0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LSM330DTR

LSM330DTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    -

  • 描述:

    IMU ACCEL/GYRO I2C/SPI 28LGA

  • 数据手册
  • 价格&库存
LSM330DTR 数据手册
LSM330D iNEMO inertial module: 3D accelerometer and 3D gyroscope Datasheet — production data Features ■ Analog supply voltage: 2.4 V to 3.6 V ■ Digital supply voltage IOs: 1.8 V ■ Low power mode ■ Power-down mode ■ 3 independent acceleration channels and 3 angular rate channels ■ ±2 g/±4 g/±8 g/±16 g dynamically selectable full scale ■ ±250/±500/±2000 dps dynamically selectable full scale ■ SPI/I2C serial interface (16-bit data output) ■ Programmable interrupt generator for free-fall and motion detection ■ ECOPACK® RoHS and “Green” compliant LGA-28L (3x5.5x1.0 mm) The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using a CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the sensing element characteristics. The LSM330D has dynamically user-selectable full scale acceleration range of ±2 g/±4 g/±8 g/±16 g and angular rate of ±250/±500/±2000 deg/sec. The accelerometer and gyroscope sensors can be either activated or separately put in Low power/Power-down mode for applications optimized for power saving. Application ■ GPS navigation systems ■ Impact recognition and logging ■ Gaming and virtual reality input devices ■ Motion activated functions ■ Intelligent power saving for handheld devices ■ Vibration monitoring and compensation ■ Free-fall detection ■ 6D orientation detection Description The LSM330D is available in a plastic land grid array (LGA) package. Table 1. Device summary Part number Temperature range [°C] LSM330D -40 to +85 LSM330DTR -40 to +85 Package Packing LGA-28L (3x5.5x1.0 mm) Tray Tape and reel The LSM330D is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope. ST’s family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers. August 2012 This is information on a product in full production. Doc ID 022562 Rev 2 1/66 www.st.com 66 Contents LSM330D Contents 1 2 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 3 4 2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Zero level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.1 Normal mode, Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.2 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.3 6D/4D orientation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.4 “Sleep-to-wake” and “Return to sleep” . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Accelerometer digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.5 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.6 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.7 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.8 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.9 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.10 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Gyroscope digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3.1 2/66 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Doc ID 022562 Rev 2 LSM330D Contents 4.4 4.5 5 6 4.3.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.4 Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.5 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.6 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Level-sensitive / Edge-sensitive data enable . . . . . . . . . . . . . . . . . . . . . . 28 4.4.1 Level-sensitive trigger stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4.2 Edge-sensitive trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.1.1 6.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.1 CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.2 CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8.3 CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8.4 CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.5 CTRL_REG5_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8.6 CTRL_REG6_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8.7 REFERENCE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8.8 STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8.9 OUT_X_L_A, OUT_X_H_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8.10 OUT_Y_L_A, OUT_Y_H_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Doc ID 022562 Rev 2 3/66 Contents 4/66 LSM330D 8.11 OUT_Z_L _A, OUT_Z_H_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8.12 FIFO_CTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8.13 FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.14 INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.15 INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.16 INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.17 INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.18 CLICK_CFG _A (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.19 CLICK_SRC_A (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.20 CLICK_THS_A (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.21 TIME_LIMIT_A (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.22 TIME_LATENCY_A (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.23 TIME WINDOW_A (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.24 Act_THS (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.25 Act_DUR (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.26 WHO_AM_I_G (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.27 CTRL_REG1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.28 CTRL_REG2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.29 CTRL_REG3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.30 CTRL_REG4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.31 CTRL_REG5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.32 REFERENCE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.33 OUT_TEMP_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.34 STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.35 OUT_X_L_G, OUT_X_H_G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8.36 OUT_Y_L_G, OUT_Y_H_G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.37 OUT_Z_L_G, OUT_Z_H_G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.38 FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.39 FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.40 INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.41 INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8.42 INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.43 INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Doc ID 022562 Rev 2 LSM330D Contents 8.44 INT1_THS_YH _G (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.45 INT1_THS_YL_G (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.46 INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.47 INT1_THS_ZL_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.48 INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Doc ID 022562 Rev 2 5/66 List of tables LSM330D List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 6/66 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Operating mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 28 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 28 Linear acceleration SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Angular rate SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CTRL_REG6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 REFERENCE_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 STATUS_REG_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 FIFO_CTRL_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 FIFO_CTRL_REG_A register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 FIFO_SRC_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 FIFO_SRC_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 INT1_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 INT1_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT1_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT1_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 INT1_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Doc ID 022562 Rev 2 LSM330D List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. INT1_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 INT1_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 CLICK_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CLICK_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CLICK_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CLICK_THS_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 TIME_LIMIT_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 TIME_LIMIT_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 TIME_LATENCY_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 TIME_LATENCY_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 TIME_WINDOW_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 TIME_WINDOW_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Act_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Act_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Act_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Act_DUR description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 WHO_AM_I_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CTRL_REG1_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Power mode selection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 CTRL_REG2_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 High-pass filter cut-off frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 CTRL_REG3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 CTRL_REG3_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 CTRL_REG4_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 CTRL_REG4_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 CTRL_REG5_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 CTRL_REG5_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 OUT_TEMP_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 OUT_TEMP_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 FIFO_CTRL_REG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 FIFO_CTRL_REG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 FIFO_SRC_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 FIFO_SRC_REG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 INT1_SRC_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 INT1_THS_XH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Doc ID 022562 Rev 2 7/66 List of tables Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. 8/66 LSM330D INT1_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 INT1_THS_YH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 INT1_THS_YL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 INT1_THS_YL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 INT1_THS_ZH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 LGA-28L (3x5.5x1.0 mm) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Doc ID 022562 Rev 2 LSM330D List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. LSM330D block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Gyroscope block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Trigger stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Level-sensitive trigger stamping (LVLen = 1; EXTRen = 0) . . . . . . . . . . . . . . . . . . . . . . . . 24 Edge-sensitive trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 LSM330D electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Multiple-byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LGA-28L (3x5.5x1.0 mm) drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Doc ID 022562 Rev 2 9/66 Block diagram and pin description LSM330D 1 Block diagram and pin description 1.1 Block diagram Figure 1. LSM330D block diagram Sensing Block Sensing Interface CS_A X+ Y+ CS_G CHARGE AMPLIFIER Z+ SDA/SDI_A/G I (a) + A/D converter MUX Control Logic SDO_A I2C/SPI ZY- SDO_G SCL_A/G X- INT1_A X+ CHARGE AMPLIFIER Y+ INT2_A DEMODULATOR Z+ I (Ω) + MUX LOW-PASS FILTER - INT1_G DRDY_G/ INT2_G ZY- ANALOG CONDITIONING X- Feedback+ Feedback- AUTOMATIC GAIN CONTROL DriveVOLTAGE GAIN AMPLIFIER Drive+ REFERENCE CONTROL LOGIC & INTERRUPT GEN. TRIMMING CIRCUITS CLOCK PHASE GENERATOR AM10231v1 10/66 Doc ID 022562 Rev 2 18 X X GND SDA_A/G SDO_A DEN_G RES 4 15 14 DIRECTION OF DETECTABLE ANGULAR RATES RES 5 FILTIN Y GND DRDY_G/INT2_G RES RES VDD X VDD 1 INT1_G VDD +Ω +Ω z 1 LSM330D (BOTTOM FILTVDD VIEW) INT2_A RES +Ω Y 28 19 INT1_A Z SDO_G DIRECTION OF DETECTABLE ACCELERATIONS Vdd_IO Vdd_IO X 1 RES Z RES Y SCL_A/G Pin connection RES Figure 2. RES Pin description RES 1.2 CS_A Block diagram and pin description CS_G LSM330D AM10232V1 Table 2. Pin description Pin# Name Function 1 Res Reserved connect to GND 2 Res Reserved connect to GND 3 Res Reserved connect to GND 4 Res Reserved connect to GND 5 GND 0 V supply 6 Vdd Power supply 7 Vdd Power supply 8 Vdd Power supply 9 Res Reserved connect to Vdd 10 Res Reserved connect to Vdd 11 Res Reserved connect to Vdd 12 Res Reserved connect to Vdd 13 Res Reserved connect to Vdd 14 Res Leave unconnected 15 DRDY_G/ INT2_G 16 INT1_G Gyroscope interrupt signal 1 17 INT2_A Accelerometer interrupt signal 2 18 INT1_A Accelerometer interrupt signal 1 19 Vdd_IO Power supply for IO pins Gyroscope data ready/interrupt signal 2 Doc ID 022562 Rev 2 11/66 Block diagram and pin description Table 2. Pin# 20 LSM330D Pin description (continued) Name CS_G Function Gyroscope: SPI enable I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) Accelerometer: SPI enable 12/66 I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) 21 CS_A 22 SCL_A/G 23 Vdd_IO Power supply for IO pins 24 SDO_G Gyroscope: SPI serial data output (SDO) / I2C least significant bit of the device address (SA0) 25 SDO_A Accelerometer :SPI serial data output (SDO) / I2C least significant bit of the device address (SA0) 26 SDA_A/G 27 DEN_G 28 GND I2C serial clock (SCL) SPI serial port clock (SPC) I2C serial data (SDA) / SPI serial data input (SDI) 3-wire interface serial data output (SDO) Gyroscope data enable 0 V supply Doc ID 022562 Rev 2 LSM330D Module specifications 2 Module specifications 2.1 Mechanical characteristics @ Vdd = 3V, T = 25 °C unless otherwise noted (a) Table 3. Symbol Mechanical characteristics Parameter Test conditions Min. Typ.(1) Max. Unit ±2 LA_FS Linear acceleration measurement range(2) User-selectable ±4 g ±8 ±16 ±250 G_FS Angular rate measurement range(3) User-selectable ±500 dps ±2000 LA_So G_So LA_So Linear acceleration sensitivity Angular rate sensitivity Linear acceleration sensitivity change vs. temperature FS = ±2 g 1 FS = ±4 g 2 FS = ±8 g 4 FS = ±16 g 12 FS = ±250 dps 8.75 FS = ±500 dps 17.50 FS = ±2000 dps 70 FS = ±2 g mg/digit mdps/ digit ±0.05 %/°C G_SoDr Angular rate sensitivity change vs. From -40 °C to +85 °C temperature ±2 % LA_TyOff Linear acceleration typical zero-g level offset accuracy(3) FS bit set to 00 ±60 mg FS = 250 dps ±10 G_TyOff Angular rate typical zero-rate level(4) FS = 500 dps ±15 FS = 2000 dps ±25 Max delta from 25 °C ±0.5 mg/°C ±0.05 dps/°C LA_TCOff Linear acceleration zero-g level change vs. temperature G_TCOff Zero-rate level change vs. temperature An Acceleration noise density FS = ±2 g, Normal mode Table 9, ODR bit set to 1001 Table 19 220 dps µg/ Hz a. The product is factory calibrated at 3.0 V. The operational power supply range is from 2.4 V to 3.6 V. Doc ID 022562 Rev 2 13/66 Module specifications Table 3. LSM330D Mechanical characteristics (continued) Symbol Parameter Rn Rate noise density Top Operating temperature range Test conditions Min. Typ.(1) Max. 0.03 -40 Unit dps/ +85 Hz °C 1. Typical specifications are not guaranteed. 2. Verified by wafer level test and measurement of initial offset and sensitivity. 3. Typical zero-g level offset value after MSL3 preconditioning. 4. Offset can be eliminated by enabling the built-in high-pass filter. 2.2 Electrical characteristics @ Vdd = 3 V, T = 25 °C unless otherwise noted Table 4. Symbol Vdd Electrical characteristics Parameter Test conditions Min. Typ.(1) Max. Unit Supply voltage 2.4 3.6 V Vdd_IO Power supply for I/O 1.71 Vdd+0.1 V LA_Idd Accelerometer current consumption in Normal mode Accelerometer current LA_IddLowP consumption in Low power mode ODR = 50 Hz 11 ODR = 1 Hz 2 ODR = 50 Hz 6 µA µA LA_IddPdn Accelerometer current consumption in Power-down mode 0.5 µA G_Idd Gyroscope current consumption in Normal mode 6.1 mA Gyroscope supply current in Sleep mode(2) 2 mA Gyroscope current consumption in Power-down mode 5 µA G_IddLowP G_IddPdn VIH Digital high level input voltage VIL Digital low level input voltage VOH High level output voltage VOL Low level output voltage Top Operating temperature range 0.8*Vdd_IO 0.2*Vdd_IO 0.9*Vdd_IO -40 1. Typical specifications are not guaranteed. 2. Sleep mode introduces a faster turn-on time compared to Power-down mode. 14/66 V Doc ID 022562 Rev 2 V V 0.1*Vdd_IO V +85 °C LSM330D 2.3 Module specifications Temperature sensor characteristics @ Vdd = 3V, T = 25 °C unless otherwise noted (b) Table 5. Electrical characteristics Symbol Parameter TSDr Temperature sensor output change vs. temperature TODR Temperature refresh rate Top Test condition Typ.(1) Min. Max. °C/digit -1 - Operating temperature range Unit (2) 1 Hz -40 +85 °C 1. Typical specifications are not guaranteed. 2. 8-bit resolution. 2.4 Communication interface characteristics 2.4.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and TOP. Table 6. SPI slave timing values Value (1) Symbol Parameter Unit Min tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 6 th(CS) CS hold time 20 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) Max 100 ns 10 MHz ns 50 5 SDO output disable time 50 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results. Not tested in production. b. The product is factory calibrated at 3.0 V. Doc ID 022562 Rev 2 15/66 Module specifications Figure 3. CS LSM330D SPI slave timing diagram(c)(d) (3) (3) tc(SPC) tsu(CS) SPC th(CS) (3) (3) tsu(SI) SDI (3) th(SI) LSB IN MSB IN tv(SO) (3) SDO (3) tdis(SO) th(SO) MSB OUT LSB OUT (3) 3. Data on CS, SPC, SDI and SDO refer to pins: CS_A, CS_G, SCL_A/G, SDA_A/G, SDO_A / SDO_G. 2.4.2 I2C - inter IC control interface Subject to general operating conditions for Vdd and TOP. Table 7. I2C slave timing values Symbol f(SCL) I2C standard mode (1) Parameter(1) I2C fast mode (1) Unit SCL clock frequency Min Max Min Max 0 100 0 400 tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time KHz µs 0 ns 3.45 0 0.9 tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb (2) 300 tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb (2) 300 th(ST) START condition hold time 4 0.6 tsu(SR) Repeated START condition setup time 4.7 0.6 tsu(SP) STOP condition setup time 4 0.6 4.7 1.3 µs ns µs tw(SP:SR) Bus free time between STOP and START condition 1. SCL (SCL_A/G pin), SDA (SDA_A/G pin) 2. Cb = total capacitance of one bus line, in pF c. The SDO_A output line features an internal pull-up. d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. 16/66 Doc ID 022562 Rev 2 LSM330D Figure 4. Module specifications I2C slave timing diagram(e) 5(3($7(' 67$57 67$57 WVX 65 WZ 6365 6'$ WI 6'$ WVX 6'$ WU 6'$ 67$57 WK 6'$ WVX 63 6723 6&/ WK 67 WZ 6&// WZ 6&/+ WU 6&/ WI 6&/ !-V e. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports. Doc ID 022562 Rev 2 17/66 Module specifications 2.5 LSM330D Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 8. Absolute maximum ratings(1) Symbol Vdd Vdd_IO Vin Ratings Maximum value Unit Supply voltage -0.3 to 4.8 V I/O pins supply voltage -0.3 to 4.8 V -0.3 to Vdd_IO +0.3 V Input voltage on any control pin (SCL_A/G, SDA_A/G, SDO_A, SDO_G, CS_A, CS_G, DEN_G) 3000 g for 0.5 ms APOW Acceleration (any axis, powered, Vdd = 3 V) AUNP Acceleration (any axis, unpowered) TOP Operating temperature range -40 to +85 °C TSTG Storage temperature range -40 to +125 °C ESD Electrostatic discharge protection 2 (HBM) kV 10000 g for 0.1 ms 3000 g for 0.5 ms 10000 g for 0.1 ms 1. Supply voltage on any pin should never exceed 4.8 V. This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part. This is an ESD sensitive device, improper handling can cause permanent damage to the part. 18/66 Doc ID 022562 Rev 2 LSM330D Terminology 3 Terminology 3.1 Sensitivity Linear acceleration sensitivity can be determined e.g. by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors. Angular Rate Sensitivity describes the angular rate gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and also very little over time. 3.2 Zero level Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X axis and Y axes, whereas the Z axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Linear acceleration zero-g level change vs. temperature” in Table 3. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors. Angular rate zero-rate level describes the actual output value if there is no angular rate present. zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and over time. Doc ID 022562 Rev 2 19/66 Functionality 4 LSM330D Functionality The LSM330D is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope. The device includes specific sensing elements and two IC interfaces capable to measuring both the acceleration and angular rate applied to the module and to provide a signal to external applications through an SPI/I2C serial interface. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using a CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the sensing element characteristics. The LSM330D may also be configured to generate an inertial wakeup and free-fall interrupt signal according to a programmed acceleration event along the enabled axes. 4.1 Accelerometer 4.1.1 Normal mode, Low power mode The accelerometer sensor inside the LSM330D inertial module provides two different operating modes: Normal mode and Low power mode. Normal mode guarantees high resolution, while Low power mode further reduces current consumption. The table below summarizes how to select the operating mode and the corresponding characteristics. Table 9. Operating mode selection CTRL_REG1[3] CTRL_REG4[3] (LPen bit) (HR bit) Low power mode (8-bit) 1 Normal mode (12-bit) 0 Operating mode 4.1.2 BW [Hz] Turn-on time [ms] 0 ODR/2 1 1 ODR/9 7/ODR(kHz) Self-test Self-test allows the checking of sensor functionality without moving it. The self-test function is off when the self-test bit (ST) is programmed to ‘0’. When the self-test bit is programmed to ‘1’ an actuation force is applied to the sensor, simulating a definite input acceleration. In this case, the sensor outputs exhibit a change in their DC levels which are related to the selected full scale through the device sensitivity. When self-test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified in Table 3, then the sensor is working properly and the parameters of the interface chip are within the defined specifications. 20/66 Doc ID 022562 Rev 2 LSM330D 4.1.3 Functionality 6D/4D orientation detection The LSM330D includes 6D/4D orientation detection. In this configuration the interrupt is generated when the device is stable in a known direction. In 4D configuration, Z axis position detection is disabled. 4.1.4 “Sleep-to-wake” and “Return to sleep” The LSM330D can be programmed to automatically switch to Low power mode upon recognition of a determined event. Once the event condition is over, the device returns to the preset Normal mode. To enable this function, the desired threshold value must be stored in the Act_THS register, while the duration value is written in the Act_DUR register. When the internally high-pass filtered acceleration becomes lower than the threshold value on all the three axes, the device automatically switches to Low power mode (10Hz ODR). During this condition, the ODRx bits and LPen bit in the CTRL_REG1_G register and the HR bit in the CTRL_REG3_G register are not considered. When the acceleration goes back over the threshold (on at least one axis), the system restores the operating mode and ODRs as per the CTRL_REG1_G register and CTRL_REG3_G register settings. Accelerometer digital main blocks 4.1.5 FIFO The LSM330D embeds 32 slots of data FIFO for each of the three output channels: X, Y and Z. This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO. This buffer can work accordingly in four different modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits in the FIFO_CTRL_REG_A register. Programmable watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated interrupts on the INT1_A/INT2_A pin (configured through the FIFO_CTRL_REG_A register). 4.1.6 Bypass mode In Bypass mode, the FIFO is not operational and for this reason it remains empty. For each channel only the first address is used. The remaining FIFO slots are empty. 4.1.7 FIFO mode In FIFO mode, data from the X, Y and Z channels are stored into the FIFO. A watermark interrupt can be enabled (FIFO_WTMK_EN bit in the FIFO_CTRL_REG_A register in order to be raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits of the FIFO_CTRL_REG_A register. The FIFO continues filling until it is full (32 slots of data for X, Y and Z). When full, the FIFO stops collecting data from the input channels. Doc ID 022562 Rev 2 21/66 Functionality 4.1.8 LSM330D Stream mode In Stream mode, data from X, Y and Z measurement are stored into the FIFO. A watermark interrupt can be enabled and set as in FIFO mode.The FIFO continues filling until it is full (32 slots of data for X, Y and Z). When full, the FIFO discards the older data as the new data arrives. 4.1.9 Stream-to-FIFO mode In Stream-to-FIFO mode, data from X, Y and Z measurement is stored in the FIFO. A watermark interrupt can be enabled (FIFO_WTMK_EN bit in the FIFO_CTRL_REG_A register) in order to be raised when the FIFO is filled to the level specified in the FIFO_WTMK_LEVEL bits of the FIFO_CTRL_REG_A register. The FIFO continues filling until it is full (32 slots of 8 -bit data for X, Y and Z). When full, the FIFO discards the older data as the data new arrives. Once trigger event occurs, the FIFO starts operating in FIFO mode. 4.1.10 Retrieve data from FIFO FIFO data is read through OUT_X_L_A, OUT_X_H_A, OUT_Y_L_A, OUT_Y_H_A and OUT_Z_L _A, OUT_Z_H_A. When the FIFO is in Stream, Trigger or FIFO mode, a read operation to the OUT_X_L_A, OUT_X_H_A, OUT_Y_L_A, OUT_Y_H_A or OUT_Z_L _A, OUT_Z_H_A registers provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest X, Y and Z data are placed in the OUT_X_L_A, OUT_X_H_A, OUT_Y_L_A, OUT_Y_H_A and OUT_Z_L _A, OUT_Z_H_A registers and both single read and read_burst operations can be used. 22/66 Doc ID 022562 Rev 2 LSM330D 4.2 Functionality Gyroscope digital main blocks Figure 5. Gyroscope block diagram Out_Sel 00 01 0 LPF2 ADC LPF1 HPF 10 11 DataReg FIFO 32x16x3 I2C SPI 1 HPen INT_Sel 10 11 01 Interrupt generator 00 SCR REG CONF REG INT1 AM07230v1 4.3 FIFO The LSM330D embeds 32 slots of 16-bit data FIFO for each of the three output channels: yaw, pitch and roll. This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but can wake up only when needed and burst the significant data out from the FIFO. This buffer can work accordingly in five different modes: Bypass mode, FIFO mode, Stream mode, Bypass-toStream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits in the FIFO_CTRL_REG_G register. Programmable watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated interrupts on the DRDY_G/INT2_G pin (configured through the CTRL_REG3_G register) and event detection information is available in the FIFO_SRC_REG_G register. Watermark level can be configured to WTM4:0 in the FIFO_CTRL_REG_G register. 4.3.1 Bypass mode In Bypass mode, the FIFO is not operational and for this reason it remains empty. As described in Figure 6 below, for each channel only the first address is used. The remaining FIFO slots are empty. When new data is available the old data is overwritten. Doc ID 022562 Rev 2 23/66 Functionality Bypass mode xi,yi,zi empty x0 y0 z0 x1 y1 z1 x2 y2 z2 x 31 y 31 l Figure 6. LSM330D z31 AM07231v1 4.3.2 FIFO mode In FIFO mode, data from the yaw, pitch and roll channels is stored in the FIFO. A watermark interrupt can be enabled (I2_WMK bit in the CTRL_REG3_G register) in order to be raised when the FIFO is filled to the level specified in the WTM 4:0 bits of the FIFO_CTRL_REG_G register. The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO stops collecting data from the input channels. To restart data collection, the FIFO_CTRL_REG_G register must be written back to Bypass mode. FIFO mode is represented in Figure 7: FIFO mode. 24/66 Doc ID 022562 Rev 2 LSM330D Functionality Figure 7. FIFO mode xi,yi,zi x0 y0 z0 x1 y1 z1 x2 y2 z2 x 31 y 31 z31 AM07232v1 4.3.3 Stream mode In Stream mode, data from yaw, pitch and roll measurement is stored in the FIFO. A watermark interrupt can be enabled and set as in FIFO mode.The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as the new data arrives. Programmable watermark level events can be enabled to generate dedicated interrupts on the DRDY_G/INT2_G pin (configured through the CTRL_REG3_G register. Stream mode is represented in Figure 8: Stream mode. Doc ID 022562 Rev 2 25/66 Functionality LSM330D Figure 8. Stream mode xi,yi,zi x0 y0 z0 x1 y1 z1 x2 y2 z2 x 30 y 30 z30 x 31 y 31 z31 AM07234v1 26/66 Doc ID 022562 Rev 2 LSM330D 4.3.4 Functionality Bypass-to-stream mode In Bypass-to-stream mode, the FIFO starts operating in Bypass mode and once a trigger event occurs (related to INT1_CFG_G register events) the FIFO starts operating in Stream mode. Refer to Figure 9 below. Figure 9. xi,yi,zi Empty Bypass-to-stream mode x0 y 0i z0 x1 y1 z1 x2 y2 z2 x 31 y 31 xi,yi,zi y0 z0 x1 y1 z1 x2 y2 z2 x 30 y 30 z30 x 31 y 31 z31 z31 Bypass mode Stream mode Trigger event 4.3.5 x0 AM07235v1 Stream-to-FIFO mode In Stream-to-FIFO mode, data from yaw, pitch and roll measurement is stored in the FIFO. A watermark interrupt can be enabled on pin DRDY/INT2 by setting the I2_WTM bit in CTRL_REG3_G register to be raised when the FIFO is filled to the level specified in the WTM4:0 bits of the FIFO_CTRL_REG_G register. The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as the new data arrives. Once a trigger event occurs (related to INT1_CFG_G register events), the FIFO starts operating in FIFO mode. Refer to Figure 10: Trigger stream mode. Doc ID 022562 Rev 2 27/66 Functionality LSM330D Figure 10. Trigger stream mode xi,yi,zi x0 y0 z0 x1 y1 z1 x2 y2 z2 x 30 y 30 z30 x 31 y 31 z31 xi,yi,zi Stream Mode x0 y 0i z0 x1 y1 z1 x2 y2 z2 x 31 y 31 z31 FIFO Mode Trigger event AM07236v1 4.3.6 Retrieve data from FIFO FIFO data is read through OUT_X_L_G, OUT_X_H_G, OUT_Y_L_G, OUT_Y_H_G and OUT_Z_L_G, OUT_Z_H_G. When the FIFO is in Stream, Trigger or FIFO mode, a read operation to the OUT_X_L_G, OUT_X_H_G, OUT_Y_L_G, OUT_Y_H_G or OUT_Z_L_G, OUT_Z_H_G registers provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest pitch, roll and yaw data are placed in the OUT_X_L_G, OUT_X_H_G, OUT_Y_L_G, OUT_Y_H_G and OUT_Z_L_G, OUT_Z_H_G registers and both single read and read_burst (X,Y & Z with autoincremental address) operations can be used. When data included in OUT_Z_H_G is read, the system again starts to read information from addr OUT_X_L _G. 4.4 Level-sensitive / Edge-sensitive data enable The LSM330D allows external trigger level recognition through the enabling of the EXTRen and LVLen bits in the CTRL_REG2_G register. Two different modes can be used: levelsensitive or Edge-sensitive trigger. 28/66 Doc ID 022562 Rev 2 LSM330D Functionality Figure 11. Level-sensitive trigger stamping (LVLen = 1; EXTRen = 0) Level-sensitive Trigger enabled on X-Axis Xen=1,Yen=Zen=0 Level-sensitive Trigger enabled on Y-axis Yen=1, Xen=Zen=0 Level-sensitive Trigger enabled on Z-axis Zen=1, Xen=Yen=0 xi,yi,zi xi,yi,zi xi,yi,zi xi(15-1) D E N xi-N+1 (15-1) D E N Zi(15-0) yi(15-0) yi-N+1 zi-N+1 (15-0) (15-0) yi(15-1) D E N Zi(15-0) xi-N+1 (15-0) yi-N+1 (15-1) D E N Zi-N+1 (15-0) xi(15-0) yi(15-0) xi-N+1 yi-N+1 (15-0) xi(15-0) (15-0) Zi(15-1) D E N zi-N+1 (15-1) D E N AM10162V1 4.4.1 Level-sensitive trigger stamping Once enabled, DEN level replaces the LSb of the X, Y or Z axes, configurable through the Xen, Yen, Zen bits in the CTRL_REG1_G register. Data is stored in the FIFO with the internally-selected ODR. 4.4.2 Edge-sensitive trigger Once enabled by setting EXTRen = 1, FIFO is filled with the pitch, roll and yaw data on the rising edge of the DEN input signal. When selected ODR is 800 Hz, the maximum DEN sample frequency is fDEN = 1/TDEN = 400 Hz. Doc ID 022562 Rev 2 29/66 Functionality LSM330D Figure 12. Edge-sensitive trigger 4.5 Factory calibration The IC interface is factory calibrated for sensitivity and zero level. The trimming values are stored in the device in non volatile memory. Any time the device is turned on, the trimming parameters are downloaded to the registers to be used during normal operation. This allows use of the device without further calibration. 30/66 Doc ID 022562 Rev 2 LSM330D 5 Application hints Application hints Figure 13. LSM330D electrical connection Vdd_IO C3 100 nF GND GND DEN SDA_A/G SDO_A SDO_G VDD_IO SCL_A/G CS_A CS_G Vdd_IO 18 1 LSM330D (BOTTOM FILTVDD VIEW) INT2_A INT1_G DRDY_G DIRECTION OF DETECTABLE ACCELERATIONS RES 4 Z RES +Ω Y 5 FILTIN Y Vdd +Ω z 1 GND VDD VDD VDD RES RES RES RES RES RES C2 10 µF +Ω X X X GND 100 nF GND X 1 RES RES 15 14 C1 Z 28 19 INT1_A Y DIRECTION OF DETECTABLE ANGULAR RATE GND Digital signal from/to signal controller.Signals levels are defined by proper selection of Vdd AM10233V1 5.1 External capacitors The device core is supplied through Vdd line. Power supply decoupling capacitors (C1=C3 = 100 nF ceramic, C2=10 µF Al) should be placed as near as possible to the supply pin of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 13). The functionality of the device and the measured acceleration/angular rate data are selectable and accessible through the SPI/I2C interface. The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user though the SPI/I2C interface. 5.2 Soldering information The LGA package is compliant with ECOPACK®, RoHS and “Green” standards. It is qualified for soldering heat resistance according to JEDEC J-STD-020D. Leave “Pin 1 Indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com/mems. Doc ID 022562 Rev 2 31/66 Digital interfaces 6 LSM330D Digital interfaces The registers embedded in the LSM330D may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. To select/exploit the I2C interface, the CS line must be tied high (i.e. connected to Vdd_IO). Table 10. Serial interface pin description Pin name CS_A Linear acceleration SPI enable Linear acceleration I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) CS_G Angular rate SPI enable Angular rate I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) SCL_A/G I2C serial clock (SCL) SPI serial port clock (SPC) SDA_A/G I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) SDO_A SDO_G 6.1 Pin description I2C least significant bit of the device address (SA0) SPI serial data output (SDO) I2C serial interface The LSM330D I2C is a bus slave. The I2C is employed to write the data to the registers, whose content can also be read back. The relevant I2C terminology is provided in the table below. Table 11. Serial interface pin description Term Transmitter Receiver Description The device which sends data to the bus The device which receives data from the bus Master The device which initiates a transfer, generates clock signals and terminates a transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the Serial Clock Line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. 32/66 Doc ID 022562 Rev 2 LSM330D 6.1.1 Digital interfaces I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits, and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded in the LSM330D behaves like a slave device and the following protocol must be adhered to. After the start condition (ST), a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSb represent the actual register address while the MSb enables address auto increment. If the MSb of the SUB field is ‘1’, the SUB (register address) will be automatically increased to allow multiple data read/write. Table 12. Transfer when master is writing one byte to slave Master ST SAD + W SUB Slave SAK Table 13. Master SAD + W Slave SAK DATA DATA SAK SAK SP SAK Transfer when master is receiving (reading) one byte of data from slave ST SAD + W Slave Master SAK SUB SAK Table 14. Table 15. SP Transfer when master is writing multiple bytes to slave ST Slave Master DATA SUB SAK SR SAD + R SAK NMAK SAK SP DATA Transfer when master is receiving (reading) multiple bytes of data from slave ST SAD+W SUB SAK SR SAD+R SAK MAK SAK DATA MAK DATA NMAK SP DATA Data is transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes sent per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL, LOW to force the transmitter into a wait state. Doc ID 022562 Rev 2 33/66 Digital interfaces LSM330D Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read. In the communication format presented, MAK is Master Acknowledge and NMAK is No Master Acknowledge. Default address: The SDO/SA0 pin (SDO_A / SDO_G) can be used to modify the least significant bit of the device address. If the SA0 pad is connected to voltage supply, the LSb is ‘1’ (ex. address 0011001b), otherwise if the SA0 pad is connected to ground, the LSb value is ‘0’ (ex address 0011000b). The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition will have to be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the master will transmit to the slave with direction unchanged. Table 16 and 17 explain how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Linear acceleration address: the default (factory) 7-bit slave address is 001100xb. Table 16. Linear acceleration SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SDO_A pin R/W SAD+R/W Read 001100 0 1 00110001 (31h) Write 001100 0 0 00110000 (30h) Read 001100 1 1 00110011 (33h) Write 001100 1 0 00110010 (32h) Angular rate sensor: the default (factory) 7-bit slave address is 110101xb. Table 17. 34/66 Angular rate SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SDO_G pin R/W Read 110101 0 1 11010101 (D5h) Write 110101 0 0 11010100 (D4h) Read 110101 1 1 11010111 (D7h) Write 110101 1 0 11010110 (D6h) Doc ID 022562 Rev 2 SAD+R/W LSM330D 6.2 Digital interfaces SPI bus interface The LSM330D SPI is a bus slave. The SPI allows writing and reading the registers of the device. The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and SDO (SPC, SDI, SD0 are common). Figure 14. Read and write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 AM10129V1 CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the transmission and returns high at the end. SPC is the serial port clock and is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. These lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple-byte read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS, while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip drives SDO at the start of bit 8. bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto-incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (Write mode). This is the data that will be written to the device (MSb first). bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb first). In multiple read/write commands, further blocks of 8 clock periods will be added. When the MS bit is ‘0’, the address used to read/write data remains the same for every block. When the MS bit is ‘1’, the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. Doc ID 022562 Rev 2 35/66 Digital interfaces 6.2.1 LSM330D SPI read Figure 15. SPI read protocol CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 AM10130V1 The SPI read command is performed with 16 clock pulses. A multiple-byte read command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple reading. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb first). bit 16-... : data DO(...-8). Further data in multiple-byte reading. Figure 16. Multiple-byte SPI read protocol (2-byte example) CS SPC SDI RW M S A D5 A D4 AD 3 A D2 A D1 A D0 SD O DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0 DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8 AM10131V1 36/66 Doc ID 022562 Rev 2 LSM330D 6.2.2 Digital interfaces SPI write Figure 17. SPI write protocol CS SPC SDI D I7 D I6 D I5 D I4 DI3 DI2 DI1 DI0 RW MS AD5 AD 4 AD 3 AD2 AD 1 AD0 AM10132V1 The SPI write command is performed with 16 clock pulses. A multiple-byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple writing. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (Write mode). This is the data that will be written to the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple-byte writing. Figure 18. Multiple bytes SPI write protocol (2 bytes example) CS SPC SDI DI7 D I6 DI5 D I4 DI3 DI2 DI1 DI0 DI15 D I1 4DI13 D I1 2DI11 DI10 DI9 DI8 RW MS AD5 AD4 AD3 AD2 AD1 AD 0 AM10133V1 6.2.3 SPI read in 3-wire mode 3-wire mode is entered by setting the SIM bit to ‘1’ (SPI serial interface mode selection) in the CTRL_REG4_G register. Doc ID 022562 Rev 2 37/66 Digital interfaces LSM330D Figure 19. SPI read protocol in 3-wire mode CS SPC SDI/O D O7 D O6 D O5 DO4 DO3 DO2 DO1 DO0 RW MS AD5 AD 4 AD 3 AD2 AD1 AD 0 AM10134V1 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple reading. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb first). Multiple read command is also available in 3-wire mode. 38/66 Doc ID 022562 Rev 2 LSM330D 7 Register mapping Register mapping The table below provides a listing of the 8-bit registers embedded in the device, and their related addresses: Table 18. Register address map Name Slave address Register address Type Default Hex Reserved (do not modify) Table 16 00 - 1F CTRL_REG1_A Table 16 rw 20 010 0000 00000111 CTRL_REG2_A Table 16 rw 21 010 0001 00000000 CTRL_REG3_A Table 16 rw 22 010 0010 00000000 CTRL_REG4_A Table 16 rw 23 010 0011 00000000 CTRL_REG5_A Table 16 rw 24 010 0100 00000000 CTRL_REG6_A Table 16 rw 25 010 0101 00000000 REFERENCE_A Table 16 rw 26 010 0110 00000000 STATUS_REG_A Table 16 r 27 010 0111 Output OUT_X_L_A Table 16 r 28 010 1000 Output OUT_X_H_A Table 16 r 29 010 1001 Output OUT_Y_L_A Table 16 r 2A 010 1010 Output OUT_Y_H_A Table 16 r 2B 010 1011 Output OUT_Z_L_A Table 16 r 2C 010 1100 Output OUT_Z_H_A Table 16 r 2D 010 1101 Output FIFO_CTRL_REG Table 16 rw 2E 010 1110 00000000 FIFO_SRC_REG Table 16 r 2F 010 1111 Output INT1_CFG_A Table 16 rw 30 011 0000 00000000 INT1_SOURCE_A Table 16 r 31 011 0001 Output INT1_THS_A Table 16 rw 32 011 0010 00000000 INT1_DURATION_A Table 16 rw 33 011 0011 00000000 INT2_CFG_A Table 16 rw 34 011 0100 00000000 INT2_SOURCE_A Table 16 r 35 011 0101 Output INT2_THS_A Table 16 rw 36 011 0110 00000000 INT2_DURATION_A Table 16 rw 37 011 0111 00000000 CLICK_CFG_A Table 16 rw 38 011 1000 00000000 CLICK_SRC_A Table 16 rw 39 011 1001 Output CLICK_THS_A Table 16 rw 3A 011 1010 00000000 TIME_LIMIT_A Table 16 rw 3B 011 1011 00000000 Doc ID 022562 Rev 2 Comment Binary Reserved 39/66 Register mapping Table 18. LSM330D Register address map (continued) Register address Slave address Type TIME_LATENCY_A Table 16 TIME_WINDOW_A Name Default Hex Binary rw 3C 011 1100 00000000 Table 16 rw 3D 011 1101 00000000 Act_THS Table 16 rw 3E 011 1110 00000000 Act_DUR Table 16 rw 3F 011 1111 00000000 Reserved Table 17 - 00-1E - - WHO_AM_I_G Table 17 rw 0F 0001111 11010100 Reserved Table 17 rw 10-1F - - CTRL_REG1_G Table 17 rw 20 010 0000 00000111 CTRL_REG2_G Table 17 rw 21 010 0001 00000000 CTRL_REG3_G Table 17 rw 22 010 0010 00000000 CTRL_REG4_G Table 17 rw 23 010 0011 00000000 CTRL_REG5_G Table 17 r 24 010 0100 00000000 REFERENCE_G Table 17 r 25 010 0101 00000000 OUT_TEMP_G Table 17 r 26 010 0110 Output STATUS_REG_G Table 17 r 27 010 0111 Output OUT_X_L_G Table 17 r 28 010 1000 Output OUT_X_H_G Table 17 r 29 010 1001 Output OUT_Y_L_G Table 17 r 2A 010 1010 Output OUT_Y_H_G Table 17 r 2B 010 1011 Output OUT_Z_L_G Table 17 rw 2C 010 1100 Output OUT_Z_H_G Table 17 r 2D 010 1101 Output FIFO_CTRL_REG_G Table 17 rw 2E 010 1110 00000000 FIFO_SRC_REG_G Table 17 r 2F 010 1111 Output INT1_CFG_G Table 17 rw 30 000 0000 Output INT1_SRC_G Table 17 rw 31 011 0001 Output INT1_TSH_XH_G Table 17 rw 32 011 0010 00000000 INT1_TSH_XL_G Table 17 rw 33 011 0011 00000000 INT1_TSH_YH_G Table 17 rw 34 011 0100 00000000 INT1_TSH_YL_G Table 17 rw 35 011 0101 00000000 INT1_TSH_ZH_G Table 17 rw 36 011 0110 00000000 INT1_TSH_ZL_G Table 17 rw 37 011 0111 00000000 INT1_DURATION_G Table 17 rw 38 011 1000 00000000 40/66 Doc ID 022562 Rev 2 Comment Reserved LSM330D Register mapping Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up. Doc ID 022562 Rev 2 41/66 Register descriptions 8 LSM330D Register descriptions The device contains a set of registers which are used to control its behavior and to retrieve acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface. 8.1 CTRL_REG1_A (20h) Table 19. CTRL_REG1_A register ODR3 ODR2 Table 20. ODR1 ODR0 LPen Zen Yen Xen CTRL_REG1_A description Data rate selection. Default value: 0 (0000: Power-down; Others: refer to Table 21, “Data rate configuration”) ODR3-0 LPen Low power mode enable. Default value: 0 (0: Normal mode, 1: Low power mode) Zen Z axis enable. Default value: 1 (0: Z axis disabled; 1: Z axis enabled) Yen Y axis enable. Default value: 1 (0: Y axis disabled; 1: Y axis enabled) Xen X axis enable. Default value: 1 (0: X axis disabled; 1: X axis enabled) ODR is used to set the power mode and ODR selection. Table 21 below provides all the frequencies resulting from the ODR combinations. Table 21. Data rate configuration ODR3 42/66 ODR2 ODR1 ODR0 Power mode selection 0 0 0 0 Power-down mode 0 0 0 1 Normal / Low power mode (1 Hz) 0 0 1 0 Normal / Low power mode (10 Hz) 0 0 1 1 Normal / Low power mode (25 Hz) 0 1 0 0 Normal / Low power mode (50 Hz) 0 1 0 1 Normal / Low power mode (100 Hz) 0 1 1 0 Normal / Low power mode (200 Hz) 0 1 1 1 Normal / Low power mode (400 Hz) 1 0 0 0 Low power mode (1.620 kHz) 1 0 0 1 Normal (1.344 kHz) / Low power mode (5.376 kHz) Doc ID 022562 Rev 2 LSM330D 8.2 Register descriptions CTRL_REG2_A (21h) Table 22. CTRL_REG2_A register HPM1 HPM0 Table 23. HPCF1 FDS HPCLICK HPIS2 HPIS1 CTRL_REG2_A description HPM1 -HPM0 High-pass filter mode selection. Default value: 00 Refer to Table 24, “High pass filter mode configuration” HPCF2 HPCF1 High-pass filter cut-off frequency selection FDS Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO) HPCLICK High-pass filter enabled for CLICK function. (0: filter bypassed; 1: filter enabled) HPIS2 High-pass filter enabled for AOI function on interrupt 2, (0: filter bypassed; 1: filter enabled) HPIS1 High-pass filter enabled for AOI function on interrupt 1, (0: filter bypassed; 1: filter enabled) Table 24. High-pass filter mode configuration HPM1 8.3 HPCF2 HPM0 High-pass filter mode 0 0 Normal mode (reset reading HP_RESET_FILTER) 0 1 Reference signal for filtering 1 0 Normal mode 1 1 Autoreset on interrupt event CTRL_REG3_A (22h) Table 25. I1_CLICK CTRL_REG3_A register I1_AOI1 0(1) I1_DRDY1 I1_DRDY2 I1_WTM I1_OVERRUN -- 1. This bit has to be set ‘0’ for correct operation Table 26. CTRL_REG3_A description I1_CLICK CLICK interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable) I1_AOI1 AOI1 interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable) Doc ID 022562 Rev 2 43/66 Register descriptions Table 26. 8.4 LSM330D CTRL_REG3_A description (continued) I1_DRDY1 DRDY1 interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable) I1_DRDY2 DRDY2 interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable) I1_WTM FIFO watermark interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable) I1_OVERRUN FIFO Overrun interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable) CTRL_REG4_A (23h) Table 27. 0(1) CTRL_REG4_A register BLE FS1 FS0 HR 0(1) 0(1) SIM 1. This bit must be set to ‘0’ for correct operation. Table 28. 8.5 CTRL_REG4_A description BLE Big/little endian data selection. Default value 0. (0: Data LSb @ lower address; 1: Data MSb @ lower address) FS1-FS0 Full Scale selection. default value: 00 (00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G) HR High resolution output mode: Default value: 0 (0: High resolution disable; 1: High resolution enable) SIM SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface). CTRL_REG5_A (24h) Table 29. BOOT CTRL_REG5_A register FIFO_EN -- -- LIR_INT1 D4D_INT1 1. This bit must be set to ‘0’ for correct operation. Table 30. 44/66 CTRL_REG5_A description BOOT Reboot memory content. Default value: 0 (0: Normal mode; 1: reboot memory content) FIFO_EN FIFO enable. Default value: 0 (0: FIFO disable; 1: FIFO Enable) Doc ID 022562 Rev 2 0(1) 0(1) LSM330D Register descriptions Table 30. 8.6 CTRL_REG5_A description (continued) LIR_INT1 Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by reading INT1_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) D4D_INT1 4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set to 1. CTRL_REG6_A (25h) Table 31. CTRL_REG6_A register I2_CLICKen I2_INT1 0(1) BOOT_I2 0(1) -- H_LACTIVE -- 1. This bit must be set to ‘0’ for correct operation. Table 32. 8.7 CTRL_REG6 description I2_CLICKen Click interrupt on INT2_A. Default value 0. I2_INT1 Interrupt 1 function enabled on INT2_A. Default 0. BOOT_I2 Boot on INT2_A. H_LACTIVE 0: interrupt active high; 1: interrupt active low. REFERENCE_A (26h) Table 33. Ref7 Table 34. REFERENCE_A register Ref6 Ref4 Ref3 Ref2 Ref1 Ref0 REFERENCE_A register description Ref 7-Ref0 8.8 Ref5 Reference value for interrupt generation. Default value: 0 STATUS_REG_A (27h) Table 35. ZYXOR Table 36. STATUS_REG_A register ZOR YOR XOR ZYXDA ZDA YDA XDA STATUS_REG_A register description ZYXOR X, Y and Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous data) ZOR Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data) Doc ID 022562 Rev 2 45/66 Register descriptions Table 36. 8.9 LSM330D STATUS_REG_A register description (continued) YOR Y axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data) XOR X axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data) ZYXDA X, Y and Z axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) OUT_X_L_A, OUT_X_H_A X-axis acceleration data. The value is expressed in two’s complement. 8.10 OUT_Y_L_A, OUT_Y_H_A Y-axis acceleration data. The value is expressed in two’s complement. 8.11 OUT_Z_L _A, OUT_Z_H_A Z-axis acceleration data. The value is expressed in two’s complement. 8.12 FIFO_CTRL_REG_A (2Eh) Table 37. FM1 Table 38. 46/66 FIFO_CTRL_REG_A register FM0 TR FTH4 FTH3 FTH2 FTH1 FTH0 FIFO_CTRL_REG_A register description FM1-FM0 FIFO mode selection. Default value: 00 (see Table 39: FIFO mode configuration) TR Trigger selection. Default value: 0 0: Trigger event linked to trigger signal on INT1_A 1: Trigger event linked to trigger signal on INT2_A FTH4:0 Default value: 0 Doc ID 022562 Rev 2 LSM330D Register descriptions Table 39. FIFO mode configuration FM1 8.13 FIFO mode 0 0 Bypass mode 0 1 FIFO mode 1 0 Stream mode 1 1 Trigger mode FIFO_SRC_REG_A (2Fh) Table 40. WTM FIFO_SRC_REG_A register OVRN_FIFO Table 41. 8.14 FM0 EMPTY FSS4 FSS3 FSS2 FSS1 FSS0 FIFO_SRC_REG_A description WTM WTM bit is set high when FIFO content exceeds watermark level OVRN_FIFO OVRN bit is set high when FIFO buffer is full, this means that the FIFO buffer contains 32 unread samples. At the following ODR a new sample set replaces the oldest FIFO value. The OVRN bit is reset when the first sample set has been read EMPTY EMPTY flag is set high when all FIFO samples have been read and FIFO is empty FSS4-0 FSS[4:0] field always contains the current number of unread samples stored in the FIFO buffer. When FIFO is enabled, this value increases at ODR frequency until the buffer is full, whereas, it decreases every time that one sample set is retrieved from FIFO INT1_CFG_A (30h) Table 42. AOI 6D Table 43. INT1_CFG_A register ZHIE/ ZUPE ZLIE/ ZDOWNE YHIE/ YUPE YLIE/ YDOWNE XHIE/ XUPE XLIE/ XDOWNE INT1_CFG_A description AOI And/Or combination of interrupt events. Default value: 0. Refer to Table 44: Interrupt mode, “Interrupt mode” 6D 6 direction detection function enabled. Default value: 0. Refer to Table 44: Interrupt mode ZHIE/ ZUPE Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request) ZLIE/ ZDOWNE Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request) Doc ID 022562 Rev 2 47/66 Register descriptions Table 43. LSM330D INT1_CFG_A description (continued) YHIE/ YUPE Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) YLIE/ YDOWNE Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) XHIE/ XUPE Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) XLIE/XDOWNE Enable interrupt generation on X low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) The content of this register is loaded at boot. A write operation at this address is possible only after system boot. . Table 44. Interrupt mode AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6 direction movement recognition 1 0 AND combination of interrupt events 1 1 6 direction position recognition The difference between AOI-6D = ‘01’ and AOI-6D = ‘11’. AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation moves from “unknown zone” to “known zone”. The interrupt signal remains for an ODR duration. AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is inside a “known zone”. The interrupt signal remains until orientation is within the zone. 8.15 INT1_SRC_A (31h) Table 45. 0(1) INT1_SRC_A register IA ZH ZL YH YL XH XL 1. This bit must be set to ‘0’ for correct operation. Table 46. 48/66 INT1_SRC_A description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z High event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z Low event has occurred) Doc ID 022562 Rev 2 LSM330D Register descriptions Table 46. INT1_SRC_A description (continued) YH Y high. Default value: 0 (0: no interrupt, 1: Y High event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y Low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X High event has occurred) XL X low. Default value: 0 (0: no interrupt, 1: X Low event has occurred) Interrupt 1 source register. Read only register. Reading at this address clears INT1_SRC_A IA bit (and the interrupt signal on INT 1 pin) and allows the refreshing of the data in the INT1_SRC_A register if the latched option was chosen. 8.16 INT1_THS_A (32h) Table 47. INT1_THS_A register 0(1) THS6 THS5 THS4 THS3 THS2 THS1 THS0 D2 D1 D0 1. This bit has to be set ‘0’ for correct operation. Table 48. INT1_THS_A description THS6 - THS0 8.17 Interrupt 1 threshold. Default value: 000 0000 INT1_DURATION_A (33h) Table 49. 0(1) INT1_DURATION_A register D6 D5 D4 D3 1. This bit must be set ‘0’ for correct operation. Table 50. D6 - D0 INT1_DURATION_A description Duration value. Default value: 000 0000 D6 - D0 bits set the minimum duration of the Interrupt 1 event to be recognized. Duration steps and maximum values depend on the ODR chosen. Doc ID 022562 Rev 2 49/66 Register descriptions 8.18 CLICK_CFG _A (38h) Table 51. -- Table 52. 8.19 CLICK_CFG_A register -- ZD ZS YD YS XD XS CLICK_CFG_A description ZD Enable interrupt double CLICK on Z axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZS Enable interrupt single CLICK on Z axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YD Enable interrupt double CLICK on Y axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YS Enable interrupt single CLICK on Y axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XD Enable interrupt double CLICK on X axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XS Enable interrupt single CLICK on X axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) CLICK_SRC_A (39h) Table 53. -- Table 54. 50/66 LSM330D CLICK_SRC_A register IA DCLICK SCLICK Sign Z Y X CLICK_SRC_A description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) DCLICK Double CLICK-CLICK enable. Default value: 0 (0:double CLICK-CLICK detection disable, 1: double CLICK-CLICK detection enable) SCLICK Single CLICK-CLICK enable. Default value: 0 (0:Single CLICK-CLICK detection disable, 1: single CLICK-CLICK detection enable) Sign CLICK-CLICK Sign. 0: positive detection, 1: negative detection Z Z CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Z High event has occurred) Doc ID 022562 Rev 2 LSM330D Register descriptions Table 54. 8.20 CLICK_SRC_A description Y Y CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Y High event has occurred) X X CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: X High event has occurred) CLICK_THS_A (3Ah) Table 55. -- Table 56. CLICK_THS_A register Ths6 -- Table 58. Ths2 Ths1 Ths0 TLI1 TLI0 TLA1 TLA0 TW1 TW0 CLICK-CLICK threshold. Default value: 000 0000 TIME_LIMIT_A register TLI6 TLI5 TLI4 TLI3 TLI2 TIME_LIMIT_A description TLI7-TLI0 CLICK-CLICK Time limit. Default value: 000 0000 TIME_LATENCY_A (3Ch) Table 59. TLA7 Table 60. TIME_LATENCY_A register TLA6 TLA5 TLA4 TLA3 TLA2 TIME_LATENCY_A description TLA7-TLA0 8.23 Ths3 TIME_LIMIT_A (3Bh) Table 57. 8.22 Ths4 CLICK_SRC_A description Ths6-Ths0 8.21 Ths5 CLICK-CLICK time latency. Default value: 000 0000 TIME WINDOW_A (3Dh) Table 61. TW7 TIME_WINDOW_A register TW6 TW5 TW4 TW3 Doc ID 022562 Rev 2 TW2 51/66 Register descriptions 8.24 Table 62. TIME_WINDOW_A description TW7-TW0 CLICK-CLICK time window Act_THS (3Eh) Table 63. -- Acth[6-0] Acth5 Acth4 Acth3 Acth2 Acth1 Acth0 ActD2 ActD1 ActD0 Act_THS description Sleep-to-Wake, Return to Sleep activation threshold 1LSb = 16mg Act_DUR (3Fh) Table 65. ActD7 Table 66. ActD[7-0] 8.26 Act_THS register Acth6 Table 64. 8.25 LSM330D Act_DUR register ActD6 ActD5 ActD4 ActD3 Act_DUR description Sleep-to-Wake, Return to Sleep duration DUR = (Act_DUR + 1)*8/ODR WHO_AM_I_G (0Fh) Table 67. 1 WHO_AM_I_G register 1 0 1 0 1 0 0 BW0 PD Zen Xen Yen Device identification register. 8.27 CTRL_REG1_G (20h) Table 68. DR1 Table 69. 52/66 CTRL_REG1_G register DR0 BW1 CTRL_REG1_G description DR1-DR0 Output data rate selection. Refer to Table 70 BW1-BW0 Bandwidth selection. Refer to Table 70 Doc ID 022562 Rev 2 LSM330D Register descriptions Table 69. CTRL_REG1_G description Power-down mode enable. Default value: 0 (0: Power-down mode, 1: Normal mode or Sleep mode) PD Zen Z axis enable. Default value: 1 (0: Z axis disabled; 1: Z axis enabled) Yen Y axis enable. Default value: 1 (0: Y axis disabled; 1: Y axis enabled) Xen X axis enable. Default value: 1 (0: X axis disabled; 1: X axis enabled) DR is used to set ODR selection. BW is used to set bandwidth selection. Table 70 below provides all the frequencies resulting from the DR / BW bit combinations. Table 70. DR and BW configuration setting DR BW ODR [Hz] Cut-off 00 00 95 12.5 00 01 95 25 00 10 95 25 00 11 95 25 01 00 190 12.5 01 01 190 25 01 10 190 50 01 11 190 70 10 00 380 20 10 01 380 25 10 10 380 50 10 11 380 100 11 00 760 30 11 01 760 35 11 10 760 50 11 11 760 100 The combination of PD, Zen, Yen, Xen is used to set the device in different modes (Powerdown / Normal / Sleep mode) according to the following table: Doc ID 022562 Rev 2 53/66 Register descriptions Table 71. LSM330D Power mode selection configuration Mode 8.28 PD Yen Xen Power-down 0 - - - Sleep 1 0 0 0 Normal 1 - - - CTRL_REG2_G (21h) Table 72. EXTRen Table 73. CTRL_REG2_G register LVLen HPM1 HPM1 HPCF3 HPCF2 HPCF1 Edge-sensitive trigger Enable: Default value: 0 (0: external trigger disabled; 1: External trigger enabled) LVLen Level-sensitive trigger Enable: Default value: 0 (0: level sensitive trigger disabled; 1: level sensitive trigger enabled) HPM1HPM0 High-pass filter mode selection. Default value: 00 Refer to Table 74 HPCF3HPCF0 High-pass filter cut-off frequency selection Refer to Table 75 High-pass filter mode configuration HPM1 HPM0 High-pass filter mode 0 0 Normal mode (reset reading HP_RESET_FILTER) 0 1 Reference signal for filtering 1 0 Normal mode 1 1 Autoreset on interrupt event Table 75. HPCF0 CTRL_REG2_G description EXTRen Table 74. High-pass filter cut-off frequency configuration [Hz] HPCF3-0 54/66 Zen ODR=95 Hz ODR=190 Hz ODR=380 Hz ODR=760 Hz 0000 7.2 13.5 27 51.4 0001 3.5 7.2 13.5 27 0010 1.8 3.5 7.2 13.5 0011 0.9 1.8 3.5 7.2 0100 0.45 0.9 1.8 3.5 0101 0.18 0.45 0.9 1.8 Doc ID 022562 Rev 2 LSM330D Register descriptions Table 75. 8.29 0110 0.09 0.18 0.45 0.9 0111 0.045 0.09 0.18 0.45 1000 0.018 0.045 0.09 0.18 1001 0.009 0.018 0.045 0.09 CTRL_REG3_G (22h) Table 76. I1_Int1 Table 77. 8.30 High-pass filter cut-off frequency configuration [Hz] (continued) CTRL_REG3_G register I1_Boot H_Lactive PP_OD I2_DRDY I2_WTM I2_ORun I2_Empty CTRL_REG3_G description I1_Int1 Interrupt enable on INT1_G pin. Default value 0. (0: Disable; 1: Enable) I1_Boot Boot status available on INT1_G. Default value 0. (0: Disable; 1: Enable) H_Lactive Interrupt active configuration on INT1_G. Default value 0. (0: High; 1:Low) PP_OD Push-pull / Open drain. Default value: 0. (0: Push-pull; 1: Open drain) I2_DRDY Date ready on DRDY_G/INT2_G. Default value 0. (0: Disable; 1: Enable) I2_WTM FIFO watermark interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable) I2_ORun FIFO overrun interrupt on DRDY_G/INT2_G Default value: 0. (0: Disable; 1: Enable) I2_Empty FIFO empty interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable) CTRL_REG4_G (23h) Table 78. BDU Table 79. CTRL_REG4_G register BLE FS1 FS0 - 0 0 SIM CTRL_REG4_G description BDU Block data update. Default value: 0 (0: continuous update; 1: output registers not updated until MSb and LSb reading) BLE Big/little endian data selection. Default value 0. (0: Data LSb @ lower address; 1: Data MSb @ lower address) FS1-FS0 Full scale selection. Default value: 00 (00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps) SIM 3-wire SPI Serial interface read mode enable. Default value: 0 (0: 3-wire Read mode disabled; 1: 3-wire read enabled). Doc ID 022562 Rev 2 55/66 Register descriptions 8.31 LSM330D CTRL_REG5_G (24h) Table 80. BOOT Table 81. CTRL_REG5_G register FIFO_EN -- HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0 CTRL_REG5_G description BOOT Reboot memory content. Default value: 0 (0: Normal mode; 1: reboot memory content) FIFO_EN FIFO enable. Default value: 0 (0: FIFO disable; 1: FIFO Enable) HPen High-pass filter Enable. Default value: 0 (0: HPF disabled; 1: HPF enabled, see Figure 20) INT1_Sel1INT1_Sel0 INT1 selection configuration. Default value: 0 (see Figure 20) Out_Sel1Out_Sel1 Out selection configuration. Default value: 0 (see Figure 20) Figure 20. INT1_Sel and Out_Sel configuration block diagram Out_Sel 00 01 0 LPF2 ADC LPF1 HPF 10 11 DataReg FIFO 32x16x3 1 INT1_Sel HPen 10 11 01 Interrupt generator 00 AM07949V2 8.32 REFERENCE_G (25h) Table 82. Ref7 56/66 REFERENCE_G register Ref6 Ref5 Ref4 Ref3 Doc ID 022562 Rev 2 Ref2 Ref1 Ref0 LSM330D Register descriptions Table 83. REFERENCE_G register description Ref 7-Ref0 8.33 Reference value for interrupt generation. Default value: 0 OUT_TEMP_G (26h) Table 84. Temp7 OUT_TEMP_G register Temp6 Table 85. Temp4 Temp3 Temp2 Temp1 Temp0 OUT_TEMP_G register description Temp7-Temp0 8.34 Temp5 Temperature data (-1LSb/deg - 8-bit resolution). The value is expressed as two’s complement. STATUS_REG_G (27h) Table 86. ZYXOR STATUS_REG_G register ZOR Table 87. YOR XOR ZYXDA ZDA YDA XDA STATUS_REG description X, Y, Z-axis data overrun. Default value: 0 ZYXOR (0: no overrun has occurred; 1: new data has overwritten the previous data before it was read) ZOR Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data) YOR Y axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data) XOR X axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data) ZYXDA X, Y, Z -axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) 8.35 ZDA Z axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available;1: new data for the Y-axis is available) XDA X axis new data available. Default value: 0 (0: new data for the X-axis is not yet available; 1: new data for the X-axis is available) OUT_X_L_G, OUT_X_H_G X-axis angular rate data. The value is expressed as two’s complement. Doc ID 022562 Rev 2 57/66 Register descriptions 8.36 LSM330D OUT_Y_L_G, OUT_Y_H_G Y-axis angular rate data. The value is expressed as two’s complement. 8.37 OUT_Z_L_G, OUT_Z_H_G Z-axis angular rate data. The value is expressed as two’s complement. 8.38 FIFO_CTRL_REG_G (2Eh) Table 88. FIFO_CTRL_REG_G register FM2 FM1 Table 89. WTM3 WTM2 FM2-FM0 FIFO mode selection. Default value: 00 (see Table 90) WTM4-WTM0 FIFO threshold. Watermark level setting WTM1 WTM0 FSS1 FSS0 FIFO mode configuration FM2 FM1 FM0 FIFO mode 0 0 0 Bypass mode 0 0 1 FIFO mode 0 1 0 Stream mode 0 1 1 Stream-to-FIFO mode 1 0 0 Bypass-to-stream mode FIFO_SRC_REG_G (2Fh) Table 91. WTM Table 92. 58/66 WTM4 FIFO_CTRL_REG_G description Table 90. 8.39 FM0 FIFO_SRC_REG_G register OVRN EMPTY FSS4 FSS3 FSS2 FIFO_SRC_REG_G description WTM Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal or higher than WTM level) OVRN Overrun bit status. (0: FIFO is not completely filled; 1:FIFO is completely filled) Doc ID 022562 Rev 2 LSM330D Register descriptions Table 92. 8.40 FIFO_SRC_REG_G description (continued) EMPTY FIFO empty bit. (0: FIFO not empty; 1: FIFO empty) FSS4-FSS1 FIFO stored data level INT1_CFG_G (30h) Table 93. AND/OR Table 94. INT1_CFG_G register LIR ZHIE ZLIE YHIE YLIE XHIE XLIE INT1_CFG_G description AND/OR AND/OR combination of interrupt events. Default value: 0 (0: OR combination of interrupt events 1: AND combination of interrupt events LIR Latch Interrupt request. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) Cleared by reading INT1_SRC_G reg. ZHIE Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher than preset threshold) ZLIE Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than preset threshold) YHIE Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher than preset threshold) YLIE Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than preset threshold) XHIE Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher than preset threshold) XLIE Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than preset threshold) Configuration register for interrupt source. 8.41 INT1_SRC_G (31h) Table 95. 0 INT1_SRC_G register IA ZH ZL Doc ID 022562 Rev 2 YH YL XH XL 59/66 Register descriptions Table 96. LSM330D INT1_SRC_G description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z High event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z Low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y High event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y Low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X High event has occurred) XL X low. Default value: 0 (0: no interrupt, 1: X Low event has occurred) Interrupt source register. Read only register. Reading at this address clears the INT1_SRC_G IA bit (and eventually the interrupt signal on the INT1_G pin) and allows the refreshing of data in the INT1_SRC_G register if the latched option was chosen. 8.42 INT1_THS_XH_G (32h) Table 97. - Table 98. INT1_THS_XH_G register THSX14 THSX12 THSX11 THSX10 THSX9 THSX8 THSX1 THSX0 THSY9 THSY8 INT1_THS_XH_G description THSX14 - THSX9 8.43 THSX13 Interrupt threshold. Default value: 0000 0000 INT1_THS_XL_G (33h) Table 99. THSX7 INT1_THS_XL_G register THSX6 THSX5 THSX4 THSX3 THSX2 Table 100. INT1_THS_XL_G description THSX7 - THSX0 8.44 Interrupt threshold. Default value: 0000 0000 INT1_THS_YH _G (34h) Table 101. INT1_THS_YH_G register - 60/66 THSY14 THSY13 THSY12 THSY11 Doc ID 022562 Rev 2 THSY10 LSM330D Register descriptions Table 102. INT1_THS_YH_G description THSY14 - THSY9 8.45 Interrupt threshold. Default value: 0000 0000 INT1_THS_YL_G (35h) Table 103. INT1_THS_YL_G register THSR7 THSY6 THSY5 THSY4 THSY3 THSY2 THSY1 THSY0 THSZ9 THSZ8 THSZ1 THSZ0 D1 D0 Table 104. INT1_THS_YL_G description THSY7 - THSY0 8.46 Interrupt threshold. Default value: 0000 0000 INT1_THS_ZH_G (36h) Table 105. INT1_THS_ZH_G register - THSZ14 THSZ13 THSZ12 THSZ11 THSZ10 Table 106. INT1_THS_ZH_G description THSZ14 - THSZ9 8.47 Interrupt threshold. Default value: 0000 0000 INT1_THS_ZL_G (37h) Table 107. INT1_THS_ZL_G register THSZ7 THSZ6 THSZ5 THSZ4 THSZ3 THSZ2 Table 108. INT1_THS_ZL_G description THSZ7 - THSZ0 8.48 Interrupt threshold. Default value: 0000 0000 INT1_DURATION_G (38h) Table 109. INT1_DURATION_G register WAIT D6 D5 D4 Doc ID 022562 Rev 2 D3 D2 61/66 Register descriptions LSM330D Table 110. INT1_DURATION_G description WAIT WAIT enable. Default value: 0 (0: disable; 1: enable) D6 - D0 Duration value. Default value: 000 0000 D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen. WAIT bit has the following meaning: Wait =’0’: the interrupt falls immediately if signal crosses the selected threshold Wait =’1’: if the signal crosses the selected threshold, the interrupt falls only after the duration has counted the number of samples at the selected data rate, written into the duration counter register. Figure 21. Wait disabled 62/66 Doc ID 022562 Rev 2 LSM330D Register descriptions Figure 22. Wait enabled Doc ID 022562 Rev 2 63/66 Package information 9 LSM330D Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Table 111. LGA-28L (3x5.5x1.0 mm) mechanical data mm Dim. Min. Typ. Max. A1 1 A2 0.785 A3 0.200 D1 2.850 3.000 3.150 E1 5.350 5.500 5.650 L1 4.050 L2 1.350 N1 0.450 M 0.060 0.100 P1 2.500 P2 1.250 T1 0.400 T2 0.250 d 0.200 k 0.050 0.140 Figure 23. LGA-28L (3x5.5x1.0 mm) drawing E E1 L1 A3 == N1 A K P1 C K d (4x) D 17 2 16 3 7 6 5 M 8 T1 4 14 13 12 11 10 9 M D P2 1 15 E T2 K E = = L2 D1 K B D 19 20 21 22 23 24 25 26 27 28 18 A2 BOTTOM VIEW A1 seating plane K 8340949_B 64/66 Doc ID 022562 Rev 2 LSM330D 10 Revision history Revision history Table 112. Document revision history Date Revision Changes 02-Dec-2011 1 Initial release. 30-Aug-2012 2 Updated Figure 2: Pin connection and Figure 5: Gyroscope block diagram. Minor text changes. Doc ID 022562 Rev 2 65/66 LSM330D Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 66/66 Doc ID 022562 Rev 2
LSM330DTR 价格&库存

很抱歉,暂时无法提供与“LSM330DTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货