LSM6DSO32X
Datasheet
iNEMO 6 DoF inertial module with 32 g accelerometer and embedded Machine
Learning Core
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Product status link
LSM6DSO32X
Product summary
Order code
LSM6DSO32XTR
Temperature
range [°C]
-40 to +85
Package
Packing
LGA-14L
(2.5 x 3.0 x 0.83 mm)
Tape & Reel
Product label
Power consumption: 0.55 mA in combo high-performance mode
“Always-on" experience with low power consumption for both accelerometer and
gyroscope
Smart FIFO up to 9 kbytes
Android compliant
±4/±8/±16/±32 g full scale
±125/±250/±500/±1000/±2000 dps full scale
Analog supply voltage: 1.71 V to 3.6 V
Independent IO supply (1.62 V)
Compact footprint: 2.5 mm x 3 mm x 0.83 mm
SPI / I²C & MIPI I3CSM serial interface with main processor data synchronization
Advanced pedometer, step detector and step counter
Significant Motion Detection, tilt detection
Standard interrupts: free-fall, wakeup, 6D/4D orientation, click and double-click
Programmable Finite State Machine: accelerometer, gyroscope and external
sensors
Machine Learning Core
Embedded temperature sensor
ECOPACK, RoHS and “Green” compliant
Applications
•
•
•
•
•
•
•
•
•
Wearables
Smart watches
Sports equipment
Motion tracking and gesture detection
Hard-fall detection
Sensor hub
Navigation and asset tracking
IoT and connected devices
Smart power saving for handheld devices
Description
The LSM6DSO32X is a system-in-package featuring a 3D digital accelerometer
at 32 g and a 3D digital gyroscope, boosting power performance at 0.55 mA in
high-performance mode and enabling always-on low-power features for an optimal
motion experience in wearable, hard-fall detection, navigation and asset tracking
applications.
DS13607 - Rev 1 - March 2021
For further information contact your local STMicroelectronics sales office.
www.st.com
LSM6DSO32X
The LSM6DSO32X supports main OS requirements, offering real, virtual and batch
sensors with 9 kbytes for dynamic data batching. ST’s family of MEMS sensor
modules leverages the robust and mature manufacturing processes already used
for the production of micromachined accelerometers and gyroscopes. The various
sensing elements are manufactured using specialized micromachining processes,
while the IC interfaces are developed using CMOS technology that allows the design
of a dedicated circuit which is trimmed to better match the characteristics of the
sensing element.
The LSM6DSO32X embeds a dedicated core for Machine Learning processing
(MLC) and a Finite State Machine (FSM) that provides system flexibility, allowing
some algorithms run in the application processor to be moved to the MEMS sensor
with the advantage of consistent reduction in power consumption.
The LSM6DSO32X has a full-scale acceleration range of ±4/±8/±16/±32 g and an
angular rate range of ±125/±250/±500/±1000/±2000 dps.
High robustness to mechanical shock makes the LSM6DSO32X the preferred choice
of system designers for the creation and manufacturing of reliable products. The
LSM6DSO32X is available in a plastic land grid array (LGA) package.
DS13607 - Rev 1
page 2/162
LSM6DSO32X
Overview
1
Overview
The LSM6DSO32X is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis
digital gyroscope.
The LSM6DSO32X delivers best-in-class motion sensing that can detect orientation and gestures in order to
empower application developers and consumers with features and capabilities that are more sophisticated than
simply orienting their devices to portrait and landscape mode.
The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness,
implementing hardware recognition of free-fall events, 6D orientation, click and double-click sensing, activity or
inactivity, stationary/motion detection and wakeup events.
The LSM6DSO32X supports main OS requirements, offering real, virtual and batch mode sensors. In addition,
the LSM6DSO32X can efficiently run the sensor-related features specified in Android, saving power and enabling
faster reaction time. In particular, the LSM6DSO32X has been designed to implement hardware features such as
significant motion detection, stationary/motion detection, tilt, pedometer functions, timestamping and to support
the data acquisition of an external magnetometer.
The LSM6DSO32X offers hardware flexibility to connect the pins with different mode connections to external
sensors to expand functionalities such as adding a sensor hub, etc.
Up to 9 kbytes of FIFO with compression and dynamic allocation of significant data (i.e. external sensors,
timestamp, etc.) allows overall power saving of the system.
Like the entire portfolio of MEMS sensor modules, the LSM6DSO32X leverages the robust and mature in-house
manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The
various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces
are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better
match the characteristics of the sensing element.
The LSM6DSO32X is available in a small plastic land grid array (LGA) package of 2.5 x 3.0 x 0.83 mm to address
ultra-compact solutions.
DS13607 - Rev 1
page 3/162
LSM6DSO32X
Embedded low-power features
2
Embedded low-power features
The LSM6DSO32X has been designed to be fully compliant with Android, featuring the following on-chip
functions:
•
9 kbytes data buffering, data can be compressed two or three times
–
100% efficiency with flexible configurations and partitioning
–
Possibility to store timestamp
•
•
•
2.1
Event-detection interrupts (fully configurable)
–
Free-fall
–
Wakeup
–
6D orientation
–
Click and double-click sensing
–
Activity/Inactivity recognition
–
Stationary/Motion detection
Specific IP blocks with negligible power consumption and high-performance
–
Pedometer functions: step detector and step counters
–
Tilt
–
Significant Motion Detection
–
Finite State Machine (FSM) for accelerometer, gyroscope, and external sensors
–
Machine Learning Core (MLC)
Sensor hub
–
Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors
Tilt detection
The tilt function helps to detect activity change and has been implemented in hardware using only the
accelerometer to achieve targets of both ultra-low power consumption and robustness during the short duration of
dynamic accelerations.
The tilt function is based on a trigger of an event each time the device's tilt changes and can be used with
different scenarios, for example:
1.
Triggers when phone is in a front pants pocket and the user goes from sitting to standing or standing to
sitting;
2.
Doesn’t trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.
2.2
Significant Motion Detection
The Significant Motion Detection (SMD) function generates an interrupt when a ‘significant motion’, that could be
due to a change in user location, is detected. In the LSM6DSO32X device this function has been implemented in
hardware using only the accelerometer.
SMD functionality can be used in location-based applications in order to receive a notification indicating when the
user is changing location.
2.3
Finite State Machine
The LSM6DSO32X can be configured to generate interrupt signals activated by user-defined motion patterns. To
do this, up to 16 embedded finite state machines can be programmed independently for motion detection such as
glance gestures, absolute wrist tilt, shake and double-shake detection.
DS13607 - Rev 1
page 4/162
LSM6DSO32X
Finite State Machine
Definition of Finite State Machine
A state machine is a mathematical abstraction used to design logic connections. It is a behavioral model
composed of a finite number of states and transitions between states, similar to a flow chart in which one can
inspect the way logic runs when certain conditions are met. The state machine begins with a start state, goes to
different states through transitions dependent on the inputs, and can finally end in a specific state (called stop
state). The current state is determined by the past states of the system. Figure 1. Generic state machine shows a
generic state machine.
Figure 1. Generic state machine
Finite State Machine in the LSM6DSO32X
The LSM6DSO32X works as a combo accelerometer-gyroscope sensor, generating acceleration and angular
rate output data. It is also possible to connect an external sensor (magnetometer) by using the Sensor Hub
feature (Mode 2). These data can be used as input of up to 16 programs in the embedded Finite State Machine
(Figure 2. State machine in the LSM6DSO32X).
All 16 finite state machines are independent: each one has its dedicated memory area and it is independently
executed. An interrupt is generated when the end state is reached or when some specific command is performed.
Figure 2. State machine in the LSM6DSO32X
DS13607 - Rev 1
page 5/162
LSM6DSO32X
Machine Learning Core
2.4
Machine Learning Core
The LSM6DSO32X embeds a dedicated core for machine learning processing that provides system flexibility,
allowing some algorithms run in the application processor to be moved to the MEMS sensor with the advantage of
consistent reduction in power consumption.
Machine Learning Core logic allows identifying if a data pattern (for example motion, pressure, temperature,
magnetic data, etc.) matches a user-defined set of classes. Typical examples of applications could be activity
detection like running, walking, driving, etc.
The LSM6DSO32X Machine Learning Core works on data patterns coming from the accelerometer and gyro
sensors, but it is also possible to connect and process external sensor data (like magnetometer) by using the
Sensor Hub feature (Mode 2).
The input data can be filtered using a dedicated configurable computation block containing filters and features
computed in a fixed time window defined by the user.
Machine learning processing is based on logical processing composed of a series of configurable nodes
characterized by "if-then-else" conditions where the "feature" values are evaluated against defined thresholds.
Figure 3. Machine Learning Core in the LSM6DSO32X
Sensor Data & Hub
Machine
Learning Core
OUTPUT
Accelerometer
Filters
Results
Gyroscope
Features
Interrupts
INPUT
Machine
Learning Core
Logical processing
External Sensor
The LSM6DSO32X can be configured to run up to 8 flows simultaneously and independently and every flow can
generate up to 16 results. The total number of nodes can be up to 256.
The results of the machine learning processing are available in dedicated output registers readable from the
application processor at any time.
The LSM6DSO32X Machine Learning Core can be configured to generate an interrupt when a change in the
result occurs.
DS13607 - Rev 1
page 6/162
LSM6DSO32X
Pin description
3
Pin description
Figure 4. Pin connections
Z
ΩY
ΩR
NC(1)
NC(1)
INT2
Vdd
SDA
SCL
X
11
1
BOTTOM
VIEW
8
4
5
GND
7
GND
SDO/SA0
SDx
SCx
INT1
Vdd_IO
Direction of detectable
acceleration (top view)
CS
Y
ΩP
Direction of detectable
angular rate (top view)
1.
DS13607 - Rev 1
Leave pin electrically unconnected and soldered to PCB.
page 7/162
LSM6DSO32X
Pin connections
3.1
Pin connections
The LSM6DSO32X offers flexibility to connect the pins in order to have two different mode connections and
functionalities. In detail:
•
Mode 1: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available;
•
Mode 2: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for
external sensor connections are available;
Figure 5. LSM6DSO32X connection modes
Mode 1
Mode 2
HOST
HOST
I 2C /
SM
MIPI I3C /
SPI (3/4-w)
LSM6DSO32X
I 2C /
MIPI I3CSM /
SPI (3/4-w)
LSM6DSO32X
Master I2C
LSM6DSM
External
LSM6DSM
sensors
In the following table each mode is described for the pin connections and function.
DS13607 - Rev 1
page 8/162
LSM6DSO32X
Pin connections
Table 1. Pin description
Pin#
Name
SDO
1
SA0
Mode 1 function
Mode 2 function
SPI 4-wire interface serial data output (SDO)
SPI 4-wire interface serial data output (SDO)
I²C least significant bit of the device address (SA0)
I²C least significant bit of the device address (SA0)
MIPI I3CSM least significant bit of the static address (SA0)
MIPI I3CSM least significant bit of the static address (SA0)
2
SDx
Connect to Vdd_IO or GND
I²C serial data master (MSDA)
3
SCx
Connect to Vdd_IO or GND
I²C serial clock master (MSCL)
4
INT1
Programmable interrupt 1 / If device is used as MIPI I3CSM
pure slave, this pin must be set to ‘1’.
Programmable interrupt 1 / If device is used as MIPI I3CSM
pure slave, this pin must be set to ‘1’.
5
Vdd_IO(1)
Power supply for I/O pins
6
GND
0 V supply
7
GND
0 V supply
8
Vdd(1)
Power supply
9
INT2
10
NC
Connect to Vdd_IO or leave unconnected(2)
Connect to Vdd_IO or leave unconnected(2)
11
NC
Connect to Vdd_IO or leave unconnected(2)
Connect to Vdd_IO or leave unconnected(2)
I²C/MIPI I3CSM/SPI mode selection
I²C/MIPI I3CSM/SPI mode selection
(1: SPI idle mode / I²C/MIPI I3CSM communication enabled;
(1: SPI idle mode / I²C/MIPI I3CSM communication enabled;
0: SPI communication mode / I²C/MIPI I3CSM disabled)
0: SPI communication mode / I²C/MIPI I3CSM disabled)
I²C/MIPI I3CSM serial clock (SCL)
I²C/MIPI I3CSM serial clock (SCL)
SPI serial port clock (SPC)
SPI serial port clock (SPC)
12
13
CS
SCL
Programmable interrupt 2 (INT2) / Data enable (DEN)
I²C/MIPI
14
SDA
I3CSM
serial data (SDA)
Programmable interrupt 2 (INT2) / Data enable (DEN) /
I²C master external synchronization signal (MDRDY)
I²C/MIPI I3CSM serial data (SDA)
SPI serial data input (SDI)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
3-wire interface serial data output (SDO)
1. Recommended 100 nF filter capacitor.
2. Leave pin electrically unconnected and soldered to PCB.
DS13607 - Rev 1
page 9/162
LSM6DSO32X
Module specifications
4
Module specifications
4.1
Mechanical characteristics
@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.
Table 2. Mechanical characteristics
Symbol
Parameter
Test conditions
Min.
Typ.(1)
Max.
Unit
±4
LA_FS
±8
Linear acceleration measurement range
±16
g
±32
±125
±250
G_FS
Angular rate measurement range
±500
dps
±1000
±2000
LA_So
G_So
Linear acceleration sensitivity(2)
Angular rate sensitivity(2)
FS = ±4 g
0.122
FS = ±8 g
0.244
FS = ±16 g
0.488
FS = ±32 g
0.976
FS = ±125 dps
4.375
FS = ±250 dps
8.75
FS = ±500 dps
17.50
FS = ±1000 dps
35
FS = ±2000 dps
70
mg/LSB
mdps/LSB
LA_So%
Linear acceleration sensitivity tolerance(3)
at component level
±0.5
%
G_So%
Angular rate sensitivity tolerance(3)
at component level
±0.5
%
from -40° to +85°
±0.007
%/°C
from -40° to +85°
±0.005
%/°C
±20
mg
LA_SoDr
G_SoDr
Linear acceleration sensitivity change vs. temperature(4)
Angular rate sensitivity change vs.
temperature(4)
accuracy(5)
LA_TyOff
Linear acceleration zero-g level offset
G_TyOff
Angular rate zero-rate level(5)
±0.5
dps
LA_OffDr
Linear acceleration zero-g level change vs. temperature(4)
±0.1
mg/ °C
G_OffDr
Angular rate typical zero-rate level change vs. temperature(4)
±0.01
dps/°C
3.8
mdps/√Hz
75
mdps
Rn
RnRMS
An
Rate noise density in high-performance mode(6)
Gyroscope RMS noise in normal/low-power
mode(7)
Acceleration noise density in high-performance mode(8)
DS13607 - Rev 1
FS = ±4 g
120
FS = ±8 g
130
FS = ±16 g
160
FS = ±32 g
220
µg/√Hz
page 10/162
LSM6DSO32X
Mechanical characteristics
Symbol
RMS
Parameter
Acceleration RMS noise in normal/low-power mode(9)(10)
Acceleration RMS noise in ultra-low-power mode(9)(10)
Test conditions
Min.
Typ.(1)
FS = ±4 g
3.2
FS = ±8 g
3.4
FS = ±16 g
4.0
FS = ±32 g
5.4
FS = ±4 g
9.5
Max.
Unit
mg(RMS)
1.6(11)
12.5
26
52
104
LA_ODR
Linear acceleration output data rate
208
416
833
1666
3332
6664
Hz
12.5
26
52
104
G_ODR
208
Angular rate output data rate
416
833
1666
3332
6664
Linear acceleration self-test output change(12)(13)(14)
Vst
Top
Angular rate self-test output change(15)(16)
50
1700
mg
FS = ±250 dps
20
80
dps
FS = ±2000 dps
150
700
dps
-40
+85
°C
Operating temperature range
1. Typical specifications are not guaranteed.
2. Sensitivity values after factory calibration test and trimming.
3. Subject to change.
4. Measurements are performed in a uniform temperature setup and they are based on characterization data
in a limited number of samples. Not measured during final test for production.
5. Values after factory calibration test and trimming.
6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
7. Gyroscope RMS noise in normal/low-power mode is independent of the ODR and FS setting.
8. Accelerometer noise density in high-performance mode is independent of the ODR.
9. Accelerometer RMS noise in normal/low-power/ultra-low-power mode is independent of the ODR.
10. Noise RMS related to BW = ODR/2.
11. This ODR is available when the accelerometer is in low-power mode.
12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated
register for all axes.
DS13607 - Rev 1
page 11/162
LSM6DSO32X
Mechanical characteristics
13. The linear acceleration self-test output change is defined with the device in stationary condition as the
absolute value of: OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). 1LSb = 0.122 mg
at ±4 g full scale.
14. Accelerometer self-test limits are full-scale independent.
15. The sign of the angular rate self-test output change is defined by the STx_G bits in a dedicated register for
all axes.
16. The angular rate self-test output change is defined with the device in stationary condition as the absolute
value of: OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000
dps full scale.
DS13607 - Rev 1
page 12/162
LSM6DSO32X
Electrical characteristics
4.2
Electrical characteristics
@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.
Table 3. Electrical characteristics
Min.
Typ.(1)
Max.
Unit
Supply voltage
1.71
1.8
3.6
V
Power supply for I/O
1.62
3.6
V
Symbol
Vdd
Vdd_IO
Parameter
Test conditions
Gyroscope and accelerometer current consumption in high-performance
mode
0.55
mA
LA_IddHP
Accelerometer current consumption in high-performance mode
170
µA
LA_IddLP
Accelerometer current consumption in low-power mode
IddHP
LA_IddULP Accelerometer current consumption in ultra-low-power mode
IddPD
ODR = 52 Hz
26
ODR = 1.6 Hz
4.5
ODR = 52 Hz
9.5
ODR = 1.6 Hz
4.4
µA
µA
Gyroscope and accelerometer current consumption during power-down
3
µA
Ton
Turn-on time
35
ms
VIH
Digital high-level input voltage
VIL
Digital low-level input voltage
VOH
High-level output voltage
IOH = 4 mA(2)
VOL
Low-level output voltage
IOL = 4 mA(2)
Top
Operating temperature range
0.7 *
Vdd_IO
V
0.3 *
Vdd_IO
Vdd_IO 0.2
V
V
-40
0.2
V
+85
°C
1. Typical specifications are not guaranteed.
2. 4 mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital
pin in order to guarantee the correct digital output voltage levels VOH and VOL.
Temperature sensor characteristics
4.3
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.
Table 4. Temperature sensor characteristics
Symbol
TODR(2)
Toff
TSen
TST
Parameter
Test condition
Min.
Temperature refresh rate
Max.
52
Temperature offset(3)
-15
Temperature sensitivity
Temperature stabilization
Typ.(1)
Hz
+15
256
time(4)
T_ADC_res
Temperature ADC resolution
Top
Operating temperature range
°C
LSB/°C
500
16
-40
Unit
µs
bit
+85
°C
1. Typical specifications are not guaranteed.
2. When the accelerometer is in low-power mode or ultra-low-power mode and the gyroscope part is turned
off, the TODR value is equal to the accelerometer ODR.
3. The output of the temperature sensor is 0 LSB (typ.) at 25 °C.
4. Time from power ON to valid data based on characterization data.
DS13607 - Rev 1
page 13/162
LSM6DSO32X
Communication interface characteristics
4.4
Communication interface characteristics
4.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 5. SPI slave timing values (in mode 3)
Symbol
Parameter
Value(1)
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
5
th(CS)
CS hold time
20
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
SDO output disable time
Max
Unit
ns
100
10
MHz
ns
50
5
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
Figure 6. SPI slave timing diagram (in mode 3)
Note:
DS13607 - Rev 1
Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both input and output ports.
page 14/162
LSM6DSO32X
Communication interface characteristics
4.4.2
I²C - inter-IC control interface
Subject to general operating conditions for Vdd and Top.
Table 6. I²C slave timing values
Symbol
I²C fast mode(1)(2)
Parameter
f(SCL)
SCL clock frequency
I²C fast mode +(1)(2)
Min
Max
Min
Max
0
400
0
1000
tw(SCLL)
SCL clock low time
1.3
0.5
tw(SCLH)
SCL clock high time
0.6
0.26
tsu(SDA)
SDA setup time
100
50
th(SDA)
SDA data hold time
0
0.9
START/REPEATED START condition hold time
0.6
0.26
tsu(SR)
REPEATED START condition setup time
0.6
0.26
tsu(SP)
STOP condition setup time
0.6
0.26
Bus free time between STOP and START condition
1.3
0.5
CB
kHz
µs
ns
0
th(ST)
tw(SP:SR)
Unit
µs
Data valid time
0.9
0.45
Data valid acknowledge time
0.9
0.45
Capacitive load for each bus line
400
550
pF
1. Data based on standard I²C protocol requirement, not tested in production.
2. Data for I²C fast mode and I²C fast mode + have been validated by characterization, not tested in production.
Figure 7. I²C slave timing diagram
REPEATED
START
START
tsu(SR)
tw(SP:SR)
SDA
tsu(SDA)
START
th(SDA)
tsu(SP)
STOP
SCL
th(ST)
Note:
DS13607 - Rev 1
tw(SCLL)
tw(SCLH)
Measurement points are done at 0.3·Vdd_IO and 0.7·Vdd_IO for both ports.
page 15/162
LSM6DSO32X
Absolute maximum ratings
4.5
Absolute maximum ratings
Stresses above those listed as “Absolute maximum ratings” may cause permanent damage to the device. This
is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to
maximum rating conditions for extended periods may affect device reliability.
Table 7. Absolute maximum ratings
Symbol
Vdd / Vdd_IO
TSTG
Sg
ESD
Vin
Note:
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
Storage temperature range
-40 to +125
°C
20,000
g
2
kV
-0.3 to Vdd_IO +0.3
V
Acceleration g for 0.2 ms
Electrostatic discharge protection (HBM)
Input voltage on any control pin
(including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
Supply voltage on any pin should never exceed 4.8 V.
This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.
DS13607 - Rev 1
page 16/162
LSM6DSO32X
Terminology
4.6
4.6.1
Terminology
Sensitivity
Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device.
Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards
the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the
output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value
from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes
very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large
number of sensors (see Table 2).
An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation
around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a
defined angular velocity to it. This value changes very little over temperature and time (see Table 2).
4.6.2
Zero-g and zero-rate level
Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on
both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic
range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from
the ideal value in this case is called zero-g offset.
Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after
mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes
little over temperature, see “Linear acceleration zero-g level change vs. temperature” in Table 2. The zero-g level
tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.
Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise
MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly
change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress.
This value changes very little over temperature and time (see Table 2).
DS13607 - Rev 1
page 17/162
LSM6DSO32X
Digital interfaces
5
Digital interfaces
5.1
I²C/SPI interface
The registers embedded inside the LSM6DSO32X may be accessed through both the I²C and SPI serial
interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device
is compatible with SPI modes 0 and 3.
The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied
high (i.e connected to Vdd_IO).
Table 8. Serial interface pin description
Pin name
Pin description
SPI enable
CS
I²C/SPI mode selection
(1: SPI idle mode / I²C communication enabled;
0: SPI communication mode / I²C disabled)
SCL/SPC
I²C Serial Clock (SCL)
SPI Serial Port Clock (SPC)
I²C Serial Data (SDA)
SDA/SDI/SDO
SPI Serial Data Input (SDI)
3-wire Interface Serial Data Output (SDO)
SDO/SA0
5.1.1
SPI Serial Data Output (SDO)
I²C less significant bit of the device address
I²C serial interface
The LSM6DSO32X I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can
also be read back.
The relevant I²C terminology is provided in the table below.
Table 9. I²C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a transfer
Slave
The device addressed by the master
There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The
latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be
connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.
The I²C interface is implemented with fast mode (400 kHz) I²C standards as well as with the standard mode.
In order to disable the I²C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).
DS13607 - Rev 1
page 18/162
LSM6DSO32X
I²C/SPI interface
5.1.1.1
I²C operation
The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to
LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master,
the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the
slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting
data to the slave. When an address is sent, each device in the system compares the first seven bits after a start
condition with its address. If they match, the device considers itself addressed by the master.
The Slave ADdress (SAD) associated to the LSM6DSO32X is 110101xb. The SDO/SA0 pin can be used to
modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is
‘1’ (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is ‘0’ (address 1101010b).
This solution permits to connect and address two different inertial modules to the same I²C bus.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge
pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the
acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each
byte of data received.
The I²C embedded inside the LSM6DSO32X behaves like a slave device and the following protocol must be
adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been
returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the CTRL3_C
(12h) (IF_INC).
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated START (SR) condition
must be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the master will transmit to the slave with
direction unchanged. Table 10 explains how the SAD+Read/Write bit pattern is composed, listing all the possible
configurations.
Table 10. SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
SAD+R/W
Read
110101
0
1
11010101 (D5h)
Write
110101
0
0
11010100 (D4h)
Read
110101
1
1
11010111 (D7h)
Write
110101
1
0
11010110 (D6h)
Table 11. Transfer when master is writing one byte to slave
Master
ST
SAD + W
SUB
Slave
DATA
SAK
SP
SAK
SAK
Table 12. Transfer when master is writing multiple bytes to slave
Master
ST
SAD + W
SUB
Slave
SAK
DATA
SAK
DATA
SP
SAK
SAK
Table 13. Transfer when master is receiving (reading) one byte of data from slave
Master
ST
SAD + W
Slave
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave
Master
ST
Slave
DS13607 - Rev 1
SAD+W
SUB
SAK
SR
SAK
SAD+R
MAK
SAK
DATA
MAK
DATA
NMAK
SP
DATA
page 19/162
LSM6DSO32X
I²C/SPI interface
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred
per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a slave receiver doesn’t
acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the
data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the
SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by
the generation of a STOP (SP) condition.
In the presented communication format MAK is Master Acknowledge and NMAK is No Master Acknowledge.
DS13607 - Rev 1
page 20/162
LSM6DSO32X
I²C/SPI interface
5.1.2
SPI bus interface
The LSM6DSO32X SPI is a bus slave. The SPI allows writing and reading the registers of the device.
The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.
Figure 8. Read and write protocol (in mode 3)
CS
SPC
SDI
RW
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and
goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high
when CS is high (no transmission). SDI and SDO are, respectively, the serial port data input and output. Those
lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case
of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at
the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling
edge of SPC just before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is
read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h)
(IF_INC) bit is ‘0’, the address used to read/write data remains the same for every block. When the CTRL3_C
(12h) (IF_INC) bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
DS13607 - Rev 1
page 21/162
LSM6DSO32X
I²C/SPI interface
5.1.2.1
SPI read
Figure 9. SPI read protocol (in mode 3)
CS
SPC
SDI
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by
adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).
bit 16-...: data DO(...-8). Further data in multiple byte reads.
Figure 10. Multiple byte SPI read protocol (2-byte example) (in mode 3)
CS
SPC
SDI
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15 DO14DO13DO12 DO11DO10 DO9 DO8
DS13607 - Rev 1
page 22/162
LSM6DSO32X
I²C/SPI interface
5.1.2.2
SPI write
Figure 11. SPI write protocol (in mode 3)
CS
SPC
SDI
RW
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
AD6 AD5 AD4 AD3 AD2 AD1 AD0
The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by
adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1 -7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 12. Multiple byte SPI write protocol (2-byte example) (in mode 3)
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
DS13607 - Rev 1
page 23/162
LSM6DSO32X
I²C/SPI interface
5.1.2.3
SPI read in 3-wire mode
3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to ‘1’ (SPI serial interface mode selection).
Figure 13. SPI read protocol in 3-wire mode (in mode 3)
CS
SPC
SDI/O
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
RW
AD6 AD5 AD4 AD3 AD2 AD1 AD0
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
DS13607 - Rev 1
page 24/162
LSM6DSO32X
MIPI I3CSM interface
5.2
MIPI I3CSM interface
5.2.1
MIPI I3CSM slave interface
The LSM6DSO32X interface includes a MIPI I3CSMSDR only slave interface (compliant with release 1.0 of the
specification) with MIPI I3CSM SDR embedded features:
•
CCC command
•
Direct CCC communication (SET and GET)
•
Broadcast CCC communication
•
Private communications
•
Private read and write for single byte
•
Multiple read and write
•
In-Band Interrupt request
Error Detection and Recovery Methods (S0-S6)
Note:
Refer to Section 5.3 I²C/I3C coexistence in LSM6DSO32X for details concerning the choice of the interface
when powering up the device.
5.2.2
MIPI I3CSM CCC supported commands
The list of MIPI I3CSM CCC commands supported by the device is detailed in the following table.
Table 15. MIPI I3CSM CCC commands
Command
Command code
Default
Description
ENTDAA
0x07
DAA procedure
SETDASA
0x87
Assign dynamic address using static address 0x6B/0x6A depending on SDO pin
ENEC
0x80 / 0x00
Slave activity control (direct and broadcast)
DISEC
0x81/ 0x01
Slave activity control (direct and broadcast)
ENTAS0
0x82 / 0x02
Enter activity state (direct and broadcast)
ENTAS1
0x83 / 0x03
Enter activity state (direct and broadcast)
ENTAS2
0x84 / 0x04
Enter activity state (direct and broadcast)
ENTAS3
0x85 / 0x05
Enter activity state (direct and broadcast)
SETXTIME
0x98 / 0x28
Timing information exchange
0x07
GETXTIME
0x99
0x00
0x05
Timing information exchange
0x92
RSTDAA
0x86 / 0x06
Reset the assigned dynamic address (direct and broadcast)
SETMWL
0x89 / 0x08
Define maximum write length during private write (direct and broadcast)
SETMRL
0x8A / 0x09
Define maximum read length during private read (direct and broadcast)
SETNEWDA
0x88
Change dynamic address
0x00
GETMWL
0x8B
0x08
Get maximum write length during private write
(2 byte)
0x00
GETMRL
0x8C
0x10
Get maximum read length during private read
0x09
DS13607 - Rev 1
page 25/162
LSM6DSO32X
MIPI I3CSM interface
Command
Command code
Default
Description
(3 byte)
0x02
0x08
GETPID
0x8D
0x00
0x6C
Device ID register
0x10
0x0B
GETBCR
0x8E
GETDCR
0x8F
GETSTATUS
0x90
0x07
(1 byte)
0x44 default
Bus characteristics register
MIPI I3CSM device characteristics register
0x00
0x00
Status register
(2 byte)
0x00
GETMXDS
0x94
0x20
Return max data speed
(2 byte)
DS13607 - Rev 1
page 26/162
LSM6DSO32X
I²C/I3C coexistence in LSM6DSO32X
5.3
I²C/I3C coexistence in LSM6DSO32X
In the LSM6DSO32X, the SDA and SCL lines are common to both I²C and MIPI I3CSM. The I²C bus requires
anti-spike filters on the SDA and SCL pins that are not compatible with MIPI I3CSM timing.
The device can be connected to both I²C and MIPI I3CSM or only to the MIPI I3CSM bus depending on the
connection of the INT1 pin when the device is powered up:
•
INT1 pin floating (internal pull-down): I²C / MIPI I3CSM both active, see Figure 14;
•
INT1 pin connected to Vdd_IO: only MIPI I3CSM active, see Figure 15.
Figure 14. I²C and MIPI I3CSM both active (INT1 pin not connected)
1.
Address assignment (DAA or ENTDA) must be performed with I²C Fast Mode Plus Timing. When the slave
is addressed, the I²C slave is disabled and the timing is compatible with MIPI I3CSM specifications.
Figure 15. Only MIPI I3CSM active (INT1 pin connected to Vdd_IO)
INT1 pin connected to Vdd_IO
Only I3C active
I²C/I3C
I3C bus case
Dynamic
Address
Assignment (1)
Master resets
DA
I3C private R/W with and without 7Eh
CCC commands
Slave event management
Error detection and recovery
1.
DS13607 - Rev 1
When the slave is I3C only, the I²C slave is always disabled. The address can be assigned using MIPI I3CSM
SDR timing.
page 27/162
LSM6DSO32X
Master I²C interface
5.4
Master I²C interface
If the LSM6DSO32X is configured in Mode 2, a master I²C line is available. The master serial interface is mapped
to the following dedicated pins.
Table 16. Master I²C pin details
Pin name
MSCL
I²C serial clock master
MSDA
I²C serial data master
MDRDY
DS13607 - Rev 1
Pin description
I²C master external synchronization signal
page 28/162
LSM6DSO32X
Functionality
6
Functionality
6.1
Operating modes
In the LSM6DSO32X, the accelerometer and the gyroscope can be turned on/off independently of each other and
are allowed to have different ODRs and power modes.
The LSM6DSO32X has three operating modes available:
•
only accelerometer active and gyroscope in power-down;
•
only gyroscope active and accelerometer in power-down;
•
both accelerometer and gyroscope sensors active with independent ODR.
The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope
is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo mode the ODRs are totally
independent.
6.2
Accelerometer power modes
In the LSM6DSO, the accelerometer can be configured in five different operating modes: power-down, ultra-lowpower, low-power, normal mode and high-performance mode. The operating mode selected depends on the value
of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to '0', high-performance mode is valid for all
ODRs (from 12.5 Hz up to 6.66 kHz).
To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is
available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and
208 Hz.
6.2.1
Accelerometer ultra-low-power mode
The LSM6DSO32X can be configured in ultra-low-power (ULP) mode by setting the XL_ULP_EN bit to 1 in
CTRL5_C (14h) register. This mode can be used in accelerometer-only mode (gyroscope sensor must be
configured in power-down mode) and for ODR_XL values between 1.6 Hz and 208 Hz.
When ULP mode is intended to be used, the bit XL_HM_MODE must be set to 0.
When ULP mode is switched ON/OFF, the accelerometer must be configured in power-down condition.
The embedded functions based on accelerometer data (free-fall, 6D/4D, tap, double tap, wake-up, activity/
inactivity, stationary/motion, step counter, step detection, significant motion, tilt) and the FIFO batching
functionality are still supported when ULP mode is enabled.
6.3
Gyroscope power modes
In the LSM6DSO, the gyroscope can be configured in four different operating modes: power-down, low-power,
normal mode and high-performance mode. The operating mode selected depends on the value of the
G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs
(from 12.5 Hz up to 6.66 kHz).
To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is
available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.
DS13607 - Rev 1
page 29/162
LSM6DSO32X
Block diagram of filters
6.4
Block diagram of filters
Figure 16. Block diagram of filters
M
E
M
S
S
E
N
S
O
R
Gyro
front-end
XL
front-end
I2C/ I3C/SPI
interface
Regs
array,
FIFO
Low Pass
XL
ADC2
Interrupt
mng
CS
SCL/SPC
SDA/SDI/SDO
SDO/SA0
INT1
INT2
Temperature
sensor
Voltage and current
references
6.4.1
Low Pass
Gyro
ADC1
Trimming circuit
and Test interface
Clock and phase
generator
Power
management
FTP
Block diagrams of the accelerometer filters
In the LSM6DSO32X, the filtering chain for the accelerometer part is composed of the following:
•
Analog filter (anti-aliasing)
•
Digital filter (LPF1)
•
Composite filter
Details of the block diagram appear in the following figure.
Figure 17. Accelerometer chain
Analog
Anti-aliasing
LP Filter
Digital
LP Filter
LPF1
ADC
Composite
Filter
ODR_XL[3:0]
DS13607 - Rev 1
page 30/162
LSM6DSO32X
Block diagram of filters
Figure 18. Accelerometer composite filter
LOW_PASS_ON_6D
Free-fall
0
Advanced
functions
1
LPF2_XL_EN
USR_OFF_ON_OUT
HP_SLOPE_XL_EN
0
0
Digital
LP Filter
1
LPF1
output (1)
0
USER
OFFSET
LPF2
1
USR_OFF_W
OFS_USR[7:0]
FIFO
HPCF_XL[2:0]
Digital
HP Filter
1
1
0
0
Wake-up
Activity /
Inactivity
SPI /
I 2C /
MIPI I3C SM
USR_OFF_ON_WU SLOPE_FDS
001
010
…
111
1
HPCF_XL[2:0]
SLOPE
FILTER
6D / 4D
000
HPCF_XL[2:0]
S/D Tap
1.
Note:
DS13607 - Rev 1
The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode. This
value is equal to 700 Hz when the accelerometer is in low-power or normal mode.
Advanced functions include pedometer, step detector and step counter, significant motion detection, tilt functions
and Finite State Machine.
page 31/162
LSM6DSO32X
Block diagram of filters
6.4.2
Block diagrams of the gyroscope filters
Figure 19. Gyroscope digital chain - Mode 1 and Mode 2
SPI /
I2 C /
MIPI I3CSM
ADC
0
0
FIFO
LPF2
HPF
1
LPF1
1
ODR_G[3:0]
HP_EN_G
FTYPE [2:0]
FSM
LPF1_SEL_G
The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected
gyroscope ODR, as indicated in the following table.
Table 17. Gyroscope LPF2 bandwidth selection
Gyroscope ODR [Hz]
LPF2 cutoff [Hz]
12.5
4.2
26
8.3
52
16.6
104
33.0
208
66.8
417
135.9
833
295.5
1667
1108.1
3333
1320.7
6667
1441.8
Data can be acquired from the output registers and FIFO over the primary I²C/I3C/SPI interface.
DS13607 - Rev 1
page 32/162
LSM6DSO32X
FIFO
6.5
FIFO
The presence of a FIFO allows consistent power saving for the system since the host processor does not need
continuously poll data from the sensor, but It can wake up only when needed and burst the significant data out
from the FIFO.
The LSM6DSO32X embeds 3 kbytes of data in FIFO (up to 9 kbytes with the compression feature enabled) to
store the following data:
•
Gyroscope
•
Accelerometer
•
External sensors (up to 4)
•
Step counter
•
Timestamp
•
Temperature
Writing data in the FIFO can be configured to be triggered by the:
•
Accelerometer / gyroscope data-ready signal
•
Sensor hub data-ready signal
•
Step detection signal
The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFOdedicated configurations: accelerometer, gyroscope and temperature sensor batch rates can be selected by the
user. External sensor writing in FIFO can be triggered by the accelerometer data-ready signal or by an external
sensor interrupt. The step counter can be stored in FIFO with associated timestamp each time a step is detected.
It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32.
The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows
recognizing the meaning of a word in FIFO.
FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change
in the ODR or BDR (Batch Data Rate) configuration is performed, the application can correctly reconstruct
the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores
information of the new configuration and timestamp in which the change was applied in the device.
Finally, FIFO embeds a compression algorithm that the user can enable in order to have up to 9 kbytes of data
stored in FIFO and take advantage of interface communication length for FIFO flushing and communication power
consumption.
The programmable FIFO watermark threshold can be set in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h) using the
WTM[8:0] bits. To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh))
can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the
number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of
these status events, the configuration can be set in INT1_CTRL (0Dh) and INT2_CTRL (0Eh).
The FIFO buffer can be configured according to six different modes:
•
Bypass mode
•
FIFO mode
•
Continuous mode
•
Continuous-to-FIFO mode
•
Bypass-to-continuous mode
•
Bypass-to-FIFO mode
Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 (0Ah) register.
6.5.1
Bypass mode
In Bypass mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains
empty. Bypass mode is also used to reset the FIFO when in FIFO mode.
DS13607 - Rev 1
page 33/162
LSM6DSO32X
FIFO
6.5.2
FIFO mode
In FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the
FIFO until it is full.
To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0])
to '000'. After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL4 (0Ah)
(FIFO_MODE_[2:0]) to '001'.
The FIFO buffer memorizes up to 9 kbytes of data (with compression enabled) but the depth of the FIFO can
be resized by setting the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). If the STOP_ON_WTM
bit in FIFO_CTRL2 (08h) is set to '1', FIFO depth is limited up to the WTM [8:0] bits in FIFO_CTRL1 (07h) and
FIFO_CTRL2 (08h).
6.5.3
Continuous mode
Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new
data arrives, the older data is discarded.
A FIFO threshold flag FIFO_STATUS2 (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in
FIFO is greater than or equal to FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h)(WTM [8:0]).
It is possible to route the FIFO_WTM_IA flag to the INT1 pin by writing in register INT1_CTRL (0Dh)
(INT1_FIFO_TH) = '1' or to the INT2 pin by writing in register INT2_CTRL (0Eh)(INT2_FIFO_TH) = '1'.
A full-flag interrupt can be enabled, INT1_CTRL (0Dh)(INT1_FIFO_FULL) = '1' or INT2_CTRL (0Eh)
(INT2_FIFO_FULL) = '1', in order to indicate FIFO saturation and eventually read its content all at once.
If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag
in FIFO_STATUS2 (3Bh) is asserted.
In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples
available inFIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)(DIFF_FIFO_[9:0]).
6.5.4
Continuous-to-FIFO mode
In Continuous-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 011), FIFO behavior changes according
to the trigger event detected in one of the following interrupt events:
•
Single tap
•
Double tap
•
Wake-up
•
Free-fall
•
D6D
When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.
When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.
6.5.5
Bypass-to-Continuous mode
In Bypass-to-Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '100'), data measurement storage
inside FIFO operates in Continuous mode when selected triggers are equal to '1', otherwise FIFO content is
reset (Bypass mode).
FIFO behavior changes according to the trigger event detected in one of the following interrupt events:
•
Single tap
•
Double tap
•
Wake-up
•
Free-fall
•
D6D
DS13607 - Rev 1
page 34/162
LSM6DSO32X
FIFO
6.5.6
Bypass-to-FIFO mode
In Bypass-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '111'), data measurement storage inside FIFO
operates in FIFO mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).
FIFO behavior changes according to the trigger event detected in one of the following interrupt events:
•
Single tap
•
Double tap
•
Wake-up
•
Free-fall
•
D6D
6.5.7
FIFO reading procedure
The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7
bytes: one tag byte (FIFO_DATA_OUT_TAG (78h), in order to identify the sensor, and 6 bytes of fixed data
(FIFO_DATA_OUT registers from (79h) to (7Eh)).
The DIFF_FIFO_[9:0] field in the FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh) registers contains the number
of words (1 byte TAG + 6 bytes DATA) collected in FIFO.
In addition, it is possible to configure a counter of the batch events of accelerometer or gyroscope sensors.
The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter reaches a selectable threshold
(CNT_BDR_TH_[10:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows
triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable
using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events,
the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits
(INT1_CNT_BDR of INT1_CTRL (0Dh) and INT2_CNT_BDR of INT2_CTRL (0Eh)).
In order to maximize the amount of accelerometer and gyroscope data in FIFO, the user can enable the
compression algorithm by setting to 1 both the FIFO_COMPR_EN bit in EMB_FUNC_EN_B (05h) (embedded
functions registers bank) and the FIFO_COMPR_RT_EN bit in FIFO_CTRL2 (08h). When compression
is enabled, it is also possible to force writing non-compressed data at a selectable rate using the
UNCOPTR_RATE_[1:0] field in FIFO_CTRL2 (08h).
Meta information about accelerometer and gyroscope sensor configuration changes can be managed by enabling
the ODR_CHG_EN bit in FIFO_CTRL2 (08h).
DS13607 - Rev 1
page 35/162
LSM6DSO32X
Application hints
7
Application hints
7.1
LSM6DSO32X electrical connections in Mode 1
Figure 20. LSM6DSO32X electrical connections in Mode 1
CS
SCL
SDA
Mode 1
HOST
14
12
I 2C /
SM
SDO/SA0
TOP
VIEW
SDx
SCx
4
INT1
8
C2
7
GND
Vdd_IO
5
NC
NC
GND
GND or Vdd_IO
11
1
MIPI I3C /
SPI (3/4-w)
(1)
(1)
LSM6DSO32X
Vdd
INT2
Vdd
C1
100 nF
I2C configuration
GND
Vdd_IO
Rpu
Vdd_IO
100 nF
GND
Rpu
SCL
SDA
Pull-up to be added
Rpu=10kOhm
1.
Leave pin electrically unconnected and soldered to PCB.
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic)
should be placed as near as possible to the supply pin of the device (common design practice).
The functionality of the device and the measured acceleration/angular rate data is selectable and accessible
through the SPI/I²C/MIPI I3CSM interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely
programmed by the user through the SPI/I²C/MIPI I3CSM interface.
DS13607 - Rev 1
page 36/162
LSM6DSO32X
LSM6DSO32X electrical connections in Mode 2
7.2
LSM6DSO32X electrical connections in Mode 2
Figure 21. LSM6DSO32X electrical connections in Mode 2
HOST
CS
SCL
SDA
Mode 2
I 2C
/
SM
14
SDO/SA0
1
12
11
TOP
VIEW
MSDA
MSCL
8
C2
GND
7
GND
Vdd_IO
5
NC
NC
4
INT1
MIPI I3C /
SPI (3/4-w)
LSM6DSO32X
(1)
(1)
Master I2C
MDRDY/INT2
Vdd
LSM6DSM
External
LSM6DSM
sensors
Vdd
C1
100 nF
I2C configuration
GND
Vdd_IO
Rpu
Vdd_IO
100 nF
GND
Rpu
SCL
SDA
Pull-up to be added
Rpu=10kOhm
1.
Leave pin electrically unconnected and soldered to PCB.
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic)
should be placed as near as possible to the supply pin of the device (common design practice).
The functionality of the device and the measured acceleration/angular rate data is selectable and accessible
through the SPI/I²C/MIPI I3CSM primary interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely
programmed by the user through the SPI/I²C/MIPI I3CSM primary interface.
DS13607 - Rev 1
page 37/162
DS13607 - Rev 1
Table 18. Internal pin status
Pin #
Name
Mode 1 function
Mode 2 function
SDO
SPI 4-wire interface serial data
output (SDO)
SPI 4-wire interface serial data
output (SDO)
I²C least significant bit of the
device address (SA0)
I²C least significant bit of the
device address (SA0)
MIPI I3CSMleast significant bit
of the static address (SA0)
MIPI I3CSM least significant bit
of the static address (SA0)
1
SA0
2
3
SDx
SCx
Connect to Vdd_IO or GND
Connect to Vdd_IO or GND
Pin status Mode 1
Pin status Mode 2
Default: input without pull-up.
Default: input without pull-up.
Pull-up is enabled if bit SDO_PU_EN = 1
in reg 02h.
Pull-up is enabled if bit SDO_PU_EN = 1
in reg 02h.
Default: input without pull-up.
Default: input without pull-up.
I²C serial data master (MSDA)
Pull-up is enabled if bit SHUB_PU_EN =
1 in reg 14h in sensor hub registers (see
Note to enable pull-up).
Pull-up is enabled if bit SHUB_PU_EN =
1 in reg 14h in sensor hub registers (see
Note to enable pull-up).
Default: input without pull-up.
Default: input without pull-up.
I²C serial clock master (MSCL)
Pull-up is enabled if bit SHUB_PU_EN =
1 in reg 14h in sensor hub registers (see
Note to enable pull-up).
Pull-up is enabled if bit SHUB_PU_EN =
1 in reg 14h in sensor hub registers (see
Note to enable pull-up).
Default: input with pull-down(1)
Default: input with pull-down(1)
Programmable interrupt 1 /
Programmable interrupt 1 /
If device is used as MIPI I3CSM If device is used as MIPI I3CSM
pure slave, this pin must be set pure slave, this pin must be set
to ‘1’.
to ‘1’.
INT1
5
Vdd_IO
Power supply for I/O pins
Power supply for I/O pins
6
GND
0 V supply
0 V supply
7
GND
0 V supply
0 V supply
8
Vdd
Power supply
Power supply
9
INT2
Programmable interrupt 2
(INT2) / Data enabled (DEN)
Programmable interrupt 2
(INT2) / Data enabled
(DEN) / I²C master
external synchronization signal
(MDRDY)
Default: output forced to ground.
Default: output forced to ground.
10
NC
Leave unconnected
Leave unconnected
Default: input with pull-up.
Default: input with pull-up.
11
NC
Connect to Vdd_IO or
leave unconnected
Connect to Vdd_IO or
leave unconnected
Default: input with pull-up.
Default: input with pull-up.
I²C/SPI mode selection
I²C/SPI mode selection
(1:SPI idle mode / I²C
communication enabled;
(1:SPI idle mode / I²C
communication enabled;
Default: input with pull-up.
Default: input with pull-up.
0: SPI communication mode /
I²C disabled)
0: SPI communication mode /
I²C disabled)
Pull-up is disabled if bit I2C_disable = 1 in
reg 13h and I3C_disable = 1 in reg 18h.
Pull-up is disabled if bit I2C_disable = 1 in
reg 13h and I3C_disable = 1 in reg 18h.
12
CS
LSM6DSO32X
page 38/162
4
DS13607 - Rev 1
Pin #
13
14
Name
Mode 1 function
I3CSM
Mode 2 function
I3CSM
Pin status Mode 1
Pin status Mode 2
SCL
I²C/MIPI
serial clock
(SCL) / SPI serial port clock
(SPC)
I²C/MIPI
serial clock
(SCL) / SPI serial port clock
(SPC)
Default: input without pull-up
Default: input without pull-up
SDA
I²C/MIPI I3CSM serial data
(SDA) / SPI serial data input
(SDI) / 3-wire interface serial
data output (SDO)
I²C/MIPI I3CSM serial data
(SDA) / SPI serial data input
(SDI) / 3-wire interface serial
data output (SDO)
Default: input without pull-up.
Default: input without pull-up.
1. INT1 must be set to '0' or left unconnected during power-on if the I²C/SPI interfaces are used.
Internal pull-up value is from 30 kΩ to 50 kΩ, depending on Vdd_IO.
Note:
The procedure to enable the pull-up on pins 2 and 3 is as follows:
1. Write 40h in register at address 01h (enable access to the sensor hub registers).
2. Wite 08h in register at address 14h (enable the pull-up on pins 2 and 3).
3. Write 00h in register at address 01h (disable access to the sensor hub registers).
LSM6DSO32X
page 39/162
LSM6DSO32X
Register mapping
8
Register mapping
The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding
addresses.
Table 19. Registers address map
Name
Type
Register address
Hex
Binary
Default
FUNC_CFG_ACCESS
RW
01
00000001
00000000
PIN_CTRL
RW
02
00000010
00111111
RESERVED
-
03-06
FIFO_CTRL1
RW
07
00000111
00000000
FIFO_CTRL2
RW
08
00001000
00000000
FIFO_CTRL3
RW
09
00001001
00000000
FIFO_CTRL4
RW
0A
00001010
00000000
COUNTER_BDR_REG1
RW
0B
00001011
00000000
COUNTER_BDR_REG2
RW
0C
00001100
00000000
INT1_CTRL
RW
0D
00001101
00000000
INT2_CTRL
RW
0E
00001110
00000000
WHO_AM_I
R
0F
00001111
01101100
CTRL1_XL
RW
10
00010000
00000000
CTRL2_G
RW
11
00010001
00000000
CTRL3_C
RW
12
00010010
00000100
CTRL4_C
RW
13
00010011
00000000
CTRL5_C
RW
14
00010100
00000000
CTRL6_C
RW
15
00010101
00000000
CTRL7_G
RW
16
00010110
00000000
CTRL8_XL
RW
17
00010111
00000000
CTRL9_XL
RW
18
00011000
11100000
CTRL10_C
RW
19
00011001
00000000
ALL_INT_SRC
R
1A
00011010
output
WAKE_UP_SRC
R
1B
00011011
output
TAP_SRC
R
1C
00011100
output
D6D_SRC
R
1D
00011101
output
STATUS_REG
R
1E
00011110
output
RESERVED
-
1F
00011111
OUT_TEMP_L
R
20
00100000
output
OUT_TEMP_H
R
21
00100001
output
OUTX_L_G
R
22
00100010
output
OUTX_H_G
R
23
00100011
output
OUTY_L_G
R
24
00100100
output
DS13607 - Rev 1
Comment
page 40/162
LSM6DSO32X
Register mapping
Name
Type
Register address
Hex
Binary
Default
OUTY_H_G
R
25
00100101
output
OUTZ_L_G
R
26
00100110
output
OUTZ_H_G
R
27
00100111
output
OUTX_L_A
R
28
00101000
output
OUTX_H_A
R
29
00101001
output
OUTY_L_A
R
2A
00101010
output
OUTY_H_A
R
2B
00101011
output
OUTZ_L_A
R
2C
00101100
output
OUTZ_H_A
R
2D
00101101
output
RESERVED
-
2E-34
EMB_FUNC_STATUS_MAINPAGE
R
35
00110101
output
FSM_STATUS_A_MAINPAGE
R
36
00110110
output
FSM_STATUS_B_MAINPAGE
R
37
00110111
output
MLC_STATUS_MAINPAGE (38h)
R
38
00111000
output
STATUS_MASTER_MAINPAGE
R
39
00111001
output
FIFO_STATUS1
R
3A
00111010
output
FIFO_STATUS2
R
3B
00111011
output
RESERVED
-
3C-3F
TIMESTAMP0
R
40
01000000
output
TIMESTAMP1
R
41
01000001
output
TIMESTAMP2
R
42
01000010
output
TIMESTAMP3
R
43
01000011
output
RESERVED
-
44-55
TAP_CFG0
RW
56
01010110
00000000
TAP_CFG1
RW
57
01010111
00000000
TAP_CFG2
RW
58
01011000
00000000
TAP_THS_6D
RW
59
01011001
00000000
INT_DUR2
RW
5A
01011010
00000000
WAKE_UP_THS
RW
5B
01011011
00000000
WAKE_UP_DUR
RW
5C
01011100
00000000
FREE_FALL
RW
5D
01011101
00000000
MD1_CFG
RW
5E
01011110
00000000
MD2_CFG
RW
5F
01011111
00000000
-
60-61
RW
62
01100010
00000000
INTERNAL_FREQ_FINE
R
63
01100011
output
RESERVED
-
64-72
X_OFS_USR
RW
73
01110011
00000000
Y_OFS_USR
RW
74
01110100
00000000
Z_OFS_USR
RW
75
01110101
00000000
RESERVED
I3C_BUS_AVB
DS13607 - Rev 1
Comment
00000000
page 41/162
LSM6DSO32X
Register mapping
Name
Type
Register address
Hex
Binary
Default
RESERVED
-
76-77
FIFO_DATA_OUT_TAG
R
78
01111000
output
FIFO_DATA_OUT_X_L
R
79
01111001
output
FIFO_DATA_OUT_X_H
R
7A
01111010
output
FIFO_DATA_OUT_Y_L
R
7B
01111011
output
FIFO_DATA_OUT_Y_H
R
7C
01111100
output
FIFO_DATA_OUT_Z_L
R
7D
01111101
output
FIFO_DATA_OUT_Z_H
R
7E
01111110
output
DS13607 - Rev 1
Comment
page 42/162
LSM6DSO32X
Register description
9
Register description
The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration,
angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to
write the data through the serial interface.
9.1
FUNC_CFG_ACCESS (01h)
Enable embedded functions register (r/w)
Table 20. FUNC_CFG_ACCESS register
FUNC_CFG_
ACCESS
SHUB_REG
ACCESS
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 21. FUNC_CFG_ACCESS register description
FUNC_CFG_ACCESS
Enable access to the embedded functions configuration registers.(1) Default value: 0
SHUB_REG_ACCESS
Enable access to the sensor hub (I²C master) registers.(2) Default value: 0
1. Details concerning the embedded functions configuration registers are available in Section 10 Embedded functions register
mapping and Section 11 Embedded functions register description.
2. Details concerning the sensor hub registers are available in Section 14 Sensor hub register mapping and
Section 15 Sensor hub register description.
9.2
PIN_CTRL (02h)
SDO pin pull-up enable/disable register (r/w)
Table 22. PIN_CTRL register
0(1)
SDO_
PU_EN
1(2)
1(2)
1(2)
1(2)
1(2)
1(2)
1. This bit must be set to '0' for the correct operation of the device.
2. This bit must be set to '1' for the correct operation of the device.
Table 23. PIN_CTRL register description
SDO_PU_EN
DS13607 - Rev 1
Enable pull-up on SDO pin
(0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up)
page 43/162
LSM6DSO32X
FIFO_CTRL1 (07h)
9.3
FIFO_CTRL1 (07h)
FIFO control register 1 (r/w)
Table 24. FIFO_CTRL1 register
WTM7
WTM6
WTM5
WTM4
WTM3
WTM2
WTM1
WTM0
Table 25. FIFO_CTRL1 register description
FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h)
WTM[7:0] 1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.
9.4
FIFO_CTRL2 (08h)
FIFO control register 2 (r/w)
Table 26. FIFO_CTRL2 register
STOP_ON
_WTM
FIFO_COMPR
_RT_EN
0
ODRCHG
_EN
0
UNCOPTR_
RATE_1
UNCOPTR_
RATE_0
WTM8
Table 27. FIFO_CTRL2 register description
Sensing chain FIFO stop values memorization at threshold level
STOP_ON_WTM
(0: FIFO depth is not limited (default);
1: FIFO depth is limited to threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h))
FIFO_COMPR_RT_EN(1)
Enables/Disables compression algorithm runtime
ODRCHG_EN
Enables ODR CHANGE virtual sensor to be batched in FIFO
This field configures the compression algorithm to write non-compressed data at each rate.
(0: Non-compressed data writing is not forced;
UNCOPTR_RATE_[1:0]
1: Non-compressed data every 8 batch data rate;
2: Non-compressed data every 16 batch data rate;
3: Non-compressed data every 32 batch data rate)
FIFO watermark threshold, in conjunction with WTM_FIFO[7:0] in FIFO_CTRL1 (07h)
WTM8
1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the
threshold level.
1. This bit is effective if the FIFO_COMPR_EN bit of EMB_FUNC_EN_B (05h) is set to 1.
DS13607 - Rev 1
page 44/162
LSM6DSO32X
FIFO_CTRL3 (09h)
9.5
FIFO_CTRL3 (09h)
FIFO control register 3 (r/w)
Table 28. FIFO_CTRL3 register
BDR_GY_3
BDR_GY_2
BDR_GY_1
BDR_GY_0
BDR_XL_3
BDR_XL_2
BDR_XL_1
BDR_XL_0
Table 29. FIFO_CTRL3 register description
Selects Batch Data Rate (write frequency in FIFO) for gyroscope data.
(0000: Gyro not batched in FIFO (default);
0001: 12.5 Hz;
0010: 26 Hz;
0011: 52 Hz;
0100: 104 Hz;
BDR_GY_[3:0]
0101: 208 Hz;
0110: 417 Hz;
0111: 833 Hz;
1000: 1667 Hz;
1001: 3333 Hz;
1010: 6667 Hz;
1011: 6.5 Hz;
1100-1111: not allowed)
Selects Batch Data Rate (write frequency in FIFO) for accelerometer data.
(0000: Accelerometer not batched in FIFO (default);
0001: 12.5 Hz;
0010: 26 Hz;
0011: 52 Hz;
0100: 104 Hz;
BDR_XL_[3:0]
0101: 208 Hz;
0110: 417 Hz;
0111: 833 Hz;
1000: 1667 Hz;
1001: 3333 Hz;
1010: 6667 Hz;
1011: 1.6 Hz;
1100-1111: not allowed)
DS13607 - Rev 1
page 45/162
LSM6DSO32X
FIFO_CTRL4 (0Ah)
9.6
FIFO_CTRL4 (0Ah)
FIFO control register 4 (r/w)
Table 30. FIFO_CTRL4 register
DEC_TS_
BATCH_1
DEC_TS_
BATCH_0
ODR_T_
BATCH_1
ODR_T_
BATCH_0
0(1)
FIFO_
MODE2
FIFO_
MODE1
FIFO_
MODE0
1. This bit must be set to '0' for the correct operation of the device.
Table 31. FIFO_CTRL4 register description
Selects decimation for timestamp batching in FIFO. Write rate will be the maximum rate between XL
and GYRO BDR divided by decimation decoder.
(00: Timestamp not batched in FIFO (default);
DEC_TS_BATCH_[1:0]
01: Decimation 1: max(BDR_XL[Hz],BDR_GY[Hz]) [Hz];
10: Decimation 8: max(BDR_XL[Hz],BDR_GY[Hz])/8 [Hz];
11: Decimation 32: max(BDR_XL[Hz],BDR_GY[Hz])/32 [Hz])
Selects batch data rate (write frequency in FIFO) for temperature data
(00: Temperature not batched in FIFO (default);
ODR_T_BATCH_[1:0]
01: 1.6 Hz;
10: 12.5 Hz;
11: 52 Hz)
FIFO mode selection
(000: Bypass mode: FIFO disabled;
001: FIFO mode: stops collecting data when FIFO is full;
010: Reserved;
FIFO_MODE[2:0]
011: Continuous-to-FIFO mode: Continuous mode until trigger is deasserted, then FIFO mode;
100: Bypass-to-Continuous mode: Bypass mode until trigger is deasserted, then Continuous mode;
101: Reserved;
110: Continuous mode: if the FIFO is full, the new sample overwrites the older one;
111: Bypass-to-FIFO mode: Bypass mode until trigger is deasserted, then FIFO mode.)
DS13607 - Rev 1
page 46/162
LSM6DSO32X
COUNTER_BDR_REG1 (0Bh)
9.7
COUNTER_BDR_REG1 (0Bh)
Counter batch data rate register 1 (r/w)
Table 32. COUNTER_BDR_REG1 register
dataready_
pulsed
RST_
COUNTER_BDR
TRIG_
COUNTER_BDR
0(1)
0(1)
CNT_BDR_
TH_10
CNT_BDR_
TH_9
CNT_BDR_
TH_8
1. This bit must be set to '0' for the correct operation of the device.
Table 33. COUNTER_BDR_REG1 register description
Enables pulsed data-ready mode
dataready_pulsed
(0: Data-ready latched mode (returns to 0 only after an interface reading) (default);
1: Data-ready pulsed mode (the data ready pulses are 75 µs long)
RST_COUNTER_BDR
Resets the internal counter of batch events for a single sensor.
This bit is automatically reset to zero if it was set to ‘1’.
Selects the trigger for the internal counter of batch events between XL and gyro.
TRIG_COUNTER_BDR (0: XL batch event;
1: GYRO batch event)
CNT_BDR_TH_[10:8]
9.8
In conjunction with CNT_BDR_TH_[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the
internal counter of batch events. When this counter reaches the threshold, the counter is reset and
the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to ‘1’.
COUNTER_BDR_REG2 (0Ch)
Counter batch data rate register 2 (r/w)
Table 34. COUNTER_BDR_REG2 register
CNT_BDR_
TH_7
CNT_BDR_
TH_6
CNT_BDR_
TH_5
CNT_BDR_
TH_4
CNT_BDR_
TH_3
CNT_BDR_
TH_2
CNT_BDR_
TH_1
CNT_BDR_
TH_0
Table 35. COUNTER_BDR_REG2 register description
In conjunction with CNT_BDR_TH_[10:8] in COUNTER_BDR_REG1 (0Bh), sets the threshold for the
CNT_BDR_TH_[7:0] internal counter of batch events. When this counter reaches the threshold, the counter is reset and the
COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to ‘1’.
DS13607 - Rev 1
page 47/162
LSM6DSO32X
INT1_CTRL (0Dh)
9.9
INT1_CTRL (0Dh)
INT1 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT1 when the MIPI I3CSM dynamic address is not
assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI (In-Band Interrupt) when the MIPI
I3CSM interface is used. The output of the pin will be the OR combination of the signals selected here and in
MD1_CFG (5Eh).
Table 36. INT1_CTRL register
DEN_DRDY
_flag
INT1_
CNT_BDR
INT1_
FIFO_FULL
INT1_
FIFO_OVR
INT1_
FIFO_TH
INT1_
BOOT
INT1_
DRDY_G
INT1_
DRDY_XL
Table 37. INT1_CTRL register description
DS13607 - Rev 1
DEN_DRDY_flag
Sends DEN_DRDY (DEN stamped on Sensor Data flag) to INT1 pin
INT1_CNT_BDR
Enables COUNTER_BDR_IA interrupt on INT1
INT1_FIFO_FULL
Enables FIFO full flag interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3CSM
interface is used.
INT1_FIFO_OVR
Enables FIFO overrun interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3CSM
interface is used.
INT1_FIFO_TH
Enables FIFO threshold interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3CSM
interface is used.
INT1_BOOT
Enables boot status on INT1 pin
INT1_DRDY_G
Enables gyroscope data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI
I3CSM interface is used.
INT1_DRDY_XL
Enables accelerometer data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the
MIPI I3CSM interface is used.
page 48/162
LSM6DSO32X
INT2_CTRL (0Eh)
9.10
INT2_CTRL (0Eh)
INT2 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT2 when the MIPI I3CSM dynamic address is not
assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI when the MIPI I3CSM interface is used.
The output of the pin will be the OR combination of the signals selected here and in MD2_CFG (5Fh).
Table 38. INT2_CTRL register
0(1)
INT2_
CNT_BDR
INT2_
FIFO_FULL
INT2_
FIFO_OVR
INT2_
FIFO_TH
INT2_
DRDY_TEMP
INT2_
DRDY_G
INT2_
DRDY_XL
1. This bit must be set to '0' for the correct operation of the device.
Table 39. INT2_CTRL register description
9.11
INT2_CNT_BDR
Enables COUNTER_BDR_IA interrupt on INT2
INT2_FIFO_FULL
Enables FIFO full flag interrupt on INT2 pin
INT2_FIFO_OVR
Enables FIFO overrun interrupt on INT2 pin
INT2_FIFO_TH
Enables FIFO threshold interrupt on INT2 pin
INT2_DRDY_TEMP
Enables temperature sensor data-ready interrupt on INT2 pin. It can be also used to trigger an IBI when
the MIPI I3CSM interface is used and INT2_ON_INT1 = ‘1’ in CTRL4_C (13h).
INT2_DRDY_G
Gyroscope data-ready interrupt on INT2 pin
INT2_DRDY_XL
Accelerometer data-ready interrupt on INT2 pin
WHO_AM_I (0Fh)
WHO_AM_I register (r). This is a read-only register. Its value is fixed at 6Ch.
Table 40. WhoAmI register
0
DS13607 - Rev 1
1
1
0
1
1
0
0
page 49/162
LSM6DSO32X
CTRL1_XL (10h)
9.12
CTRL1_XL (10h)
Accelerometer control register 1 (r/w)
Table 41. CTRL1_XL register
ODR_XL3
ODR_XL2
ODR_XL1
ODR_XL0
FS1_XL
FS0_XL
0(1)
LPF2_XL_EN
1. This bit must be set to '0' for the correct operation of the device.
Table 42. CTRL1_XL register description
ODR_XL[3:0]
Accelerometer ODR selection (see Table 43)
FS[1:0]_XL
Accelerometer full-scale selection (see Table 44)
Accelerometer high-resolution selection
LPF2_XL_EN
(0: output from first stage digital filtering selected (default);
1: output from LPF2 second filtering stage selected)
Table 43. Accelerometer ODR register setting
ODR_XL3 ODR_XL2 ODR_XL1 ODR_XL0
ODR selection [Hz] when
XL_HM_MODE = 1
in CTRL6_C (15h)
ODR selection [Hz] when
XL_HM_MODE = 0
in CTRL6_C (15h)
0
0
0
0
Power-down
Power-down
1
0
1
1
1.6 Hz (low power only)
12.5 Hz (high performance)
0
0
0
1
12.5 Hz (low power)
12.5 Hz (high performance)
0
0
1
0
26 Hz (low power)
26 Hz (high performance)
0
0
1
1
52 Hz (low power)
52 Hz (high performance)
0
1
0
0
104 Hz (normal mode)
104 Hz (high performance)
0
1
0
1
208 Hz (normal mode)
208 Hz (high performance)
0
1
1
0
416 Hz (high performance)
416 Hz (high performance)
0
1
1
1
833 Hz (high performance)
833 Hz (high performance)
1
0
0
0
1.66 kHz (high performance)
1.66 kHz (high performance)
1
0
0
1
3.33 kHz (high performance)
3.33 kHz (high performance)
1
0
1
0
6.66 kHz (high performance)
6.66 kHz (high performance)
1
1
x
x
Not allowed
Not allowed
Table 44. Accelerometer full-scale selection
DS13607 - Rev 1
FS[1:0]_XL
Accelerometer full-scale
00 (default)
±4 g
01
±32 g
10
±8 g
11
±16 g
page 50/162
LSM6DSO32X
CTRL2_G (11h)
9.13
CTRL2_G (11h)
Gyroscope control register 2 (r/w)
Table 45. CTRL2_G register
ODR_G3
ODR_G2
ODR_G1
ODR_G0
FS1_G
FS0_G
FS_125
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 46. CTRL2_G register description
Gyroscope output data rate selection. Default value: 0000
ODR_G[3:0]
(Refer to Table 47)
Gyroscope chain full-scale selection
(00: ±250 dps;
FS[1:0]_G
01: ±500 dps;
10: ±1000 dps;
11: ±2000 dps)
Selects gyro chain full-scale ±125 dps
FS_125
(0: FS selected through bits FS[1:0]_G;
1: FS set to ±125 dps)
Table 47. Gyroscope ODR configuration setting
ODR [Hz] when G_HM_MODE = 1
in CTRL7_G (16h)
ODR [Hz] when G_HM_MODE = 0
in CTRL7_G (16h)
ODR_G3
ODR_G2
ODR_G1
ODR_G0
0
0
0
0
Power down
Power down
0
0
0
1
12.5 Hz (low power)
12.5 Hz (high performance)
0
0
1
0
26 Hz (low power)
26 Hz (high performance)
0
0
1
1
52 Hz (low power)
52 Hz (high performance)
0
1
0
0
104 Hz (normal mode)
104 Hz (high performance)
0
1
0
1
208 Hz (normal mode)
208 Hz (high performance)
0
1
1
0
416 Hz (high performance)
416 Hz (high performance)
0
1
1
1
833 Hz (high performance)
833 Hz (high performance)
1
0
0
0
1.66 kHz (high performance)
1.66 kHz (high performance)
1
0
0
1
3.33 kHz (high performance
3.33 kHz (high performance)
1
0
1
0
6.66 kHz (high performance
6.66 kHz (high performance)
1
0
1
1
Not available
Not available
DS13607 - Rev 1
page 51/162
LSM6DSO32X
CTRL3_C (12h)
9.14
CTRL3_C (12h)
Control register 3 (r/w)
Table 48. CTRL3_C register
BOOT
BDU
H_LACTIVE
PP_OD
SIM
IF_INC
0(1)
SW_RESET
1. This bit must be set to '0' for the correct operation of the device.
Table 49. CTRL3_C register description
Reboots memory content. Default value: 0
BOOT
(0: normal mode; 1: reboot memory content)
This bit is automatically cleared.
Block Data Update. Default value: 0
BDU
(0: continuous update;
1: output registers are not updated until MSB and LSB have been read)
H_LACTIVE
PP_OD
SIM
IF_INC
Interrupt activation level. Default value: 0
(0: interrupt output pins active high; 1: interrupt output pins active low)
Push-pull/open-drain selection on INT1 and INT2 pins. Default value: 0
(0: push-pull mode; 1: open-drain mode)
SPI Serial Interface Mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface)
Register address automatically incremented during a multiple byte access with a serial interface (I²C or SPI).
Default value: 1
(0: disabled; 1: enabled)
Software reset. Default value: 0
SW_RESET (0: normal mode; 1: reset device)
This bit is automatically cleared.
DS13607 - Rev 1
page 52/162
LSM6DSO32X
CTRL4_C (13h)
9.15
CTRL4_C (13h)
Control register 4 (r/w)
Table 50. CTRL4_C register
0(1)
SLEEP_G
INT2_on
_INT1
0(1)
DRDY_MASK
I2C_disable
LPF1_
SEL_G
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 51. CTRL4_C register description
SLEEP_G
Enables gyroscope Sleep mode. Default value:0
(0: disabled; 1: enabled)
All interrupt signals available on INT1 pin enable. Default value: 0
INT2_on_INT1
(0: interrupt signals divided between INT1 and INT2 pins;
1: all interrupt signals in logic or on INT1 pin)
Enables data available
DRDY_MASK
(0: disabled;
1: mask DRDY on pin (both XL & Gyro) until filter settling ends (XL and Gyro independently masked).
I2C_disable
LPF1_SEL_G
DS13607 - Rev 1
Disables I²C interface. Default value: 0
(0: SPI, I²C and MIPI I3CSM interfaces enabled (default); 1: I²C interface disabled)
Enables gyroscope digital LPF1; the bandwidth can be selected through FTYPE[2:0] in CTRL6_C (15h).
(0: disabled; 1: enabled)
page 53/162
LSM6DSO32X
CTRL5_C (14h)
9.16
CTRL5_C (14h)
Control register 5 (r/w)
Table 52. CTRL5_C register
XL_ULP_EN
ROUNDING1
ROUNDING0
0(1)
ST1_G
ST0_G
ST1_XL
ST0_XL
1. This bit must be set to '0' for the correct operation of the device.
Table 53. CTRL5_C register description
Accelerometer ultra-low-power mode enable(1). Default value: 0
XL_ULP_EN
(0: Ultra-low-power mode disabled; 1: Ultra-low-power mode enabled)
Circular burst-mode (rounding) read from the output registers. Default value: 00
(00: no rounding;
ROUNDING[1:0]
01: accelerometer only;
10: gyroscope only;
11: gyroscope + accelerometer)
Angular rate sensor self-test enable. Default value: 00
ST[1:0]_G
(00: Self-test disabled; Other: refer to Table 54)
Linear acceleration sensor self-test enable. Default value: 00
ST[1:0]_XL
(00: Self-test disabled; Other: refer to Table 55)
1. Further details about the accelerometer ultra-low-power mode are provided in Section 6.2.1 Accelerometer ultra-low-power
mode.
Table 54. Angular rate sensor self-test mode selection
ST1_G
ST0_G
0
0
Normal mode
0
1
Positive sign self-test
1
0
Not allowed
1
1
Negative sign self-test
Self-test mode
Table 55. Linear acceleration sensor self-test mode selection
DS13607 - Rev 1
ST1_XL
ST0_XL
0
0
Normal mode
0
1
Positive sign self-test
1
0
Negative sign self-test
1
1
Not allowed
Self-test mode
page 54/162
LSM6DSO32X
CTRL6_C (15h)
9.17
CTRL6_C (15h)
Control register 6 (r/w)
Table 56. CTRL6_C register
TRIG_EN
LVL1_EN
LVL2_EN
XL_HM
_MODE
USR_
OFF_W
FTYPE_2
FTYPE_1
FTYPE_0
Table 57. CTRL6_C register description
TRIG_EN
DEN data edge-sensitive trigger enable. Refer to Table 58.
LVL1_EN
DEN data level-sensitive trigger enable. Refer to Table 58.
LVL2_EN
DEN level-sensitive latched enable. Refer toTable 58.
High-performance operating mode disable for accelerometer. Default value: 0
XL_HM_MODE
(0: high-performance operating mode enabled;
1: high-performance operating mode disabled)
Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h)
USR_OFF_W
(0: 2-10g/LSB;
1: 2-6g/LSB)
Gyroscope's low-pass filter (LPF1) bandwidth selection
FTYPE[2:0]
Table 59 shows the selectable bandwidth values.
Table 58. Trigger mode selection
TRIG_EN, LVL1_EN, LVL2_EN
Trigger mode
100
Edge-sensitive trigger mode is selected
010
Level-sensitive trigger mode is selected
011
Level-sensitive latched mode is selected
110
Level-sensitive FIFO enable mode is selected
Table 59. Gyroscope LPF1 bandwidth selection
FTYPE
[2:0]
12.5 Hz
26 Hz
52 Hz
104 Hz
208 Hz
416 Hz
833 Hz
1.67 kHz
3.33 kHz
6.67 kHz
000
4.2
8.3
16.6
33.0
67.0
136.6
239.2
304.2
328.5
335.5
001
4.2
8.3
16.6
33.0
67.0
130.5
192.4
220.7
229.6
232.0
010
4.2
8.3
16.6
33.0
67.0
120.3
154.2
166.6
170.1
171.1
011
4.2
8.3
16.6
33.0
67.0
137.1
281.8
453.2
559.2
609.0
100
4.2
8.3
16.7
33.0
62.4
86.7
96.6
99.6
100.4
100.6
101
4.2
8.3
16.8
31.0
43.2
48.0
49.4
49.8
49.9
49.9
110
4.1
7.8
13.4
19.0
23.1
24.6
25.0
25.1
25.1
25.1
111
3.9
6.7
9.7
11.5
12.2
12.4
12.5
12.5
12.5
12.5
DS13607 - Rev 1
page 55/162
LSM6DSO32X
CTRL7_G (16h)
9.18
CTRL7_G (16h)
Control register 7 (r/w)
Table 60. CTRL7_G register
G_HM_
MODE
HP_EN_G
HPM1_G
HPM0_G
0(1)
0(1)
USR_OFF
_ON_OUT
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 61. CTRL7_G register description
Disables high-performance operating mode for gyroscope. Default value: 0
G_HM_MODE
(0: high-performance operating mode enabled;
1: high-performance operating mode disabled)
HP_EN_G
Enables gyroscope digital high-pass filter. The filter is enabled only if the gyro is in HP mode. Default
value: 0
(0: HPF disabled; 1: HPF enabled)
Gyroscope digital HP filter cutoff selection. Default: 00
(00: 16 mHz;
HPM_G[1:0]
01: 65 mHz;
10: 260 mHz;
11: 1.04 Hz)
USR_OFF_ON_
OUT
Enables accelerometer user offset correction block; it's valid for the low-pass path - see
Figure 18. Accelerometer composite filter. Default value: 0
(0: accelerometer user offset correction block bypassed;
1: accelerometer user offset correction block enabled)
DS13607 - Rev 1
page 56/162
LSM6DSO32X
CTRL8_XL (17h)
9.19
CTRL8_XL (17h)
Control register 8 (r/w)
Table 62. CTRL8_XL register
HPCF_XL_2
HPCF_XL_1
HPCF_XL_0
HP_REF_
MODE_XL
FASTSETTL_
MODE_XL
HP_SLOPE_
XL_EN
LOW_PASS_
ON_6D
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 63. CTRL8_XL register description
HPCF_XL_[2:0]
Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to Table 64.
HP_REF_MODE_XL
Enables accelerometer high-pass filter reference mode (valid for high-pass path HP_SLOPE_XL_EN bit must be ‘1’). Default value: 0(1)
(0: disabled, 1: enabled)
Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after
FASTSETTL_MODE_XL writing this bit. Active only during device exit from power- down mode. Default value: 0
(0: disabled, 1: enabled)
HP_SLOPE_XL_EN
Accelerometer slope filter / high-pass filter selection. Refer to Figure 22. Accelerometer block
diagram.
LOW_PASS_ON_6D
(0: ODR/2 low-pass filtered data sent to 6D interrupt function;
LPF2 on 6D function selection. Refer to Figure 22. Default value: 0
1: LPF2 output data sent to 6D interrupt function)
1. When enabled, the first output data have to be discarded.
Table 64. Accelerometer bandwidth configurations
Filter type
Low pass
High pass
DS13607 - Rev 1
HP_SLOPE_XL_EN
0
1
LPF2_XL_EN
HPCF_XL_[2:0]
Bandwidth
0
-
ODR/2
000
ODR/4
001
ODR/10
010
ODR/20
011
ODR/45
100
ODR/100
101
ODR/200
110
ODR/400
111
ODR/800
000
SLOPE (ODR/4)
001
ODR/10
010
ODR/20
1
-
011
ODR/45
100
ODR/100
101
ODR/200
110
ODR/400
111
ODR/800
page 57/162
LSM6DSO32X
CTRL8_XL (17h)
Figure 22. Accelerometer block diagram
LOW_PASS_ON_6D
Free-fall
0
Advanced
functions
1
LPF2_XL_EN
USR_OFF_ON_OUT
HP_SLOPE_XL_EN
0
0
Digital
LP Filter
1
LPF1
output (1)
0
USER
OFFSET
LPF2
1
USR_OFF_W
OFS_USR[7:0]
FIFO
HPCF_XL[2:0]
Digital
HP Filter
1
1
0
0
Wake-up
Activity /
Inactivity
SPI /
I 2C /
MIPI I3C SM
USR_OFF_ON_WU SLOPE_FDS
001
010
…
111
1
HPCF_XL[2:0]
SLOPE
FILTER
6D / 4D
000
HPCF_XL[2:0]
S/D Tap
1.
DS13607 - Rev 1
The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode. This
value is equal to 700 Hz when the accelerometer is in low-power or normal mode.
page 58/162
LSM6DSO32X
CTRL9_XL (18h)
9.20
CTRL9_XL (18h)
Control register 9 (r/w)
Table 65. CTRL9_XL register
DEN_X
DEN_Y
DEN_Z
DEN_XL_G
DEN_XL_EN
DEN_LH
I3C_disable
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 66. CTRL9_XL register description
DEN_X
DEN_Y
DEN_Z
DEN value stored in LSB of X-axis. Default value: 1
(0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN value stored in LSB of Y-axis. Default value: 1
(0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN value stored in LSB of Z-axis. Default value: 1
(0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
DEN stamping sensor selection. Default value: 0
DEN_XL_G
(0: DEN pin info stamped in the gyroscope axis selected by bits [7:5];
1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
DEN_XL_EN
DEN_LH
Extends DEN functionality to accelerometer sensor. Default value: 0
(0: disabled; 1: enabled)
DEN active level configuration. Default value: 0
(0: active low; 1: active high)
Disables MIPI I3CSM communication protocol(1)
I3C_disable
(0: SPI, I²C, MIPI I3CSM interfaces enabled (default);
1: MIPI I3CSM interface disabled)
1. It is recommended to set this bit to '1' during the initial device configuration phase, when the I3C interface is not used.
DS13607 - Rev 1
page 59/162
LSM6DSO32X
CTRL10_C (19h)
9.21
CTRL10_C (19h)
Control register 10 (r/w)
Table 67. CTRL10_C register
0(1)
TIMESTAMP
_EN
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 68. CTRL10_C register description
Enables timestamp counter. default value: 0
TIMESTAMP_EN
(0: disabled; 1: enabled)
The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and
TIMESTAMP3 (43h).
9.22
ALL_INT_SRC (1Ah)
Source register for all interrupts (r)
Table 69. ALL_INT_SRC register
TIMESTAMP
_ENDCOUNT
0
SLEEP_
CHANGE_IA
D6D_IA
DOUBLE_
TAP
SINGLE_
TAP
WU_IA
FF_IA
Table 70. ALL_INT_SRC register description
TIMESTAMP_ENDCOUNT Alerts timestamp overflow within 6.4 ms
SLEEP_CHANGE_IA
D6D_IA
DOUBLE_TAP
SINGLE_TAP
WU_IA
FF_IA
DS13607 - Rev 1
Detects change event in activity/inactivity status. Default value: 0
(0: change status not detected; 1: change status detected)
Interrupt active for change in position of portrait, landscape, face-up, face-down. Default value: 0
(0: change in position not detected; 1: change in position detected)
Double-tap event status. Default value: 0
(0:event not detected, 1: event detected)
Single-tap event status. Default value:0
(0: event not detected, 1: event detected)
Wake-up event status. Default value: 0
(0: event not detected, 1: event detected)
Free-fall event status. Default value: 0
(0: event not detected, 1: event detected)
page 60/162
LSM6DSO32X
WAKE_UP_SRC (1Bh)
9.23
WAKE_UP_SRC (1Bh)
Wake-up interrupt source register (r)
Table 71. WAKE_UP_SRC register
0
SLEEP_
CHANGE_IA
FF_IA
SLEEP_
STATE
WU_IA
X_WU
Y_WU
Z_WU
Table 72. WAKE_UP_SRC register description
SLEEP_ CHANGE_IA
FF_IA
SLEEP_STATE
WU_IA
X_WU
Y_WU
Z_WU
DS13607 - Rev 1
Detects change event in activity/inactivity status. Default value: 0
(0: change status not detected; 1: change status detected)
Free-fall event detection status. Default value: 0
(0: free-fall event not detected; 1: free-fall event detected)
Sleep status bit. Default value: 0
(0: Activity status; 1: Inactivity status)
Wakeup event detection status. Default value: 0
(0: wakeup event not detected; 1: wakeup event detected.)
Wakeup event detection status on X-axis. Default value: 0
(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Wakeup event detection status on Y-axis. Default value: 0
(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Wakeup event detection status on Z-axis. Default value: 0
(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)
page 61/162
LSM6DSO32X
TAP_SRC (1Ch)
9.24
TAP_SRC (1Ch)
Tap source register (r)
Table 73. TAP_SRC register
0
TAP_IA
SINGLE_
TAP
DOUBLE_
TAP
TAP_SIGN
X_TAP
Y_TAP
Z_TAP
Table 74. TAP_SRC register description
TAP_IA
SINGLE_TAP
DOUBLE_TAP
Tap event detection status. Default: 0
(0: tap event not detected; 1: tap event detected)
Single-tap event status. Default value: 0
(0: single tap event not detected; 1: single tap event detected)
Double-tap event detection status. Default value: 0
(0: double-tap event not detected; 1: double-tap event detected.)
Sign of acceleration detected by tap event. Default: 0
TAP_SIGN
(0: positive sign of acceleration detected by tap event;
1: negative sign of acceleration detected by tap event)
X_TAP
Y_TAP
Z_TAP
DS13607 - Rev 1
Tap event detection status on X-axis. Default value: 0
(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Tap event detection status on Y-axis. Default value: 0
(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Tap event detection status on Z-axis. Default value: 0
(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)
page 62/162
LSM6DSO32X
D6D_SRC (1Dh)
9.25
D6D_SRC (1Dh)
Portrait, landscape, face-up and face-down source register (r)
Table 75. D6D_SRC register
DEN_DRDY
D6D_IA
ZH
ZL
YH
YL
XH
XL
Table 76. D6D_SRC register description
DEN_DRDY
D6D_IA
ZH
ZL
YH
YL
XH
XL
DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active
condition.(1)
Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0
(0: change position not detected; 1: change position detected)
Z-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over threshold) detected)
Z-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
Y-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over-threshold) detected)
Y-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
X-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over threshold) detected)
X-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
1. The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the
COUNTER_BDR_REG1 (0Bh) register.
DS13607 - Rev 1
page 63/162
LSM6DSO32X
STATUS_REG (1Eh)
9.26
STATUS_REG (1Eh)
Status register (r)
Table 77. STATUS_REG register
0
0
0
0
0
TDA
GDA
XLDA
Table 78. STATUS_REG register description
Temperature new data available. Default: 0
TDA
(0: no set of data is available at temperature sensor output;
1: a new set of data is available at temperature sensor output)
Gyroscope new data available. Default value: 0
GDA
(0: no set of data available at gyroscope output;
1: a new set of data is available at gyroscope output)
Accelerometer new data available. Default value: 0
XLDA
(0: no set of data available at accelerometer output;
1: a new set of data is available at accelerometer output)
DS13607 - Rev 1
page 64/162
LSM6DSO32X
OUT_TEMP_L (20h), OUT_TEMP_H (21h)
9.27
OUT_TEMP_L (20h), OUT_TEMP_H (21h)
Temperature data output register (r). L and H registers together express a 16-bit word in two’s complement.
Table 79. OUT_TEMP_L register
Temp7
Temp6
Temp5
Temp4
Temp3
Temp2
Temp1
Temp0
Temp10
Temp9
Temp8
Table 80. OUT_TEMP_H register
Temp15
Temp14
Temp13
Temp12
Temp11
Table 81. OUT_TEMP register description
Temp[15:0]
9.28
Temperature sensor output data
The value is expressed as two’s complement sign extended on the MSB.
OUTX_L_G (22h) and OUTX_H_G (23h)
Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 82. OUTX_L_G register
D7
D6
D5
D4
D3
D2
D1
D0
D10
D9
D8
Table 83. OUTX_H_G register
D15
D14
D13
D12
D11
Table 84. OUTX_H_G register description
D[15:0]
DS13607 - Rev 1
Pitch axis (X) angular rate value
page 65/162
LSM6DSO32X
OUTY_L_G (24h) and OUTY_H_G (25h)
9.29
OUTY_L_G (24h) and OUTY_H_G (25h)
Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 85. OUTY_L_G register
D7
D6
D5
D4
D3
D2
D1
D0
D10
D9
D8
Table 86. OUTY_H_G register
D15
D14
D13
D12
D11
Table 87. OUTY_H_G register description
D[15:0]
9.30
Roll axis (Y) angular rate value
OUTZ_L_G (26h) and OUTZ_H_G (27h)
Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 88. OUTZ_L_G register
D7
D6
D5
D4
D3
D2
D1
D0
D10
D9
D8
Table 89. OUTZ_H_G register
D15
D14
D13
D12
D11
Table 90. OUTZ_H_G register description
D[15:0]
DS13607 - Rev 1
Yaw axis (Z) angular rate value
page 66/162
LSM6DSO32X
OUTX_L_A (28h) and OUTX_H_A (29h)
9.31
OUTX_L_A (28h) and OUTX_H_A (29h)
Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 91. OUTX_L_A register
D7
D6
D5
D4
D3
D2
D1
D0
D10
D9
D8
Table 92. OUTX_H_A register
D15
D14
D13
D12
D11
Table 93. OUTX_H_A register description
D[15:0]
9.32
X-axis linear acceleration value.
OUTY_L_A (2Ah) and OUTY_H_A (2Bh)
Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 94. OUTY_L_A register
D7
D6
D5
D4
D3
D2
D1
D0
D10
D9
D8
Table 95. OUTY_H_A register
D15
D14
D13
D12
D11
Table 96. OUTY_H_A register description
D[15:0]
DS13607 - Rev 1
Y-axis linear acceleration value
page 67/162
LSM6DSO32X
OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)
9.33
OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)
Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 97. OUTZ_L_A register
D7
D6
D5
D4
D3
D2
D1
D0
D10
D9
D8
0
0
Table 98. OUTZ_H_A register
D15
D14
D13
D12
D11
Table 99. OUTZ_H_A register description
D[15:0]
9.34
Z-axis linear acceleration value
EMB_FUNC_STATUS_MAINPAGE (35h)
Embedded function status register (r)
Table 100. EMB_FUNC_STATUS_MAINPAGE register
IS_FSM_LC
0
IS_SIGMOT
IS_TILT
IS_STEP_DET
0
Table 101. EMB_FUNC_STATUS_MAINPAGE register description
IS_FSM_LC
IS_SIGMOT
IS_TILT
IS_STEP_DET
DS13607 - Rev 1
Interrupt status bit for FSM long counter timeout interrupt event.
(1: interrupt detected; 0: no interrupt)
Interrupt status bit for significant motion detection
(1: interrupt detected; 0: no interrupt)
Interrupt status bit for tilt detection
(1: interrupt detected; 0: no interrupt)
Interrupt status bit for step detection
(1: interrupt detected; 0: no interrupt)
page 68/162
LSM6DSO32X
FSM_STATUS_A_MAINPAGE (36h)
9.35
FSM_STATUS_A_MAINPAGE (36h)
Finite State Machine status register (r)
Table 102. FSM_STATUS_A_MAINPAGE register
IS_FSM8
IS_FSM7
IS_FSM6
IS_FSM5
IS_FSM4
IS_FSM3
IS_FSM2
IS_FSM1
Table 103. FSM_STATUS_A_MAINPAGE register description
9.36
IS_FSM8
Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7
Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6
Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5
Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4
Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3
Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2
Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1
Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)
FSM_STATUS_B_MAINPAGE (37h)
Finite State Machine status register (r)
Table 104. FSM_STATUS_B_MAINPAGE register
IS_FSM16
IS_FSM15
IS_FSM14
IS_FSM13
IS_FSM12
IS_FSM11
IS_FSM10
IS_FSM9
Table 105. FSM_STATUS_B_MAINPAGE register description
DS13607 - Rev 1
IS_FSM16
Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15
Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14
Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13
Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12
Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11
Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10
Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9
Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)
page 69/162
LSM6DSO32X
MLC_STATUS_MAINPAGE (38h)
9.37
MLC_STATUS_MAINPAGE (38h)
Machine Learning Core status register (r)
Table 106. MLC_STATUS _MAINPAGE register
IS_MLC8
IS_MLC7
IS_MLC6
IS_MLC5
IS_MLC4
IS_MLC3
IS_MLC2
IS_MLC1
Table 107. MLC_STATUS_MAINPAGE register description
DS13607 - Rev 1
IS_MLC8
Interrupt status bit for MLC8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC7
Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC6
Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC5
Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC4
Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3
Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2
Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1
Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)
page 70/162
LSM6DSO32X
STATUS_MASTER_MAINPAGE (39h)
9.38
STATUS_MASTER_MAINPAGE (39h)
Sensor hub source register (r)
Table 108. STATUS_MASTER_MAINPAGE register
WR_ONCE_
DONE
SLAVE3_
NACK
SLAVE2_
NACK
SLAVE1_
NACK
SLAVE0_
NACK
0
0
SENS_HUB_
ENDOP
Table 109. STATUS_MASTER_MAINPAGE register description
WR_ONCE_DONE
When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the
write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK
This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK
This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK
This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK
This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP (0: sensor hub communication not concluded;
1: sensor hub communication concluded)
9.39
FIFO_STATUS1 (3Ah)
FIFO status register 1 (r)
Table 110. FIFO_STATUS1 register
DIFF_
FIFO_7
DIFF_
FIFO_6
DIFF_
FIFO_5
DIFF_
FIFO_4
DIFF_
FIFO_3
DIFF_
FIFO_2
DIFF_
FIFO_1
DIFF_
FIFO_0
Table 111. FIFO_STATUS1 register description
DIFF_FIFO_[7:0]
DS13607 - Rev 1
Number of unread sensor data (TAG + 6 bytes) stored in FIFO
In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh).
page 71/162
LSM6DSO32X
FIFO_STATUS2 (3Bh)
9.40
FIFO_STATUS2 (3Bh)
FIFO status register 2 (r)
Table 112. FIFO_STATUS2 register
FIFO_
WTM_IA
FIFO_
OVR_IA
FIFO_
FULL_IA
COUNTER
_BDR_IA
FIFO_OVR_
LATCHED
0
DIFF_
FIFO_9
DIFF_
FIFO_8
Table 113. FIFO_STATUS2 register description
FIFO watermark status. Default value: 0
FIFO_WTM_IA
(0: FIFO filling is lower than WTM;
1: FIFO filling is equal to or greater than WTM)
Watermark is set through bits WTM[8:0] in FIFO_CTRL2 (08h) and FIFO_CTRL1 (07h).
FIFO_OVR_IA
FIFO_FULL_IA
COUNTER_BDR_IA
FIFO overrun status. Default value: 0
(0: FIFO is not completely filled; 1: FIFO is completely filled)
Smart FIFO full status. Default value: 0
(0: FIFO is not full; 1: FIFO will be full at the next ODR)
Counter BDR reaches the CNT_BDR_TH_[10:0] threshold set in COUNTER_BDR_REG1 (0Bh) and
COUNTER_BDR_REG2 (0Ch). Default value: 0
This bit is reset when these registers are read.
FIFO_OVR_LATCHED
DIFF_FIFO_[9:8]
DS13607 - Rev 1
Latched FIFO overrun status. Default value: 0
This bit is reset when this register is read.
Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00
In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah)
page 72/162
LSM6DSO32X
TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h),and TIMESTAMP3 (43h)
9.41
TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3
(43h)
Timestamp first data output register (r). The value is expressed as a 32-bit word and the bit resolution is 25 µs.
Table 114. TIMESTAMP output registers
D31
D30
D29
D28
D27
D26
D25
D24
D23
D22
D21
D20
D19
D18
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Table 115. TIMESTAMP output register description
D[31:0]
DS13607 - Rev 1
Timestamp output registers: 1LSB = 25 µs
page 73/162
LSM6DSO32X
TAP_CFG0 (56h)
9.42
TAP_CFG0 (56h)
Activity/inactivity functions, configuration of filtering, and tap recognition functions (r/w)
Table 116. TAP_CFG0 register
0(1)
INT_CLR_
ON_READ
SLEEP_STATUS
_ON_INT
SLOPE_FDS
TAP_X_EN
TAP_Y_EN
TAP_Z_EN
LIR
1. This bit must be set to '0' for the correct operation of the device.
Table 117. TAP_CFG0 register description
This bit allows immediately clearing the latched interrupts of an event detection upon the read of
the corresponding status register. It must be set to 1 together with LIR. Default value: 0
INT_CLR_ON_READ
(0: latched interrupt signal cleared at the end of the ODR period;
1: latched interrupt signal immediately cleared)
Activity/inactivity interrupt mode configuration.
SLEEP_STATUS_ON_INT
If INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, drives the sleep status or
sleep change on the INT pins. Default value: 0
(0: sleep change notification on INT pins; 1: sleep status reported on INT pins)
SLOPE_FDS
TAP_X_EN
TAP_Y_EN
TAP_Z_EN
LIR
DS13607 - Rev 1
HPF or SLOPE filter selection on wake-up and Activity/Inactivity functions. Default value: 0
(0: SLOPE filter applied; 1: HPF applied)
Enable X direction in tap recognition. Default value: 0
(0: X direction disabled; 1: X direction enabled)
Enable Y direction in tap recognition. Default value: 0
(0: Y direction disabled; 1: Y direction enabled)
Enable Z direction in tap recognition. Default value: 0
(0: Z direction disabled; 1: Z direction enabled)
Latched Interrupt. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
page 74/162
LSM6DSO32X
TAP_CFG1 (57h)
9.43
TAP_CFG1 (57h)
Tap configuration register (r/w)
Table 118. TAP_CFG1 register
TAP_
PRIORITY_2
TAP_
PRIORITY_1
TAP_
PRIORITY_0
TAP_THS_X_4
TAP_THS_X_3
TAP_THS_X_2
TAP_THS_X_1
TAP_THS_X_0
Table 119. TAP_CFG1 register description
TAP_PRIORITY_[2:0]
Selection of axis priority for TAP detection (see Table 120)
TAP_THS_X_[4:0]
X-axis tap recognition threshold. Default value: 0
1 LSB = FS_XL / (25)
Table 120. TAP priority decoding
9.44
TAP_PRIORITY_[2:0]
Max. priority
Mid. priority
Min. priority
000
X
Y
Z
001
Y
X
Z
010
X
Z
Y
011
Z
Y
X
100
X
Y
Z
101
Y
Z
X
110
Z
X
Y
111
Z
Y
X
TAP_CFG2 (58h)
Enables interrupt and inactivity functions, and tap recognition functions (r/w)
Table 121. TAP_CFG2 register
INTERRUPTS_
ENABLE
INACT_EN1
INACT_EN0
TAP_THS_Y_4
TAP_THS_Y_3
TAP_THS_Y_2
TAP_THS_Y_1
TAP_THS_Y_0
Table 122. TAP_CFG2 register description
INTERRUPTS_
ENABLE
Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default value: 0
(0: interrupt disabled; 1: interrupt enabled)
Enable activity/inactivity (sleep) function. Default value: 00
(00: stationary/motion-only interrupts generated, XL and gyro do not change;
INACT_EN[1:0]
01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change;
10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode;
11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)
TAP_THS_Y_[4:0]
DS13607 - Rev 1
Y-axis tap recognition threshold. Default value: 0
1 LSB = FS_XL / (25)
page 75/162
LSM6DSO32X
TAP_THS_6D (59h)
9.45
TAP_THS_6D (59h)
Portrait/landscape orientation and tap function threshold register (r/w)
Table 123. TAP_THS_6D register
D4D_EN
SIXD_THS1
SIXD_THS0
TAP_
THS_Z_4
TAP_
THS_Z_3
TAP_
THS_Z_2
TAP_
THS_Z_1
TAP_
THS_Z_0
Table 124. TAP_THS_6D register description
D4D_EN
SIXD_THS[1:0]
TAP_THS_Z_[4:0]
4D orientation detection enable. Z-axis position detection is disabled. Default value: 0
(0: disabled; 1: enabled)
Threshold for 4D/6D function. Default value: 00
For details, refer to Table 125.
Z-axis recognition threshold. Default value: 0
1 LSB = FS_XL / (25)
Table 125. Threshold for D4D/D6D function
DS13607 - Rev 1
SIXD_THS[1:0]
Threshold value
00
68 degrees
01
47 degrees
10
Reserved
11
Reserved
page 76/162
LSM6DSO32X
INT_DUR2 (5Ah)
9.46
INT_DUR2 (5Ah)
Tap recognition function setting register (r/w)
Table 126. INT_DUR2 register
DUR3
DUR2
DUR1
DUR0
QUIET1
QUIET0
SHOCK1
SHOCK0
Table 127. INT_DUR2 register description
Duration of maximum time gap for double tap recognition. Default: 0000
DUR[3:0]
When double tap recognition is enabled, this register expresses the maximum time between two consecutive
detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to
16/ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32/ODR_XL time.
QUIET[1:0]
Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default
value of these bits is 00b which corresponds to 2/ODR_XL time. If the QUIET[1:0] bits are set to a different
value, 1LSB corresponds to 4/ODR_XL time.
Expected quiet time after a tap detection. Default value: 00
Maximum duration of overthreshold event. Default value: 00
SHOCK[1:0] Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event.
The default value of these bits is 00b which corresponds to 4/ODR_XL time. If the SHOCK[1:0] bits are set to a
different value, 1LSB corresponds to 8/ODR_XL time.
9.47
WAKE_UP_THS (5Bh)
Single/double-tap selection and wake-up configuration (r/w)
Table 128. WAKE_UP_THS register
SINGLE_
DOUBLE_TAP
USR_OFF_
ON_WU
WK_THS5
WK_THS4
WK_THS3
WK_THS2
WK_THS1
WK_THS0
Table 129. WAKE_UP_THS register description
DS13607 - Rev 1
SINGLE_DOUBLE_TAP
Single/double-tap event enable. Default value: 0
(0: only single-tap event enabled; 1: both single and double-tap events enabled)
USR_OFF_ON_WU
Drives the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the
wakeup function.
WK_THS[5:0]
Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch).
Default value: 000000
page 77/162
LSM6DSO32X
WAKE_UP_DUR (5Ch)
9.48
WAKE_UP_DUR (5Ch)
Free-fall, wakeup and sleep mode functions duration setting register (r/w)
Table 130. WAKE_UP_DUR register
FF_DUR5
WAKE_DUR1
WAKE_DUR0
WAKE_THS_W
SLEEP_DUR3
SLEEP_DUR2
SLEEP_DUR1
SLEEP_DUR0
Table 131. WAKE_UP_DUR register description
Free fall duration event. Default: 0
FF_DUR5
For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh)
configuration.
1 LSB = 1 ODR_time
WAKE_DUR[1:0]
Wake up duration event. Default: 00
1 LSB = 1 ODR_time
Weight of 1 LSB of wakeup threshold. Default: 0
WAKE_THS_W
(0: 1 LSB = FS_XL / (26);
1: 1 LSB = FS_XL / (28) )
SLEEP_DUR[3:0]
DS13607 - Rev 1
Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR)
1 LSB = 512 ODR
page 78/162
LSM6DSO32X
FREE_FALL (5Dh)
9.49
FREE_FALL (5Dh)
Free-fall function duration setting register (r/w)
Table 132. FREE_FALL register
FF_DUR4
FF_DUR3
FF_DUR2
FF_DUR1
FF_DUR0
FF_THS2
FF_THS1
FF_THS0
Table 133. FREE_FALL register description
Free-fall duration event. Default: 0
FF_DUR[4:0] For the complete configuration of the free-fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch)
configuration.
FF_THS[2:0]
Free-fall threshold setting. Default: 000
For details refer to Table 134.
Table 134. Threshold for free-fall function
DS13607 - Rev 1
FF_THS[2:0]
Threshold value
000
312 mg
001
438 mg
010
500 mg
011
Reserved
100
Reserved
101
Reserved
110
Reserved
111
Reserved
page 79/162
LSM6DSO32X
MD1_CFG (5Eh)
9.50
MD1_CFG (5Eh)
Functions routing on INT1 register (r/w)
Table 135. MD1_CFG register
INT1_SLEEP_
CHANGE
INT1_
SINGLE_TAP
INT1_WU
INT1_FF
INT1_
DOUBLE_TAP
INT1_6D
INT1_
EMB_FUNC
INT1_
SHUB
Table 136. MD1_CFG register description
Routing of activity/inactivity recognition event on INT1. Default: 0
INT1_SLEEP_CHANGE(1)
(0: routing of activity/inactivity event on INT1 disabled;
1: routing of activity/inactivity event on INT1 enabled)
Routing of single-tap recognition event on INT1. Default: 0
INT1_SINGLE_TAP
(0: routing of single-tap event on INT1 disabled;
1: routing of single-tap event on INT1 enabled)
Routing of wakeup event on INT1. Default value: 0
INT1_WU
(0: routing of wakeup event on INT1 disabled;
1: routing of wakeup event on INT1 enabled)
Routing of free-fall event on INT1. Default value: 0
INT1_FF
(0: routing of free-fall event on INT1 disabled;
1: routing of free-fall event on INT1 enabled)
Routing of tap event on INT1. Default value: 0
INT1_DOUBLE_TAP
(0: routing of double-tap event on INT1 disabled;
1: routing of double-tap event on INT1 enabled)
Routing of 6D event on INT1. Default value: 0
INT1_6D
(0: routing of 6D event on INT1 disabled;
1: routing of 6D event on INT1 enabled)
Routing of embedded functions event on INT1. Default value: 0
INT1_EMB_FUNC
(0: routing of embedded functions event on INT1 disabled;
1: routing of embedded functions event on INT1 enabled)
Routing of sensor hub communication concluded event on INT1. Default value: 0
INT1_SHUB
(0: routing of sensor hub communication concluded event on INT1 disabled;
1: routing of sensor hub communication concluded event on INT1 enabled)
1. Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0
(56h) register.
DS13607 - Rev 1
page 80/162
LSM6DSO32X
MD2_CFG (5Fh)
9.51
MD2_CFG (5Fh)
Functions routing on INT2 register (r/w)
Table 137. MD2_CFG register
INT2_SLEEP
_CHANGE
INT2_
SINGLE_TAP
INT2_WU
INT2_FF
INT2_
DOUBLE_TAP
INT2_6D
INT2_EMB
_FUNC
INT2_
TIMESTAMP
Table 138. MD2_CFG register description
Routing of activity/inactivity recognition event on INT2. Default: 0
INT2_SLEEP_CHANGE(1)
(0: routing of activity/inactivity event on INT2 disabled;
1: routing of activity/inactivity event on INT2 enabled)
Single-tap recognition routing on INT2. Default: 0
INT2_SINGLE_TAP
(0: routing of single-tap event on INT2 disabled;
1: routing of single-tap event on INT2 enabled)
Routing of wakeup event on INT2. Default value: 0
INT2_WU
(0: routing of wakeup event on INT2 disabled;
1: routing of wake-up event on INT2 enabled)
Routing of free-fall event on INT2. Default value: 0
INT2_FF
(0: routing of free-fall event on INT2 disabled;
1: routing of free-fall event on INT2 enabled)
Routing of tap event on INT2. Default value: 0
INT2_DOUBLE_TAP
(0: routing of double-tap event on INT2 disabled;
1: routing of double-tap event on INT2 enabled)
Routing of 6D event on INT2. Default value: 0
INT2_6D
(0: routing of 6D event on INT2 disabled;
1: routing of 6D event on INT2 enabled)
Routing of embedded functions event on INT2. Default value: 0
INT2_EMB_FUNC
(0: routing of embedded functions event on INT2 disabled;
1: routing of embedded functions event on INT2 enabled)
INT2_TIMESTAMP
Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms.
1. Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0
(56h) register.
DS13607 - Rev 1
page 81/162
LSM6DSO32X
I3C_BUS_AVB (62h)
9.52
I3C_BUS_AVB (62h)
I3C_BUS_AVB register (r/w)
Table 139. I3C_BUS_AVB register
0(1)
0(1)
I3C_Bus_Avb I3C_Bus_Avb
_Sel1
_Sel0
0(1)
0(1)
0(1)
PD_DIS_
INT1
1. This bit must be set to '0' for the correct operation of the device.
Table 140. I3C_BUS_AVB register description
This bit allows disabling the INT1 pull-down.
(0: Pull-down on INT1 enabled (pull-down is effectively connected only when no interrupts are routed
to the INT1 pin or when I3C dynamic address is assigned);
PD_DIS_INT1
1: Pull-down on INT1 disabled (pull-down not connected)
These bits are used to select the bus available time when I3C IBI is used. Default value: 00
(00: bus available time equal to 50 µsec (default);
I3C_Bus_Avb_Sel[1:0] 01: bus available time equal to 2 µsec;
10: bus available time equal to 1 msec;
11: bus available time equal to 25 msec)
9.53
INTERNAL_FREQ_FINE (63h)
Internal frequency register (r)
Table 141. INTERNAL_FREQ_FINE register
FREQ_
FINE7
FREQ_
FINE6
FREQ_
FINE5
FREQ_
FINE4
FREQ_
FINE3
FREQ_
FINE2
FREQ_
FINE1
FREQ_
FINE0
Table 142. INTERNAL_FREQ_FINE register description
Difference in percentage of the effective ODR (and Timestamp Rate) with respect to the typical.
Step: 0.15%. 8-bit format, 2's complement.
FREQ_FINE[7:0]
9.54
X_OFS_USR (73h)
Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is
internally subtracted from the acceleration value measured on the X-axis.
Table 143. X_OFS_USR register
X_OFS_
USR_7
X_OFS_
USR_6
X_OFS_
USR_5
X_OFS_
USR_4
X_OFS_
USR_3
X_OFS_
USR_2
X_OFS_
USR_1
X_OFS_
USR_0
Table 144. X_OFS_USR register description
X_OFS_USR_[7:0]
DS13607 - Rev 1
Accelerometer X-axis user offset correction expressed in two’s complement, weight depends on
USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127].
page 82/162
LSM6DSO32X
Y_OFS_USR (74h)
9.55
Y_OFS_USR (74h)
Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is
internally subtracted from the acceleration value measured on the Y-axis.
Table 145. Y_OFS_USR register
Y_OFS_
USR_7
Y_OFS_
USR_6
Y_OFS_
USR_5
Y_OFS_
USR_4
Y_OFS_
USR_3
Y_OFS_
USR_2
Y_OFS_
USR_1
Y_OFS_
USR_0
Table 146. Y_OFS_USR register description
Y_OFS_USR_[7:0]
9.56
Accelerometer Y-axis user offset calibration expressed in 2’s complement, weight depends on
USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].
Z_OFS_USR (75h)
Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is
internally subtracted from the acceleration value measured on the Z-axis.
Table 147. Z_OFS_USR register
Z_OFS_
USR_7
Z_OFS_
USR_6
Z_OFS_
USR_5
Z_OFS_
USR_4
Z_OFS_
USR_3
Z_OFS_
USR_2
Z_OFS_
USR_1
Z_OFS_
USR_0
Table 148. Z_OFS_USR register description
Z_OFS_USR_[7:0]
DS13607 - Rev 1
Accelerometer Z-axis user offset calibration expressed in 2’s complement, weight depends on
USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].
page 83/162
LSM6DSO32X
FIFO_DATA_OUT_TAG (78h)
9.57
FIFO_DATA_OUT_TAG (78h)
FIFO tag register (r)
Table 149. FIFO_DATA_OUT_TAG register
TAG_
SENSOR_4
TAG_
SENSOR_3
TAG_
SENSOR_2
TAG_
SENSOR_1
TAG_
SENSOR_0
TAG_CNT_1
TAG_CNT_0
TAG_
PARITY
Table 150. FIFO_DATA_OUT_TAG register description
FIFO tag: identifies the sensor in:
TAG_SENSOR_[4:0]
FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah), FIFO_DATA_OUT_Y_L (7Bh) and
FIFO_DATA_OUT_Y_H (7Ch), and FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)
For details, refer to Table 151
TAG_CNT_[1:0]
2-bit counter which identifies sensor time slot
TAG_PARITY
Parity check of TAG content
Table 151. FIFO tag
DS13607 - Rev 1
TAG_SENSOR_[4:0]
Sensor name
0x01
Gyroscope NC
0x02
Accelerometer NC
0x03
Temperature
0x04
Timestamp
0x05
CFG_Change
0x06
Accelerometer NC_T_2
0x07
Accelerometer NC_T_1
0x08
Accelerometer 2xC
0x09
Accelerometer 3xC
0x0A
Gyroscope NC_T_2
0x0B
Gyroscope NC_T_1
0x0C
Gyroscope 2xC
0x0D
Gyroscope 3xC
0x0E
Sensor Hub Slave 0
0x0F
Sensor Hub Slave 1
0x10
Sensor Hub Slave 2
0x11
Sensor Hub Slave 3
0x12
Step Counter
0x19
Sensor Hub Nack
page 84/162
LSM6DSO32X
FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)
9.58
FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)
FIFO data output X (r)
Table 152. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Table 153. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description
FIFO X-axis output
D[15:0]
9.59
FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)
FIFO data output Y (r)
Table 154. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Table 155. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description
FIFO Y-axis output
D[15:0]
9.60
FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)
FIFO data output Z (r)
Table 156. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Table 157. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description
D[15:0]
DS13607 - Rev 1
FIFO Z-axis output
page 85/162
LSM6DSO32X
Embedded functions register mapping
10
Embedded functions register mapping
The table given below provides a list of the registers for the embedded functions available in the device and
the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in
FUNC_CFG_ACCESS (01h).
Table 158. Register address map - embedded functions
Name
Type
Register address
Hex
Binary
Default
PAGE_SEL
r/w
02
00000010
00000001
EMB_FUNC_EN_A
r/w
04
00000100
00000000
EMB_FUNC_EN_B
r/w
05
00000101
00000000
PAGE_ADDRESS
r/w
08
00001000
00000000
PAGE_VALUE
r/w
09
00001001
00000000
EMB_FUNC_INT1
r/w
0A
00001010
00000000
FSM_INT1_A
r/w
0B
00001011
00000000
FSM_INT1_B
r/w
0C
00001100
00000000
MLC_INT1
r/w
0D
00001101
00000000
EMB_FUNC_INT2
r/w
0E
00001110
00000000
FSM_INT2_A
r/w
0F
00001111
00000000
FSM_INT2_B
r/w
10
00010000
00000000
MLC_INT2
r/w
11
00010001
00000000
EMB_FUNC_STATUS
r
12
00010010
output
FSM_STATUS_A
r
13
00010011
output
FSM_STATUS_B
r
14
00010100
output
MLC_STATUS (15h)
r
15
00010101
output
PAGE_RW
r/w
17
00010111
00000000
RESERVED
-
18-43
EMB_FUNC_FIFO_CFG
r/w
44
01000100
00000000
FSM_ENABLE_A
r/w
46
01000110
00000000
FSM_ENABLE_B
r/w
47
01000111
00000000
FSM_LONG_COUNTER_L
r/w
48
01001000
00000000
FSM_LONG_COUNTER_H
r/w
49
01001001
00000000
FSM_LONG_COUNTER_CLEAR
r/w
4A
01001010
00000000
FSM_OUTS1
r
4C
01001100
output
FSM_OUTS2
r
4D
01001101
output
FSM_OUTS3
r
4E
01001110
output
FSM_OUTS4
r
4F
01001111
output
FSM_OUTS5
r
50
01010000
output
FSM_OUTS6
r
51
01010001
output
FSM_OUTS7
r
52
01010010
output
FSM_OUTS8
r
53
01010011
output
DS13607 - Rev 1
Comment
page 86/162
LSM6DSO32X
Embedded functions register mapping
Name
Type
Register address
Hex
Binary
Default
FSM_OUTS9
r
54
01010100
output
FSM_OUTS10
r
55
01010101
output
FSM_OUTS11
r
56
01010110
output
FSM_OUTS12
r
57
01010111
output
FSM_OUTS13
r
58
01011000
output
FSM_OUTS14
r
59
01011001
output
FSM_OUTS15
r
5A
01011010
output
FSM_OUTS16
r
5B
01011011
output
RESERVED
-
5E
01011110
EMB_FUNC_ODR_CFG_B
r/w
5F
01011111
01001011
EMB_FUNC_ODR_CFG_C
r/w
60
01100000
00010101
STEP_COUNTER_L
r
62
01100010
output
STEP_COUNTER_H
r
63
01100011
output
EMB_FUNC_SRC
r/w
64
01100100
output
EMB_FUNC_INIT_A
r/w
66
01100110
00000000
EMB_FUNC_INIT_B
r/w
67
01100111
00000000
MLC0_SRC
r
70
01110000
output
MLC1_SRC
r
71
01110001
output
MLC2_SRC
r
72
01110010
output
MLC3_SRC
r
73
01110011
output
MLC4_SRC
r
74
01110100
output
MLC5_SRC
r
75
01110101
output
MLC6_SRC
r
76
01110110
output
MLC7_SRC
r
77
01110111
output
Comment
Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to
the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration
values. Their content is automatically restored when the device is powered up.
DS13607 - Rev 1
page 87/162
LSM6DSO32X
Embedded functions register description
11
Embedded functions register description
11.1
PAGE_SEL (02h)
Enable advanced features dedicated page (r/w)
Table 159. PAGE_SEL register
PAGE_SEL3
PAGE_SEL2
PAGE_SEL1
0(1)
PAGE_SEL0
0(1)
0(1)
1(2)
0(1)
0(1)
1. This bit must be set to '0' for the correct operation of the device.
2. This bit must be set to '1' for the correct operation of the device.
Table 160. PAGE_SEL register description
PAGE_SEL[3:0]
11.2
Select the advanced features dedicated page. Default value: 0000
EMB_FUNC_EN_A (04h)
Embedded functions enable register (r/w)
Table 161. EMB_FUNC_EN_A register
0(1)
0(1)
SIGN_
MOTION_EN
TILT_EN
PEDO_EN
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 162. EMB_FUNC_EN_A register description
Enable significant motion detection function. Default value: 0
SIGN_MOTION_EN
(0: significant motion detection function disabled;
1: significant motion detection function enabled)
Enable tilt calculation. Default value: 0
TILT_EN
(0: tilt algorithm disabled;
1: tilt algorithm enabled)
Enable pedometer algorithm. Default value: 0
PEDO_EN
(0: pedometer algorithm disabled;
1: pedometer algorithm enabled)
DS13607 - Rev 1
page 88/162
LSM6DSO32X
EMB_FUNC_EN_B (05h)
11.3
EMB_FUNC_EN_B (05h)
Embedded functions enable register (r/w)
Table 163. EMB_FUNC_EN_B register
0(1)
0(1)
0(1)
MLC_EN
FIFO_
COMPR_EN
0(1)
0(1)
FSM_EN
PAGE_
ADDR1
PAGE_
ADDR0
1. This bit must be set to '0' for the correct operation of the device.
Table 164. EMB_FUNC_EN_B register description
Enable Machine Learning Core feature. Default value: 0
MLC_EN
(0: Machine Learning Core feature disabled;
1: Machine Learning Core feature enabled)
Enable FIFO compression feature. Default value: 0
FIFO_COMPR_EN(1)
(0: FIFO compression feature disabled;
1: FIFO compression feature enabled)
Enable Finite State Machine (FSM) feature. Default value: 0
FSM_EN
(0: FSM feature disabled; 1: FSM feature enabled)
1. This bit is effective if the FIFO_COMPR_RT_EN bit of FIFO_CTRL2 (08h) is set to 1.
11.4
PAGE_ADDRESS (08h)
Page address register (r/w)
Table 165. PAGE_ADDRESS register
PAGE_
ADDR7
PAGE_
ADDR6
PAGE_
ADDR5
PAGE_
ADDR4
PAGE_
ADDR3
PAGE_
ADDR2
Table 166. PAGE_ADDRESS register description
After setting the bit PAGE_WRITE / PAGE_READ in register PAGE_RW (17h), this register is used to set
PAGE_ADDR[7:0] the address of the register to be written/read in the advanced features page selected through the bits
PAGE_SEL[3:0] in register PAGE_SEL (02h).
DS13607 - Rev 1
page 89/162
LSM6DSO32X
PAGE_VALUE (09h)
11.5
PAGE_VALUE (09h)
Page value register (r/w)
Table 167. PAGE_VALUE register
PAGE_
VALUE7
PAGE_
VALUE6
PAGE_
VALUE5
PAGE_
VALUE4
PAGE_
VALUE3
PAGE_
VALUE2
PAGE_
VALUE1
PAGE_
VALUE0
Table 168. PAGE_VALUE register description
These bits are used to write (if the bit PAGE_WRITE = 1 in register PAGE_RW (17h)) or read (if the bit
PAGE_VALUE[7:0] PAGE_READ = 1 in register PAGE_RW (17h)) the data at the address PAGE_ADDR[7:0] of the selected
advanced features page.
11.6
EMB_FUNC_INT1 (0Ah)
INT1 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination
of the selected signals.
Table 169. EMB_FUNC_INT1 register
INT1_
FSM_LC
0(1)
INT1_
SIG_MOT
INT1_TILT
INT1_STEP_
DETECTOR
0(1)
0(1)
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 170. EMB_FUNC_INT1 register description
INT1_FSM_LC(1)
INT1_SIG_MOT(1)
INT1_TILT(1)
INT1_STEP_DETECTOR(1)
Routing of FSM long counter timeout interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of significant motion event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of tilt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of pedometer step recognition event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
1. This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.
DS13607 - Rev 1
page 90/162
LSM6DSO32X
FSM_INT1_A (0Bh)
11.7
FSM_INT1_A (0Bh)
INT1 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination
of the selected signals.
Table 171. FSM_INT1_A register
INT1_FSM8
INT1_FSM7
INT1_FSM6
INT1_FSM5
INT1_FSM4
INT1_FSM3
INT1_FSM2
INT1_FSM1
Table 172. FSM_INT1_A register description
INT1_FSM8(1)
INT1_FSM7(1)
INT1_FSM6(1)
INT1_FSM5(1)
INT1_FSM4(1)
INT1_FSM3(1)
INT1_FSM2(1)
INT1_FSM1(1)
Routing of FSM8 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM7 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM6 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM5 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM4 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM3 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM2 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM1 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
1. This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.
DS13607 - Rev 1
page 91/162
LSM6DSO32X
FSM_INT1_B (0Ch)
11.8
FSM_INT1_B (0Ch)
INT1 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination
of the selected signals.
Table 173. FSM_INT1_B register
INT1_FSM16
INT1_FSM15
INT1_FSM14
INT1_FSM13
INT1_FSM12
INT1_FSM11
INT1_FSM10
INT1_FSM9
Table 174. FSM_INT1_B register description
INT1_FSM16(1)
INT1_FSM15(1)
INT1_FSM14(1)
INT1_FSM13(1)
INT1_FSM12(1)
INT1_FSM11(1)
INT1_FSM10(1)
INT1_FSM9(1)
Routing of FSM16 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM15 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM14 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM13 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM12 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM11 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM10 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of FSM9 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
1. This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.
DS13607 - Rev 1
page 92/162
LSM6DSO32X
MLC_INT1 (0Dh)
11.9
MLC_INT1 (0Dh)
INT1 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT1. The pin's output will supply the OR combination
of the selected signals.
Table 175. MLC_INT1 register
INT1_MLC8
INT1_MLC7
INT1_MLC6
INT1_MLC5
INT1_MLC4
INT1_MLC3
INT1_MLC2
INT1_MLC1
Table 176. MLC_INT1 register description
INT1_MLC8
INT1_MLC7
INT1_MLC6
INT1_MLC5
INT1_MLC4
INT1_MLC3
INT1_MLC2
INT1_MLC1
DS13607 - Rev 1
Routing of MLC8 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of MLC7 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of MLC6 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of MLC5 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of MLC4 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of MLC3 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of MLC2 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
Routing of MLC1 interrupt event on INT1. Default value: 0
(0: routing on INT1 disabled; 1: routing on INT1 enabled)
page 93/162
LSM6DSO32X
EMB_FUNC_INT2 (0Eh)
11.10
EMB_FUNC_INT2 (0Eh)
INT2 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination
of the selected signals.
Table 177. EMB_FUNC_INT2 register
INT2_
FSM_LC
0(1)
INT2_
SIG_MOT
INT2_TILT
INT2_STEP_
DETECTOR
0(1)
0(1)
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 178. EMB_FUNC_INT2 register description
INT2_FSM_LC(1)
INT2_SIG_MOT(1)
INT2_TILT(1)
INT2_STEP_DETECTOR(1)
Routing of FSM long counter timeout interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of significant motion event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of tilt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of pedometer step recognition event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
1. This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.
DS13607 - Rev 1
page 94/162
LSM6DSO32X
FSM_INT2_A (0Fh)
11.11
FSM_INT2_A (0Fh)
INT2 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination
of the selected signals.
Table 179. FSM_INT2_A register
INT2_FSM8
INT2_FSM7
INT2_FSM6
INT2_FSM5
INT2_FSM4
INT2_FSM3
INT2_FSM2
INT2_FSM1
Table 180. FSM_INT2_A register description
INT2_FSM8(1)
INT2_FSM7(1)
INT2_FSM6(1)
INT2_FSM5(1)
INT2_FSM4(1)
INT2_FSM3(1)
INT2_FSM2(1)
INT2_FSM1(1)
Routing of FSM8 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM7 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM6 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM5 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM4 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM3 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM2 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM1 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
1. This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.
DS13607 - Rev 1
page 95/162
LSM6DSO32X
FSM_INT2_B (10h)
11.12
FSM_INT2_B (10h)
INT2 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination
of the selected signals.
Table 181. FSM_INT2_B register
INT2_FSM16
INT2_FSM15
INT2_FSM14
INT2_FSM13
INT2_FSM12
INT2_FSM11
INT2_FSM10
INT2_FSM9
Table 182. FSM_INT2_B register description
INT2_FSM16(1)
INT2_FSM15(1)
INT2_FSM14(1)
INT2_FSM13(1)
INT2_FSM12(1)
INT2_FSM11(1)
INT2_FSM10(1)
INT2_FSM9(1)
Routing of FSM16 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM15 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM14 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM13 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM12 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM11 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM10 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of FSM9 interrupt event on INT2. Default value: 0
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
1. This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.
DS13607 - Rev 1
page 96/162
LSM6DSO32X
MLC_INT2 (11h)
11.13
MLC_INT2 (11h)
INT2 pin control register (r/w)
Each bit in this register enables a signal to be carried over INT2. The pin's output will supply the OR combination
of the selected signals.
Table 183. MLC_INT2 register
INT2_MLC8
INT2_MLC7
INT2_MLC6
INT2_MLC5
INT2_MLC4
INT2_MLC3
INT2_MLC2
INT2_MLC1
0
0
Table 184. MLC_INT2 register description
Routing of MLC8 interrupt event on INT2. Default value: 0
INT2_MLC8
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of MLC7 interrupt event on INT2. Default value: 0
INT2_MLC7
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of MLC6 interrupt event on INT2. Default value: 0
INT2_MLC6
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of MLC5 interrupt event on INT2. Default value: 0
INT2_MLC5
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of MLC4 interrupt event on INT2. Default value: 0
INT2_MLC4
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of MLC3 interrupt event on INT2. Default value: 0
INT2_MLC3
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of MLC2 interrupt event on INT2. Default value: 0
INT2_MLC2
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
Routing of MLC1 interrupt event on INT2. Default value: 0
INT2_MLC1
11.14
(0: routing on INT2 disabled; 1: routing on INT2 enabled)
EMB_FUNC_STATUS (12h)
Embedded function status register (r)
Table 185. EMB_FUNC_STATUS register
IS_
FSM_LC
0
IS_
SIGMOT
IS_TILT
IS_
STEP_DET
0
Table 186. EMB_FUNC_STATUS register description
DS13607 - Rev 1
IS_FSM_LC
Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)
IS_SIGMOT
Interrupt status bit for significant motion detection. (1: interrupt detected; 0: no interrupt)
IS_TILT
Interrupt status bit for tilt detection. (1: interrupt detected; 0: no interrupt)
IS_STEP_DET
Interrupt status bit for step detection. (1: interrupt detected; 0: no interrupt)
page 97/162
LSM6DSO32X
FSM_STATUS_A (13h)
11.15
FSM_STATUS_A (13h)
Finite State Machine status register (r)
Table 187. FSM_STATUS_A register
IS_FSM8
IS_FSM7
IS_FSM6
IS_FSM5
IS_FSM4
IS_FSM3
IS_FSM2
IS_FSM1
IS_FSM10
IS_FSM9
Table 188. FSM_STATUS_A register description
11.16
IS_FSM8
Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7
Interrupt status bit for FSM7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM6
Interrupt status bit for FSM6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM5
Interrupt status bit for FSM5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM4
Interrupt status bit for FSM4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM3
Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2
Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1
Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)
FSM_STATUS_B (14h)
Finite State Machine status register (r)
Table 189. FSM_STATUS_B register
IS_FSM16
IS_FSM15
IS_FSM14
IS_FSM13
IS_FSM12
IS_FSM11
Table 190. FSM_STATUS_B register description
DS13607 - Rev 1
IS_FSM16
Interrupt status bit for FSM16 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM15
Interrupt status bit for FSM15 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM14
Interrupt status bit for FSM14 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM13
Interrupt status bit for FSM13 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM12
Interrupt status bit for FSM12 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM11
Interrupt status bit for FSM11 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM10
Interrupt status bit for FSM10 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM9
Interrupt status bit for FSM9 interrupt event. (1: interrupt detected; 0: no interrupt)
page 98/162
LSM6DSO32X
MLC_STATUS (15h)
11.17
MLC_STATUS (15h)
Machine Learning Core status register (r).
Table 191. MLC_STATUS register
IS_MLC8
IS_MLC7
IS_MLC6
IS_MLC5
IS_MLC4
IS_MLC3
IS_MLC
IS_MLC1
0(1)
0(1)
Table 192. MLC_STATUS register description
11.18
IS_MLC8
Interrupt status bit for MLC8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC7
Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC6
Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC5
Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC4
Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC3
Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC2
Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_MLC1
Interrupt status bit for MLC1 interrupt event. (1: interrupt detected; 0: no interrupt)
PAGE_RW (17h)
Enable read and write mode of advanced features dedicated page (r/w)
Table 193. PAGE_RW register
EMB_
FUNC_LIR
PAGE_
WRITE
PAGE_
READ
0(1)
0(1)
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 194. PAGE_RW register description
Latched Interrupt mode for embedded functions. Default value: 0
EMB_FUNC_LIR
(0: embedded functions interrupt request not latched;
1: embedded functions interrupt request latched)
PAGE_WRITE
PAGE_READ
Enable writes to the selected advanced features dedicated page. (1) Default value: 0
(1: enable; 0: disable)
Enable reads from the selected advanced features dedicated page.(1) Default value: 0
(1: enable; 0: disable)
1. Page selected by PAGE_SEL[3:0] in PAGE_SEL (02h) register.
DS13607 - Rev 1
page 99/162
LSM6DSO32X
EMB_FUNC_FIFO_CFG (44h)
11.19
EMB_FUNC_FIFO_CFG (44h)
Embedded functions batching configuration register (r/w)
Table 195. EMB_FUNC_FIFO_CFG register
0(1)
0(1)
PEDO_FIFO_EN
0(1)
0(1)
0(1)
0(1)
0(1)
FSM2_EN
FSM1_EN
FSM10_EN
FSM9_EN
1. This bit must be set to '0' for the correct operation of the device.
Table 196. EMB_FUNC_FIFO_CFG register description
PEDO_FIFO_EN
11.20
Enable FIFO batching of step counter values. Default value: 0
FSM_ENABLE_A (46h)
FSM enable register (r/w)
Table 197. FSM_ENABLE_A register
FSM8_EN
FSM7_EN
FSM6_EN
FSM5_EN
FSM4_EN
FSM3_EN
Table 198. FSM_ENABLE_A register description
FSM8_EN
11.21
FSM8 enable. Default value: 0 (0: FSM8 disabled; 1: FSM8 enabled)
FSM7_EN
FSM7 enable. Default value: 0 (0: FSM7 disabled; 1: FSM7 enabled)
FSM6_EN
FSM6 enable. Default value: 0 (0: FSM6 disabled; 1: FSM6 enabled)
FSM5_EN
FSM5 enable. Default value: 0 (0: FSM5 disabled; 1: FSM5 enabled)
FSM4_EN
FSM4 enable. Default value: 0 (0: FSM4 disabled; 1: FSM4 enabled)
FSM3_EN
FSM3 enable. Default value: 0 (0: FSM3 disabled; 1: FSM3 enabled)
FSM2_EN
FSM2 enable. Default value: 0 (0: FSM2 disabled; 1: FSM2 enabled)
FSM1_EN
FSM1 enable. Default value: 0 (0: FSM1 disabled; 1: FSM1 enabled)
FSM_ENABLE_B (47h)
FSM enable register (r/w)
Table 199. FSM_ENABLE_B register
FSM16_EN
FSM15_EN
FSM14_EN
FSM13_EN
FSM12_EN
FSM11_EN
Table 200. FSM_ENABLE_B register description
DS13607 - Rev 1
FSM16_EN
FSM16 enable. Default value: 0 (0: FSM16 disabled; 1: FSM16 enabled)
FSM15_EN
FSM15 enable. Default value: 0 (0: FSM15 disabled; 1: FSM15 enabled)
FSM14_EN
FSM14 enable. Default value: 0 (0: FSM14 disabled; 1: FSM14 enabled)
FSM13_EN
FSM13 enable. Default value: 0 (0: FSM13 disabled; 1: FSM13 enabled)
FSM12_EN
FSM12 enable. Default value: 0 (0: FSM12 disabled; 1: FSM12 enabled)
FSM11_EN
FSM11 enable. Default value: 0 (0: FSM11 disabled; 1: FSM11 enabled)
FSM10_EN
FSM10 enable. Default value: 0 (0: FSM10 disabled; 1: FSM10 enabled)
FSM9_EN
FSM9 enable. Default value: 0 (0: FSM9 disabled; 1: FSM9 enabled)
page 100/162
LSM6DSO32X
FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)
11.22
FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)
FSM long counter status register (r/w)
Long counter value is an unsigned integer value (16-bit format); this value can be reset using the LC_CLEAR bit
in FSM_LONG_COUNTER_CLEAR (4Ah) register.
Table 201. FSM_LONG_COUNTER_L register
FSM_LC_7
FSM_LC_6
FSM_LC_5
FSM_LC_4
FSM_LC_3
FSM_LC_2
FSM_LC_1
FSM_LC_0
FSM_LC_9
FSM_LC_8
FSM_LC_
CLEARED
FSM_LC_
CLEAR
Table 202. FSM_LONG_COUNTER_L register description
FSM_LC_[7:0]
Long counter current value (LSbyte). Default value: 00000000
Table 203. FSM_LONG_COUNTER_H register
FSM_LC_15
FSM_LC_14
FSM_LC_13
FSM_LC_12
FSM_LC_11
FSM_LC_10
Table 204. FSM_LONG_COUNTER_H register description
FSM_LC_[15:8]
11.23
Long counter current value (MSbyte). Default value: 00000000
FSM_LONG_COUNTER_CLEAR (4Ah)
FSM long counter reset register (r/w)
Table 205. FSM_LONG_COUNTER_CLEAR register
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 206. FSM_LONG_COUNTER_CLEAR register description
DS13607 - Rev 1
FSM_LC_CLEARED
This read-only bit is automatically set to 1 when the long counter reset is done. Default value: 0
FSM_LC_CLEAR
Clear FSM long counter value. Default value: 0
page 101/162
LSM6DSO32X
FSM_OUTS1 (4Ch)
11.24
FSM_OUTS1 (4Ch)
FSM1 output register (r)
Table 207. FSM_OUTS1 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 208. FSM_OUTS1 register description
11.25
P_X
FSM1 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM1 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM1 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM1 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM1 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM1 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM1 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM1 output: negative event detected on the vector. (0: event not detected; 1: event detected)
FSM_OUTS2 (4Dh)
FSM2 output register (r)
Table 209. FSM_OUTS2 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 210. FSM_OUTS2 register description
DS13607 - Rev 1
P_X
FSM2 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM2 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM2 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM2 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM2 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM2 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM2 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM2 output: negative event detected on the vector. (0: event not detected; 1: event detected)
page 102/162
LSM6DSO32X
FSM_OUTS3 (4Eh)
11.26
FSM_OUTS3 (4Eh)
FSM3 output register (r)
Table 211. FSM_OUTS3 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 212. FSM_OUTS3 register description
11.27
P_X
FSM3 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM3 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM3 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM3 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM3 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM3 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM3 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM3 output: negative event detected on the vector. (0: event not detected; 1: event detected)
FSM_OUTS4 (4Fh)
FSM4 output register (r)
Table 213. FSM_OUTS4 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 214. FSM_OUTS4 register description
DS13607 - Rev 1
P_X
FSM4 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM4 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM4 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM4 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM4 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM4 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM4 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM4 output: negative event detected on the vector. (0: event not detected; 1: event detected)
page 103/162
LSM6DSO32X
FSM_OUTS5 (50h)
11.28
FSM_OUTS5 (50h)
FSM5 output register (r)
Table 215. FSM_OUTS5 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 216. FSM_OUTS5 register description
11.29
P_X
FSM5 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM5 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM5 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM5 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM5 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM5 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM5 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM5 output: negative event detected on the vector. (0: event not detected; 1: event detected)
FSM_OUTS6 (51h)
FSM6 output register (r)
Table 217. FSM_OUTS6 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 218. FSM_OUTS6 register description
DS13607 - Rev 1
P_X
FSM6 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM6 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM6 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM6 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM6 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM6 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM6 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM6 output: negative event detected on the vector. (0: event not detected; 1: event detected)
page 104/162
LSM6DSO32X
FSM_OUTS7 (52h)
11.30
FSM_OUTS7 (52h)
FSM7 output register (r)
Table 219. FSM_OUTS7 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 220. FSM_OUTS7 register description
11.31
P_X
FSM7 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM7 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM7 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM7 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM7 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM7 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM7 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM7 output: negative event detected on the vector. (0: event not detected; 1: event detected)
FSM_OUTS8 (53h)
FSM8 output register (r)
Table 221. FSM_OUTS8 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 222. FSM_OUTS8 register description
DS13607 - Rev 1
P_X
FSM8 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM8 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM8 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM8 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM8 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM8 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM8 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM8 output: negative event detected on the vector. (0: event not detected; 1: event detected)
page 105/162
LSM6DSO32X
FSM_OUTS9 (54h)
11.32
FSM_OUTS9 (54h)
FSM9 output register (r)
Table 223. FSM_OUTS9 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 224. FSM_OUTS9 register description
11.33
P_X
FSM9 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM9 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM9 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM9 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM9 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM9 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM9 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM9 output: negative event detected on the vector. (0: event not detected; 1: event detected)
FSM_OUTS10 (55h)
FSM10 output register (r)
Table 225. FSM_OUTS10 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 226. FSM_OUTS10 register description
DS13607 - Rev 1
P_X
FSM10 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM10 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM10 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM10 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM10 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM10 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM10 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM10 output: negative event detected on the vector. (0: event not detected; 1: event detected)
page 106/162
LSM6DSO32X
FSM_OUTS11 (56h)
11.34
FSM_OUTS11 (56h)
FSM11 output register (r)
Table 227. FSM_OUTS11 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 228. FSM_OUTS11 register description
11.35
P_X
FSM11 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM11 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM11 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM11 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM11 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM11 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM11 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM11 output: negative event detected on the vector. (0: event not detected; 1: event detected)
FSM_OUTS12 (57h)
FSM12 output register (r)
Table 229. FSM_OUTS12 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 230. FSM_OUTS12 register description
DS13607 - Rev 1
P_X
FSM12 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM12 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM12 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM12 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM12 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM12 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM12 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM12 output: negative event detected on the vector. (0: event not detected; 1: event detected)
page 107/162
LSM6DSO32X
FSM_OUTS13 (58h)
11.36
FSM_OUTS13 (58h)
FSM13 output register (r)
Table 231. FSM_OUTS13 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 232. FSM_OUTS13 register description
11.37
P_X
FSM13 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM13 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM13 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM13 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM13 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM13 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM13 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM13 output: negative event detected on the vector. (0: event not detected; 1: event detected)
FSM_OUTS14 (59h)
FSM14 output register (r)
Table 233. FSM_OUTS14 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 234. FSM_OUTS14 register description
DS13607 - Rev 1
P_X
FSM14 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM14 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM14 output: negative event detected on the vector. (0: event not detected; 1: event detected)
page 108/162
LSM6DSO32X
FSM_OUTS15 (5Ah)
11.38
FSM_OUTS15 (5Ah)
FSM15 output register (r)
Table 235. FSM_OUTS15 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 236. FSM_OUTS15 register description
11.39
P_X
FSM15 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM15 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM15 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM15 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM15 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM15 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM15 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM15 output: negative event detected on the vector. (0: event not detected; 1: event detected)
FSM_OUTS16 (5Bh)
FSM16 output register (r)
Table 237. FSM_OUTS16 register
P_X
N_X
P_Y
N_Y
P_Z
N_Z
P_V
N_V
Table 238. FSM_OUTS16 register description
DS13607 - Rev 1
P_X
FSM16 output: positive event detected on the X-axis. (0: event not detected; 1: event detected)
N_X
FSM16 output: negative event detected on the X-axis. (0: event not detected; 1: event detected)
P_Y
FSM16 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected)
N_Y
FSM16 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected)
P_Z
FSM16 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected)
N_Z
FSM16 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected)
P_V
FSM16 output: positive event detected on the vector. (0: event not detected; 1: event detected)
N_V
FSM16 output: negative event detected on the vector. (0: event not detected; 1: event detected)
page 109/162
LSM6DSO32X
EMB_FUNC_ODR_CFG_B (5Fh)
11.40
EMB_FUNC_ODR_CFG_B (5Fh)
Finite State Machine output data rate configuration register (r/w)
Table 239. EMB_FUNC_ODR_CFG_B register
0(1)
1(2)
0(1)
FSM_ODR1
FSM_ODR0
0(1)
1(2)
1(2)
0(1)
1(2)
1. This bit must be set to '0' for the correct operation of the device.
2. This bit must be set to '1' for the correct operation of the device.
Table 240. EMB_FUNC_ODR_CFG_B register description
Finite State Machine ODR configuration:
(00: 12.5 Hz;
FSM_ODR[1:0]
01: 26 Hz (default);
10: 52 Hz;
11: 104 Hz)
11.41
EMB_FUNC_ODR_CFG_C (60h)
Machine Learning Core output data rate configuration register (r/w)
Table 241. EMB_FUNC_ODR_CFG_C register
0(1)
0(1)
MLC_ODR1
MLC_ODR0
0(1)
1(2)
1. This bit must be set to '0' for the correct operation of the device.
2. This bit must be set to '1' for the correct operation of the device.
Table 242. EMB_FUNC_ODR_CFG_C register description
Machine Learning Core ODR configuration:
(00: 12.5 Hz;
MLC_ODR[1:0]
01: 26 Hz (default);
10: 52 Hz;
11: 104 Hz)
DS13607 - Rev 1
page 110/162
LSM6DSO32X
STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)
11.42
STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)
Step counter output register (r)
Table 243. STEP_COUNTER_L register
STEP_7
STEP_6
STEP_5
STEP_4
STEP_3
STEP_2
STEP_1
STEP_0
STEP_9
STEP_8
0
0
Table 244. STEP_COUNTER_L register description
STEP_[7:0]
Step counter output (LSbyte)
Table 245. STEP_COUNTER_H register
STEP_15
STEP_14
STEP_13
STEP_12
STEP_11
STEP_10
Table 246. STEP_COUNTER_H register description
STEP_[15:8]
11.43
Step counter output (MSbyte)
EMB_FUNC_SRC (64h)
Embedded function source register (r)
Table 247. EMB_FUNC_SRC register
PEDO_RST
_STEP
0
STEP_
DETECTED
STEP_COUNT
_DELTA_IA
STEP_
OVERFLOW
STEPCOUNTER
_BIT_SET
Table 248. EMB_FUNC_SRC register description
PEDO_RST_STEP
STEP_DETECTED
STEP_COUNT_DELTA_IA
STEP_OVERFLOW
Reset pedometer step counter. Read/write bit.
(0: disabled; 1: enabled)
Step detector event detection status. Read-only bit.
(0: step detection event not detected; 1: step detection event detected)
Pedometer step recognition on delta time status. Read-only bit.
(0: no step recognized during delta time; 1: at least one step recognized during delta time)
Step counter overflow status. Read-only bit.
(0: step counter value < 216; 1: step counter value reached 216)
This bit is equal to 1 when the step count is increased. If a timer period is programmed in
STEPCOUNTER_BIT_SET PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h) embedded advanced features
(page 1) registers, this bit is kept to 0. Read-only bit.
DS13607 - Rev 1
page 111/162
LSM6DSO32X
EMB_FUNC_INIT_A (66h)
11.44
EMB_FUNC_INIT_A (66h)
Embedded functions initialization register (r/w)
Table 249. EMB_FUNC_INIT_A register
0(1)
0(1)
SIG_MOT
_INIT
TILT
_INIT
STEP_DET
_INIT
0(1)
0(1)
0(1)
1. This bit must be set to '0' for the correct operation of the device.
Table 250. EMB_FUNC_INIT_A register description
11.45
SIG_MOT_INIT
Significant motion detection algorithm initialization request. Default value: 0
TILT_INIT
Tilt algorithm initialization request. Default value: 0
STEP_DET_INIT
Pedometer step counter/detector algorithm initialization request. Default value: 0
EMB_FUNC_INIT_B (67h)
Embedded functions initialization register (r/w)
Table 251. EMB_FUNC_INIT_B register
0(1)
0(1)
0(1)
MLC_INIT
FIFO_
COMPR_INIT
0(1)
0(1)
FSM_INIT
MLC0_
SRC_1
MLC0_
SRC_0
1. This bit must be set to '0' for the correct operation of the device.
Table 252. EMB_FUNC_INIT_B register description
11.46
MLC_INIT
Machine Learning Core initialization request. Default value: 0
FIFO_COMPR_INIT
FIFO compression feature initialization request. Default value: 0
FSM_INIT
FSM initialization request. Default value: 0
MLC0_SRC (70h)
Machine Learning Core source register (r)
Table 253. MLC0_SRC register
MLC0_
SRC_7
MLC0_
SRC_6
MLC0_
SRC_5
MLC0_
SRC_4
MLC0_
SRC_3
MLC0_
SRC_2
Table 254. MLC0_SRC register description
MLC0_SRC_[7:0]
DS13607 - Rev 1
Output value of MLC0 decision tree
page 112/162
LSM6DSO32X
MLC1_SRC (71h)
11.47
MLC1_SRC (71h)
Machine Learning Core source register (r)
Table 255. MLC1_SRC register
MLC1_
SRC_7
MLC1_
SRC_6
MLC1_
SRC_5
MLC1_
SRC_4
MLC1_
SRC_3
MLCS1_
SRC_2
MLC1_
SRC_1
MLC1_
SRC_0
MLC2_
SRC_1
MLC2_
SRC_0
MLC3_
SRC_1
MLC3_
SRC_0
Table 256. MLC1_SRC register description
MLC1_SRC_[7:0]
11.48
Output value of MLC1 decision tree
MLC2_SRC (72h)
Machine Learning Core source register (r)
Table 257. MLC2_SRC register
MLC2_
SRC_7
MLC2_
SRC_6
MLC2_
SRC_5
MLC2_
SRC_4
MLC2_
SRC_3
MLC2_
SRC_2
Table 258. MLC2_SRC register description
MLC2_SRC_[7:0]
11.49
Output value of MLC2 decision tree
MLC3_SRC (73h)
Machine Learning Core source register (r)
Table 259. MLC3_SRC register
MLC3_
SRC_7
MLC3_
SRC_6
MLC3_
SRC_5
MLC3_
SRC_4
MLC3_
SRC_3
MLC3_
SRC_2
Table 260. MLC3_SRC register description
MLC3_SRC_[7:0]
DS13607 - Rev 1
Output value of MLC3 decision tree
page 113/162
LSM6DSO32X
MLC4_SRC (74h)
11.50
MLC4_SRC (74h)
Machine Learning Core source register (r)
Table 261. MLC4_SRC register
MLC4_
SRC_7
MLC4_
SRC_6
MLC4_
SRC_5
MLC4_
SRC_4
MLC4_
SRC_3
MLC4_
SRC_2
MLC4_
SRC_1
MLC4_
SRC_0
MLC5_
SRC_1
MLC5_
SRC_0
MLC6_
SRC_1
MLC6_
SRC_0
MLC7_
SRC_1
MLC7_
SRC_0
Table 262. MLC4_SRC register description
MLC4_SRC_[7:0]
11.51
Output value of MLC4 decision tree
MLC5_SRC (75h)
Machine Learning Core source register (r)
Table 263. MLC5_SRC register
MLC5_
SRC_7
MLC5_
SRC_6
MLC5_
SRC_5
MLC5_
SRC_4
MLC5_
SRC_3
MLC5_
SRC_2
Table 264. MLC5_SRC register description
MLC5_SRC_[7:0]
11.52
Output value of MLC5 decision tree
MLC6_SRC (76h)
Machine Learning Core source register (r)
Table 265. MLC6_SRC register
MLC6_
SRC_7
MLC6_
SRC_6
MLC6_
SRC_5
MLC6_
SRC_4
MLC6_
SRC_3
MLC6_
SRC_2
Table 266. MLC6_SRC register description
MLC6_SRC_[7:0]
11.53
Output value of MLC6 decision tree
MLC7_SRC (77h)
Machine Learning Core source register (r)
Table 267. MLC7_SRC register
MLC7_
SRC_7
MLC7_
SRC_6
MLC7_
SRC_5
MLC7_
SRC_4
MLC7_
SRC_3
MLC7_
SRC_2
Table 268. MLC7_SRC register description
MLC7_SRC_[7:0]
DS13607 - Rev 1
Output value of MLC7 decision tree
page 114/162
LSM6DSO32X
Embedded advanced features pages
12
Embedded advanced features pages
The table given below provides a list of the registers for the embedded advanced features page 0. These
registers are accessible when PAGE_SEL[3:0] are set to 0000 in PAGE_SEL (02h).
Table 269. Register address map - embedded advanced features page 0
Name
DS13607 - Rev 1
Type
Register address
Hex
Binary
Default
MAG_SENSITIVITY_L
r/w
BA
10111010
00100100
MAG_SENSITIVITY_H
r/w
BB
10111011
00010110
MAG_OFFX_L
r/w
C0
11000000
00000000
MAG_OFFX_H
r/w
C1
11000001
00000000
MAG_OFFY_L
r/w
C2
11000010
00000000
MAG_OFFY_H
r/w
C3
11000011
00000000
MAG_OFFZ_L
r/w
C4
11000100
00000000
MAG_OFFZ_H
r/w
C5
11000101
00000000
MAG_SI_XX_L
r/w
C6
11000110
00000000
MAG_SI_XX_H
r/w
C7
11000111
00111100
MAG_SI_XY_L
r/w
C8
11001000
00000000
MAG_SI_XY_H
r/w
C9
11001001
00000000
MAG_SI_XZ_L
r/w
CA
11001010
00000000
MAG_SI_XZ_H
r/w
CB
11001011
00000000
MAG_SI_YY_L
r/w
CC
11001100
00000000
MAG_SI_YY_H
r/w
CD
11001101
00111100
MAG_SI_YZ_L
r/w
CE
11001110
00000000
MAG_SI_YZ_H
r/w
CF
11001111
00000000
MAG_SI_ZZ_L
r/w
D0
11010000
00000000
MAG_SI_ZZ_H
r/w
D1
11010001
00111100
MAG_CFG_A
r/w
D4
11010100
00000101
MAG_CFG_B
r/w
D5
11010101
00000010
Comment
page 115/162
LSM6DSO32X
Embedded advanced features pages
The following table provides a list of the registers for the embedded advanced features page 1. These registers
are accessible when PAGE_SEL[3:0] are set to 0001 in PAGE_SEL (02h).
Table 270. Register address map - embedded advanced features page 1
Register address
Name
Type
Hex
Binary
Default
FSM_LC_TIMEOUT_L
r/w
7A
01111010
00000000
FSM_LC_TIMEOUT_H
r/w
7B
01111011
00000000
FSM_PROGRAMS
r/w
7C
01111100
00000000
FSM_START_ADD_L
r/w
7E
01111110
00000000
FSM_START_ADD_H
r/w
7F
01111111
00000000
PEDO_CMD_REG
r/w
83
10000011
00000000
PEDO_DEB_STEPS_CONF
r/w
84
10000100
00001010
PEDO_SC_DELTAT_L
r/w
D0
11010000
00000000
PEDO_SC_DELTAT_H
r/w
D1
11010001
00000000
MLC_MAG_SENSITIVITY_L
r/w
E8
11101000
0000000
MLC_MAG_SENSITIVITY_H
r/w
E9
11101001
00111100
Comment
Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to
the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration
values. Their content is automatically restored when the device is powered up.
Write procedure example:
Example: write value 06h register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1
1.
Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)
// Enable access to embedded functions registers
2.
Write bit PAGE_WRITE = 1 in PAGE_RW (17h) register
// Select write operation mode
3.
Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)
// Select page 1
4.
Write 84h in PAGE_ADDR register (08h)
// Set address
5.
Write 06h in PAGE_DATA register (09h)
// Set value to be written
6.
Write bit PAGE_WRITE = 0 in PAGE_RW (17h) register
// Write operation disabled
7.
Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)
// Disable access to embedded functions registers
Read procedure example:
Example: read value of register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1
Note:
DS13607 - Rev 1
1.
Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)
// Enable access to embedded functions registers
2.
Write bit PAGE_READ = 1 in PAGE_RW (17h) register
// Select read operation mode
3.
Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)
// Select page 1
4.
Write 84h in PAGE_ADDR register (08h)
// Set address
5.
Read value of PAGE_DATA register (09h)
// Get register value
6.
Write bit PAGE_READ = 0 in PAGE_RW (17h) register
// Read operation disabled
7.
Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)
// Disable access to embedded functions registers
Steps 1 and 2 of both procedures are intended to be performed at the beginning of the procedure. Steps 6 and 7
of both procedures are intended to be performed at the end of the procedure. If the procedure involves multiple
operations, only steps 3, 4 and 5 must be repeated for each operation. If, in particular, the multiple operations
involve consecutive registers, only step 5 can be performed.
page 116/162
LSM6DSO32X
Embedded advanced features register description
13
Embedded advanced features register description
13.1
Page 0 - Embedded advanced features registers
13.1.1
MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)
External magnetometer sensitivity value register for the Finite State Machine (r/w)
This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The
register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5
exponent bits; F: 10 fraction bits).
Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015 gauss/LSB.
Table 271. MAG_SENSITIVITY_L register
MAG_
SENS_7
MAG_
SENS_6
MAG_
SENS_5
MAG_
SENS_4
MAG_
SENS_3
MAG_
SENS_2
MAG_
SENS_1
MAG_
SENS_0
MAG_
SENS_9
MAG_
SENS_8
Table 272. MAG_SENSITIVITY_L register description
MAG_SENS_[7:0]
External magnetometer sensitivity (LSbyte). Default value: 00100100
Table 273. MAG_SENSITIVITY_H register
MAG_
SENS_15
MAG_
SENS_14
MAG_
SENS_13
MAG_
SENS_12
MAG_
SENS_11
MAG_
SENS_10
Table 274. MAG_SENSITIVITY_H register description
MAG_SENS_[15:8]
DS13607 - Rev 1
External magnetometer sensitivity (MSbyte). Default value: 00010110
page 117/162
LSM6DSO32X
Page 0 - Embedded advanced features registers
13.1.2
MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)
Offset for X-axis hard-iron compensation register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 275. MAG_OFFX_L register
MAG_OFFX_7
MAG_OFFX_6
MAG_OFFX_5
MAG_OFFX_4
MAG_OFFX_3
MAG_OFFX_2
MAG_OFFX_1
MAG_OFFX_0
Table 276. MAG_OFFX_L register description
MAG_OFFX_[7:0]
Offset for X-axis hard-iron compensation (LSbyte). Default value: 00000000
Table 277. MAG_OFFX_H register
MAG_OFFX_15
MAG_OFFX_14
MAG_OFFX_13
MAG_OFFX_12
MAG_OFFX_11
MAG_OFFX_10
MAG_OFFX_9
MAG_OFFX_8
Table 278. MAG_OFFX_H register description
MAG_OFFX_[15:8]
13.1.3
Offset for X-axis hard-iron compensation (MSbyte). Default value: 00000000
MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)
Offset for Y-axis hard-iron compensation register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 279. MAG_OFFY_L register
MAG_OFFY_7
MAG_OFFY_6
MAG_OFFY_5
MAG_OFFY_4
MAG_OFFY_3
MAG_OFFY_2
MAG_OFFY_1
MAG_OFFY_0
Table 280. MAG_OFFY_L register description
MAG_OFFY_[7:0]
Offset for Y-axis hard-iron compensation (LSbyte). Default value: 00000000
Table 281. MAG_OFFY_H register
MAG_OFFY_15
MAG_OFFY_14
MAG_OFFY_13
MAG_OFFY_12
MAG_OFFY_11
MAG_OFFY_10
MAG_OFFY_9
MAG_OFFY_8
Table 282. MAG_OFFY_H register description
MAG_OFFY_[15:8]
DS13607 - Rev 1
Offset for Y-axis hard-iron compensation (MSbyte). Default value: 00000000
page 118/162
LSM6DSO32X
Page 0 - Embedded advanced features registers
13.1.4
MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)
Offset for Z-axis hard-iron compensation register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 283. MAG_OFFZ_L register
MAG_OFFZ_7
MAG_OFFZ_6
MAG_OFFZ_5
MAG_OFFZ_4
MAG_OFFZ_3
MAG_OFFZ_2
MAG_OFFZ_1
MAG_OFFZ_0
Table 284. MAG_OFFZ_L register description
MAG_OFFZ_[7:0]
Offset for Z-axis hard-iron compensation (LSbyte). Default value: 00000000
Table 285. MAG_OFFZ_H register
MAG_OFFZ_15
MAG_OFFZ_14
MAG_OFFZ_13
MAG_OFFZ_12
MAG_OFFZ_11
MAG_OFFZ_10
MAG_OFFZ_9
MAG_OFFZ_8
Table 286. MAG_OFFZ_H register description
MAG_OFFZ_[15:8]
13.1.5
Offset for Z-axis hard-iron compensation (MSbyte). Default value: 00000000
MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)
Soft-iron (3x3 symmetric) matrix correction register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 287. MAG_SI_XX_L register
MAG_SI_XX_7
MAG_SI_XX_6
MAG_SI_XX_5
MAG_SI_XX_4
MAG_SI_XX_3
MAG_SI_XX_2
MAG_SI_XX_1
MAG_SI_XX_0
Table 288. MAG_SI_XX_L register description
MAG_SI_XX_[7:0]
Soft-iron correction row1 col1 coefficient (LSbyte). Default value: 00000000
Table 289. MAG_SI_XX_H register
MAG_SI_XX_15
MAG_SI_XX_14
MAG_SI_XX_13
MAG_SI_XX_12
MAG_SI_XX_11
MAG_SI_XX_10
MAG_SI_XX_9
MAG_SI_XX_8
Table 290. MAG_SI_XX_H register description
MAG_SI_XX_[15:8]
DS13607 - Rev 1
Soft-iron correction row1 col1 coefficient (MSbyte). Default value: 00111100
page 119/162
LSM6DSO32X
Page 0 - Embedded advanced features registers
13.1.6
MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)
Soft-iron (3x3 symmetric) matrix correction register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 291. MAG_SI_XY_L register
MAG_SI_XY_7
MAG_SI_XY_6
MAG_SI_XY_5
MAG_SI_XY_4
MAG_SI_XY_3
MAG_SI_XY_2
MAG_SI_XY_1
MAG_SI_XY_0
Table 292. MAG_SI_XY_L register description
MAG_SI_XY_[7:0]
Soft-iron correction row1 col2 (and row2 col1) coefficient (LSbyte). Default value: 00000000
Table 293. MAG_SI_XY_H register
MAG_SI_XY_15
MAG_SI_XY_14
MAG_SI_XY_13
MAG_SI_XY_12
MAG_SI_XY_11
MAG_SI_XY_10
MAG_SI_XY_9
MAG_SI_XY_8
Table 294. MAG_SI_XY_H register description
MAG_SI_XY_[15:8]
13.1.7
Soft-iron correction row1 col2 (and row2 col1) coefficient (MSbyte). Default value: 00000000
MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)
Soft-iron (3x3 symmetric) matrix correction register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 295. MAG_SI_XZ_L register
MAG_SI_XZ_7
MAG_SI_XZ_6
MAG_SI_XZ_5
MAG_SI_XZ_4
MAG_SI_XZ_3
MAG_SI_XZ_2
MAG_SI_XZ_1
MAG_SI_XZ_0
Table 296. MAG_SI_XZ_L register description
MAG_SI_XZ_[7:0]
Soft-iron correction row1 col3 (and row3 col1) coefficient (LSbyte). Default value: 00000000
Table 297. MAG_SI_XZ_H register
MAG_SI_XZ_15
MAG_SI_XZ_14
MAG_SI_XZ_13
MAG_SI_XZ_12
MAG_SI_XZ_11
MAG_SI_XZ_10
MAG_SI_XZ_9
MAG_SI_XZ_8
Table 298. MAG_SI_XZ_H register description
MAG_SI_XZ_[15:8]
DS13607 - Rev 1
Soft-iron correction row1 col3 (and row3 col1) coefficient (MSbyte). Default value: 00000000
page 120/162
LSM6DSO32X
Page 0 - Embedded advanced features registers
13.1.8
MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)
Soft-iron (3x3 symmetric) matrix correction register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 299. MAG_SI_YY_L register
MAG_SI_YY_7
MAG_SI_YY_6
MAG_SI_YY_5
MAG_SI_YY_4
MAG_SI_YY_3
MAG_SI_YY_2
MAG_SI_YY_1
MAG_SI_YY_0
Table 300. MAG_SI_YY_L register description
MAG_SI_YY_[7:0]
Soft-iron correction row2 col2 coefficient (LSbyte). Default value: 00000000
Table 301. MAG_SI_YY_H register
MAG_SI_YY_15
MAG_SI_YY_14
MAG_SI_YY_13
MAG_SI_YY_12
MAG_SI_YY_11
MAG_SI_YY_10
MAG_SI_YY_9
MAG_SI_YY_8
Table 302. MAG_SI_YY_H register description
MAG_SI_YY_[15:8]
13.1.9
Soft-iron correction row2 col2 coefficient (MSbyte). Default value: 00111100
MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)
Soft-iron (3x3 symmetric) matrix correction register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 303. MAG_SI_YZ_L register
MAG_SI_YZ_7
MAG_SI_YZ_6
MAG_SI_YZ_5
MAG_SI_YZ_4
MAG_SI_YZ_3
MAG_SI_YZ_2
MAG_SI_YZ_1
MAG_SI_YZ_0
Table 304. MAG_SI_YZ_L register description
MAG_SI_YZ_[7:0]
Soft-iron correction row2 col3 (and row3 col2) coefficient (LSbyte). Default value: 00000000
Table 305. MAG_SI_YZ_H register
MAG_SI_YZ_15
MAG_SI_YZ_14
MAG_SI_YZ_13
MAG_SI_YZ_12
MAG_SI_YZ_11
MAG_SI_YZ_10
MAG_SI_YZ_9
MAG_SI_YZ_8
Table 306. MAG_SI_YZ_H register description
MAG_SI_YZ_[15:8]
DS13607 - Rev 1
Soft-iron correction row2 col3 (and row3 col2) coefficient (MSbyte). Default value: 00000000
page 121/162
LSM6DSO32X
Page 0 - Embedded advanced features registers
13.1.10
MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)
Soft-iron (3x3 symmetric) matrix correction register (r/w)
The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent
bits; F: 10 fraction bits).
Table 307. MAG_SI_ZZ_L register
MAG_SI_ZZ_7
MAG_SI_ZZ_6
MAG_SI_ZZ_5
MAG_SI_ZZ_4
MAG_SI_ZZ_3
MAG_SI_ZZ_2
MAG_SI_ZZ_1
MAG_SI_ZZ_0
Table 308. MAG_SI_ZZ_L register description
MAG_SI_ZZ_[7:0]
Soft-iron correction row3 col3 coefficient (LSbyte). Default value: 00000000
Table 309. MAG_SI_ZZ_H register
MAG_SI_ZZ_15
MAG_SI_ZZ_14
MAG_SI_ZZ_13
MAG_SI_ZZ_12
MAG_SI_ZZ_11
MAG_SI_ZZ_10
MAG_SI_ZZ_9
MAG_SI_ZZ_8
Table 310. MAG_SI_ZZ_H register description
MAG_SI_ZZ_[15:8]
DS13607 - Rev 1
Soft-iron correction row3 col3 coefficient (MSbyte). Default value: 00111100
page 122/162
LSM6DSO32X
Page 0 - Embedded advanced features registers
13.1.11
MAG_CFG_A (D4h)
External magnetometer coordinates (Y and Z axes) rotation register (r/w)
Table 311. MAG_CFG_A register
0(1)
MAG_Y_
AXIS2
MAG_Y_
AXIS1
MAG_Y_
AXIS0
0(1)
MAG_Z_
AXIS2
MAG_Z_
AXIS1
MAG_Z_
AXIS0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 312. MAG_CFG_A description
Magnetometer Y-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
(000: Y = Y; (default)
001: Y = -Y;
MAG_Y_AXIS[2:0]
010: Y = X;
011: Y = -X;
100: Y = -Z;
101: Y = Z;
Others: Y = Y)
Magnetometer Z-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
(000: Z = Y;
001: Z = -Y;
MAG_Z_AXIS[2:0]
010: Z = X;
011: Z = -X;
100: Z = -Z;
101: Z = Z; (default)
Others: Z = Y)
13.1.12
MAG_CFG_B (D5h)
External magnetometer coordinates (X-axis) rotation register (r/w).
Table 313. MAG_CFG_B register
0(1)
0(1)
0(1)
0(1)
0(1)
MAG_X_
AXIS2
MAG_X_
AXIS1
MAG_X_
AXIS0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 314. MAG_CFG_B description
Magnetometer X-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
(000: X = Y;
001: X = -Y;
MAG_X_AXIS[2:0]
010: X = X; (default)
011: X = -X;
100: X = -Z;
101: X = Z;
Others: X = Y)
DS13607 - Rev 1
page 123/162
LSM6DSO32X
Page 1 - Embedded advanced features registers
13.2
13.2.1
Page 1 - Embedded advanced features registers
FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)
FSM long counter timeout register (r/w)
The long counter timeout value is an unsigned integer value (16-bit format). When the long counter value reaches
this value, the FSM generates an interrupt.
Table 315. FSM_LC_TIMEOUT_L register
FSM_LC_
TIMEOUT7
FSM_LC_
TIMEOUT6
FSM_LC_
TIMEOUT5
FSM_LC_
TIMEOUT4
FSM_LC_
TIMEOUT3
FSM_LC_
TIMEOUT2
FSM_LC_
TIMEOUT1
FSM_LC_
TIMEOUT0
Table 316. FSM_LC_TIMEOUT_L register description
FSM_LC_TIMEOUT[7:0]
FSM long counter timeout value (LSbyte). Default value: 00000000
Table 317. FSM_LC_TIMEOUT_H register
FSM_LC_
TIMEOUT15
FSM_LC_
TIMEOUT14
FSM_LC_
TIMEOUT13
FSM_LC_
TIMEOUT12
FSM_LC_
TIMEOUT11
FSM_LC_
TIMEOUT10
FSM_LC_
TIMEOUT9
FSM_LC_
TIMEOUT8
Table 318. FSM_LC_TIMEOUT_H register description
FSM_LC_TIMEOUT[15:8]
13.2.2
FSM long counter timeout value (MSbyte). Default value: 00000000
FSM_PROGRAMS (7Ch)
FSM number of programs register (r/w)
Table 319. FSM_PROGRAMS register
FSM_N_
PROG7
FSM_N_
PROG6
FSM_N_
PROG5
FSM_N_
PROG4
FSM_N_
PROG3
FSM_N_
PROG2
FSM_N_
PROG1
FSM_N_
PROG0
Table 320. FSM_PROGRAMS register description
FSM_N_PROG[7:0]
DS13607 - Rev 1
Number of FSM programs; must be less than or equal to 16. Default value: 00000000
page 124/162
LSM6DSO32X
Page 1 - Embedded advanced features registers
13.2.3
FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)
FSM start address register (r/w). First available address is 0x033C.
Table 321. FSM_START_ADD_L register
FSM_
START7
FSM_
START6
FSM_
START5
FSM_
START4
FSM_
START3
FSM_
START2
FSM_
START1
FSM_
START0
FSM_
START9
FSM_
START8
0(1)
AD_
DET_EN
Table 322. FSM_START_ADD_L register description
FSM_START[7:0]
FSM start address value (LSbyte). Default value: 00000000
Table 323. FSM_START_ADD_H register
FSM_
START15
FSM_
START14
FSM_
START13
FSM_
START12
FSM_
START11
FSM_
START10
Table 324. FSM_START_ADD_H register description
FSM_START[15:8]
13.2.4
FSM start address value (MSbyte). Default value: 00000000
PEDO_CMD_REG (83h)
Pedometer configuration register (r/w)
Table 325. PEDO_CMD_REG register
0(1)
0(1)
0(1)
0(1)
CARRY_
COUNT_EN
FP_REJECTION
_EN
1. This bit must be set to '0' for the correct operation of the device.
Table 326. PEDO_CMD_REG register description
CARRY_COUNT_EN
Set when user wants to generate interrupt only on count overflow event.
FP_REJECTION_EN(1)
Enables the false-positive rejection feature.
AD_DET_EN(2)
Enables the advanced detection feature.
1. This bit is effective if the MLC_EN bit of EMB_FUNC_EN_B (05h) is set to 1.
2. This bit is effective if both the FP_REJECTION_EN bit in PEDO_CMD_REG (83h) register and the MLC_EN bit of
EMB_FUNC_EN_B (05h) are set to 1.
DS13607 - Rev 1
page 125/162
LSM6DSO32X
Page 1 - Embedded advanced features registers
13.2.5
PEDO_DEB_STEPS_CONF (84h)
Pedometer debounce configuration register (r/w)
Table 327. PEDO_DEB_STEPS_CONF register
DEB_STEP7
DEB_STEP6
DEB_STEP5
DEB_STEP4
DEB_STEP3
DEB_STEP2
DEB_STEP1
DEB_STEP0
Table 328. PEDO_DEB_STEPS_CONF register description
Debounce threshold. Minimum number of steps to increment the step counter (debounce).
Default value: 00001010
DEB_STEP[7:0]
13.2.6
PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h)
Time period register for step detection on delta time (r/w)
Table 329. PEDO_SC_DELTAT_L register
PD_SC_7
PD_SC_6
PD_SC_5
PD_SC_4
PD_SC_3
PD_SC_2
PD_SC_1
PD_SC_0
PD_SC_9
PD_SC_8
Table 330. PEDO_SC_DELTAT_H register
PD_SC_15
PD_SC_14
PD_SC_13
PD_SC_12
PD_SC_11
PD_SC_10
Table 331. PEDO_SC_DELTAT_H/L register description
PD_SC_[15:0]
13.2.7
Time period value (1LSB = 6.4 ms)
MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h)
External magnetometer sensitivity value register for the Machine Learning Core (r/w).
This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The
register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5
exponent bits; F: 10 fraction bits). Default value of MLC_MAG_S_[15:0] is 0x3C00, corresponding to 1 gauss/
LSB.
Table 332. MLC_MAG_SENSITIVITY_L register
MLC_MAG_S_7
MLC_MAG_S_6
MLC_MAG_S_5
MLC_MAG_S_4
MLC_MAG_S_3
MLC_MAG_S_2
MLC_MAG_S_1
MLC_MAG_S_0
Table 333. MLC_ MAG_SENSITIVITY_L register description
MLC_MAG_S_[7:0]
External magnetometer sensitivity (LSbyte). Default value: 00000000
Table 334. MLC_MAG_SENSITIVITY_H register
MLC_MAG_S_15
MLC_MAG_S_14
MLC_MAG_S_13
MLC_MAG_S_12
MLC_MAG_S_11
MLC_MAG_S_10
MLC_MAG_S_9
MLC_MAG_S_8
Table 335. MLC_ MAG_SENSITIVITY_H register description
MLC_MAG_S_[15:8]
DS13607 - Rev 1
External magnetometer sensitivity (MSbyte). Default value: 00000000
page 126/162
LSM6DSO32X
Sensor hub register mapping
14
Sensor hub register mapping
The table given below provides a list of the registers for the sensor hub functions available in the device and the
corresponding addresses. The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to '1' in
FUNC_CFG_ACCESS (01h).
Table 336. Register address map - sensor hub registers
Register address
Name
Type
Default
Hex
Binary
00000010
output
SENSOR_HUB_1
r
02
SENSOR_HUB_2
r
03
00000011
output
SENSOR_HUB_3
r
04
00000100
output
SENSOR_HUB_4
r
05
00000101
output
SENSOR_HUB_5
r
06
00000110
output
SENSOR_HUB_6
r
07
00000111
output
SENSOR_HUB_7
r
08
00001000
output
SENSOR_HUB_8
r
09
00001001
output
SENSOR_HUB_9
r
0A
00001010
output
SENSOR_HUB_10
r
0B
00001011
output
SENSOR_HUB_11
r
0C
00001100
output
SENSOR_HUB_12
r
0D
00001101
output
SENSOR_HUB_13
r
0E
00001110
output
SENSOR_HUB_14
r
0F
00001111
output
SENSOR_HUB_15
r
10
00010000
output
SENSOR_HUB_16
r
11
00010001
output
SENSOR_HUB_17
r
12
00010010
output
SENSOR_HUB_18
r
13
00010011
output
MASTER_CONFIG
rw
14
00010100
00000000
SLV0_ADD
rw
15
00010101
00000000
SLV0_SUBADD
rw
16
00010110
00000000
SLV0_CONFIG
rw
17
0001 0111
00000000
SLV1_ADD
rw
18
00011000
00000000
SLV1_SUBADD
rw
19
00011001
00000000
SLV1_CONFIG
rw
1A
00011010
00000000
SLV2_ADD
rw
1B
00011011
00000000
SLV2_SUBADD
rw
1C
00011100
00000000
SLV2_CONFIG
rw
1D
00011101
00000000
SLV3_ADD
rw
1E
00011110
00000000
SLV3_SUBADD
rw
1F
00011111
00000000
SLV3_CONFIG
rw
20
00100000
00000000
DATAWRITE_SLV0
rw
21
00100001
00000000
STATUS_MASTER
r
22
00100010
output
Comment
Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to
the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration
values. Their content is automatically restored when the device is powered up.
DS13607 - Rev 1
page 127/162
LSM6DSO32X
Sensor hub register description
15
Sensor hub register description
15.1
SENSOR_HUB_1 (02h)
Sensor hub output register (r)
First byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 337. SENSOR_HUB_1 register
Sensor
Hub1_7
Sensor
Hub1_6
Sensor
Hub1_5
Sensor
Hub1_4
Sensor
Hub1_3
Sensor
Hub1_2
Sensor
Hub1_1
Sensor
Hub1_0
Table 338. SENSOR_HUB_1 register description
SensorHub1_[7:0]
15.2
First byte associated to external sensors
SENSOR_HUB_2 (03h)
Sensor hub output register (r)
Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 339. SENSOR_HUB_2 register
Sensor
Hub2_7
Sensor
Hub2_6
Sensor
Hub2_5
Sensor
Hub2_4
Sensor
Hub2_3
Sensor
Hub2_2
Sensor
Hub2_1
Sensor
Hub2_0
Table 340. SENSOR_HUB_2 register description
SensorHub2_[7:0]
15.3
Second byte associated to external sensors
SENSOR_HUB_3 (04h)
Sensor hub output register (r)
Third byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 341. SENSOR_HUB_3 register
Sensor
Hub3_7
Sensor
Hub3_6
Sensor
Hub3_5
Sensor
Hub3_4
Sensor
Hub3_3
Sensor
Hub3_2
Sensor
Hub3_1
Sensor
Hub3_0
Table 342. SENSOR_HUB_3 register description
SensorHub3_[7:0]
DS13607 - Rev 1
Third byte associated to external sensors
page 128/162
LSM6DSO32X
SENSOR_HUB_4 (05h)
15.4
SENSOR_HUB_4 (05h)
Sensor hub output register (r)
Fourth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 343. SENSOR_HUB_4 register
Sensor
Hub4_7
Sensor
Hub4_6
Sensor
Hub4_5
Sensor
Hub4_4
Sensor
Hub4_3
Sensor
Hub4_2
Sensor
Hub4_1
Sensor
Hub4_0
Table 344. SENSOR_HUB_4 register description
SensorHub4_[7:0]
15.5
Fourth byte associated to external sensors
SENSOR_HUB_5 (06h)
Sensor hub output register (r)
Fifth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 345. SENSOR_HUB_5 register
Sensor
Hub5_7
Sensor
Hub5_6
Sensor
Hub5_5
Sensor
Hub5_4
Sensor
Hub5_3
Sensor
Hub5_2
Sensor
Hub5_1
Sensor
Hub5_0
Table 346. SENSOR_HUB_5 register description
SensorHub5_[7:0]
15.6
Fifth byte associated to external sensors
SENSOR_HUB_6 (07h)
Sensor hub output register (r)
Sixth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 347. SENSOR_HUB_6 register
Sensor
Hub6_7
Sensor
Hub6_6
Sensor
Hub6_5
Sensor
Hub6_4
Sensor
Hub6_3
Sensor
Hub6_2
Sensor
Hub6_1
Sensor
Hub6_0
Table 348. SENSOR_HUB_6 register description
SensorHub6_[7:0]
DS13607 - Rev 1
Sixth byte associated to external sensors
page 129/162
LSM6DSO32X
SENSOR_HUB_7 (08h)
15.7
SENSOR_HUB_7 (08h)
Sensor hub output register (r)
Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 349. SENSOR_HUB_7 register
Sensor
Hub7_7
Sensor
Hub7_6
Sensor
Hub7_5
Sensor
Hub7_4
Sensor
Hub7_3
Sensor
Hub7_2
Sensor
Hub7_1
Sensor
Hub7_0
Table 350. SENSOR_HUB_7 register description
SensorHub7_[7:0]
15.8
Seventh byte associated to external sensors
SENSOR_HUB_8 (09h)
Sensor hub output register (r)
Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 351. SENSOR_HUB_8 register
Sensor
Hub8_7
Sensor
Hub8_6
Sensor
Hub8_5
Sensor
Hub8_4
Sensor
Hub8_3
Sensor
Hub8_2
Sensor
Hub8_1
Sensor
Hub8_0
Table 352. SENSOR_HUB_8 register description
SensorHub8_[7:0]
15.9
Eighth byte associated to external sensors
SENSOR_HUB_9 (0Ah)
Sensor hub output register (r)
Ninth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 353. SENSOR_HUB_9 register
Sensor
Hub9_7
Sensor
Hub9_6
Sensor
Hub9_5
Sensor
Hub9_4
Sensor
Hub9_3
Sensor
Hub9_2
Sensor
Hub9_1
Sensor
Hub9_0
Table 354. SENSOR_HUB_9 register description
SensorHub9_[7:0]
DS13607 - Rev 1
Ninth byte associated to external sensors
page 130/162
LSM6DSO32X
SENSOR_HUB_10 (0Bh)
15.10
SENSOR_HUB_10 (0Bh)
Sensor hub output register (r)
Tenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 355. SENSOR_HUB_10 register
Sensor
Hub10_7
Sensor
Hub10_6
Sensor
Hub10_5
Sensor
Hub10_4
Sensor
Hub10_3
Sensor
Hub10_2
Sensor
Hub10_1
Sensor
Hub10_0
Table 356. SENSOR_HUB_10 register description
SensorHub_10[7:0]
15.11
Tenth byte associated to external sensors
SENSOR_HUB_11 (0Ch)
Sensor hub output register (r)
Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 357. SENSOR_HUB_11 register
Sensor
Hub11_7
Sensor
Hub11_6
Sensor
Hub11_5
Sensor
Hub11_4
Sensor
Hub11_3
Sensor
Hub11_2
Sensor
Hub11_1
Sensor
Hub11_0
Table 358. SENSOR_HUB_11 register description
SensorHub11_[7:0]
15.12
Eleventh byte associated to external sensors
SENSOR_HUB_12 (0Dh)
Sensor hub output register (r)
Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 359. SENSOR_HUB_12 register
Sensor
Hub12_7
Sensor
Hub12_6
Sensor
Hub12_5
Sensor
Hub12_4
Sensor
Hub12_3
Sensor
Hub12_2
Sensor
Hub12_1
Sensor
Hub12_0
Table 360. SENSOR_HUB_12 register description
SensorHub_12[7:0]
DS13607 - Rev 1
Twelfth byte associated to external sensors
page 131/162
LSM6DSO32X
SENSOR_HUB_13 (0Eh)
15.13
SENSOR_HUB_13 (0Eh)
Sensor hub output register (r)
Thirteenth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 361. SENSOR_HUB_13 register
Sensor
Hub13_7
Sensor
Hub13_6
Sensor
Hub13_5
Sensor
Hub13_4
Sensor
Hub13_3
Sensor
Hub13_2
Sensor
Hub13_1
Sensor
Hub13_0
Table 362. SENSOR_HUB_13 register description
SensorHub13_[7:0]
15.14
Thirteenth byte associated to external sensors
SENSOR_HUB_14 (0Fh)
Sensor hub output register (r)
Fourteenth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 363. SENSOR_HUB_14 register
Sensor
Hub14_7
Sensor
Hub14_6
Sensor
Hub14_5
Sensor
Hub14_4
Sensor
Hub14_3
Sensor
Hub14_2
Sensor
Hub14_1
Sensor
Hub14_0
Table 364. SENSOR_HUB_14 register description
SensorHub14_[7:0]
15.15
Fourteenth byte associated to external sensors
SENSOR_HUB_15 (10h)
Sensor hub output register (r)
Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 365. SENSOR_HUB_15 register
Sensor
Hub15_7
Sensor
Hub15_6
Sensor
Hub15_5
Sensor
Hub15_4
Sensor
Hub15_3
Sensor
Hub15_2
Sensor
Hub15_1
Sensor
Hub15_0
Table 366. SENSOR_HUB_15 register description
SensorHub15_[7:0]
DS13607 - Rev 1
Fifteenth byte associated to external sensors
page 132/162
LSM6DSO32X
SENSOR_HUB_16 (11h)
15.16
SENSOR_HUB_16 (11h)
Sensor hub output register (r)
Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG
number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 367. SENSOR_HUB_16 register
Sensor
Hub16_7
Sensor
Hub16_6
Sensor
Hub16_5
Sensor
Hub16_4
Sensor
Hub16_3
Sensor
Hub16_2
Sensor
Hub16_1
Sensor
Hub16_0
Table 368. SENSOR_HUB_16 register description
SensorHub16_[7:0]
15.17
Sixteenth byte associated to external sensors
SENSOR_HUB_17 (12h)
Sensor hub output register (r)
Seventeenth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 369. SENSOR_HUB_17 register
Sensor
Hub17_7
Sensor
Hub17_6
Sensor
Hub17_5
Sensor
Hub17_4
Sensor
Hub17_3
Sensor
Hub17_2
Sensor
Hub17_1
Sensor
Hub17_7
Table 370. SENSOR_HUB_17 register description
SensorHub17_[7:0]
15.18
Seventeenth byte associated to external sensors
SENSOR_HUB_18 (13h)
Sensor hub output register (r)
Eighteenth byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).
Table 371. SENSOR_HUB_17 register
Sensor
Hub18_7
Sensor
Hub18_6
Sensor
Hub18_5
Sensor
Hub18_4
Sensor
Hub18_3
Sensor
Hub18_2
Sensor
Hub18_1
Sensor
Hub18_0
Table 372. SENSOR_HUB_17 register description
SensorHub18_[7:0]
DS13607 - Rev 1
Eighteenth byte associated to external sensors
page 133/162
LSM6DSO32X
MASTER_CONFIG (14h)
15.19
MASTER_CONFIG (14h)
Master configuration register (r/w)
Table 373. MASTER_CONFIG register
RST_MASTER
_REGS
WRITE_
ONCE
START_
CONFIG
PASS_THROU
GH_MODE
SHUB_
PU_EN
MASTER_ON
AUX_
SENS_ON1
AUX_
SENS_ON0
Table 374. MASTER_CONFIG register description
RST_MASTER_REGS
Reset Master logic and output registers. Must be set to ‘1’ and then set it to ‘0’. Default value: 0
Slave 0 write operation is performed only at the first sensor hub cycle. Default value: 0
WRITE_ONCE
(0: write operation for each sensor hub cycle;
1: write operation only for the first sensor hub cycle)
Sensor hub trigger signal selection. Default value: 0
START_CONFIG
(0: sensor hub trigger signal is the accelerometer/gyro data-ready;
1: sensor hub trigger signal external from INT2 pin)
I²C interface pass-through. Default value: 0
PASS_THROUGH_MODE
(0: pass-through disabled;
1: pass-through enabled, main I²C line is short-circuited with the auxiliary line)
Master I²C pull-up enable. Default value: 0
SHUB_PU_EN
(0: internal pull-up on auxiliary I²C line disabled;
1: internal pull-up on auxiliary I²C line enabled)
Sensor hub I²C master enable. Default: 0
MASTER_ON
(0: master I²C of sensor hub disabled; 1: master I²C of sensor hub enabled)
Number of external sensors to be read by the sensor hub.
(00: one sensor (default);
AUX_SENS_ON[1:0]
01: two sensors;
10: three sensors;
11: four sensors)
15.20
SLV0_ADD (15h)
I²C slave address of the first external sensor (Sensor 1) register (r/w).
Table 375. SLV0_ADD register
slave0_
add6
slave0_
add5
slave0_
add4
slave0_
add3
slave0_
add2
slave0_
add1
slave0_
add0
rw_0
Table 376. SLV_ADD register description
slave0_add[6:0]
rw_0
DS13607 - Rev 1
I²C slave address of Sensor1 that can be read by the sensor hub. Default value: 0000000
Read/write operation on Sensor 1. Default value: 0
(0: write operation; 1: read operation)
page 134/162
LSM6DSO32X
SLV0_SUBADD (16h)
15.21
SLV0_SUBADD (16h)
Address of register on the first external sensor (Sensor 1) register (r/w)
Table 377. SLV0_SUBADD register
slave0_
reg7
slave0_
reg6
slave0_
reg5
slave0_
reg4
slave0_
reg3
slave0_
reg2
slave0_
reg1
slave0_
reg0
Table 378. SLV0_SUBADD register description
slave0_reg[7:0]
15.22
Address of register on Sensor1 that has to be read/written according to the rw_0 bit value in SLV0_ADD
(15h). Default value: 00000000
SLAVE0_CONFIG (17h)
First external sensor (Sensor1) configuration and sensor hub settings register (r/w)
Table 379. SLAVE0_CONFIG register
SHUB_
ODR_1
SHUB_
ODR_0
0(1)
0(1)
BATCH_EXT
_SENS_0_EN
Slave0_
numop2
Slave0_
numop1
Slave0_
numop0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 380. SLAVE0_CONFIG register description
Rate at which the master communicates. Default value: 00
(00: 104 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 104 Hz);
SHUB_ODR_[1:0]
01: 52 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 52 Hz);
10: 26 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 26 Hz);
11: 12.5 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 12.5 Hz)
15.23
BATCH_EXT_
SENS_0_EN
Enable FIFO data batching of first slave. Default value: 0
Slave0_numop[2:0]
Number of read operations on Sensor 1. Default value: 000
SLV1_ADD (18h)
I²C slave address of the second external sensor (Sensor 2) register (r/w)
Table 381. SLV1_ADD register
Slave1_
add6
Slave1_
add5
Slave1_
add4
Slave1_
add3
Slave1_
add2
Slave1_
add1
Slave1_
add0
r_1
Table 382. SLV1_ADD register description
Slave1_add[6:0]
r_1
DS13607 - Rev 1
I²C slave address of Sensor 2 that can be read by the sensor hub. Default value: 0000000
Read operation on Sensor 2 enable. Default value: 0
(0: read operation disabled; 1: read operation enabled)
page 135/162
LSM6DSO32X
SLV1_SUBADD (19h)
15.24
SLV1_SUBADD (19h)
Address of register on the second external sensor (Sensor 2) register (r/w)
Table 383. SLV1_SUBADD register
Slave1_
reg7
Slave1_
reg6
Slave1_
reg5
Slave1_
reg4
Slave1_
reg3
Slave1_
reg2
Slave1_
reg1
Slave1_
reg0
Table 384. SLV1_SUBADD register description
Slave1_reg[7:0]
15.25
Address of register on Sensor 2 that has to be read/written according to the r_1 bit value in SLV1_ADD
(18h).
SLAVE1_CONFIG (1Ah)
Second external sensor (Sensor 2) configuration register (r/w)
Table 385. SLAVE1_CONFIG register
0(1)
0(1)
0(1)
0(1)
BATCH_EXT_
SENS_1_EN
Slave1_
numop2
Slave1_
numop1
Slave1_
numop0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 386. SLAVE1_CONFIG register description
15.26
BATCH_EXT_SENS_1_EN
Enable FIFO data batching of second slave. Default value: 0
Slave1_numop[2:0]
Number of read operations on Sensor 2. Default value: 000
SLV2_ADD (1Bh)
I²C slave address of the third external sensor (Sensor 3) register (r/w)
Table 387. SLV2_ADD register
Slave2_
add6
Slave2_
add5
Slave2_
add4
Slave2_
add3
Slave2_
add2
Slave2_
add1
Slave2_
add0
r_2
Table 388. SLV2_ADD register description
Slave2_add[6:0]
r_2
DS13607 - Rev 1
I²C slave address of Sensor 3 that can be read by the sensor hub.
Read operation on Sensor 3 enable. Default value: 0
(0: read operation disabled; 1: read operation enabled)
page 136/162
LSM6DSO32X
SLV2_SUBADD (1Ch)
15.27
SLV2_SUBADD (1Ch)
Address of register on the third external sensor (Sensor 3) register (r/w)
Table 389. SLV2_SUBADD register
Slave2_
reg7
Slave2_
reg6
Slave2_
reg5
Slave2_
reg4
Slave2_
reg3
Slave2_
reg2
Slave2_
reg1
Slave2_
reg0
Table 390. SLV2_SUBADD register description
Slave2_reg[7:0]
15.28
Address of register on Sensor 3 that has to be read/written according to the r_2 bit value in SLV2_ADD
(1Bh).
SLAVE2_CONFIG (1Dh)
Third external sensor (Sensor 3) configuration register (r/w)
Table 391. SLAVE2_CONFIG register
0(1)
0(1)
0(1)
0(1)
BATCH_EXT
_SENS_2_EN
Slave2_
numop2
Slave2_
numop1
Slave2_
numop0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 392. SLAVE2_CONFIG register description
15.29
BATCH_EXT_SENS_2_EN
Enable FIFO data batching of third slave. Default value: 0
Slave2_numop[2:0]
Number of read operations on Sensor 3. Default value: 000
SLV3_ADD (1Eh)
I²C slave address of the fourth external sensor (Sensor 4) register (r/w)
Table 393. SLV3_ADD register
Slave3_
add6
Slave3_
add5
Slave3_
add4
Slave3_
add3
Slave3_
add2
Slave3_
add1
Slave3_
add0
r_3
Table 394. SLV3_ADD register description
Slave3_add[6:0]
r_3
DS13607 - Rev 1
I²C slave address of Sensor 4 that can be read by the sensor hub.
Read operation on Sensor 4 enable. Default value: 0
(0: read operation disabled; 1: read operation enabled)
page 137/162
LSM6DSO32X
SLV3_SUBADD (1Fh)
15.30
SLV3_SUBADD (1Fh)
Address of register on the fourth external sensor (Sensor 4) register (r/w)
Table 395. SLV3_SUBADD register
Slave3_
reg7
Slave3_
reg6
Slave3_
reg5
Slave3_
reg4
Slave3_
reg3
Slave3_
reg2
Slave3_
reg1
Slave3_
reg0
Table 396. SLV3_SUBADD register description
Slave3_reg[7:0]
15.31
Address of register on Sensor 4 that has to be read according to the r_3 bit value in SLV3_ADD (1Eh).
SLAVE3_CONFIG (20h)
Fourth external sensor (Sensor 4) configuration register (r/w)
Table 397. SLAVE3_CONFIG register
0(1)
0(1)
0(1)
0(1)
BATCH_EXT
_SENS_3_EN
Slave3_
numop2
Slave3_
numop1
Slave3_
numop0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 398. SLAVE3_CONFIG register description
15.32
BATCH_EXT_SENS_3_EN
Enable FIFO data batching of fourth slave. Default value: 0
Slave3_numop[2:0]
Number of read operations on Sensor 4. Default value: 000
DATAWRITE_SLV0 (21h)
Data to be written in the slave device register (r/w)
Table 399. DATAWRITE_SLV0 register
Slave0_
dataw7
Slave0_
dataw6
Slave0_
dataw5
Slave0_
dataw4
Slave0_
dataw3
Slave0_
dataw2
Slave0_
dataw1
Slave0_
dataw0
Table 400. DATAWRITE_SLV0 register description
Slave0_dataw[7:0]
DS13607 - Rev 1
Data to be written into the slave 0 device according to the rw_0 bit in register SLV0_ADD (15h).
Default value: 00000000
page 138/162
LSM6DSO32X
STATUS_MASTER (22h)
15.33
STATUS_MASTER (22h)
Sensor hub source register (r)
Table 401. STATUS_MASTER register
WR_ONCE_
DONE
SLAVE3_
NACK
SLAVE2_
NACK
SLAVE1_
NACK
SLAVE0_
NACK
0
0
SENS_HUB
_ENDOP
Table 402. STATUS_MASTER register description
WR_ONCE_DONE
When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the
write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK
This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK
This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK
This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK
This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP (0: sensor hub communication not concluded;
1: sensor hub communication concluded)
DS13607 - Rev 1
page 139/162
LSM6DSO32X
Soldering information
16
Soldering information
The LGA package is compliant with the ECOPACK, RoHS and "Green" standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Land pattern and soldering recommendations are available at www.st.com/mems.
DS13607 - Rev 1
page 140/162
LSM6DSO32X
Package information
17
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
17.1
LGA-14L package information
Figure 23. LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data
Pin1 indicator
Pin1 indicator
H
0.5
4x
1
TOP VIEW
(0.1)
14x
0.5
L
1.5
W
14x
0.25±0.05
0.475±0.05
BOTTOM VIEW
Dimensions are in millimeter unless otherwise specified
General tolerance is +/-0.1mm unless otherwise specified
OUTER DIMENSIONS
ITEM
Length [L]
W idth [W ]
Height [H]
DIMENSION [mm]
2.50
3.00
0.86
TOLERANCE [mm]
±0.1
±0.1
MA X
DM00249496_1
DS13607 - Rev 1
page 141/162
LSM6DSO32X
LGA-14 packing information
17.2
LGA-14 packing information
Figure 24. Carrier tape information for LGA-14 package
Figure 25. LGA-14 package orientation in carrier tape
DS13607 - Rev 1
page 142/162
LSM6DSO32X
LGA-14 packing information
Figure 26. Reel information for carrier tape of LGA-14 package
T
40mm min.
Access hole at
slot location
B
C
N
D
A
Full radius
G measured at hub
Tape slot
in core for
tape start
2.5mm min. width
Table 403. Reel dimensions for carrier tape of LGA-14 package
Reel dimensions (mm)
DS13607 - Rev 1
A (max)
330
B (min)
1.5
C
13 ±0.25
D (min)
20.2
N (min)
60
G
12.4 +2/-0
T (max)
18.4
page 143/162
LSM6DSO32X
Revision history
Table 404. Document revision history
DS13607 - Rev 1
Date
Revision
17-Mar-2021
1
Changes
Initial release
page 144/162
LSM6DSO32X
Contents
Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2
Embedded low-power features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
2.1
Tilt detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2
Significant Motion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3
Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4
Machine Learning Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
3.1
4
5
Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
4.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.2
I²C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6.2
Zero-g and zero-rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.1
5.2
6
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
I²C/SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.1
I²C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.2
SPI bus interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
MIPI I3CSM interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1
MIPI I3CSM slave interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2
MIPI I3CSM CCC supported commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3
I²C/I3C coexistence in LSM6DSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4
Master I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
6.1
DS13607 - Rev 1
Operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
page 145/162
LSM6DSO32X
Contents
6.2
Accelerometer power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.1
6.3
Gyroscope power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4
Block diagram of filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5
7
Accelerometer ultra-low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.1
Block diagrams of the accelerometer filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.2
Block diagrams of the gyroscope filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.5.1
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.5.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5.3
Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5.4
Continuous-to-FIFO mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5.5
Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5.6
Bypass-to-FIFO mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5.7
FIFO reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
7.1
LSM6DSO32X electrical connections in Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2
LSM6DSO32X electrical connections in Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8
Register mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
9
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
9.1
FUNC_CFG_ACCESS (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2
PIN_CTRL (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.3
FIFO_CTRL1 (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.4
FIFO_CTRL2 (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.5
FIFO_CTRL3 (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.6
FIFO_CTRL4 (0Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.7
COUNTER_BDR_REG1 (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.8
COUNTER_BDR_REG2 (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.9
INT1_CTRL (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.10
INT2_CTRL (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.11
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.12
CTRL1_XL (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DS13607 - Rev 1
page 146/162
LSM6DSO32X
Contents
9.13
CTRL2_G (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.14
CTRL3_C (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.15
CTRL4_C (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.16
CTRL5_C (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.17
CTRL6_C (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.18
CTRL7_G (16h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.19
CTRL8_XL (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.20
CTRL9_XL (18h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.21
CTRL10_C (19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.22
ALL_INT_SRC (1Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.23
WAKE_UP_SRC (1Bh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.24
TAP_SRC (1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.25
D6D_SRC (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.26
STATUS_REG (1Eh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.27
OUT_TEMP_L (20h), OUT_TEMP_H (21h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.28
OUTX_L_G (22h) and OUTX_H_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.29
OUTY_L_G (24h) and OUTY_H_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.30
OUTZ_L_G (26h) and OUTZ_H_G (27h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.31
OUTX_L_A (28h) and OUTX_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.32
OUTY_L_A (2Ah) and OUTY_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.33
OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.34
EMB_FUNC_STATUS_MAINPAGE (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.35
FSM_STATUS_A_MAINPAGE (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.36
FSM_STATUS_B_MAINPAGE (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.37
MLC_STATUS_MAINPAGE (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.38
STATUS_MASTER_MAINPAGE (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.39
FIFO_STATUS1 (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.40
FIFO_STATUS2 (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.41
TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h) 73
9.42
TAP_CFG0 (56h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.43
TAP_CFG1 (57h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
DS13607 - Rev 1
page 147/162
LSM6DSO32X
Contents
9.44
TAP_CFG2 (58h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.45
TAP_THS_6D (59h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.46
INT_DUR2 (5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.47
WAKE_UP_THS (5Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.48
WAKE_UP_DUR (5Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.49
FREE_FALL (5Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.50
MD1_CFG (5Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.51
MD2_CFG (5Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.52
I3C_BUS_AVB (62h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.53
INTERNAL_FREQ_FINE (63h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.54
X_OFS_USR (73h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.55
Y_OFS_USR (74h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.56
Z_OFS_USR (75h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.57
FIFO_DATA_OUT_TAG (78h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.58
FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah) . . . . . . . . . . . . . . . . . . . . . 85
9.59
FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch) . . . . . . . . . . . . . . . . . . . . . 85
9.60
FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh) . . . . . . . . . . . . . . . . . . . . . 85
10
Embedded functions register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
11
Embedded functions register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
11.1
PAGE_SEL (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11.2
EMB_FUNC_EN_A (04h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11.3
EMB_FUNC_EN_B (05h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
11.4
PAGE_ADDRESS (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
11.5
PAGE_VALUE (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.6
EMB_FUNC_INT1 (0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.7
FSM_INT1_A (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.8
FSM_INT1_B (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11.9
MLC_INT1 (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.10 EMB_FUNC_INT2 (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.11 FSM_INT2_A (0Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.12 FSM_INT2_B (10h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
DS13607 - Rev 1
page 148/162
LSM6DSO32X
Contents
11.13 MLC_INT2 (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.14 EMB_FUNC_STATUS (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.15 FSM_STATUS_A (13h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.16 FSM_STATUS_B (14h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.17 MLC_STATUS (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.18 PAGE_RW (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.19 EMB_FUNC_FIFO_CFG (44h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.20 FSM_ENABLE_A (46h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.21 FSM_ENABLE_B (47h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.22 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) . . . . . . . . . . . . . . 101
11.23 FSM_LONG_COUNTER_CLEAR (4Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.24 FSM_OUTS1 (4Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.25 FSM_OUTS2 (4Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.26 FSM_OUTS3 (4Eh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
11.27 FSM_OUTS4 (4Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
11.28 FSM_OUTS5 (50h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.29 FSM_OUTS6 (51h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.30 FSM_OUTS7 (52h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.31 FSM_OUTS8 (53h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.32 FSM_OUTS9 (54h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.33 FSM_OUTS10 (55h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.34 FSM_OUTS11 (56h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.35 FSM_OUTS12 (57h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.36 FSM_OUTS13 (58h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.37 FSM_OUTS14 (59h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.38 FSM_OUTS15 (5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.39 FSM_OUTS16 (5Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.40 EMB_FUNC_ODR_CFG_B (5Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.41 EMB_FUNC_ODR_CFG_C (60h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.42 STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h) . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.43 EMB_FUNC_SRC (64h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
DS13607 - Rev 1
page 149/162
LSM6DSO32X
Contents
11.44 EMB_FUNC_INIT_A (66h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.45 EMB_FUNC_INIT_B (67h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.46 MLC0_SRC (70h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.47 MLC1_SRC (71h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.48 MLC2_SRC (72h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.49 MLC3_SRC (73h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.50 MLC4_SRC (74h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.51 MLC5_SRC (75h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.52 MLC6_SRC (76h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.53 MLC7_SRC (77h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
12
Embedded advanced features pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
13
Embedded advanced features register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
13.1
Page 0 - Embedded advanced features registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
13.1.1
MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh) . . . . . . . . . . . . . . . . . . 117
13.1.2
MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
13.1.3
MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
13.1.4
MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
13.1.5
MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
13.1.6
MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
13.1.7
MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
13.1.8
MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.1.9
MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.1.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
13.1.11 MAG_CFG_A (D4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.1.12 MAG_CFG_B (D5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.2
DS13607 - Rev 1
Page 1 - Embedded advanced features registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.2.1
FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh). . . . . . . . . . . . . . . . . . . 124
13.2.2
FSM_PROGRAMS (7Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.2.3
FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh) . . . . . . . . . . . . . . . . . . . . 125
13.2.4
PEDO_CMD_REG (83h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.2.5
PEDO_DEB_STEPS_CONF (84h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.2.6
PEDO_SC_DELTAT_L (D0h) & PEDO_SC_DELTAT_H (D1h) . . . . . . . . . . . . . . . . . . . . 126
page 150/162
LSM6DSO32X
Contents
13.2.7
MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h) . . . . . . . . . 126
14
Sensor hub register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
15
Sensor hub register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
15.1
SENSOR_HUB_1 (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
15.2
SENSOR_HUB_2 (03h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
15.3
SENSOR_HUB_3 (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
15.4
SENSOR_HUB_4 (05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.5
SENSOR_HUB_5 (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.6
SENSOR_HUB_6 (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.7
SENSOR_HUB_7 (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
15.8
SENSOR_HUB_8 (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
15.9
SENSOR_HUB_9 (0Ah). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
15.10 SENSOR_HUB_10 (0Bh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
15.11 SENSOR_HUB_11 (0Ch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
15.12 SENSOR_HUB_12 (0Dh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
15.13 SENSOR_HUB_13 (0Eh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
15.14 SENSOR_HUB_14 (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
15.15 SENSOR_HUB_15 (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
15.16 SENSOR_HUB_16 (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
15.17 SENSOR_HUB_17 (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
15.18 SENSOR_HUB_18 (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
15.19 MASTER_CONFIG (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
15.20 SLV0_ADD (15h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
15.21 SLV0_SUBADD (16h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
15.22 SLAVE0_CONFIG (17h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
15.23 SLV1_ADD (18h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
15.24 SLV1_SUBADD (19h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
15.25 SLAVE1_CONFIG (1Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
15.26 SLV2_ADD (1Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
15.27 SLV2_SUBADD (1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
15.28 SLAVE2_CONFIG (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
DS13607 - Rev 1
page 151/162
LSM6DSO32X
Contents
15.29 SLV3_ADD (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
15.30 SLV3_SUBADD (1Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
15.31 SLAVE3_CONFIG (20h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
15.32 DATAWRITE_SLV0 (21h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
15.33 STATUS_MASTER (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
16
Soldering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
17
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
17.1
LGA-14L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
17.2
LGA-14 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
DS13607 - Rev 1
page 152/162
LSM6DSO32X
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI slave timing values (in mode 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I²C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I²C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transfer when master is writing one byte to slave. . . . . . . . . . . . . . . . . . . .
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . .
Transfer when master is receiving (reading) one byte of data from slave . . . .
Transfer when master is receiving (reading) multiple bytes of data from slave
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
10
13
13
14
15
16
18
18
19
19
19
19
19
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
MIPI I3CSM CCC commands . . . . . . . . . . . .
Master I²C pin details . . . . . . . . . . . . . . . . .
Gyroscope LPF2 bandwidth selection . . . . . .
Internal pin status . . . . . . . . . . . . . . . . . . .
Registers address map . . . . . . . . . . . . . . . .
FUNC_CFG_ACCESS register . . . . . . . . . .
FUNC_CFG_ACCESS register description . .
PIN_CTRL register. . . . . . . . . . . . . . . . . . .
PIN_CTRL register description . . . . . . . . . .
FIFO_CTRL1 register . . . . . . . . . . . . . . . . .
FIFO_CTRL1 register description. . . . . . . . .
FIFO_CTRL2 register . . . . . . . . . . . . . . . . .
FIFO_CTRL2 register description. . . . . . . . .
FIFO_CTRL3 register . . . . . . . . . . . . . . . . .
FIFO_CTRL3 register description. . . . . . . . .
FIFO_CTRL4 register . . . . . . . . . . . . . . . . .
FIFO_CTRL4 register description. . . . . . . . .
COUNTER_BDR_REG1 register . . . . . . . . .
COUNTER_BDR_REG1 register description .
COUNTER_BDR_REG2 register . . . . . . . . .
COUNTER_BDR_REG2 register description .
INT1_CTRL register . . . . . . . . . . . . . . . . . .
INT1_CTRL register description . . . . . . . . . .
INT2_CTRL register . . . . . . . . . . . . . . . . . .
INT2_CTRL register description . . . . . . . . . .
WhoAmI register . . . . . . . . . . . . . . . . . . . .
CTRL1_XL register . . . . . . . . . . . . . . . . . .
CTRL1_XL register description . . . . . . . . . .
Accelerometer ODR register setting . . . . . . .
Accelerometer full-scale selection . . . . . . . .
CTRL2_G register . . . . . . . . . . . . . . . . . . .
CTRL2_G register description . . . . . . . . . . .
Gyroscope ODR configuration setting . . . . . .
CTRL3_C register . . . . . . . . . . . . . . . . . . .
CTRL3_C register description . . . . . . . . . . .
CTRL4_C register . . . . . . . . . . . . . . . . . . .
CTRL4_C register description . . . . . . . . . . .
CTRL5_C register . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
25
28
32
38
40
43
43
43
43
44
44
44
44
45
45
46
46
47
47
47
47
48
48
49
49
49
50
50
50
50
51
51
51
52
52
53
53
54
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
page 153/162
LSM6DSO32X
List of tables
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
CTRL5_C register description . . . . . . . . . . . . . . . . . .
Angular rate sensor self-test mode selection . . . . . . . .
Linear acceleration sensor self-test mode selection . . .
CTRL6_C register . . . . . . . . . . . . . . . . . . . . . . . . . .
CTRL6_C register description . . . . . . . . . . . . . . . . . .
Trigger mode selection . . . . . . . . . . . . . . . . . . . . . . .
Gyroscope LPF1 bandwidth selection . . . . . . . . . . . . .
CTRL7_G register . . . . . . . . . . . . . . . . . . . . . . . . . .
CTRL7_G register description . . . . . . . . . . . . . . . . . .
CTRL8_XL register . . . . . . . . . . . . . . . . . . . . . . . . .
CTRL8_XL register description . . . . . . . . . . . . . . . . .
Accelerometer bandwidth configurations . . . . . . . . . . .
CTRL9_XL register . . . . . . . . . . . . . . . . . . . . . . . . .
CTRL9_XL register description . . . . . . . . . . . . . . . . .
CTRL10_C register . . . . . . . . . . . . . . . . . . . . . . . . .
CTRL10_C register description . . . . . . . . . . . . . . . . .
ALL_INT_SRC register . . . . . . . . . . . . . . . . . . . . . . .
ALL_INT_SRC register description. . . . . . . . . . . . . . .
WAKE_UP_SRC register . . . . . . . . . . . . . . . . . . . . .
WAKE_UP_SRC register description . . . . . . . . . . . . .
TAP_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP_SRC register description . . . . . . . . . . . . . . . . . .
D6D_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . .
D6D_SRC register description . . . . . . . . . . . . . . . . . .
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . .
STATUS_REG register description . . . . . . . . . . . . . . .
OUT_TEMP_L register . . . . . . . . . . . . . . . . . . . . . . .
OUT_TEMP_H register. . . . . . . . . . . . . . . . . . . . . . .
OUT_TEMP register description. . . . . . . . . . . . . . . . .
OUTX_L_G register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTX_H_G register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTX_H_G register description. . . . . . . . . . . . . . . . .
OUTY_L_G register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTY_H_G register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTY_H_G register description. . . . . . . . . . . . . . . . .
OUTZ_L_G register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTZ_H_G register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTZ_H_G register description . . . . . . . . . . . . . . . . .
OUTX_L_A register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTX_H_A register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTX_H_A register description . . . . . . . . . . . . . . . . .
OUTY_L_A register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTY_H_A register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTY_H_A register description . . . . . . . . . . . . . . . . .
OUTZ_L_A register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTZ_H_A register . . . . . . . . . . . . . . . . . . . . . . . . .
OUTZ_H_A register description . . . . . . . . . . . . . . . . .
EMB_FUNC_STATUS_MAINPAGE register . . . . . . . .
EMB_FUNC_STATUS_MAINPAGE register description
FSM_STATUS_A_MAINPAGE register . . . . . . . . . . . .
FSM_STATUS_A_MAINPAGE register description . . . .
FSM_STATUS_B_MAINPAGE register . . . . . . . . . . . .
FSM_STATUS_B_MAINPAGE register description . . . .
MLC_STATUS _MAINPAGE register . . . . . . . . . . . . .
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
54
54
54
55
55
55
55
56
56
57
57
57
59
59
60
60
60
60
61
61
62
62
63
63
64
64
65
65
65
65
65
65
66
66
66
66
66
66
67
67
67
67
67
67
68
68
68
68
68
69
69
69
69
70
page 154/162
LSM6DSO32X
List of tables
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.
Table 147.
Table 148.
Table 149.
Table 150.
Table 151.
Table 152.
Table 153.
Table 154.
Table 155.
Table 156.
Table 157.
Table 158.
Table 159.
Table 160.
MLC_STATUS_MAINPAGE register description . . . . . . . . . . . . . . . . . .
STATUS_MASTER_MAINPAGE register. . . . . . . . . . . . . . . . . . . . . . .
STATUS_MASTER_MAINPAGE register description . . . . . . . . . . . . . .
FIFO_STATUS1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO_STATUS1 register description . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO_STATUS2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO_STATUS2 register description . . . . . . . . . . . . . . . . . . . . . . . . . .
TIMESTAMP output registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIMESTAMP output register description . . . . . . . . . . . . . . . . . . . . . . .
TAP_CFG0 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP_CFG0 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP_CFG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP_CFG1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP priority decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP_CFG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP_CFG2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP_THS_6D register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP_THS_6D register description . . . . . . . . . . . . . . . . . . . . . . . . . . .
Threshold for D4D/D6D function . . . . . . . . . . . . . . . . . . . . . . . . . . . .
INT_DUR2 register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
INT_DUR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WAKE_UP_THS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WAKE_UP_THS register description . . . . . . . . . . . . . . . . . . . . . . . . .
WAKE_UP_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WAKE_UP_DUR register description . . . . . . . . . . . . . . . . . . . . . . . . .
FREE_FALL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FREE_FALL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Threshold for free-fall function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MD1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MD1_CFG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MD2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MD2_CFG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I3C_BUS_AVB register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I3C_BUS_AVB register description. . . . . . . . . . . . . . . . . . . . . . . . . . .
INTERNAL_FREQ_FINE register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
INTERNAL_FREQ_FINE register description. . . . . . . . . . . . . . . . . . . .
X_OFS_USR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
X_OFS_USR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y_OFS_USR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y_OFS_USR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Z_OFS_USR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Z_OFS_USR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO_DATA_OUT_TAG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO_DATA_OUT_TAG register description . . . . . . . . . . . . . . . . . . . .
FIFO tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers . . . . . . . .
FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description
FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers . . . . . . . .
FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description
FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers . . . . . . . .
FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description.
Register address map - embedded functions . . . . . . . . . . . . . . . . . . . .
PAGE_SEL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PAGE_SEL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
70
71
71
71
71
72
72
73
73
74
74
75
75
75
75
75
76
76
76
77
77
77
77
78
78
79
79
79
80
80
81
81
82
82
82
82
82
82
83
83
83
83
84
84
84
85
85
85
85
85
85
86
88
88
page 155/162
LSM6DSO32X
List of tables
Table 161.
Table 162.
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
Table 177.
Table 178.
Table 179.
Table 180.
Table 181.
Table 182.
Table 183.
Table 184.
Table 185.
Table 186.
Table 187.
Table 188.
Table 189.
Table 190.
Table 191.
Table 192.
Table 193.
Table 194.
Table 195.
Table 196.
Table 197.
Table 198.
Table 199.
Table 200.
Table 201.
Table 202.
Table 203.
Table 204.
Table 205.
Table 206.
Table 207.
Table 208.
Table 209.
Table 210.
Table 211.
Table 212.
Table 213.
Table 214.
EMB_FUNC_EN_A register. . . . . . . . . . . . . . . . . . .
EMB_FUNC_EN_A register description . . . . . . . . . .
EMB_FUNC_EN_B register. . . . . . . . . . . . . . . . . . .
EMB_FUNC_EN_B register description . . . . . . . . . .
PAGE_ADDRESS register . . . . . . . . . . . . . . . . . . .
PAGE_ADDRESS register description . . . . . . . . . . .
PAGE_VALUE register . . . . . . . . . . . . . . . . . . . . . .
PAGE_VALUE register description . . . . . . . . . . . . . .
EMB_FUNC_INT1 register . . . . . . . . . . . . . . . . . . .
EMB_FUNC_INT1 register description . . . . . . . . . . .
FSM_INT1_A register. . . . . . . . . . . . . . . . . . . . . . .
FSM_INT1_A register description. . . . . . . . . . . . . . .
FSM_INT1_B register. . . . . . . . . . . . . . . . . . . . . . .
FSM_INT1_B register description. . . . . . . . . . . . . . .
MLC_INT1 register. . . . . . . . . . . . . . . . . . . . . . . . .
MLC_INT1 register description . . . . . . . . . . . . . . . .
EMB_FUNC_INT2 register . . . . . . . . . . . . . . . . . . .
EMB_FUNC_INT2 register description . . . . . . . . . . .
FSM_INT2_A register. . . . . . . . . . . . . . . . . . . . . . .
FSM_INT2_A register description. . . . . . . . . . . . . . .
FSM_INT2_B register. . . . . . . . . . . . . . . . . . . . . . .
FSM_INT2_B register description. . . . . . . . . . . . . . .
MLC_INT2 register. . . . . . . . . . . . . . . . . . . . . . . . .
MLC_INT2 register description . . . . . . . . . . . . . . . .
EMB_FUNC_STATUS register. . . . . . . . . . . . . . . . .
EMB_FUNC_STATUS register description. . . . . . . . .
FSM_STATUS_A register . . . . . . . . . . . . . . . . . . . .
FSM_STATUS_A register description . . . . . . . . . . . .
FSM_STATUS_B register . . . . . . . . . . . . . . . . . . . .
FSM_STATUS_B register description . . . . . . . . . . . .
MLC_STATUS register . . . . . . . . . . . . . . . . . . . . . .
MLC_STATUS register description . . . . . . . . . . . . . .
PAGE_RW register . . . . . . . . . . . . . . . . . . . . . . . .
PAGE_RW register description . . . . . . . . . . . . . . . .
EMB_FUNC_FIFO_CFG register . . . . . . . . . . . . . . .
EMB_FUNC_FIFO_CFG register description . . . . . . .
FSM_ENABLE_A register . . . . . . . . . . . . . . . . . . . .
FSM_ENABLE_A register description . . . . . . . . . . . .
FSM_ENABLE_B register . . . . . . . . . . . . . . . . . . . .
FSM_ENABLE_B register description . . . . . . . . . . . .
FSM_LONG_COUNTER_L register . . . . . . . . . . . . .
FSM_LONG_COUNTER_L register description . . . . .
FSM_LONG_COUNTER_H register . . . . . . . . . . . . .
FSM_LONG_COUNTER_H register description. . . . .
FSM_LONG_COUNTER_CLEAR register. . . . . . . . .
FSM_LONG_COUNTER_CLEAR register description.
FSM_OUTS1 register . . . . . . . . . . . . . . . . . . . . . . .
FSM_OUTS1 register description. . . . . . . . . . . . . . .
FSM_OUTS2 register . . . . . . . . . . . . . . . . . . . . . . .
FSM_OUTS2 register description. . . . . . . . . . . . . . .
FSM_OUTS3 register . . . . . . . . . . . . . . . . . . . . . . .
FSM_OUTS3 register description. . . . . . . . . . . . . . .
FSM_OUTS4 register . . . . . . . . . . . . . . . . . . . . . . .
FSM_OUTS4 register description. . . . . . . . . . . . . . .
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 88
. 88
. 89
. 89
. 89
. 89
. 90
. 90
. 90
. 90
. 91
. 91
. 92
. 92
. 93
. 93
. 94
. 94
. 95
. 95
. 96
. 96
. 97
. 97
. 97
. 97
. 98
. 98
. 98
. 98
. 99
. 99
. 99
. 99
100
100
100
100
100
100
101
101
101
101
101
101
102
102
102
102
103
103
103
103
page 156/162
LSM6DSO32X
List of tables
Table 215.
Table 216.
Table 217.
Table 218.
Table 219.
Table 220.
Table 221.
Table 222.
Table 223.
Table 224.
Table 225.
Table 226.
Table 227.
Table 228.
Table 229.
Table 230.
Table 231.
Table 232.
Table 233.
Table 234.
Table 235.
Table 236.
Table 237.
Table 238.
Table 239.
Table 240.
Table 241.
Table 242.
Table 243.
Table 244.
Table 245.
Table 246.
Table 247.
Table 248.
Table 249.
Table 250.
Table 251.
Table 252.
Table 253.
Table 254.
Table 255.
Table 256.
Table 257.
Table 258.
Table 259.
Table 260.
Table 261.
Table 262.
Table 263.
Table 264.
Table 265.
Table 266.
Table 267.
Table 268.
FSM_OUTS5 register . . . . . . . . . . . . . . . . . . .
FSM_OUTS5 register description. . . . . . . . . . .
FSM_OUTS6 register . . . . . . . . . . . . . . . . . . .
FSM_OUTS6 register description. . . . . . . . . . .
FSM_OUTS7 register . . . . . . . . . . . . . . . . . . .
FSM_OUTS7 register description. . . . . . . . . . .
FSM_OUTS8 register . . . . . . . . . . . . . . . . . . .
FSM_OUTS8 register description. . . . . . . . . . .
FSM_OUTS9 register . . . . . . . . . . . . . . . . . . .
FSM_OUTS9 register description. . . . . . . . . . .
FSM_OUTS10 register . . . . . . . . . . . . . . . . . .
FSM_OUTS10 register description . . . . . . . . . .
FSM_OUTS11 register . . . . . . . . . . . . . . . . . .
FSM_OUTS11 register description . . . . . . . . . .
FSM_OUTS12 register . . . . . . . . . . . . . . . . . .
FSM_OUTS12 register description . . . . . . . . . .
FSM_OUTS13 register . . . . . . . . . . . . . . . . . .
FSM_OUTS13 register description . . . . . . . . . .
FSM_OUTS14 register . . . . . . . . . . . . . . . . . .
FSM_OUTS14 register description . . . . . . . . . .
FSM_OUTS15 register . . . . . . . . . . . . . . . . . .
FSM_OUTS15 register description . . . . . . . . . .
FSM_OUTS16 register . . . . . . . . . . . . . . . . . .
FSM_OUTS16 register description . . . . . . . . . .
EMB_FUNC_ODR_CFG_B register . . . . . . . . .
EMB_FUNC_ODR_CFG_B register description .
EMB_FUNC_ODR_CFG_C register . . . . . . . . .
EMB_FUNC_ODR_CFG_C register description .
STEP_COUNTER_L register. . . . . . . . . . . . . .
STEP_COUNTER_L register description. . . . . .
STEP_COUNTER_H register . . . . . . . . . . . . .
STEP_COUNTER_H register description . . . . .
EMB_FUNC_SRC register . . . . . . . . . . . . . . .
EMB_FUNC_SRC register description . . . . . . .
EMB_FUNC_INIT_A register . . . . . . . . . . . . . .
EMB_FUNC_INIT_A register description. . . . . .
EMB_FUNC_INIT_B register . . . . . . . . . . . . . .
EMB_FUNC_INIT_B register description. . . . . .
MLC0_SRC register . . . . . . . . . . . . . . . . . . . .
MLC0_SRC register description . . . . . . . . . . . .
MLC1_SRC register . . . . . . . . . . . . . . . . . . . .
MLC1_SRC register description . . . . . . . . . . . .
MLC2_SRC register . . . . . . . . . . . . . . . . . . . .
MLC2_SRC register description . . . . . . . . . . . .
MLC3_SRC register . . . . . . . . . . . . . . . . . . . .
MLC3_SRC register description . . . . . . . . . . . .
MLC4_SRC register . . . . . . . . . . . . . . . . . . . .
MLC4_SRC register description . . . . . . . . . . . .
MLC5_SRC register . . . . . . . . . . . . . . . . . . . .
MLC5_SRC register description . . . . . . . . . . . .
MLC6_SRC register . . . . . . . . . . . . . . . . . . . .
MLC6_SRC register description . . . . . . . . . . . .
MLC7_SRC register . . . . . . . . . . . . . . . . . . . .
MLC7_SRC register description . . . . . . . . . . . .
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
104
104
104
104
105
105
105
105
106
106
106
106
107
107
107
107
108
108
108
108
109
109
109
109
.110
.110
.110
.110
.111
.111
.111
.111
.111
.111
.112
.112
.112
.112
.112
.112
.113
.113
.113
.113
.113
.113
.114
.114
.114
.114
.114
.114
.114
.114
page 157/162
LSM6DSO32X
List of tables
Table 269.
Table 270.
Table 271.
Table 272.
Table 273.
Table 274.
Table 275.
Table 276.
Table 277.
Table 278.
Table 279.
Table 280.
Table 281.
Table 282.
Table 283.
Table 284.
Table 285.
Table 286.
Table 287.
Table 288.
Table 289.
Table 290.
Table 291.
Table 292.
Table 293.
Table 294.
Table 295.
Table 296.
Table 297.
Table 298.
Table 299.
Table 300.
Table 301.
Table 302.
Table 303.
Table 304.
Table 305.
Table 306.
Table 307.
Table 308.
Table 309.
Table 310.
Table 311.
Table 312.
Table 313.
Table 314.
Table 315.
Table 316.
Table 317.
Table 318.
Table 319.
Table 320.
Table 321.
Table 322.
Register address map - embedded advanced features page 0 .
Register address map - embedded advanced features page 1 .
MAG_SENSITIVITY_L register . . . . . . . . . . . . . . . . . . . . . .
MAG_SENSITIVITY_L register description . . . . . . . . . . . . . .
MAG_SENSITIVITY_H register . . . . . . . . . . . . . . . . . . . . . .
MAG_SENSITIVITY_H register description . . . . . . . . . . . . . .
MAG_OFFX_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_OFFX_L register description. . . . . . . . . . . . . . . . . . . .
MAG_OFFX_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_OFFX_H register description . . . . . . . . . . . . . . . . . . .
MAG_OFFY_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_OFFY_L register description. . . . . . . . . . . . . . . . . . . .
MAG_OFFY_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_OFFY_H register description . . . . . . . . . . . . . . . . . . .
MAG_OFFZ_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_OFFZ_L register description . . . . . . . . . . . . . . . . . . . .
MAG_OFFZ_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_OFFZ_H register description . . . . . . . . . . . . . . . . . . .
MAG_SI_XX_L register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_XX_L register description . . . . . . . . . . . . . . . . . . .
MAG_SI_XX_H register . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_XX_H register description . . . . . . . . . . . . . . . . . . .
MAG_SI_XY_L register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_XY_L register description . . . . . . . . . . . . . . . . . . .
MAG_SI_XY_H register . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_XY_H register description . . . . . . . . . . . . . . . . . . .
MAG_SI_XZ_L register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_XZ_L register description . . . . . . . . . . . . . . . . . . .
MAG_SI_XZ_H register . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_XZ_H register description . . . . . . . . . . . . . . . . . . .
MAG_SI_YY_L register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_YY_L register description . . . . . . . . . . . . . . . . . . .
MAG_SI_YY_H register . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_YY_H register description . . . . . . . . . . . . . . . . . . .
MAG_SI_YZ_L register. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_YZ_L register description . . . . . . . . . . . . . . . . . . .
MAG_SI_YZ_H register . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_YZ_H register description . . . . . . . . . . . . . . . . . . .
MAG_SI_ZZ_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_ZZ_L register description. . . . . . . . . . . . . . . . . . . .
MAG_SI_ZZ_H register . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_SI_ZZ_H register description . . . . . . . . . . . . . . . . . . .
MAG_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_CFG_B register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAG_CFG_B description . . . . . . . . . . . . . . . . . . . . . . . . . .
FSM_LC_TIMEOUT_L register . . . . . . . . . . . . . . . . . . . . . .
FSM_LC_TIMEOUT_L register description . . . . . . . . . . . . . .
FSM_LC_TIMEOUT_H register . . . . . . . . . . . . . . . . . . . . . .
FSM_LC_TIMEOUT_H register description . . . . . . . . . . . . . .
FSM_PROGRAMS register . . . . . . . . . . . . . . . . . . . . . . . . .
FSM_PROGRAMS register description. . . . . . . . . . . . . . . . .
FSM_START_ADD_L register . . . . . . . . . . . . . . . . . . . . . . .
FSM_START_ADD_L register description . . . . . . . . . . . . . . .
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.115
.116
.117
.117
.117
.117
.118
.118
.118
.118
.118
.118
.118
.118
.119
.119
.119
.119
.119
.119
.119
.119
120
120
120
120
120
120
120
120
121
121
121
121
121
121
121
121
122
122
122
122
123
123
123
123
124
124
124
124
124
124
125
125
page 158/162
LSM6DSO32X
List of tables
Table 323.
Table 324.
Table 325.
Table 326.
Table 327.
Table 328.
Table 329.
Table 330.
Table 331.
Table 332.
Table 333.
Table 334.
Table 335.
Table 336.
Table 337.
Table 338.
Table 339.
Table 340.
Table 341.
Table 342.
Table 343.
Table 344.
Table 345.
Table 346.
Table 347.
Table 348.
Table 349.
Table 350.
Table 351.
Table 352.
Table 353.
Table 354.
Table 355.
Table 356.
Table 357.
Table 358.
Table 359.
Table 360.
Table 361.
Table 362.
Table 363.
Table 364.
Table 365.
Table 366.
Table 367.
Table 368.
Table 369.
Table 370.
Table 371.
Table 372.
Table 373.
Table 374.
Table 375.
Table 376.
FSM_START_ADD_H register . . . . . . . . . . . . . .
FSM_START_ADD_H register description. . . . . .
PEDO_CMD_REG register . . . . . . . . . . . . . . . .
PEDO_CMD_REG register description . . . . . . . .
PEDO_DEB_STEPS_CONF register . . . . . . . . .
PEDO_DEB_STEPS_CONF register description .
PEDO_SC_DELTAT_L register . . . . . . . . . . . . .
PEDO_SC_DELTAT_H register . . . . . . . . . . . . .
PEDO_SC_DELTAT_H/L register description. . . .
MLC_MAG_SENSITIVITY_L register . . . . . . . . .
MLC_ MAG_SENSITIVITY_L register description.
MLC_MAG_SENSITIVITY_H register . . . . . . . . .
MLC_ MAG_SENSITIVITY_H register description
Register address map - sensor hub registers . . . .
SENSOR_HUB_1 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_1 register description . . . . . . . .
SENSOR_HUB_2 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_2 register description . . . . . . . .
SENSOR_HUB_3 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_3 register description . . . . . . . .
SENSOR_HUB_4 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_4 register description . . . . . . . .
SENSOR_HUB_5 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_5 register description . . . . . . . .
SENSOR_HUB_6 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_6 register description . . . . . . . .
SENSOR_HUB_7 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_7 register description . . . . . . . .
SENSOR_HUB_8 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_8 register description . . . . . . . .
SENSOR_HUB_9 register. . . . . . . . . . . . . . . . .
SENSOR_HUB_9 register description . . . . . . . .
SENSOR_HUB_10 register . . . . . . . . . . . . . . . .
SENSOR_HUB_10 register description. . . . . . . .
SENSOR_HUB_11 register . . . . . . . . . . . . . . . .
SENSOR_HUB_11 register description . . . . . . . .
SENSOR_HUB_12 register . . . . . . . . . . . . . . . .
SENSOR_HUB_12 register description. . . . . . . .
SENSOR_HUB_13 register . . . . . . . . . . . . . . . .
SENSOR_HUB_13 register description. . . . . . . .
SENSOR_HUB_14 register . . . . . . . . . . . . . . . .
SENSOR_HUB_14 register description. . . . . . . .
SENSOR_HUB_15 register . . . . . . . . . . . . . . . .
SENSOR_HUB_15 register description. . . . . . . .
SENSOR_HUB_16 register . . . . . . . . . . . . . . . .
SENSOR_HUB_16 register description. . . . . . . .
SENSOR_HUB_17 register . . . . . . . . . . . . . . . .
SENSOR_HUB_17 register description. . . . . . . .
SENSOR_HUB_17 register . . . . . . . . . . . . . . . .
SENSOR_HUB_17 register description. . . . . . . .
MASTER_CONFIG register. . . . . . . . . . . . . . . .
MASTER_CONFIG register description . . . . . . .
SLV0_ADD register . . . . . . . . . . . . . . . . . . . . .
SLV_ADD register description . . . . . . . . . . . . . .
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
125
125
125
125
126
126
126
126
126
126
126
126
126
127
128
128
128
128
128
128
129
129
129
129
129
129
130
130
130
130
130
130
131
131
131
131
131
131
132
132
132
132
132
132
133
133
133
133
133
133
134
134
134
134
page 159/162
LSM6DSO32X
List of tables
Table 377.
Table 378.
Table 379.
Table 380.
Table 381.
Table 382.
Table 383.
Table 384.
Table 385.
Table 386.
Table 387.
Table 388.
Table 389.
Table 390.
Table 391.
Table 392.
Table 393.
Table 394.
Table 395.
Table 396.
Table 397.
Table 398.
Table 399.
Table 400.
Table 401.
Table 402.
Table 403.
Table 404.
SLV0_SUBADD register . . . . . . . . . . . . . . . . . . . .
SLV0_SUBADD register description . . . . . . . . . . . .
SLAVE0_CONFIG register . . . . . . . . . . . . . . . . . .
SLAVE0_CONFIG register description . . . . . . . . . .
SLV1_ADD register . . . . . . . . . . . . . . . . . . . . . . .
SLV1_ADD register description . . . . . . . . . . . . . . .
SLV1_SUBADD register . . . . . . . . . . . . . . . . . . . .
SLV1_SUBADD register description . . . . . . . . . . . .
SLAVE1_CONFIG register . . . . . . . . . . . . . . . . . .
SLAVE1_CONFIG register description . . . . . . . . . .
SLV2_ADD register . . . . . . . . . . . . . . . . . . . . . . .
SLV2_ADD register description . . . . . . . . . . . . . . .
SLV2_SUBADD register . . . . . . . . . . . . . . . . . . . .
SLV2_SUBADD register description . . . . . . . . . . . .
SLAVE2_CONFIG register . . . . . . . . . . . . . . . . . .
SLAVE2_CONFIG register description . . . . . . . . . .
SLV3_ADD register . . . . . . . . . . . . . . . . . . . . . . .
SLV3_ADD register description . . . . . . . . . . . . . . .
SLV3_SUBADD register . . . . . . . . . . . . . . . . . . . .
SLV3_SUBADD register description . . . . . . . . . . . .
SLAVE3_CONFIG register . . . . . . . . . . . . . . . . . .
SLAVE3_CONFIG register description . . . . . . . . . .
DATAWRITE_SLV0 register. . . . . . . . . . . . . . . . . .
DATAWRITE_SLV0 register description . . . . . . . . .
STATUS_MASTER register . . . . . . . . . . . . . . . . . .
STATUS_MASTER register description. . . . . . . . . .
Reel dimensions for carrier tape of LGA-14 package
Document revision history . . . . . . . . . . . . . . . . . . .
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
135
135
135
135
135
135
136
136
136
136
136
136
137
137
137
137
137
137
138
138
138
138
138
138
139
139
143
144
page 160/162
LSM6DSO32X
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Generic state machine. . . . . . . . . . . . . . . . . . . . . . . . . . . .
State machine in the LSM6DSO32X . . . . . . . . . . . . . . . . . .
Machine Learning Core in the LSM6DSO32X . . . . . . . . . . . .
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LSM6DSO32X connection modes . . . . . . . . . . . . . . . . . . . .
SPI slave timing diagram (in mode 3) . . . . . . . . . . . . . . . . .
I²C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . .
Read and write protocol (in mode 3) . . . . . . . . . . . . . . . . . .
SPI read protocol (in mode 3) . . . . . . . . . . . . . . . . . . . . . . .
Multiple byte SPI read protocol (2-byte example) (in mode 3) .
SPI write protocol (in mode 3). . . . . . . . . . . . . . . . . . . . . . .
Multiple byte SPI write protocol (2-byte example) (in mode 3) .
SPI read protocol in 3-wire mode (in mode 3) . . . . . . . . . . . .
Figure 14.
I²C and MIPI I3CSM both active (INT1 pin not connected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Only MIPI I3CSM active (INT1 pin connected to Vdd_IO) . . . . . . . .
Block diagram of filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Accelerometer chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Accelerometer composite filter . . . . . . . . . . . . . . . . . . . . . . . . . .
Gyroscope digital chain - Mode 1 and Mode 2 . . . . . . . . . . . . . . .
LSM6DSO32X electrical connections in Mode 1 . . . . . . . . . . . . . .
LSM6DSO32X electrical connections in Mode 2 . . . . . . . . . . . . . .
Accelerometer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .
LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data
Carrier tape information for LGA-14 package . . . . . . . . . . . . . . . .
LGA-14 package orientation in carrier tape. . . . . . . . . . . . . . . . . .
Reel information for carrier tape of LGA-14 package . . . . . . . . . . .
DS13607 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 5
. 5
. 6
. 7
. 8
14
15
21
22
22
23
23
24
. 27
. 30
. 30
. 31
. 32
. 36
. 37
. 58
141
142
142
143
page 161/162
LSM6DSO32X
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS13607 - Rev 1
page 162/162