
Digital interfaces
LSM320DL
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real time function), the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of the first register to be read.
In the presented communication format, MAK is Master Acknowledge, and NMAK is No
Master Acknowledge.
Default address:
The SDO/SA0 pad can be used to modify less significant bits of the device address. If the
SA0 pad is connected to voltage supply, LSb is ‘1’ (ex. address 0011001b), or else, if the
SA0 pad is connected to ground, the LSb value is ‘0’ (ex address 0011000b).
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the master transmits to the slave with direction unchanged. Table 16 and Table 17 explain
how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Linear acceleration address: the default (factory) 7-bit slave address is
001100xb.
Table 16.
Linear acceleration SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
SAD+R/W
Read
001100
0
1
00110001 (31h)
Write
001100
0
0
00110000 (30h)
Read
001100
1
1
00110011 (33h)
Write
001100
1
0
00110010 (32h)
Angular rate sensor: the default (factory) 7-bit slave address is 110100xb.
Table 17.
24/53
Angular rate SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
Read
110100
0
1
11010001 (F1h)
Write
110100
0
0
11010000 (F0h)
Read
110100
1
1
11010011 (F3h)
Write
110100
1
0
11010010 (F2h)
Doc ID 018845 Rev 1
SAD+R/W
LSM320DL
5.2
Digital interfaces
SPI bus interface
The LSM320DL SPI is a bus slave. The SPI allows to write and read the registers of the
device.
The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI, and
SDO.(SPC, SDI, SD0 are common)
Figure 6.
Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and returns to high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple bytes read/write. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands, further blocks of 8 clock periods are added. When the MS
bit is ‘0’, the address used to read/write data remains the same for every block. When the
MS bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
Doc ID 018845 Rev 1
25/53
Digital interfaces
5.2.1
LSM320DL
SPI read
Figure 7.
SPI read protocol
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
The SPI Read command is performed with 16 clock pulses. Multiple byte read command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Figure 8.
Multiple bytes SPI read protocol (2 bytes example)
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15DO14DO13DO12DO11DO10DO9 DO8
5.2.2
SPI write
Figure 9.
SPI write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
The SPI write command is performed with 16 clock pulses. Multiple byte write command is
performed adding blocks of 8 clock pulses at the previous one.
26/53
Doc ID 018845 Rev 1
LSM320DL
Digital interfaces
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 10. Multiple bytes SPI write protocol (2 bytes example)
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
5.2.3
SPI read in 3-wire mode
3-wire mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) in
CTRL_REG4.
Figure 11. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address, when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wire mode.
Doc ID 018845 Rev 1
27/53
Register mapping
6
LSM320DL
Register mapping
Table 18 below provides a listing of the 8-bit registers embedded in the device and the
related addresses:
Table 18.
Register address map
Name
Slave
Address
Register address
Type
Default
Hex
Reserved (do not modify)
001100xb
CTRL_REG1_A
001100xb
rw
20
010 0000
00000111
CTRL_REG2_A
001100xb
rw
21
010 0001
00000000
CTRL_REG3_A
001100xb
rw
22
010 0010
00000000
CTRL_REG4_A
001100xb
rw
23
010 0011
00000000
CTRL_REG5_A
001100xb
rw
24
010 0100
00000000
CTRL_REG6_A
001100xb
rw
25
010 0101
00000000
REFERENCE_A
001100xb
rw
26
010 0110
00000000
STATUS_REG_A
001100xb
r
27
010 0111
00000000
OUT_X_L_A
001100xb
r
28
010 1000
output
OUT_X_H_A
001100xb
r
29
010 1001
output
OUT_Y_L_A
001100xb
r
2A
010 1010
output
OUT_Y_H_A
001100xb
r
2B
010 1011
output
OUT_Z_L_A
001100xb
r
2C
010 1100
output
OUT_Z_H_A
001100xb
r
2D
010 1101
output
FIFO_CTRL_REG
001100xb
rw
2E
010 1110
00000000
FIFO_SRC_REG
001100xb
r
2F
010 1111
INT1_CFG_A
001100xb
rw
30
011 0000
00000000
INT1_SOURCE_A
001100xb
r
31
011 0001
00000000
INT1_THS_A
001100xb
rw
32
011 0010
00000000
INT1_DURATION_A
001100xb
rw
33
011 0011
00000000
INT2_CFG_A
001100xb
rw
34
011 0100
00000000
INT2_SOURCE_A
001100xb
r
35
011 0101
00000000
INT2_THS_A
001100xb
rw
36
011 0110
00000000
INT2_DURATION_A
001100xb
rw
37
011 0111
00000000
CLICK_CFG_A
001100xb
rw
38
011 1000
00000000
CLICK_SRC_A
001100xb
rw
39
011 1001
00000000
CLICK_THS_A
001100xb
rw
3A
011 1010
00000000
TIME_LIMIT_A
001100xb
rw
3B
011 1011
00000000
28/53
00 - 1F
Doc ID 018845 Rev 1
Comment
Binary
Reserved
LSM320DL
Table 18.
Register mapping
Register address map (continued)
Register address
Slave
Address
Type
TIME_LATENCY_A
001100xb
TIME_WINDOW_A
001100xb
Reserved (do not modify)
001100xb
Reserved
110100xb
CTRL_REG1_G
Name
Default
Comment
Hex
Binary
rw
3C
011 1100
00000000
rw
3D
011 1101
00000000
3E-3F
-
-
Reserved
-
00-1E
-
-
Reserved
110100xb
rw
20
010 0000
00000111
CTRL_REG2_G
110100xb
rw
21
010 0001
00000000
CTRL_REG3_G
110100xb
rw
22
010 0010
00000000
CTRL_REG4_G
110100xb
rw
23
010 0011
00000000
CTRL_REG5_G
110100xb
rw
24
010 0100
00000000
REFERENCE_G
110100xb
rw
25
010 0101
00000000
OUT_TEMP_G
110100xb
r
26
010 0110
output
STATUS_REG_G
110100xb
r
27
010 0111
output
OUT_X_L_G
110100xb
r
28
010 1000
output
OUT_X_H_G
110100xb
r
29
010 1001
output
Reserved
110100xb
r
2A
-
-
Reserved
Reserved
110100xb
r
2B
-
-
Reserved
OUT_Z_L_G
110100xb
r
2C
010 1100
output
OUT_Z_H_G
110100xb
r
2D
010 1101
output
FIFO_CTRL_REG_G
110100xb
rw
2E
010 1110
00000000
FIFO_SRC_REG_G
110100xb
r
2F
010 1111
output
INT1_CFG_G
110100xb
rw
30
011 0000
00000000
INT1_SRC_G
110100xb
r
31
011 0001
output
INT1_TSH_XH_G
110100xb
rw
32
011 0010
00000000
INT1_TSH_XL_G
110100xb
rw
33
011 0011
00000000
Reserved
110100xb
rw
34
-
-
Reserved
Reserved
110100xb
rw
35
-
-
Reserved
INT1_TSH_ZH_G
110100xb
rw
36
011 0110
00000000
INT1_TSH_ZL_G
110100xb
rw
37
011 0111
00000000
INT1_DURATION_G
110100xb
rw
38
011 1000
00000000
Registers marked as Reserved must not be changed. The writing to those registers may
cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
Doc ID 018845 Rev 1
29/53
Registers description
7
LSM320DL
Registers description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration, angular rate and temperature data. The registers address, made of 7 bits, is
used to identify them and to write the data through serial interface.
7.1
CTRL_REG1_A (20h)
Table 19.
CTRL_REG1_A register
ODR3
ODR2
Table 20.
ODR1
ODR0
LPen
Zen
Yen
Xen
CTRL_REG1_A description
Data rate selection. Default value: 0
(0000: power-down; Others: refer to Table 21., “Data rate configuration”)
ODR3-0
LPen
Low power mode enable. Default value: 0
(0: normal mode; 1: low power mode)
Zen
Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Yen
Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen
X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
ODR is used to set power mode and ODR selection. In Table 21 all the frequencies
resulting in a combination of ODR are reported.
Table 21.
Data rate configuration
ODR3
30/53
ODR2
ODR1
ODR0
Power mode selection
0
0
0
0
Power down mode
0
0
0
1
Normal / low power mode (1 Hz)
0
0
1
0
Normal / low power mode (10 Hz)
0
0
1
1
Normal / low power mode (25 Hz)
0
1
0
0
Normal / low power mode (50 Hz)
0
1
0
1
Normal / low power mode (100 Hz)
0
1
1
0
Normal / low power mode (200 Hz)
0
1
1
1
Normal / low power mode (400 Hz)
1
0
0
0
Low power mode (1.620 kHz)
1
0
0
1
Normal (1.344 kHz) / Low Power mode (5.376 kHz)
Doc ID 018845 Rev 1
LSM320DL
7.2
Registers description
CTRL_REG2_A (21h)
Table 22.
CTRL_REG2_A register
HPM1
HPM0
Table 23.
HPCF1
FDS
HPCLICK
HPIS2
HPIS1
CTRL_REG2_A description
HPM1 -HPM0
High pass filter mode selection. Default value: 00
Refer to Table 24
HPCF2 HPCF1
High pass filter cut-off frequency selection
FDS
Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and
FIFO)
HPCLICK
High pass filter enabled for CLICK function.
(0: filter bypassed; 1: filter enabled)
HPIS2
High pass filter enabled for AOI function on interrupt 2,
(0: filter bypassed; 1: filter enabled)
HPIS1
High pass filter enabled for AOI function on interrupt 1,
(0: filter bypassed; 1: filter enabled)
Table 24.
High pass filter mode configuration
HPM1
7.3
HPCF2
HPM0
High pass filter mode
0
0
Normal mode (reset reading HP_RESET_FILTER)
0
1
Reference signal for filtering
1
0
Normal mode
1
1
Autoreset on interrupt event
CTRL_REG3_A (22h)
Table 25.
I1_CLICK
CTRL_REG3_A register
I1_AOI1
0(1)
I1_DRDY1
I1_DRDY2
I1_WTM
I1_OVERRUN
--
1. This bit must be set to ‘0’ for correct operation.
Table 26.
CTRL_REG3_A description
I1_CLICK
CLICK interrupt on INT1. Default value 0.
(0: disable; 1: enable)
I1_AOI1
AOI1 interrupt on INT1. Default value 0.
(0: disable; 1: enable)
Doc ID 018845 Rev 1
31/53
Registers description
Table 26.
7.4
LSM320DL
CTRL_REG3_A description (continued)
I1_DRDY1
DRDY1 interrupt on INT1. Default value 0.
(0: disable; 1: enable)
I1_DRDY2
DRDY2 interrupt on INT1. Default value 0.
(0: disable; 1: enable)
I1_WTM
FIFO Watermark interrupt on INT1. Default value 0.
(0: disable; 1: enable)
I1_OVERRUN
FIFO Overrun interrupt on INT1. Default value 0.
(0: disable; 1: enable)
CTRL_REG4_A (23h)
Table 27.
0(1)
CTRL_REG4_A register
BLE
FS1
FS0
HR
0(1)
0(1)
SIM
1. This bit must be set to ‘0’ for correct operation.
Table 28.
7.5
CTRL_REG4_A description
BLE
Big/little endian data selection. Default value 0.
(0: data LSB @ lower address; 1: data MSB @ lower address)
FS1-FS0
Full scale selection. default value: 00
(00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G)
HR
High resolution output mode: default value: 0
(0: high resolution disable; 1: high resolution enable)
SIM
SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
CTRL_REG5_A (24h)
Table 29.
BOOT
CTRL_REG5_A register
FIFO_EN
--
--
LIR_INT1
D4D_INT1
0(1)
0(1)
1. This bit must be set to ‘0’ for correct operation.
Table 30.
32/53
CTRL_REG5_A description
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN
FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO enable)
LIR_INT1
Latch interrupt request on INT1_SRC register, with INT1_SRC register
cleared by reading INT1_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT1
4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set
to 1.
Doc ID 018845 Rev 1
LSM320DL
7.6
Registers description
CTRL_REG6_A (25h)
Table 31.
CTRL_REG6_A register
I2_CLICKen
I2_INT1
0(1)
BOOT_I2
0(1)
--
H_LACTIVE
--
1. This bit must be set to ‘0’ for correct operation.
Table 32.
7.7
CTRL_REG6 description
I2_CLICKen
Click interrupt on INT2. Default value 0.
I2_INT1
Interrupt 1 function enabled on INT2. Default 0.
BOOT_I2
Boot on INT2.
H_LACTIVE
0: interrupt active high; 1: interrupt active low.
REFERENCE/DATACAPTURE_A (26h)
Table 33.
Ref7
Table 34.
REFERENCE_A register
Ref6
Ref4
Ref3
Ref2
Ref1
Ref0
REFERENCE register description
Ref 7-Ref0
7.8
Ref5
Reference value for interrupt generation. Default value: 0
STATUS_REG_A (27h)
Table 35.
ZYXOR
Table 36.
STATUS_REG_A register
ZOR
YOR
XOR
ZYXDA
ZDA
YDA
XDA
STATUS_REG_A register description
ZYXOR
X, Y, and Z axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous ones)
ZOR
Z axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous
one)
YOR
Y axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous
one)
XOR
X axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous
one)
ZYXDA
X, Y, and Z axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
Doc ID 018845 Rev 1
33/53
Registers description
Table 36.
7.9
LSM320DL
STATUS_REG_A register description (continued)
ZDA
Z axis new data available. Default value: 0
(0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is available)
YDA
Y axis new data available. Default value: 0
(0: a new data for the Y-axis is not yet available; 1: a new data for the Y-axis is available)
OUT_X_L_A (28h), OUT_X_H_A (29h)
X-axis acceleration data. The value is expressed in 2’s complement.
7.10
OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)
Y-axis acceleration data. The value is expressed in 2’s complement.
7.11
OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh)
Z-axis acceleration data. The value is expressed in 2’s complement.
7.12
FIFO_CTRL_REG_A (2Eh)
Table 37.
FM1
FIFO_CTRL_REG_A register
FM0
Table 38.
TR
FTH3
FTH2
FTH1
FIFO_CTRL_REG_A register description
FM1-FM0
FIFO mode selection. Default value: 00 (see Table 39)
TR
Trigger selection. Default value: 0
0: trigger event linked to trigger signal on INT1
1: trigger event linked to trigger signal on INT2
FTH4:0
Default value: 0
Table 39.
FIFO mode configuration
FM1
34/53
FTH4
FM0
FIFO mode
0
0
Bypass mode
0
1
FIFO mode
1
0
Stream mode
1
1
Trigger mode
Doc ID 018845 Rev 1
FTH0
LSM320DL
7.13
Registers description
FIFO_SRC_REG_A (2Fh)
Table 40.
WTM
7.14
FIFO_SRC_REG_A register
OVRN_FIFO
EMPTY
FSS4
FSS3
FSS2
FSS1
FSS0
INT1_CFG_A (30h)
Table 41.
AOI
INT1_CFG_REG_A register
6D
Table 42.
ZHIE/
ZUPE
ZLIE/
ZDOWNE
YHIE/
YUPE
YLIE/
YDOWNE
XHIE/
XUPE
XLIE/
XDOWNE
INT1_CFG_REG_A description
AOI
AND/OR combination of interrupt events. Default value: 0. Refer to Table 43
6D
6-direction detection function enabled. Default value: 0. Refer to Table 43
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request)
YHIE/
YUPE
Enable interrupt generation on Y high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XLIE/XDOWNE Enable interrupt generation on X low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Content of this register is loaded at boot.
Write operation at this address is possible only after system boot.
Table 43.
Interrupt mode
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6-direction movement recognition
1
0
AND combination of interrupt events
1
1
6-direction position recognition
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
Doc ID 018845 Rev 1
35/53
Registers description
LSM320DL
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when orientation moves
from unknown zone to known zone. The interrupt signal stays for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when orientation is inside a
known zone. The interrupt signal stays until orientation is inside the zone.
7.15
INT1_SRC_A (31h)
Table 44.
INT1_SRC_A register
0
Table 45.
IA
ZH
ZL
YH
YL
XH
XL
INT1_SRC_A description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Interrupt 1 source register. Read only register.
Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1
pin) and allows the refreshment of data in the INT1_SRC register if the latched option is
chosen.
7.16
INT1_THS_A (32h)
Table 46.
INT1_THS_A register
0
Table 47.
THS6
THS4
THS3
INT1_THS_A description
THS6 - THS0
36/53
THS5
Interrupt 1 threshold. Default value: 000 0000
Doc ID 018845 Rev 1
THS2
THS1
THS0
LSM320DL
7.17
Registers description
INT1_DURATION_A (33h)
Table 48.
INT1_DURATION_Aregister
0
Table 49.
D6
D5
D4
D3
D2
D1
D0
INT1_DURATION_A description
D6 - D0
Duration value. Default value: 000 0000
D6 - D0 bits set the minimum duration of the interrupt 1 event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
7.18
CLICK_CFG _A (38h)
Table 50.
--
Table 51.
7.19
CLICK_CFG_A register
--
ZD
ZS
YD
YS
XD
XS
CLICK_CFG_A description
ZD
Enable interrupt double CLICK on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZS
Enable interrupt single CLICK on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YD
Enable interrupt double CLICK on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YS
Enable interrupt single CLICK on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XD
Enable interrupt double CLICK on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XS
Enable interrupt single CLICK on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
CLICK_SRC_A (39h)
Table 52.
--
CLICK_SRC_A register
IA
DCLICK
SCLICK
Sign
Doc ID 018845 Rev 1
Z
Y
X
37/53
Registers description
Table 53.
7.20
LSM320DL
CLICK_SRC_A description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DCLICK
Double CLICK-CLICK enable. Default value: 0 (0: double CLICK-CLICK detection disable, 1: double CLICK-CLICK detection enable)
SCLICK
Single CLICK-CLICK enable. Default value: 0 (0: single CLICK-CLICK detection disable, 1: single CLICK-CLICK detection enable)
Sign
CLICK-CLICK Sign. 0: positive detection, 1: negative detection
Z
Z CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
Y
Y CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
X
X CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: X high event has occurred)
CLICK_THS_A (3Ah)
Table 54.
--
Table 55.
CLICK_THS_A register
Ths6
--
Table 57.
Ths2
Ths1
Ths0
TLI1
TLI0
TLA1
TLA0
CLICK-CLICK threshold. Default value: 000 0000
TIME_LIMIT_A register
TLI6
TLI5
TLI4
TLI3
TLI2
TIME_LIMIT_A description
TLI7-TLI0
CLICK-CLICK time limit. Default value: 000 0000
TIME_LATENCY_A (3Ch)
Table 58.
TLA7
38/53
Ths3
TIME_LIMIT_A (3Bh)
Table 56.
7.22
Ths4
CLICK_SRC_A description
Ths6-Ths0
7.21
Ths5
TIME_LATENCY_A register
TLA6
TLA5
TLA4
TLA3
Doc ID 018845 Rev 1
TLA2
LSM320DL
Registers description
Table 59.
TIME_LATENCY_A description
TLA7-TLA0
7.23
TIME WINDOW_A (3Dh)
Table 60.
TW7
7.24
CLICK-CLICK time latency. Default value: 000 0000
TIME_WINDOW_A register
TW6
TW5
TW4
Table 61.
TIME_WINDOW_A description
TW7-TW0
CLICK-CLICK time window
TW3
TW2
TW1
TW0
CTRL_REG1_G (20h)
Table 62.
DR1
CTRL_REG1_G register
DR0
BW1
BW0
PD
Zen
0(1)
Xen
1. This bit must be set to ‘0’ for correct operation.
Table 63.
CTRL_REG1_G description
DR1-DR0
Output data rate selection. Refer to Table 64
BW1-BW0
Bandwidth selection. Refer to Table 64
PD
Power-down mode enable. Default value: 0
(0: power-down mode, 1: normal mode or sleep mode)
Zen
Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Xen
X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
DR is used to set ODR selection. BW is used to set Bandwidth selection.
Table 64 shows all frequencies resulting in combination of DR / BW bits.
Doc ID 018845 Rev 1
39/53
Registers description
Table 64.
LSM320DL
DR and BW configuration setting
DR
BW
ODR [Hz]
Cut-off
00
00
100
12.5
00
01
100
25
00
10
100
25
00
11
100
25
01
00
200
12.5
01
01
200
25
01
10
200
50
01
11
200
70
10
00
400
20
10
01
400
25
10
10
400
50
10
11
400
110
11
00
800
30
11
01
800
35
11
10
800
50
11
11
800
110
Combination of PD, Zen, Xen are used to set the device in different modes (powerdown/normal/sleep mode) according to the following table.
Table 65.
7.25
Power mode selection configuration
Mode
PD
Zen
Xen
Power-down
0
-
-
Sleep
1
0
0
Normal
1
-
-
CTRL_REG2_G (21h)
Table 66.
(1)
0
CTRL_REG2_G register
0(1)
HPM1
HPM1
HPCF3
1. Value loaded at boot. This value must not be changed.
40/53
Doc ID 018845 Rev 1
HPCF2
HPCF1
HPCF0
LSM320DL
Registers description
Table 67.
CTRL_REG2_G description
HPM1HPM0
High pass filter mode selection. Default value: 00
Refer to Table 68
HPCF3HPCF0
High pass filter cut-off frequency selection
Refer to Table 69
Table 68.
High pass filter mode configuration
HPM1
HPM0
High pass filter mode
0
0
Normal mode (reset reading HP_RESET_FILTER
0
1
Reference signal for filtering
1
0
Normal mode
1
1
Autoreset an interrupt event
Table 69.
7.26
High pass filter cut-off frequency configuration [Hz]
HPCF-0
ODR = 100 Hz
ODR = 200 Hz
ODR = 400 Hz
ODR = 800 Hz
0000
8
15
30
56
0001
4
8
15
30
0010
2
4
8
15
0011
1
2
4
8
0100
0.5
1
2
4
0101
0.2
0.5
1
2
0110
0.1
0.2
0.5
1
0111
0.05
0.1
0.2
0.5
1000
0.02
0.05
0.1
0.2
1001
0.01
0.02
0.05
0.1
CTRL_REG3_G (22h)
Table 70.
I1_Int1
Table 71.
CTRL_REG1_G register
I1_Boot
H_Lactive
PP_OD
I2_DRDY
I2_WTM
I2_ORun
I2_Empty
CTRL_REG3_G description
I1_Int1
Interrupt enable on INT1 pin. Default value 0. (0: disable; 1: enable)
I1_Boot
Boot status available on INT1. Default value 0. (0: disable; 1: enable)
H_Lactive
Interrupt active configuration on INT1. Default value 0. (0: high; 1:low)
Doc ID 018845 Rev 1
41/53
Registers description
Table 71.
7.27
LSM320DL
CTRL_REG3_G description (continued)
PP_OD
Push-pull/open drain. Default value: 0. (0: push-pull; 1: open drain)
I2_DRDY
Date ready on DRDY/INT2. Default value 0. (0: disable; 1: enable)
I2_WTM
FIFO watermark interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_ORun
FIFO overrun interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_Empty
FIFO empty interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
CTRL_REG4_G (23h)
Table 72.
BDU
CTRL_REG4_G register
BLE
FS1
FS0
--
0(1)
0(1)
SIM
1. This bit must be set to ‘0’ for correct operation.
Table 73.
7.28
BDU
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB
reading)
BLE
Big/little endian data selection. Default value 0.
(0: data LSB @ lower address; 1: data MSB @ lower address)
FS1-FS0
Full scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM
SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
CTRL_REG5_G (24h)
Table 74.
BOOT
Table 75.
42/53
CTRL_REG4_G description
CTRL_REG5_G register
FIFO_EN
--
HPen
INT1_Sel1 INT1_Sel0
CTRL_REG5_G description
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN
FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO enable)
HPen
High pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled, see Figure 12)
Doc ID 018845 Rev 1
Out_Sel1
Out_Sel0
LSM320DL
Registers description
Table 75.
CTRL_REG5_G description (continued)
INT1_Sel1INT1_Sel0
INT1 selection configuration. Default value: 0
(see Table 77)
Out_Sel1Out_Sel0
Out selection configuration. Default value: 0
(see Table 76)
Figure 12. INT1_Sel and Out_Sel configuration block diagram
Out_Sel
00
01
DataReg
0
LPF2
LPF1
ADC
HPF
FIFO
32x16x3
10
11
1
INT1_Sel
HPen
10
11
01
Interrupt
generator
00
AM09276V1
Table 76.
Out_Sel configuration setting
Hpen
OUT_SEL1
OUT_SEL0
x
0
0
Data in DataReg and FIFO are non-highpass-filtered
x
0
1
Data in DataReg and FIFO are high-passfiltered
0
1
x
Data in DataReg and FIFO are low-passfiltered by LPF2
1
1
x
Data in DataReg and FIFO are high-pass and
low-pass-filtered by LPF2
Table 77.
Description
INT_SEL configuration setting
Hpen
INT_SEL1
INT_SEL2
x
0
0
Non-high-pass-filtered data are used for
interrupt generation
x
0
1
High-pass-filtered data are used for interrupt
generation
Doc ID 018845 Rev 1
Description
43/53
Registers description
Table 77.
7.29
LSM320DL
INT_SEL configuration setting (continued)
Hpen
INT_SEL1
INT_SEL2
Description
0
1
x
Low-pass-filtered data are used for interrupt
generation
1
1
x
High-pass and low-pass-filtered data are
used for interrupt generation
REFERENCE/DATACAPTURE_G (25h)
Table 78.
Ref7
REFERENCE_G register
Ref6
Table 79.
Temp7
Ref2
Ref1
Ref0
Reference value for interrupt generation. Default value: 0
OUT_TEMP_G register
Temp6
Table 81.
Temp5
Temp4
Temp3
Temp2
Temp1
Temp0
OUT_TEMP_G register description
Temp7-Temp0
Temperature data (1LSB/deg - 8 bit resolution). The value is expressed as
two’s complement.
STATUS_REG_G (27h)
Table 82.
ZXOR
STATUS_REG_G register
ZOR
Table 83.
44/53
Ref3
OUT_TEMP_G (26h)
Table 80.
7.31
Ref4
REFERENCE_G register description
Ref 7-Ref0
7.30
Ref5
-
XOR
ZXDA
ZDA
--
XDA
STATUS_REG_G description
ZXOR
X, Z-axis data overrun. Default value: 0
(0: no overrun has occurred, 1: new data has overwritten the previous one before it was
read)
ZOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred, 1: a new data for the Z-axis has overwritten the previous one)
XOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred, 1: a new data for the X-axis has overwritten the previous one)
Doc ID 018845 Rev 1
LSM320DL
Registers description
Table 83.
7.32
STATUS_REG_G description (continued)
ZXDA
X, Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA
Z-axis new data available. Default value: 0
(0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is available)
XDA
X-axis new data available. Default value: 0
(0: a new data for the X-axis is not yet available; 1: a new data for the X-axis is available)
OUT_X_L_G (28h), OUT_X_H_G (29h)
X-axis angular rate data. The value is expressed as 2’s complement.
7.33
OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh)
Z-axis angular rate data. The value is expressed as 2’s complement.
7.34
FIFO_CTRL_REG_G (2Eh)
Table 84.
REFERENCE_G register
FM2
FM1
Table 85.
WTM4
WTM3
WTM2
WTM1
WTM0
FSS1
FSS0
REFERENCE_G register description
FM2-FM0
FIFO mode selection. Default value: 00 (see Table 86)
WTM4-WTM0
FIFO threshold. Watermark level setting
Table 86.
FIFO mode configuration
FM2
7.35
FM0
FM1
FM0
FIFO mode
0
0
0
Bypass mode
0
0
1
FIFO mode
0
1
0
Stream mode
0
1
1
Stream-to-FIFO mode
1
0
0
Bypass-to-stream mode
FIFO_SRC_REG_G (2Fh)
Table 87.
WTM
FIFO_SRC_G register
OVRN
EMPTY
FSS4
Doc ID 018845 Rev 1
FSS3
FSS2
45/53
Registers description
Table 88.
7.36
LSM320DL
FIFO_SRC_G register description
WTM
Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
or higher than WTM level)
OVRN
Overrun bit status.
(0: FIFO is not completely filled; 1:FIFO is completely filled)
EMPTY
FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1
FIFO stored data level
INT1_CFG_G (30h)
Table 89.
AND/OR
INT1_CFG_G register
LIR
ZHIE
ZLIE
0(1)
0(1)
XHIE
XLIE
1. This bit must be set to ‘0’ for correct operation.
Table 90.
INT1_CFG_G description
AND/OR
AND/OR combination of interrupt events. Default value: 0
(0: OR combination of interrupt events 1: AND combination of interrupt events
LIR
Latch interrupt request. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
Cleared by reading INT1_SRC reg.
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
lower than preset threshold)
Configuration register for interrupt source.
7.37
INT1_SRC_G (31h)
Table 91.
0
46/53
INT1_SRC_G register
IA
ZH
ZL
Doc ID 018845 Rev 1
--
--
XH
XL
LSM320DL
Registers description
Table 92.
INT1_SRC_G description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0 (0: no interrupt; 1: Z high event has occurred)
ZL
Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
XH
X high. Default value: 0 (0: no interrupt; 1: X high event has occurred)
XL
X low. Default value: 0 (0: no interrupt; 1: X low event has occurred)
Interrupt source register. Read only register.
Reading at this address clears the INT1_SRC IA bit (and eventually the interrupt signal on
the INT1 pin) and allows the refreshment of data in the INT1_SRC register if the latched
option is chosen.
7.38
INT1_THS_XH_G (32h)
Table 93.
--
Table 94.
INT1_THS_XH_G register
THSX14
THSX11
THSX10
THSX9
THSX8
THSX1
THSX0
THSZ9
THSZ8
Interrupt threshold. Default value: 0000 0000
INT1_THS_XL_G (33h)
Table 95.
THSX7
Table 96.
INT1_THS_XL_G register
THSX6
THSX5
THSX4
THSX3
THSX2
INT1_THS_XL_G description
THSX7 - THSX0
7.40
THSX12
INT1_THS_XH_G description
THSX14 - THSX9
7.39
THSX13
Interrupt threshold. Default value: 0000 0000
INT1_THS_ZH_G (36h)
Table 97.
--
INT1_THS_ZH_G register
THSZ14
THSZ13
THSZ12
THSZ11
Doc ID 018845 Rev 1
THSZ10
47/53
Registers description
Table 98.
LSM320DL
INT1_THS_ZH_G description
THSZ14 - THSZ9
7.41
Interrupt threshold. Default value: 0000 0000
INT1_THS_ZL_G (37h)
Table 99.
THSZ7
INT1_THS_ZL_G register
THSZ6
THSZ5
THSZ4
THSZ3
THSZ2
THSZ1
THSZ0
D1
D0
Table 100. INT1_THS_ZL_G description
THSZ7 - THSZ0
7.42
Interrupt threshold. Default value: 0000 0000
INT1_DURATION_G (38h)
Table 101. INT1_DURATION_G register
WAIT
D6
D5
D4
D3
D2
Table 102. INT1_DURATION_G description
WAIT
WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0
Duration value. Default value: 000 0000
D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration steps
and maximum values depend on the ODR chosen.
WAIT bit has the following meaning:
Wait =’0’: the interrupt falls immediately if signal crosses the selected threshold
Wait =’1’: if signal crosses the selected threshold, the interrupt falls only after the duration
has counted a number of samples at the selected data rate, written into the duration counter
register.
48/53
Doc ID 018845 Rev 1
LSM320DL
Registers description
Figure 13. Wait disabled
!-6
Figure 14. Wait enabled
!-6
Doc ID 018845 Rev 1
49/53
Package information
8
LSM320DL
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions, and product status are available at: www.st.com.
ECOPACK is an ST trademark.
50/53
Doc ID 018845 Rev 1
LSM320DL
Package information
Table 103. LGA 28L 7.5 x 4.4 x 1.1 mechanical data
mm
Dim.
Min.
Typ.
Max.
A1
1.1
A2
0.855
A3
0.2
D1
4.25
4.4
4.55
E1
7.25
7.5
7.55
N1
0.3
L1
5.4
L2
1.8
P2
1.2
T1
0.6
T2
0.4
M
0.1
d
0.3
k
0.05
h
0.1
Figure 15. LGA 28L 7.5 x 4.4 x 1.1 package drawing
Pin 1 Indicator
hC
=
E1
k
k
C
d
A
L1
=
N1
P2
A3
L2
D1
D
M
kE
A2
E
kD
B
Seating
Plane
T1
A1
T2
K
TOP VIEW
Doc ID 018845 Rev 1
51/53
Revision history
9
LSM320DL
Revision history
Table 104. Document revision history
52/53
Date
Revision
18-May-2011
1
Changes
Initial release.
Doc ID 018845 Rev 1
LSM320DL
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 018845 Rev 1
53/53