0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
M24C16RMN6TP

M24C16RMN6TP

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    M24C16RMN6TP - 16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit serial I²C bus EEPROM - STMicroelectronics

  • 数据手册
  • 价格&库存
M24C16RMN6TP 数据手册
M24C16, M24C08 M24C04, M24C02, M24C01 16 Kbit, 8 Kbit, 4 Kbit, 2 Kbit and 1 Kbit serial I²C bus EEPROM Features ■ Two-wire I²C serial interface Supports 400 kHz protocol Single supply voltage: – 2.5 V to 5.5 V for M24Cxx-W – 1.8 V to 5.5 V for M24Cxx-R – 1.7 V to 5.5 V for M24Cxx-F Write Control input Byte and Page Write (up to 16 bytes) Random and Sequential Read modes Self-timed programming cycle Automatic address incrementing Enhanced ESD/latch-up protection More than 1 million write cycles More than 40-year data retention Packages – ECOPACK® (RoHS compliant) Device summary Part number M24C16-W M24C16 M24C16-R M24C16-F M24C08-W M24C08 M24C08-R M24C08-F M24C04-W M24C04 M24C04-R M24C04-F M24C02-W M24C02 M24C02-R M24C01-W M24C01 M24C01-R ■ PDIP8 (BN) ■ ■ ■ ■ ■ ■ ■ ■ ■ SO8 (MN) 150 mils width Table 1. TSSOP8 (DW) 169 mils width Reference TSSOP8 (DS) 3 x 3 mm body size UFDFPN8 (MB) 2 x 3 mm (MLP) September 2007 Rev 10 1/34 www.st.com 1 Contents M24C16, M24C08, M24C04, M24C02, M24C01 Contents 1 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 2.2 2.3 2.4 Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 2.4.2 2.4.3 2.4.4 Operating supply voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 3.2 3.3 3.4 3.5 3.6 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6.1 3.6.2 3.6.3 Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . 15 3.7 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.7.1 3.7.2 3.7.3 3.7.4 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 5 6 2/34 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 M24C16, M24C08, M24C04, M24C02, M24C01 Contents 7 8 9 Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3/34 List of tables M24C16, M24C08, M24C04, M24C02, M24C01 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Operating conditions (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Operating conditions (M24Cxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Operating conditions (M24Cxx-F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 DC characteristics (M24Cxx-W, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 DC characteristics (M24Cxx-W, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DC characteristics (M24Cxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DC characteristics (M24Cxx-F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 AC characteristics (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 AC characteristics (M24Cxx-R and M24Cxx-F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PDIP8 – 8 pin plastic DIP, 0.25 mm lead frame, package mechanical data. . . . . . . . . . . . 25 SO8 narrow – 8 lead plastic small outline, 150 mils body width, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead 2 x 3 mm, data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 TSSOP8 – 8 lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 28 TSSOP8 3 x 3 mm – 8 lead thin shrink small outline, 3 x 3 mm body size, mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Available M24C16 products (package, voltage range, temperature grade) . . . . . . . . . . . . 31 Available M24C08 products (package, voltage range, temperature grade) . . . . . . . . . . . . 31 Available M24C04 products (package, voltage range, temperature grade) . . . . . . . . . . . . 31 Available M24C02 products (package, voltage range, temperature grade) . . . . . . . . . . . . 31 Available M24C01 products (package, voltage range, temperature grade) . . . . . . . . . . . . 31 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4/34 M24C16, M24C08, M24C04, M24C02, M24C01 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8-pin package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Maximum RP value versus bus parasitic capacitance (C) for an I²C bus . . . . . . . . . . . . . . 9 I²C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 13 Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 14 Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PDIP8 – 8 pin plastic DIP, 0.25 mm lead frame, package outline . . . . . . . . . . . . . . . . . . . 25 SO8 narrow – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . 26 UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead 2 x 3 mm, outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 TSSOP8 – 8 lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 28 TSSOP8 3 x 3 mm – 8 lead thin shrink small outline, 3 x 3 mm body size, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5/34 Description M24C16, M24C08, M24C04, M24C02, M24C01 1 Description These I²C-compatible electrically erasable programmable memory (EEPROM) devices are organized as 2048/1024/512/256/128 x 8 (M24C16, M24C08, M24C04, M24C02 and M24C01). In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. ECOPACK® packages are Lead-free and RoHS compliant. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 1. Logic diagram VCC 3 E0-E2 SCL WC M24Cxx SDA VSS AI02033 I²C uses a two-wire serial interface, comprising a bidirectional data line and a clock line. The devices carry a built-in 4-bit Device Type Identifier code (1010) in accordance with the I²C bus definition. The device behaves as a slave in the I²C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a device select code and Read/Write bit (RW) (as described in Table 3), terminated by an acknowledge bit. When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time, following the bus master’s 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read. Table 2. Signal names Function Chip Enable Serial Data Serial Clock Write Control Supply voltage Ground Input Input/output Input Input Direction Signal name E0, E1, E2 SDA SCL WC VCC VSS 6/34 M24C16, M24C08, M24C04, M24C02, M24C01 Figure 2. 8-pin package connections (top view) M24Cxx 16Kb /8Kb /4Kb /2Kb /1Kb NC / NC / NC / E0 / E0 NC / NC / E1 / E1 / E1 NC / E2 / E2 / E2 / E2 VSS 1 2 3 4 8 7 6 5 VCC WC SCL SDA AI02034E Description 1. NC = Not connected 2. See Section 7: Package mechanical for package dimensions, and how to identify pin-1. 7/34 Signal description M24C16, M24C08, M24C04, M24C02, M24C01 2 2.1 Signal description Serial Clock (SCL) This input signal is used to strobe all data in and out of the device. In applications where this signal is used by slave devices to synchronize the bus to a slower clock, the bus master must have an open drain output, and a pull-up resistor can be connected from Serial Clock (SCL) to VCC. (Figure 4 indicates how the value of the pull-up resistor can be calculated). In most applications, though, this method of synchronization is not employed, and so the pullup resistor is not necessary, provided that the bus master has a push-pull (rather than open drain) output. 2.2 Serial Data (SDA) This bidirectional signal is used to transfer data in or out of the device. It is an open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A pull up resistor must be connected from Serial Data (SDA) to VCC. (Figure 4 indicates how the value of the pull-up resistor can be calculated). 2.3 Chip Enable (E0, E1, E2) These input signals are used to set the value that is to be looked for on the three least significant bits (b3, b2, b1) of the 7-bit device select code. These inputs must be tied to VCC or VSS, to establish the device select code as shown in Figure 3. When not connected (left floating), E0, E1, E2 are read as low (0,0,0). Figure 3. Device select code VCC VCC M24Cxx Ei M24Cxx Ei VSS VSS Ai11650 2.3.1 Write Control (WC) This input signal is useful for protecting the entire contents of the memory from inadvertent write operations. Write operations are disabled to the entire memory array when Write Control (WC) is driven High. When unconnected, the signal is internally read as VIL, and Write operations are allowed. When Write Control (WC) is driven High, device select and address bytes are acknowledged, data bytes are not acknowledged. 8/34 M24C16, M24C08, M24C04, M24C02, M24C01 Signal description 2.4 2.4.1 Supply voltage (VCC) Operating supply voltage VCC Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified [VCC(min), VCC(max)] range must be applied (see Table 6, Table 7 and Table 8). In order to secure a stable DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor (usually of the order of 10 nF to 100 nF) close to the VCC/VSS package pins. This voltage must remain stable and valid until the end of the transmission of the instruction and, for a Write instruction, until the completion of the internal write cycle (tW). 2.4.2 Power-up conditions When the power supply is turned on, VCC rises from VSS to VCC; the VCC rise time must not vary faster than 1 V/µs. 2.4.3 Device reset In order to prevent inadvertent write operations during power-up, a power on reset (POR) circuit is included. At power-up (continuous rise of VCC), the device does not respond to any instruction until VCC has reached the power on reset threshold voltage (this threshold is lower than the minimum VCC operating voltage defined in Table 6, Table 7 and Table 8). When VCC passes the POR threshold, the device is reset and in the Standby Power mode. In a similar way, during power-down (continuous decrease in VCC), as soon as VCC drops below the power on reset threshold voltage, the device stops responding to any instruction sent to it. 2.4.4 Power-down conditions During power-down (where VCC decreases continuously), the device must be in the Standby Power mode (mode reached after decoding a Stop condition, assuming that there is no internal write cycle in progress). Figure 4. 20 Maximum RP value (kΩ) 16 Maximum RP value versus bus parasitic capacitance (C) for an I²C bus VCC RP 12 8 4 0 10 100 C (pF) 1000 MASTER fc = 100kHz fc = 400kHz SDA SCL RP C C AI01665b 9/34 Signal description Figure 5. I²C bus protocol M24C16, M24C08, M24C04, M24C02, M24C01 SCL SDA SDA Input SDA Change START Condition STOP Condition SCL 1 2 3 7 8 9 SDA MSB ACK START Condition SCL 1 2 3 7 8 9 SDA MSB ACK STOP Condition AI00792B Table 3. Device select code Device type identifier(1) b7 b6 0 0 0 0 0 b5 1 1 1 1 1 b4 0 0 0 0 0 Chip Enable(2),(3) b3 E2 E2 E2 E2 A10 b2 E1 E1 E1 A9 A9 b1 E0 E0 A8 A8 A8 RW b0 RW RW RW RW RW M24C01 select code M24C02 select code M24C04 select code M24C08 select code M24C16 select code 1 1 1 1 1 1. The most significant bit, b7, is sent first. 2. E0, E1 and E2 are compared against the respective external pins on the memory device. 3. A10, A9 and A8 represent most significant bits of the address. 10/34 M24C16, M24C08, M24C04, M24C02, M24C01 Device operation 3 Device operation The device supports the I²C protocol. This is summarized in Figure 5. Any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated by the bus master, which will also provide the serial clock for synchronization. The M24Cxx device is always a slave in all communication. 3.1 Start condition Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in the High state. A Start condition must precede any data transfer command. The device continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock (SCL) for a Start condition, and will not respond unless one is given. 3.2 Stop condition Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and driven High. A Stop condition terminates communication between the device and the bus master. A Read command that is followed by NoAck can be followed by a Stop condition to force the device into the Standby mode. A Stop condition at the end of a Write command triggers the internal Write cycle. 3.3 Acknowledge Bit (ACK) The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) Low to acknowledge the receipt of the eight data bits. 3.4 Data input During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock (SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock (SCL) is driven Low. 11/34 Device operation M24C16, M24C08, M24C04, M24C02, M24C01 3.5 Memory addressing To start communication between the bus master and the slave device, the bus master must initiate a Start condition. Following this, the bus master sends the device select code, shown in Table 3 (on Serial Data (SDA), most significant bit first). The device select code consists of a 4-bit Device Type Identifier, and a 3-bit Chip Enable “Address” (E2, E1, E0). To address the memory array, the 4-bit Device Type Identifier is 1010b. Each device is given a unique 3-bit code on the Chip Enable (E0, E1, E2) inputs. When the device select code is received, the device only responds if the Chip Enable Address is the same as the value on the Chip Enable (E0, E1, E2) inputs. However, those devices with larger memory capacities (the M24C16, M24C08 and M24C04) need more address bits. E0 is not available for use on devices that need to use address line A8; E1 is not available for devices that need to use address line A9, and E2 is not available for devices that need to use address line A10 (see Figure 2 and Table 3 for details). Using the E0, E1 and E2 inputs, up to eight M24C02 (or M24C01), four M24C04, two M24C08 or one M24C16 devices can be connected to one I²C bus. In each case, and in the hybrid cases, this gives a total memory capacity of 16 Kbits, 2 KBytes (except where M24C01 devices are used). The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations. If a match occurs on the device select code, the corresponding device gives an acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match the device select code, it deselects itself from the bus, and goes into Standby mode. Table 4. Operating modes Mode Current Address Read Random Address Read 1 Sequential Read Byte Write Page Write 1. X = VIH or VIL. RW bit 1 0 WC(1) X X Bytes 1 1 Initial Sequence Start, Device Select, RW = 1 Start, Device Select, RW = 0, Address reStart, Device Select, RW = 1 X X VIL VIL ≥1 1 ≤16 1 0 0 Similar to Current or Random Address Read Start, Device Select, RW = 0 Start, Device Select, RW = 0 12/34 M24C16, M24C08, M24C04, M24C02, M24C01 Figure 6. WC ACK Byte Write START DEV SEL R/W ACK NO ACK DATA IN STOP Device operation Write mode sequences with WC = 1 (data write inhibited) BYTE ADDR WC ACK Page Write START DEV SEL R/W ACK NO ACK DATA IN 1 NO ACK DATA IN 3 BYTE ADDR DATA IN 2 WC (cont'd) NO ACK Page Write (cont'd) NO ACK DATA IN N STOP AI02803C 3.6 Write operations Following a Start condition the bus master sends a device select code with the Read/Write bit (RW) reset to 0. The device acknowledges this, as shown in Figure 7, and waits for an address byte. The device responds to the address byte with an acknowledge bit, and then waits for the data byte. When the bus master generates a Stop condition immediately after the Ack bit (in the “10th bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write cycle is triggered. A Stop condition at any other time slot does not trigger the internal Write cycle. During the internal Write cycle, Serial Data (SDA) and Serial Clock (SCL) are ignored, and the device does not respond to any requests. 3.6.1 Byte Write After the device select code and the address byte, the bus master sends one data byte. If the addressed location is Write-protected, by Write Control (WC) being driven High (during the period from the Start condition until the end of the address byte), the device replies to the data byte with NoAck, as shown in Figure 6, and the location is not modified. If, instead, the addressed location is not Write-protected, the device replies with Ack. The bus master terminates the transfer by generating a Stop condition, as shown in Figure 7. 13/34 Device operation M24C16, M24C08, M24C04, M24C02, M24C01 3.6.2 Page Write The Page Write mode allows up to 16 bytes to be written in a single Write cycle, provided that they are all located in the same page in the memory: that is, the most significant memory address bits are the same. If more bytes are sent than will fit up to the end of the page, a condition known as ‘roll-over’ occurs. This should be avoided, as data starts to become overwritten in an implementation dependent way. The bus master sends from 1 to 16 bytes of data, each of which is acknowledged by the device if Write Control (WC) is Low. If the addressed location is Write-protected, by Write Control (WC) being driven High (during the period from the Start condition until the end of the address byte), the device replies to the data bytes with NoAck, as shown in Figure 6, and the locations are not modified. After each byte is transferred, the internal byte address counter (the 4 least significant address bits only) is incremented. The transfer is terminated by the bus master generating a Stop condition. Figure 7. WC ACK BYTE WRITE START DEV SEL R/W ACK DATA IN STOP ACK DATA IN 1 ACK DATA IN 2 ACK Write mode sequences with WC = 0 (data write enabled) BYTE ADDR WC ACK PAGE WRITE START DEV SEL R/W ACK DATA IN 3 BYTE ADDR WC (cont'd) ACK PAGE WRITE (cont'd) DATA IN N ACK STOP AI02804B 14/34 M24C16, M24C08, M24C04, M24C02, M24C01 Figure 8. Write cycle polling flowchart using ACK WRITE Cycle in Progress Device operation START Condition DEVICE SELECT with RW = 0 NO First byte of instruction with RW = 0 already decoded by the device ACK Returned YES NO Next Operation is Addressing the Memory YES ReSTART Send Address and Receive ACK STOP NO START Condition YES DATA for the WRITE Operation DEVICE SELECT with RW = 1 Continue the WRITE Operation Continue the Random READ Operation AI01847C 3.6.3 Minimizing system delays by polling on ACK During the internal Write cycle, the device disconnects itself from the bus, and writes a copy of the data from its internal latches to the memory cells. The maximum Write time (tw) is shown in Table 15 and Table 16, but the typical time is shorter. To make use of this, a polling sequence can be used by the bus master. The sequence, as shown in Figure 8, is: ● ● ● Initial condition: a Write cycle is in progress. Step 1: the bus master issues a Start condition followed by a device select code (the first byte of the new instruction). Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and the bus master goes back to Step 1. If the device has terminated the internal Write cycle, it responds with an Ack, indicating that the device is ready to receive the second part of the instruction (the first byte of this instruction having been sent during Step 1). 15/34 Device operation Figure 9. Read mode sequences ACK CURRENT ADDRESS READ START DEV SEL R/W M24C16, M24C08, M24C04, M24C02, M24C01 NO ACK DATA OUT STOP ACK DEV SEL * START R/W ACK RANDOM ADDRESS READ START DEV SEL * R/W ACK NO ACK DATA OUT STOP NO ACK ACK AI01942 BYTE ADDR ACK SEQUENTIAL CURRENT READ START DEV SEL R/W ACK ACK DATA OUT 1 DATA OUT N STOP ACK SEQUENTIAL RANDOM READ START DEV SEL * R/W ACK DEV SEL * START ACK BYTE ADDR DATA OUT 1 R/W ACK NO ACK DATA OUT N STOP 1. The seven most significant bits of the device select code of a Random Read (in the 1st and 3rd bytes) must be identical. 3.7 Read operations Read operations are performed independently of the state of the Write Control (WC) signal. The device has an internal address counter which is incremented each time a byte is read. 3.7.1 Random Address Read A dummy Write is first performed to load the address into this address counter (as shown in Figure 9) but without sending a Stop condition. Then, the bus master sends another Start condition, and repeats the device select code, with the Read/Write bit (RW) set to 1. The device acknowledges this, and outputs the contents of the addressed byte. The bus master must not acknowledge the byte, and terminates the transfer with a Stop condition. 16/34 M24C16, M24C08, M24C04, M24C02, M24C01 Device operation 3.7.2 Current Address Read For the Current Address Read operation, following a Start condition, the bus master only sends a device select code with the Read/Write bit (RW) set to 1. The device acknowledges this, and outputs the byte addressed by the internal address counter. The counter is then incremented. The bus master terminates the transfer with a Stop condition, as shown in Figure 9, without acknowledging the byte. 3.7.3 Sequential Read This operation can be used after a Current Address Read or a Random Address Read. The bus master does acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and must generate a Stop condition, as shown in Figure 9. The output data comes from consecutive addresses, with the internal address counter automatically incremented after each byte output. After the last memory address, the address counter ‘rolls-over’, and the device continues to output data from memory address 00h. 3.7.4 Acknowledge in Read mode For all Read commands, the device waits, after each byte read, for an acknowledgment during the 9th bit time. If the bus master does not drive Serial Data (SDA) Low during this time, the device terminates the data transfer and switches to its Standby mode. 17/34 Initial delivery state M24C16, M24C08, M24C04, M24C02, M24C01 4 Initial delivery state The device is delivered with all bits in the memory array set to 1 (each byte contains FFh). 5 Maximum rating Stressing the device outside the ratings listed in Table 5 may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the Operating sections of this specification, is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 5. Symbol TA TSTG TLEAD VIO VCC VESD Absolute maximum ratings Parameter Ambient operating temperature Storage temperature Lead temperature during soldering PDIP-specific lead temperature during soldering Input or output range Supply voltage Electrostatic discharge voltage (human body model)(3) –0.50 –0.50 –4000 Min. –40 –65 see note Max. 130 150 (1) (2) Unit °C °C °C °C V V V 260 6.5 6.5 4000 1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU. 2. TLEAD max must not be applied for more than 10s. 3. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1 = 100 pF, R1 = 1500 Ω, R2 = 500 Ω). 18/34 M24C16, M24C08, M24C04, M24C02, M24C01 DC and AC parameters 6 DC and AC parameters This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristic tables that follow are derived from tests performed under the measurement conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 6. Symbol VCC TA Supply voltage Ambient operating temperature (device grade 6) Ambient operating temperature (device grade 3) Operating conditions (M24Cxx-W) Parameter Min. 2.5 –40 –40 Max. 5.5 85 125 Unit V °C °C Table 7. Symbol VCC TA Operating conditions (M24Cxx-R) Parameter Supply voltage Ambient operating temperature Min. 1.8 –40 Max. 5.5 85 Unit V °C Table 8. Symbol VCC TA Operating conditions (M24Cxx-F) Parameter Supply voltage Ambient operating temperature Min. 1.7 –20 Max. 5.5 85 Unit V °C Table 9. Symbol DC characteristics (M24Cxx-W, device grade 6) Parameter Input leakage current (SCL, SDA, E0, E1,and E2) Output leakage current Test condition (in addition to those in Table 6) VIN = VSS or VCC, device in Standby mode VOUT = VSS or VCC, SDA in Hi-Z VCC = 5 V, fc = 400 kHz (rise/fall time < 50 ns) Min. Max. Unit ILI ILO ±2 ±2 2 1 1 –0.45 0.3VCC µA µA mA mA µA V V V ICC Supply current VCC = 2.5 V, fc = 400 kHz (rise/fall time < 50 ns) Standby supply current Input low voltage (SDA, SCL, WC) Input high voltage (SDA, SCL, WC) Output low voltage IOL = 2.1 mA when VCC = 2.5 V or IOL = 3 mA when VCC = 5.5 V VIN = VSS or VCC, for 2.5 V < VCC = < 5.5 V ICC1 VIL VIH VOL 0.7VCC VCC+1 0.4 19/34 DC and AC parameters Table 10. Symbol ILI ILO M24C16, M24C08, M24C04, M24C02, M24C01 DC characteristics (M24Cxx-W, device grade 3) Parameter Test condition (in addition to those in Table 6) VIN = VSS or VCC, device in Standby mode VOUT = VSS or VCC, SDA in Hi-Z VCC = 5 V, fC= 400 kHz (rise/fall time < 50 ns) Min. Max. ±2 ±2 3 3 5 2 –0.45 0.7VCC IOL = 2.1 mA when VCC = 2.5 V or IOL = 3 mA when VCC = 5.5 V 0.3VCC VCC+1 0.4 Unit µA µA mA mA µA µA V V V Input leakage current (SCL, SDA, E0, E1,and E2) Output leakage current ICC Supply current VCC = 2.5 V, fC = 400 kHz (rise/fall time < 50 ns) Standby supply current Input low voltage (SDA, SCL, WC) Input high voltage (SDA, SCL, WC) Output low voltage VIN = VSS or VCC, VCC = 5 V VIN = VSS or VCC, VCC = 2.5 V ICC1 VIL VIH VOL Table 11. Symbol ILI ILO ICC ICC1 VIL VIH VOL DC characteristics (M24Cxx-R) Parameter Input leakage current (SCL, SDA, E0, E1,and E2) Output leakage current Supply current Standby supply current Input low voltage (SDA, SCL, WC) Input high voltage (SDA, SCL, WC) Output low voltage IOL = 0.7 mA, VCC = 1.8 V Test condition (in addition to those in Table 7) VIN = VSS or VCC, device in Standby mode VOUT = VSS or VCC, SDA in Hi-Z VCC = 1.8 V, fc= 400 kHz (rise/fall time < 50 ns) VIN = VSS or VCC, VCC = 1.8 V 2.5 V ≤VCC 1.8 V ≤VCC < 2.5 V –0.45 –0.45 0.7VCC Min. Max. ±2 ±2 0.8 1 0.3 VCC 0.25 VCC VCC+1 0.2 Unit µA µA mA µA V V V V 20/34 M24C16, M24C08, M24C04, M24C02, M24C01 Table 12. Symbol ILI ILO ICC ICC1 VIL VIH VOL DC and AC parameters DC characteristics (M24Cxx-F) Parameter Input leakage current (SCL, SDA, E0, E1,and E2) Output leakage current Supply current Standby supply current Input low voltage (SDA, SCL, WC) Input high voltage (SDA, SCL, WC) Output low voltage IOL = 0.7 mA, VCC = 1.7 V Test condition (in addition to those in Table 7) VIN = VSS or VCC, device in Standby mode VOUT = VSS or VCC, SDA in Hi-Z VCC = 1.7 V, fc= 400 kHz (rise/fall time < 50 ns) VIN = VSS or VCC, VCC = 1.7 V 2.5 V ≤VCC 1.7 V ≤VCC < 2.5 V –0.45 –0.45 0.7VCC Min. Max. ±2 ±2 0.8 1 0.3 VCC 0.25 VCC VCC+1 0.2 Unit µA µA mA µA V V V V Table 13. Symbol CL AC measurement conditions Parameter Load capacitance Input rise and fall times Input levels Input and output timing reference levels Min. 100 50 0.2VCC to 0.8VCC 0.3VCC to 0.7VCC Max. Unit pF ns V V Figure 10. AC measurement I/O waveform Input Levels 0.8VCC Input and Output Timing Reference Levels 0.7VCC 0.3VCC AI00825B 0.2VCC Table 14. Symbol CIN CIN ZWCL ZWCH tNS Input parameters Parameter(1) Input capacitance (SDA) Input capacitance (other pins) WC input impedance WC input impedance Pulse width ignored (input filter on SCL and SDA) VIN < 0.3 V VIN > 0.7VCC Single glitch 15 500 100 Test condition Min. Max. 8 6 70 Unit pF pF kΩ kΩ ns 1. Sampled only, not 100% tested. 21/34 DC and AC parameters Table 15. M24C16, M24C08, M24C04, M24C02, M24C01 AC characteristics (M24Cxx-W) Test conditions specified in Table 6 and Table 13 Symbol fC tCHCL tCLCH tDL1DL2 (1) Alt. fSCL tHIGH tLOW tF Clock frequency Parameter Min. Max. 400 Unit kHz ns ns Clock pulse width high Clock pulse width low SDA fall time 600 1300 20 100 0 200 200 600 600 600 1300 5 900 300 ns ns ns ns ns ns ns ns ns ms tDXCX tCLDX tCLQX tCLQV(2) tCHDX(3) tDLCL tCHDH tDHDL tW(4) tSU:DAT Data in setup time tHD:DAT Data in hold time tDH tAA Data out hold time Clock low to next data valid (access time) tSU:STA Start condition setup time tHD:STA Start condition hold time tSU:STO Stop condition setup time tBUF tWR Time between Stop condition and next Start condition Write time 1. Sampled only, not 100% tested. 2. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA. 3. For a reStart condition, or following a Write cycle. 4. Previous devices bearing the process letter “L” in the package marking guarantee a maximum write time of 10 ms. For more information about these devices and their device identification, please ask your ST Sales Office for Process Change Notices PCN MPG/EE/0061 and 0062 (PCEE0061 and PCEE0062). 22/34 M24C16, M24C08, M24C04, M24C02, M24C01 Table 16. AC characteristics (M24Cxx-R and M24Cxx-F) DC and AC parameters Test conditions specified in Table 7 and Table 11 Symbol fC tCHCL tCLCH tDL1DL2 (1) Alt. fSCL tHIGH tLOW tF tSU:DAT tHD:DAT tDH tAA tSU:STA tHD:STA tSU:STO tBUF tWR Clock frequency Parameter Min. Max. 400 Unit kHz ns ns Clock pulse width high Clock pulse width low SDA fall time Data in setup time Data in hold time Data out hold time Clock low to next data valid (access time) Start condition setup time Start condition hold time Stop condition setup time Time between Stop condition and next Start condition Write time 600 1300 20 100 0 200 200 600 600 600 1300 5(4) 900 300 ns ns ns ns ns ns ns ns ns ms tDXCX tCLDX tCLQX tCLQV(2) tCHDX(3) tDLCL tCHDH tDHDL tW 1. Sampled only, not 100% tested. 2. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA. 3. For a reStart condition, or following a Write cycle. 4. tW(max) = 5 ms (instead of 10 ms) is offered from Week 41 2007. These devices can be identified with the process letter printed on the package: M24C01: process letter is either S or G M24C02: process letter is either S or G M24C04: process letter is Q M24C08: process letter is Q M24C016: process letter is either $ or Q 23/34 DC and AC parameters Figure 11. AC waveforms tCHCL M24C16, M24C08, M24C04, M24C02, M24C01 tCLCH SCL tDLCL SDA In tCHDX START Condition SDA Input tCLDX SDA tDXCX Change tCHDH tDHDL START STOP Condition Condition SCL SDA In tCHDH STOP Condition tW Write Cycle tCHDX START Condition SCL tCLQV SDA Out Data Valid tCLQX AI00795C 24/34 M24C16, M24C08, M24C04, M24C02, M24C01 Package mechanical 7 Package mechanical Figure 12. PDIP8 – 8 pin plastic DIP, 0.25 mm lead frame, package outline b2 A2 A1 b e eA D 8 E A L c eB E1 1 PDIP-B 1. Drawing is not to scale. Table 17. Symbol PDIP8 – 8 pin plastic DIP, 0.25 mm lead frame, package mechanical data millimeters Typ. Min. Max. 5.33 0.38 3.30 0.46 1.52 0.25 9.27 7.87 6.35 2.54 7.62 2.92 0.36 1.14 0.20 9.02 7.62 6.10 – – 4.95 0.56 1.78 0.36 10.16 8.26 7.11 – – 10.92 3.30 2.92 3.81 0.130 0.115 0.130 0.018 0.060 0.010 0.365 0.310 0.250 0.100 0.300 0.015 0.115 0.014 0.045 0.008 0.355 0.300 0.240 – – 0.195 0.022 0.070 0.014 0.400 0.325 0.280 – – 0.430 0.150 Typ. inches Min. Max. 0.210 A A1 A2 b b2 c D E E1 e eA eB L 25/34 Package mechanical M24C16, M24C08, M24C04, M24C02, M24C01 Figure 13. SO8 narrow – 8 lead plastic small outline, 150 mils body width, package outline h x 45˚ A2 b e 0.25 mm GAUGE PLANE k 8 A ccc c D E1 1 E A1 L L1 SO-A 1. Drawing is not to scale. 2. The ‘1’ that appears in the top view of the package shows the position of pin 1 and the ‘N’ indicates the total number of pins. Table 18. SO8 narrow – 8 lead plastic small outline, 150 mils body width, package mechanical data millimeters inches Max 1.75 0.10 1.25 0.28 0.17 0.48 0.23 0.10 4.90 6.00 3.90 1.27 4.80 5.80 3.80 – 0.25 0° 0.40 1.04 5.00 6.20 4.00 – 0.50 8° 1.27 0.041 0.193 0.236 0.154 0.050 0.189 0.228 0.150 – 0.010 0° 0.016 0.25 0.004 0.049 0.011 0.007 0.019 0.009 0.004 0.197 0.244 0.157 – 0.020 8° 0.050 Typ Min Max 0.069 0.010 Symbol Typ A A1 A2 b c ccc D E E1 e h k L L1 Min 26/34 M24C16, M24C08, M24C04, M24C02, M24C01 Package mechanical Figure 14. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead 2 x 3 mm, outline D L3 e b L1 E E2 L A D2 ddd A1 UFDFPN-01 1. Drawing is not to scale. 2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to VSS. It must not be allowed to be connected to any other voltage or signal line on the PCB, for example during the soldering process. 3. The circle in the top view of the package indicates the position of pin 1. Table 19. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead 2 x 3 mm, data millimeters inches Max 0.60 0.05 0.30 2.10 1.70 0.08 3.00 0.20 0.50 0.45 2.90 0.10 – 0.40 3.10 0.30 – 0.50 0.15 0.30 0.012 0.118 0.008 0.020 0.018 0.114 0.004 – 0.016 Typ 0.022 0.001 0.010 0.079 0.063 Min 0.020 0.000 0.008 0.075 0.059 Max 0.024 0.002 0.012 0.083 0.067 0.003 0.122 0.012 – 0.020 0.006 Symbol Typ A A1 b D D2 ddd E E2 e L L1 L3 0.55 0.02 0.25 2.00 1.60 Min 0.50 0.00 0.20 1.90 1.50 27/34 Package mechanical M24C16, M24C08, M24C04, M24C02, M24C01 Figure 15. TSSOP8 – 8 lead thin shrink small outline, package outline D 8 5 c E1 E 1 4 α A1 A CP b e A2 L L1 TSSOP8AM 1. Drawing is not to scale. 2. The circle in the top view of the package indicates the position of pin 1. Table 20. Symbol TSSOP8 – 8 lead thin shrink small outline, package mechanical data millimeters Typ. Min. Max. 1.200 0.050 1.000 0.800 0.190 0.090 0.150 1.050 0.300 0.200 0.100 3.000 0.650 6.400 4.400 0.600 1.000 0° 8° 2.900 – 6.200 4.300 0.450 3.100 – 6.600 4.500 0.750 0.1181 0.0256 0.2520 0.1732 0.0236 0.0394 0° 8° 0.1142 – 0.2441 0.1693 0.0177 0.0394 0.0020 0.0315 0.0075 0.0035 Typ. inches Min. Max. 0.0472 0.0059 0.0413 0.0118 0.0079 0.0039 0.1220 – 0.2598 0.1772 0.0295 A A1 A2 b c CP D e E E1 L L1 α 28/34 M24C16, M24C08, M24C04, M24C02, M24C01 Package mechanical Figure 16. TSSOP8 3 x 3 mm – 8 lead thin shrink small outline, 3 x 3 mm body size, package outline D 8 5 E1 E c 1 4 k A1 A ccc b e A2 L L1 L2 E3_ME 1. Drawing is not to scale. 2. The circle in the top view of the package indicates the position of pin 1. Table 21. TSSOP8 3 x 3 mm – 8 lead thin shrink small outline, 3 x 3 mm body size, mechanical data millimeters inches Max 1.10 0.00 0.85 0.75 0.22 0.08 3.00 4.90 3.00 0.65 0.60 0.95 0.25 0° 8° 0.10 0.40 0.80 2.8 4.65 2.80 0.15 0.95 0.40 0.23 3.20 5.15 3.10 0.1181 0.1929 0.1181 0.0256 0.0236 0.0374 0.0098 0° 8° 0.0039 0.0157 0.0315 0.0335 0.0000 0.0295 0.0087 0.0031 0.1102 0.1831 0.1102 Typ Min Max 0.0433 0.0059 0.0374 0.0157 0.0091 0.126 0.2028 0.122 Symbol Typ A A1 A2 b c D E E1 e L L1 L2 k ccc Min 29/34 Part numbering M24C16, M24C08, M24C04, M24C02, M24C01 8 Part numbering Table 22. Example: Device type M24 = I2C serial access EEPROM Device Function 16 = 16 Kbit (2048 x 8) 08 = 8 Kbit (1024 x 8) 04 = 4 Kbit (512 x 8) 02 = 2 Kbit (256 x 8) 01 = 1 Kbit (128 x 8) Operating voltage W = VCC = 2.5 V to 5.5 V (400 kHz) R = VCC = 1.8 V to 5.5 V (400 kHz) F = VCC = 1.7 V to 5.5 V (400 kHz) Package BN = PDIP8 MN = SO8 (150 mil width) MB = UFDFPN8 (MLP8) DW = TSSOP8 (169 mil width) DS = TSSOP8 (3 x 3 mm body size, MSOP8)(1) Device grade 6 = Industrial: device tested with standard test flow over –40 to 85 °C 3 = Automotive: device tested with high reliability certified flow(2) over –40 to 125 °C 5 = Consumer: device tested with standard test flow over –20 to 85 °C. Option T = Tape and reel packing Plating technology P or G = ECOPACK® (RoHS compliant) Process(3) /S = F6SP36% 1. Products sold in this package are not recommended for new design. 2. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy. 3. Used only for device grade 3. Ordering information scheme M24C16 – W DW 3 T P /S For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. The category of second-level interconnect is marked on the package and on the inner box label, in compliance with JEDEC standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. 30/34 M24C16, M24C08, M24C04, M24C02, M24C01 Table 23. Part numbering Available M24C16 products (package, voltage range, temperature grade) M24C16-W VCC = 2.5 V to 5.5 V Range 6 Range 6, Range 3 Range 6, Range 3 M24C16-R VCC = 1.8 V to 5.5 V Range 6 Range 6 Range 6 Range 6 M24C16-F VCC = 1.7 V to 5.5 V Range 5 Package DIP8 (BN) SO8N (MN) UFDFPN8 (MB) TSSOP8 (DW) Table 24. Available M24C08 products (package, voltage range, temperature grade) M24C08-W VCC = 2.5 V to 5.5 V Range 6 Range 6, Range 3 Range 6 M24C08-R VCC = 1.8 V to 5.5 V Range 6 Range 6 Range 6 Range 6 M24C08-F VCC = 1.7 V to 5.5 V Range 5 Range 5 - Package DIP8 (BN) SO8N (MN) UFDFPN8 (MB) TSSOP8 (DW) TSSOP8 3 × 3 mm (DS) Table 25. Available M24C04 products (package, voltage range, temperature grade) M24C04-W VCC = 2.5 V to 5.5 V Range 6 Range 6, Range 3 Range 6, Range 3 M24C04-R VCC = 1.8 V to 5.5 V Range 6 Range 6 Range 6 M24C04-F VCC = 1.7 V to 5.5 V Range 5 Range 5 Package DIP8 (BN) SO8N (MN) UFDFPN8 (MB) TSSOP8 (DW) Table 26. Available M24C02 products (package, voltage range, temperature grade) Package M24C02-W VCC = 2.5 V to 5.5 V Range 6 Range 6, Range 3 Range 6, Range 3 M24C02-R VCC = 1.8 V to 5.5 V Range 6 Range 6 Range 6 DIP8 (BN) SO8N (MN) UFDFPN8 (MB) TSSOP8 (DW) Table 27. Available M24C01 products (package, voltage range, temperature grade) Package M24C01-W VCC = 2.5 V to 5.5 V Range 6 Range 6 Range 6 M24C01-R VCC = 1.8 V to 5.5 V Range 6 Range 6 Range 6 DIP8 (BN) SO8N (MN) UFDFPN8 (MB) TSSOP8 (DW) TSSOP8 3 × 3 mm (DS) 31/34 Revision history M24C16, M24C08, M24C04, M24C02, M24C01 9 Revision history Table 28. Date 10-Dec-1999 18-Apr-2000 05-May-2000 23-Nov-2000 Document revision history Version 2.4 2.5 2.6 3.0 Changes TSSOP8 Turned-Die package removed (p 2 and order information) Lead temperature added for TSSOP8 in table 2 Labelling change to Fig-2D, correction of values for ‘E’ and main caption for Tab-13 Extra labelling to Fig-2D SBGA package information removed to an annex document -R range changed to being the -S range, and the new -R range added SBGA package information put back in this document Lead Soldering Temperature in the Absolute Maximum Ratings table amended Write Cycle Polling Flow Chart using ACK illustration updated References to PSDIP changed to PDIP and Package Mechanical data updated Wording brought in to line with standard glossary Revision of DC and AC characteristics for the -S series Ball numbers added to the SBGA connections and package mechanical illustrations Specification of Test Condition for Leakage Currents in the DC Characteristics table improved Document reformatted using new template. SBGA5 package removed TSSOP8 (3x3mm² body size) package (MSOP8) added. -L voltage range added Document title spelt out more fully. “W”-marked devices with tw=5ms added. -R voltage range upgraded to 400kHz working, and no longer preliminary data. 5V voltage range at temperature range 3 (-xx3) no longer preliminary data. -S voltage range removed. -Wxx3 voltage+temp ranged added as preliminary data. Table of contents, and Pb-free options added. Minor wording changes in Summary Description, Power-On Reset, Memory Addressing, Read Operations. VIL(min) improved to -0.45V. tW(max) value for -R voltage range corrected. MLP package added. Absolute Maximum Ratings for VIO(min) and VCC(min) changed. Soldering temperature information clarified for RoHS compliant devices. Device grade information clarified. Process identification letter “G” information added. 2.2-5.5V range is removed, and 4.5-5.5V range is now Not for New Design 19-Feb-2001 3.1 20-Apr-2001 08-Oct-2001 09-Nov-2001 3.2 3.3 3.4 30-Jul-2002 3.5 04-Feb-2003 3.6 05-May-2003 3.7 07-Oct-2003 4.0 17-Mar-2004 5.0 32/34 M24C16, M24C08, M24C04, M24C02, M24C01 Table 28. Date Revision history Document revision history (continued) Version Changes Product List summary table added. AEC-Q100-002 compliance. Device Grade information clarified. Updated Device internal reset section, Figure 3, Figure 4, Table 16 and Table 22 Added ECOPACK® information. Updated tW=5ms for the M24Cxx-W. Pin numbers removed from silhouettes (see on page 1). Internal Device Reset paragraph moved to below Section 2.4: Supply voltage (VCC). Section 2.4: Supply voltage (VCC) added below Section 2: Signal description. Test conditions for VOL updated in Table 9 and Table 10 SO8N package specifications updated (see Table 18) New definition of ICC1 over the whole VCC range (see Tables 9, 10 and 11). Document converted to new ST template. SO8 and UFDFPN8 package specifications updated (see Section 7: Package mechanical). Section 2.4: Supply voltage (VCC) clarified. ILI value given with the device in Standby mode in Tables 9, 10 and 11. Information given in Table 16: AC characteristics (M24Cxx-R and M24CxxF) are no longer preliminary data. 1.7 V to 5.5 V VCC voltage range added (M24C16-F, M24C08-F, M24C04-F part numbers added; Table 8 and Table 12 added). Section 2.4: Supply voltage (VCC) modified. Note 1 updated to latest standard revision in Table 5: Absolute maximum ratings. Rise/fall time conditions for ICC modified in Table 9, Table 10 and Table 11. ICC1 conditions modified in Table 11: DC characteristics (M24Cxx-R). Note removed below Table 14: Input parameters. tW modified for M24Cxx-R in Table 16, note added. TSSOP8 (DS) package specifications updated (see Table 21 and Figure 16). Added: Table 23, Table 24, Table 25, Table 26 and Table 27 summarizing all available products. Table 22: Ordering information scheme: Blank option removed under Plating technology, /W removed under Process. Section 2.3: Chip Enable (E0, E1, E2) updated. Concerned signals specified for VIL and VIH parameters, and note removed in DC characteristics tables (Table 9, Table 10, Table 11 and Table 12). tW modified in Table 16: AC characteristics (M24Cxx-R and M24Cxx-F). M24C08-F and M24C04-F offered in UFDFPN8 package in the temperature range 5 (see Table 24 and Table 25). 7-Oct-2005 6.0 17-Jan-2006 7.0 19-Sep-2006 8 03-Aug-2007 9 27-Sep-2007 10 33/34 M24C16, M24C08, M24C04, M24C02, M24C01 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 34/34
M24C16RMN6TP 价格&库存

很抱歉,暂时无法提供与“M24C16RMN6TP”相匹配的价格&库存,您可以联系我们找货

免费人工找货
M24C16-RMN6TP
  •  国内价格
  • 1+0.38044
  • 10+0.35242
  • 30+0.34681
  • 100+0.33

库存:2341