M24C32-A125
Datasheet
Automotive 32-Kbit serial I²C bus EEPROM with 1 MHz clock
Features
SO8N (MN)
TSSOP8
•
AEC-Q100 qualified
•
Compatible with all I2C bus modes
–
1 MHz
–
400 kHz
–
100 kHz
Memory array
–
32 Kbit (4 Kbyte) of EEPROM
–
Page size: 32 byte
–
Additional write lockable page (identification page)
Extended temperature and voltage ranges
–
-40 °C to 125 °C; 1.7 V to 5.5 V
Schmitt trigger inputs for noise filtering.
Short write cycle time
–
Byte write within 4 ms
–
Page write within 4 ms
Write cycle endurance
–
4 million write cycles at 25 °C
–
1.2 million write cycles at 85 °C
–
600 k write cycles at 125 °C
Data retention
–
50 years at 125 °C
–
100 years at 25 °C
ESD protection (human body model)
–
4000 V
Packages
–
RoHS compliant and halogen-free (ECOPACK2 )
150 mil width
169 mil width
•
WFDFPN8 (MF)
•
DFN8 2 x 3 mm
•
•
•
Product status link
•
M24C32-A125
•
•
DS9133 - Rev 8 - June 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
M24C32-A125
Description
1
Description
The M24C32-A125 is a 32-Kbit serial EEPROM automotive grade device operating up to 125 °C. The M24C32A125 is compliant with the very high level of reliability defined by the automotive standard AEC-Q100 grade 1.
The device is accessed by a simple serial I2C compatible interface running up to 1 MHz.
The memory array is based on advanced true EEPROM technology (electrically erasable programmable
memory). The M24C32-A125 is byte-alterable memories (4096 K × 8 bits) organized as 128 pages of 32 byte in
which the data integrity is significantly improved with an embedded error correction code logic.
The M24C32-A125 offers an additional identification page (32 byte) in which the ST device identification can be
read. This page can also be used to store sensitive application parameters which can be later permanently locked
in read-only mode.
Figure 1. Logic diagram
SENSE AMPLIFIERS
DATA REGISTER
+
ECC
PAGE LATCHES
X DECODER
SDA
ARRAY
I/O
Y DECODER
SCL
WC
START
and
STOP
DETECT
Ei
CONTROL
LOGIC
IDENTIFICATION PAGE
HV GENERATOR
+
SEQUENCER
ADDRESS
REGISTER
Table 1. Signal names
DS9133 - Rev 8
Signal name
Function
Direction
E2, E1, E0
Chip enable
Input
SDA
Serial data
I/O
SCL
Serial clock
Input
WC
Write control
Input
VCC
Supply voltage
-
VSS
Ground
-
page 2/39
M24C32-A125
Description
Figure 2. 8-pin package connections
1.
DS9133 - Rev 8
E0
1
8
VCC
E1
2
7
WC
E2
3
6
SCL
VSS
4
5
SDA
See Section 9 Package information for package dimensions, and how to identify pin 1.
page 3/39
M24C32-A125
Signal description
2
Signal description
2.1
Serial clock (SCL)
The signal applied on this input is used to strobe the data available on SDA(in) and to output the data on
SDA(out).
2.2
Serial data (SDA)
SDA is an input/output used to transfer data in or out of the device. SDA(out) is an open drain output that may
be wired-AND with other open drain or open collector signals on the bus. A pull up resistor must be connected
between SDA and VCC (Figure 10 and Figure 11 indicate how to calculate the value of the pull-up resistor).
2.3
Chip Enable (E2, E1, E0)
(E2,E1,E0) input signals are used to set the value that is to be looked for on the three least significant bits (b3, b2,
b1) of the 7-bit device select code (see Table 2). These inputs must be tied to VCC or VSS, as shown in Figure 3.
When not connected (left floating), these inputs are read as low (0).
Figure 3. Device select code
VCC
VCC
M24xxx
M24xxx
Ei
Ei
VSS
2.4
VSS
Write control (WC)
This input signal is useful for protecting the entire contents of the memory from inadvertent write operations. Write
operations are disabled to the entire memory array when write control (WC) is driven high. Write operations are
enabled when write control (WC) is either driven low or left floating.
When write control (WC) is driven high, device select and address bytes are acknowledged, Data bytes are not
acknowledged.
2.5
VSS (ground)
VSS is the reference for the VCC supply voltage.
2.6
Supply voltage (VCC)
VCC is the supply voltage pin.
DS9133 - Rev 8
page 4/39
M24C32-A125
Device operation
3
Device operation
The device supports the I2C protocol (see Figure 4).
The I2C bus is controlled by the bus master and the device is always a slave in all communications.
The device (bus master or a slave) that sends data on to the bus is defined as a transmitter; the device (bus
master or a slave) is defined as a receiver when reading the data.
Figure 4. I2C bus protocol
STOP
Condition
DS9133 - Rev 8
page 5/39
M24C32-A125
Start condition
3.1
Start condition
Start is identified by a falling edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A start
condition must precede any data transfer instruction. The device continuously monitors (except during a write
cycle) serial data (SDA) and serial clock (SCL) for a start condition.
3.2
Stop condition
Stop is identified by a rising edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A stop
condition terminates communication between the device and the bus master.
A stop condition at the end of a write instruction triggers the internal write cycle.
3.3
Data input
During data input, the device samples serial data (SDA) on the rising edge of serial clock (SCL). For correct
device operation, serial data (SDA) must be stable during the rising edge of serial clock (SCL), and the serial data
(SDA) signal must change only when serial clock (SCL) is driven low.
3.4
Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master
or slave device, releases serial data (SDA) after sending eight bits of data. During the 9th clock pulse period, the
receiver pulls serial data (SDA) low to acknowledge the receipt of the eight data bits.
DS9133 - Rev 8
page 6/39
M24C32-A125
Device addressing
3.5
Device addressing
To start communication between the bus master and the slave device, the bus master must initiate a start
condition. Following this, the bus master sends the device select code, as shown in Table 2.
The device select code consists of a 4-bit device type identifier and a 3-bit chip enable address (E2, E1, E0).
A device select code handling any value other than 1010b (to select the memory) or 1011b (to select the
identification page) is not acknowledged by the memory device.
Up to eight memory devices can be connected on a single I2C bus. Each one is given a unique 3-bit code on the
chip enable (E2, E1, E0) inputs. When the device select code is received, the memory device only responds if the
chip enable address is the same as the value decoded on the E2, E1, E0 inputs.
The 8th bit is the read/write bit (RW). This bit is set to 1 for read and 0 for write operations.
Table 2. Device select code
Device type identifier (1)
Chip Enable address (2)
RW
-
b7
b6
b5
b4
b3
b2
b1
b0
When accessing the memory
1
0
1
0
E2
E1
E0
RW
When accessing the Identification page
1
0
1
1
E2
E1
E0
RW
1. The most significant bit, b7, is sent first.
2. E0, E1 and E2 bits are compared with the value read on input pins E0,E1,E2.
If a match occurs on the device select code, the corresponding memory device gives an acknowledgement on
serial data (SDA) during the 9th bit time. If the memory device does not match the device select code, it deselects
itself from the bus, and goes into standby mode.
Once the memory device has acknowledged the device select code (Table 2), the memory device waits for
the master to send two address bytes (most significant address byte sent first, followed by the least significant
address byte (Table 3). The memory device responds to each address byte with an acknowledge bit.
DS9133 - Rev 8
page 7/39
M24C32-A125
Device addressing
Table 3. Significant bits within the two address bytes
address byte
address byte
Least significant
Most significant
Memory
Note:
DS9133 - Rev 8
Identification page
Random
Address Read
Write
Read identification
page
Write identification
page
Lock identification
page
Read lock
status
b15
X
X
X
X
X
X
b14
X
X
X
X
X
X
b13
X
X
X
X
X
X
b12
X
X
X
X
X
X
b11
A11
A11
X
X
X
X
b10
A10
A10
X
0
1
0
b9
A9
A9
X
X
X
X
b8
A8
A8
X
X
X
X
b7
A7
A7
X
X
X
X
b6
A6
A6
X
X
X
X
b5
A5
A5
X
X
X
X
b4
A4
A4
A4
A4
X
X
b3
A3
A3
A3
A3
X
X
b2
A2
A2
A2
A2
X
X
b1
A1
A1
A1
A1
X
X
b0
A0
A0
A0
A0
X
X
A: significant address bit.
X: bit is don’t Care.
page 8/39
M24C32-A125
Identification page
3.6
Identification page
The M24C32-A125 offers an identification page (32 byte) in addition to the 32 Kbit memory.
The identification page contains two fields:
•
Device identification code: the first three bytes are programmed by STMicroelectronics with the device
identification code, as shown in Table 4.
•
Application parameters: the bytes after the device identification code are available for application specific
data.
Note:
If the end application does not need to read the device identification code, this field can be overwritten and used
to store application-specific data. Once the application-specific data are written in the identification page, the
whole identification page should be permanently locked in read-only mode.
The instructions read, write and lock identification page are detailed in Section 4 Instructions.
Table 4. Device identification code
Address in
Content
identification page
DS9133 - Rev 8
Value
00h
ST manufacturer code
20h
01h
I2C family code
E0h
02h
Memory density code
0Ch (32 Kbit)
page 9/39
M24C32-A125
Instructions
4
Instructions
4.1
Write operations
For a write operation, the bus master sends a start condition followed by a device select code with the R/W bit
reset to 0. The device acknowledges this, as shown in Figure 5, and waits for the master to send two address
bytes (most significant address byte sent first, followed by the least significant address byte (Table 3). The device
responds to each address byte with an acknowledge bit, and then waits for the data byte.
When the bus master generates a stop condition immediately after a data byte ACK bit (in the “10th bit” time slot),
either at the end of a byte write or a page write, the internal write cycle tW is then triggered. A stop condition at
any other time slot does not trigger the internal write cycle.
During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any
requests.
After the successful completion of an internal write cycle (tW), the device internal address counter is automatically
incremented to point to the next byte after the last modified byte.
If the Write control input (WC) is driven high, the write instruction is not executed and the accompanying data
bytes are not acknowledged, as shown in Figure 6.
DS9133 - Rev 8
page 10/39
M24C32-A125
Write operations
4.1.1
Byte Write
After the device select code and the address bytes, the bus master sends one data byte. If the addressed location
is write-protected, by write control (WC) being driven high, the device replies with NoACK, and the location is not
modified (see Figure 6). If, instead, the addressed location is not write-protected, the device replies with ACK. The
bus master terminates the transfer by generating a stop condition, as shown in Figure 5.
Figure 5. Write mode sequences with WC = 0 (data write enabled)
WC
ACK
Byte addr
ACK
ACK
Data in
Byte addr
Stop
Dev sel
Start
Byte Write
ACK
RW
WC
ACK
Dev sel
Start
Page Write
ACK
Byte addr
ACK
Byte addr
ACK
Data in 1
Data in 2
RW
WC (cont’d)
ACK
Data in N
Stop
Page Write (cont’d)
ACK
DS9133 - Rev 8
page 11/39
M24C32-A125
Write operations
4.1.2
Page Write
The page write mode allows up to N (N is the number of bytes in a page) bytes to be written in a single write
cycle, provided that they are all located in the same page in the memory: that is, the most significant memory
address bits, A15/A5, are the same. If more bytes are sent than will fit up to the end of the page, a condition
known as “roll-over” occurs. In case of roll-over, the first bytes of the page are overwritten.
The bus master sends from 1 to N bytes of data, each of which is acknowledged by the device if write control
(WC) is low. If write control (WC) is high, the contents of the addressed memory location are not modified, and
each data byte received by the device is not acknowledged, as shown in Figure 6. After each byte is transferred,
the internal byte address counter is incremented. The transfer is terminated by the bus master generating a Stop
condition.
Figure 6. Write mode sequences with WC = 1 (data write inhibited)
WC
Byte write
WC
Page write
WC (cont’d)
Page write (cont’d)
4.1.3
Write identification page
The identification page (32 byte) is an additional page which can be written and (later) permanently locked in
read-only mode. It is written by issuing the write identification page instruction. This instruction uses the same
protocol and format as page write (into memory array), except for the following differences:
•
Device type identifier = 1011b
•
Most significant address bits A15/A5 are don't care, except for address bit A10 which must be “0”. Least
significant address bits A4/A0 define the byte location inside the identification page.
DS9133 - Rev 8
page 12/39
M24C32-A125
Write operations
If the identification page is locked, the data bytes transferred during the write identification page instruction are not
acknowledged (NoACK).
4.1.4
Lock identification page
The lock identification page instruction (lock ID) permanently locks the identification page in read-only mode. The
lock ID instruction is similar to byte write (into memory array) with the following specific conditions:
•
Device type identifier = 1011b
•
Address bit A10 must be ‘1’; all other address bits are don't care
•
The data byte must be equal to the binary value xxxx xx1x, where x is don't care
4.1.5
Minimizing write delays by polling on ACK
The maximum write time (tw) is shown in AC characteristics of Table 11 and Table 12 in Section 8 DC and
AC parameters, but the typical time is shorter. To make use of this, a polling sequence can be used by the bus
master.
The sequence, as shown in Figure 7, is:
•
Initial condition: a write cycle is in progress.
•
Step 1: the bus master issues a start condition followed by a device select code (the first byte of the new
instruction).
•
Step 2: if the device is busy with the internal write cycle, noACK is returned and the bus master goes back
to step 1. If the device has terminated the internal write cycle, it responds with an ACK, indicating that the
device is ready to receive the second part of the instruction (the first byte of this instruction having been sent
during step 1).
DS9133 - Rev 8
page 13/39
M24C32-A125
Write operations
Figure 7. Write cycle polling flowchart using ACK
Write cycle
in progress
Start condition
Device select
with RW = 0
NO
ACK
returned
YES
First byte of instruction
with RW = 0 already
decoded by the device
NO
Next
operation is
addressing the
memory
YES
Send address
and receive ACK
Re-start
Stop
1.
DS9133 - Rev 8
NO
StartCondition
YES
Data for the
write operation
Device select
with RW = 1
Continue the
write operation
Continue the
random read operation
The seven most significant bits of the device select code of a random read (bottom right box in the Figure 7)
must be identical to the seven most significant bits of the device select code of the write (polling instruction
in the Figure 7).
page 14/39
M24C32-A125
Read operations
4.2
Read operations
Read operations are performed independently of the state of the write control (WC) signal.
After the successful completion of a read operation, the device internal address counter is incremented by one, to
point to the next byte address.
Figure 8. Read mode sequences
ACK
NO ACK
Current address read
Data out
Stop
Start
Dev sel
R/W
ACK
ACK
ACK
ACK
NO ACK
Random address read
Byte addr
Dev sel *
R/W
ACK
ACK
ACK
Data out
Stop
Byte addr
Start
Start
Dev sel *
R/W
NO ACK
Sequential current read
Data out 1
Data out N
Stop
Start
Dev sel
R/W
ACK
ACK
ACK
ACK
ACK
Sequential random read
Byte addr
R/W
ACK
Byte addr
Dev sel *
Start
Start
Dev sel *
Data out1
R/W
NO ACK
Stop
Data out N
Note:
The seven most significant bits of the first device select code of a random read must be identical to the seven
most significant bits of the device select code of the write.
4.2.1
Random address read
The random address read is a sequence composed of a truncated write sequence (to define a new address
pointer value, see Table 3) followed by a current read.
The random address read sequence is therefore the sum of [start + device select code with RW=0 + two address
bytes] (without stop condition, as shown in Figure 8)] and [start condition + device select code with RW=1]. The
memory device acknowledges the sequence and then outputs the contents of the addressed byte. To terminate
the data transfer, the bus master does not acknowledge the last data byte and then issues a stop condition.
DS9133 - Rev 8
page 15/39
M24C32-A125
Read operations
4.2.2
Current address read
For the current address read operation, following a start condition, the bus master only sends a device select
code with the R/W bit set to 1. The device acknowledges this, and outputs the byte pointed by the internal
address counter. The counter is then incremented. The bus master terminates the transfer with a stop condition,
as shown in Figure 8, without acknowledging the byte.
Note that the address counter value is defined by instructions accessing either the memory or the identification
page. When accessing the identification page, the address counter value is loaded with the identification page
byte location, when accessing the memory, it is safer to always use the random address read instruction (this
instruction loads the address counter with the byte location to read in the memory) instead of the current address
read instruction.
4.2.3
Sequential read
A sequential read can be used after a current address read or a random address read.
After a read instruction, the device can continue to output the next byte(s) in sequence if the bus master sends
additional clock pulses and if the bus master does acknowledge each transmitted data byte. To terminate the
stream of bytes, the bus master must not acknowledge the last byte, and must generate a stop condition, as
shown in Figure 8.
The sequential read is controlled with the device internal address counter which is automatically incremented after
each byte output. After the last memory address, the address counter “rolls-over”, and the device continues to
output data from memory address 00h.
4.2.4
Read identification page
The identification page can be read by issuing a read identification page instruction. This instruction uses the
same protocol and format as the random address read (from memory array) with device type identifier defined as
1011b. The most significant address bits A15/A5 are don't care and the least significant address bits A4/A0 define
the byte location inside the identification page. The number of bytes to read in the ID page must not exceed the
page boundary.
4.2.5
Read the lock status
The locked/unlocked status of the identification page can be checked by transmitting a specific truncated
command [identification page write instruction + one data byte] to the device. The device returns an acknowledge
bit after the data byte if the identification page is unlocked, otherwise a NoACK bit if the identification page is
locked.
Right after this, it is recommended to transmit to the device a start condition followed by a stop condition, so that:
•
Start: the truncated command is not executed because the start condition resets the device internal logic,
•
Stop: the device is then set back into standby mode by the stop condition.
4.2.6
Acknowledge in read mode
For all read instructions, the device waits, after each byte sent out, for an acknowledgement during the 9th bit
time. If the bus master does not send the ACK (the master drives SDA high during the 9th bit time), the device
terminates the data transfer and enters its standby mode.
DS9133 - Rev 8
page 16/39
M24C32-A125
Application design recommendations
5
Application design recommendations
5.1
Supply voltage
5.1.1
Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified
[VCC(min), VCC(max)] range must be applied.
This voltage must remain stable and valid until the end of the transmission of the instruction and, for a write
instruction, until the completion of the internal write cycle (tW). In order to secure a stable DC supply voltage, it is
recommended to decouple the VCC line with a suitable capacitor (usually of the order of 10 nF to 100 nF) close to
the VCC/VSS package pins.
5.1.2
Power-up conditions
When the power supply is turned on, the VCC voltage has to rise continuously from 0 V up to the minimum VCC
operating voltage.
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR) circuit is included.
At power-up, the device does not respond to any instruction until VCC reaches the internal threshold voltage.
When VCC passes over the POR threshold, the device is reset and in the following state:
•
•
in the standby power mode
deselected
As soon as the VCC voltage has reached a stable value within the [VCC(min), VCC(max)] range, the device is
ready for operation.
5.1.3
Power-down
During power-down (continuous decrease in the VCC supply voltage below the minimum VCC operating voltage,
the device must be in standby power mode (that is after a stop condition or after the completion of the write cycle
tW if an internal write cycle is in progress).
5.2
Cycling with error correction code (ECC)
The error correction code (ECC) is an internal logic function which is transparent for the I2C communication
protocol.
The ECC logic is implemented on each group of four EEPROM bytes (a group of four bytes is located at
addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer). Inside a group, if a single bit out of the four bytes
happens to be erroneous during a read operation, the ECC detects this bit and replaces it with the correct value.
The read reliability is therefore much improved.
Even if the ECC function is performed on groups of four bytes, a single byte can be written/cycled independently.
In this case, the ECC function also writes/cycles the three other bytes located in the same group (a group of
four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer). As a consequence, the
maximum cycling budget is defined at group level and the cycling can be distributed over the four byte of the
group: the sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain below the
maximum value defined in Table 6.
Example 1: maximum cycling limit reached with 1 million cycles per byte
Each byte of a group can be equally cycled 1 million times (at 25 °C) so that the group cycling budget is 4 million
cycles.
Example 2: maximum cycling limit reached with unequal byte cycling
Inside a group, byte0 can be cycled 2 million times, byte1 can be cycled 1 million times, byte2 and byte3 can be
cycled 500,000 times, so that the group cycling budget is 4 million cycles.
DS9133 - Rev 8
page 17/39
M24C32-A125
Delivery state
6
Delivery state
The device is delivered as follows:
•
The memory array is set to all 1s (each byte = FFh).
•
Identification page: the first three bytes define the device identification code (value defined in Table 4). The
content of the following bytes is "Don’t Care".
DS9133 - Rev 8
page 18/39
M24C32-A125
Maximum rating
7
Maximum rating
Stressing the device outside the ratings listed in Table 5 may cause permanent damage to the device. These
are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in
the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 5. Absolute maximum ratings
Symbol
Parameter
Min.
Max.
Unit
-
Ambient operating temperature
–40
130
°C
TSTG
Storage temperature
–65
150
°C
TLEAD
Lead temperature during soldering
VIO
Input or output range
IOL
DC output current (SDA = 0)
VCC
Supply voltage
VESD
Electrostatic pulse (Human Body model) (2)
see note (1)
°C
–0.50
6.5
V
-
5
mA
–0.50
6.5
V
-
4000
V
1. Compliant with JEDEC Standard J-STD-020 (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK 7191395
specification, and the European directive on Restrictions of Hazardous Substances (RoHS directive 2011/65/EU of July
2011).
2. Positive and negative pulses applied on pin pairs, according to AEC-Q100-002 (compliant with ANSI/ESDA/JEDEC JS-001,
C1=100 pF, R1=1500 Ω, R2=500 Ω).
DS9133 - Rev 8
page 19/39
M24C32-A125
DC and AC parameters
8
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the
device.
Table 6. Cycling performance by groups of four bytes
Symbol
Ncycle
Parameter
Write cycle endurance (1)
Test condition
Min.
Max.
Unit
TA ≤ 25 °C, 1.7 V < VCC < 5.5 V
-
4,000,000
TA = 85 °C, 1.7 V < VCC < 5.5 V
-
1,200,000
TA = 125 °C, 1.7 V < VCC < 5.5 V
-
600,000
Write cycle (2)
1. The write cycle endurance is defined for groups of four data bytes located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where
N is an integer, or for the status register byte (refer also to Section 5.2 Cycling with error correction code (ECC)). The write
cycle endurance is defined by characterization and qualification.
2. A write cycle is executed when either a page write, a byte write, a write identification page or a lock identification page
instruction is decoded. When using those write instructions, refer also to Section 5.2 Cycling with error correction code
(ECC).
Table 7. Operating conditions (voltage range R, device grade 3)
Symbol
VCC
TA
Parameter
Min.
Max.
Unit
Supply voltage
1.7
5.5
V
Ambient operating temperature
–40
125
°C
Table 8. AC measurement conditions
Symbol
Min.
Max.
Unit
Load capacitance
-
100
pF
-
SCL input rise/fall time, SDA input fall time
-
50
ns
-
Input levels
0.2 VCC to 0.8 VCC
V
-
Input and output timing reference levels
0.3 VCC to 0.7 VCC
V
Cbus
Parameter
Figure 9. AC measurement I/O waveform
Input voltage levels
0.8VCC
0.2VCC
DS9133 - Rev 8
Input and output
Timing reference levels
0.7VCC
0.3V CC
page 20/39
M24C32-A125
DC and AC parameters
Table 9. Input parameters
Symbol
Parameter (1)
Test condition
Min.
Max.
Unit
CIN
Input capacitance (SDA)
-
-
8
pF
CIN
Input capacitance (other pins)
-
-
6
pF
VIN < 0.3 VCC
30
-
kΩ
VIN > 0.7 VCC
500
-
kΩ
ZL
ZH
Input impedance (E2, E1, E0, WC) (2)
1. Evaluated by characterization - not tested in production.
2. E2, E1, E0 input impedance when the memory is selected (after a Start condition).
DS9133 - Rev 8
page 21/39
M24C32-A125
Table 10. DC characteristics
Symbol
ILI
ILO
ICC
ICC0
Parameter
Test conditions (in addition to those in Table 7 and Table 8)
±2
µA
µA
device in Standby mode
Output leakage current
SDA in Hi-Z, external voltage applied on SDA: VSS or VCC
-
±2
fC = 400 kHz, VCC = 5.5 V
-
2
fC = 400 kHz, VCC = 2.5 V
-
2
fC = 400 kHz, VCC = 1.7 V
-
1
fC = 1 MHz, VCC = 5.5 V
-
2
fC = 1 MHz, VCC = 2.5 V
-
2
fC = 1 MHz, VCC = 1.7 V
-
2
During tW
-
2
-
1
-
2
-
3
-
15
-
15
-
20
Supply current (Read)
Supply current (Write)
VIN = VSS or VCC, VCC = 2.5 V
Device not selected(1), t° = 85 °C,
Standby supply current
VIN = VSS or VCC, VCC = 5.5 V
Device not selected(1), t° = 125 °C,
VIN = VSS or VCC, VCC = 1.7 V
Device not selected(1), t° = 125 °C,
VIN = VSS or VCC, VCC = 2.5 V
Device not selected(1), t° = 125 °C,
VIN = VSS or VCC, VCC = 5.5 V
VOL
-
(SCL, SDA, E2, E1, E0)
Device not selected(1), t° = 85 °C,
VIH
Unit
VIN = VSS or VCC,
VIN = VSS or VCC, VCC = 1.7 V
VIL
Max.
Input leakage current
Device not selected(1), t° = 85 °C,
ICC1
Min.
mA
mA
μA
μA
Input low voltage (SCL, SDA, WC )
-
–0.45
0.3 VCC
V
Input high voltage (SCL, SDA)
-
0.7 VCC
6.5
V
Input high voltage (WC , E2, E1, E0)
-
0.7 VCC VCC +0.6
Output low voltage
VRES (2) Internal reset threshold voltage
IOL = 2.1 mA, VCC = 2.5 V or IOL = 3 mA, VCC = 5.5 V
-
0.4
IOL = 1 mA, VCC = 1.7 V
-
0.3
0.5
1.5
-
V
V
V
1. The device is not selected after power-up, after a read instruction (after the stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a write instruction).
2. Evaluated by characterization - not tested in production.
DS9133 - Rev 8
page 22/39
M24C32-A125
Table 11. 400 kHz AC characteristics
Parameter (1)
Symbol
Alt.
Min.
Max.
Unit
fC
fSCL
Clock frequency
-
400
kHz
tCHCL
tHIGH
Clock pulse width high
600
-
ns
tCLCH
tLOW
Clock pulse width low
1300
-
ns
tQL1QL2 (2)
tF
SDA (out) fall time (3)
20
120
ns
tXH1XH2
tR
Input signal rise time
(4)
(4)
ns
tXL1XL2
tF
Input signal fall time
(4)
(4)
ns
tDXCX
tSU:DAT
Data in set up time
100
-
ns
tCLDX
tHD:DAT
Data in hold time
0
-
ns
tCLQX (5)
tDH
Data out hold time
100
-
ns
tCLQV (6)
tAA
Clock low to next data valid (access time)
-
900
ns
tCHDL
tSU:STA
Start condition setup time
600
-
ns
tDLCL
tHD:STA
Start condition hold time
600
-
ns
tCHDH
tSU:STO
Stop condition set up time
600
-
ns
tDHDL
tBUF
Time between Stop condition and next Start condition
1300
-
ns
tWLDL (2)(7)
tSU:WC
WC set up time (before the Start condition)
0
-
µs
tW(2) (8)
tHD:WC
WC hold time (after the Stop condition)
1
-
µs
tW
tWR
Write time
-
4
ms
tNS (2)
-
Pulse width ignored (input filter on SCL and SDA) - single glitch
-
80
ns
1. Test conditions (in addition to those in Table 7 and Table 8).
2. Evaluated by characterization - not tested in production.
3. With CL = 10 pF.
4. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the I²C specification
that the input signal rise and fall times be more than 20 ns and less than 300 ns when fC < 400 kHz.
5. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of
SDA.
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or 0.7VCC, assuming
that Rbus × Cbus time constant is within the values specified in Figure 10.
7. WC =0 set up time condition to enable the execution of a WRITE command.
8. WC=0 hold time condition to enable the execution of a WRITE command.
DS9133 - Rev 8
page 23/39
M24C32-A125
Table 12. 1 MHz AC characteristics
Parameter (1)
Symbol
Alt.
Min.
Max.
Unit
fC
fSCL
Clock frequency
-
1
MHz
tCHCL
tHIGH
Clock pulse width high
260
-
ns
tCLCH
tLOW
Clock pulse width low
400
-
ns
tXH1XH2
tR
Input signal rise time
(2)
(2)
ns
tXL1XL2
tF
Input signal fall time
(2)
(2)
ns
tQL1QL2 (3)
tF
SDA (out) fall time
-
120
ns
tDXCX
tSU:DAT
Data in setup time
50
-
ns
tCLDX
tHD:DAT
Data in hold time
0
-
ns
tCLQX (4)
tDH
Data out hold time
100
-
ns
tCLQV (5)
tAA
Clock low to next data valid (access time)
-
450
ns
tCHDL
tSU:STA
Start condition setup time
250
-
ns
tDLCL
tHD:STA
Start condition hold time
250
-
ns
tCHDH
tSU:STO
Stop condition setup time
250
-
ns
tDHDL
tBUF
Time between Stop condition and next Start condition
500
-
ns
tWLDL (6) (3)
tSU:WC
WC set up time (before the Start condition)
0
-
µs
tDHWH (7) (3)
tHD:WC
WC hold time (after the Stop condition)
1
-
µs
tW
tWR
Write time
-
4
ms
tNS (3)
-
Pulse width ignored (input filter on SCL and SDA)
-
80
ns
1. Test conditions (in addition to those in Table 7 and Table 8).
2. There is no min. or max. values for the input signal rise and fall times. However, it is recommended by the I²C specification
that the input signal rise and fall times be more than 20 ns and less than 120 ns when fC < 1 MHz.
3. Evaluated by characterization - not tested in production.
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of
SDA.
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or 0.7 VCC, assuming
that the Rbus × Cbus time constant is within the values specified in Figure 11.
6. WC =0 set up time condition to enable the execution of a WRITE command.
7. WC =0 hold time condition to enable the execution of a WRITE command.
DS9133 - Rev 8
page 24/39
M24C32-A125
Figure 10. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum
frequency fC = 400 kHz
Bus line Pull up resistor (kΩ)
100
VCC
The Rbus x Cbus time
constant must be below
the 400 ns time constant
line represented on the left
Rb
us
10
xC
bu
s
00
Here Rbus x Cbus= 120 ns
4
=4
Rbus
I²C bus
master
SCL
M24xxx
SDA
ns
Cbus
1
10
30
100
1000
Bus line capacitor (pF)
Figure 11. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum
frequency fC = 1 MHz
Bus line pull-up resistor (kΩ )
100
10
Rbu
s
xC
bus
The Rbus x Cbus time
constant must be below
the 150 ns time
constant line
represented on the left
= 15
0 ns
4
VCC
Rbus
I²C bus
master
SCL
M24xxx
SDA
Here Rbus x Cbus = 120 ns
Cbus
1
10
30
100
Bus line capacitor (pF)
DS9133 - Rev 8
page 25/39
M24C32-A125
Figure 12. AC waveforms
Start
condition
Start
Stop
condition condition
tXL1XL2
tXH1XH2
tCHCL
tCLCH
SCL
tDLCL
tXL1XL2
SDA In
tCHDL
tXH1XH2
SDA
Input
tCLDX
SDA tDXCH
Change
tCHDH
tDHDL
WC
tDHWH
tWLDL
Stop
condition
Start
condition
SCL
SDA In
tW
tCHDH
tCHDL
Write cycle
tCHCL
SCL
tCLQV
SDA Out
DS9133 - Rev 8
tCLQX
Data valid
tQL1QL2
Data valid
page 26/39
M24C32-A125
Package information
9
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
9.1
TSSOP8 package information
This TSSOP is an 8-lead, 3 x 6.4 mm, 0.65 mm pitch, thin shrink small outline package.
Figure 13. TSSOP8 – Outline
D
8
Package TSSOP8 (package code 6P)
5
k
E1 E
A1
1
L
L1
4
A2
A
c
b
1.
DS9133 - Rev 8
e
6P_TSSOP8_ME_V3
Drawing is not to scale.
page 27/39
M24C32-A125
TSSOP8 package information
Table 13. TSSOP8 – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
D
2.900
3.000
3.100
0.1142
0.1181
0.1220
e
-
0.650
-
-
0.0256
-
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1
4.300
4.400
0.0177
0.1693
0.1732
0.1772
L
0.450
0.600
0.750
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
-
8°
0°
-
8°
aaa
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
Note:
The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the
outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash,
but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash,
protusions or gate burrs is bottom side.
Figure 14. TSSOP8 – Recommended footprint
1.55
0.65
0.40
2.35
5.80
7.35
1.
DS9133 - Rev 8
6P_TSSOP8_FP_V2
Dimensions are expressed in millimeters.
page 28/39
M24C32-A125
SO8N package information
9.2
SO8N package information
This SO8N is an 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package.
Figure 15. SO8N – Outline
Package SO8N (package code O7)
A2
h x 45˚
A
c
b
ccc
e
D
0.25 mm
GAUGE PLANE
SEATING
PLANE
C
k
8
E1
E
1
L
A1
L1
1.
Drawing is not to scale.
Table 14. SO8N – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.750
-
-
0.0689
A1
0.100
-
0.250
0.0039
-
0.0098
A2
1.250
-
-
0.0492
-
-
b
0.280
-
0.480
0.0110
-
0.0189
c
0.100
-
0.230
0.0030
-
0.0091
D(2)
4.800
4.900
5.000
0.1890
0.1929
0.1969
E
5.800
6.000
6.200
0.2283
0.2362
0.2441
E1(3)
3.800
3.900
4.000
0.1496
0.1535
0.1575
e
-
1.270
-
-
0.0500
-
h
0.250
-
0.500
0.0098
-
0.0197
k
0°
-
8°
0°
-
8°
L
0.400
-
1.270
0.0157
-
0.0500
L1
-
1.040
-
-
0.0409
-
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
Note:
DS9133 - Rev 8
The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the
outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash,
but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash,
protusions or gate burrs is bottom side.
page 29/39
M24C32-A125
SO8N package information
Figure 16. SO8N - Recommended footprint
3.9
6.7
0.6 (x8)
1.27
1.
DS9133 - Rev 8
Dimensions are expressed in millimeters.
page 30/39
M24C32-A125
WFDFPN8 (DFN8) package information
9.3
WFDFPN8 (DFN8) package information
This WFDFPN is a 8 lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch dual flat package.
Figure 17. WFDFPN8 (DFN8) – Outline
D2
Package WFDFPN8 (package code A0Y3)
D2/2
Datum Y
D
Pin #1 ID marking
e
A B
Pin #1
E2/2
E2
E
See Z
Detail
2x
K
aaa C
2x
(ND-1) x e
aaa C
Top view
// ccc C
eee C A
Seating plane
L L3
e/2
Detail “Z”
1.
2.
DS9133 - Rev 8
bbb M C A B
ddd M C
Bottom view
Datum Y
e
NX b
L1
C
A1
Side view
Terminal tip
A0Y3_WFDFPN8_ME_V4
Drawing is not to scale.
The central pad (the area E2 by D2 in the above illustration) must be either connected to Vss or left floating
(not connected) in the end application.
page 31/39
M24C32-A125
WFDFPN8 (DFN8) package information
Table 15. WFDFPN8 (DFN8) – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.700
0.750
0.800
0.0276
0.0295
0.0315
A1
0.025
0.045
0.065
0.0010
0.0018
0.0026
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
1.900
2.000
2.100
0.0748
0.0787
0.0827
E
2.900
3.000
3.100
0.1142
0.1181
0.1220
e
-
0.500
-
-
0.0197
-
L1
-
-
0.150
-
-
0.0059
L3
0.300
-
-
0.0118
-
-
D2
1.400
-
1.600
0.0551
-
0.0630
E2
1.200
-
1.400
0.0472
-
0.0551
K
0.400
-
-
0.0157
-
-
L
0.300
-
0.500
0.0118
-
0.0197
NX (2)
8
ND (3)
4
aaa
-
-
0.150
-
-
0.0059
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
-
-
0.080
-
-
0.0031
eee
(4)
1. Values in inches are converted from mm and rounded to four decimal digits.
2. NX is the number of terminals.
3. ND is the number of terminals on “D” sides.
4. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring.
Figure 18. WFDFPN8 (DFN8) – Recommended footprint
1.200
0.300
0.500
1.400
1.300
DS9133 - Rev 8
0.600
page 32/39
M24C32-A125
Ordering information
10
Ordering information
Table 16. Ordering information scheme
Example:
M24 C32-D R MN 3
T P /K
Device type
M24 = I2C serial access EEPROM
Device function
C32-D = 32 Kbit (4096 K x 8 bits) plus identification page
Operating voltage
R = VCC = 1.7 V to 5.5 V
Package(1)
MN = SO8N (150 mil width)
DW = TSSOP8 (169 mil width)
MF = WFDFPN8 (DFN8) (2 x3 mm)
Device grade
3 = -40 to 125 °C. Automotive grade. Device tested with high reliability certified flow(2)
Option
T = Tape and reel packing
blank = tube packing
Planting technology
P or G = ECOPACK2
Process
/K = Manufacturing technology code
1. All packages are ECOPACK2 (RoHS compliant and free of brominated, chlorinated and antimonyoxide flame retardants).
2. The high reliability certified flow (HRCF) is described in quality note QNEE9801. Please ask your nearest ST sales office for
a copy.
Note:
For a list of available options (speed, package, etc.) or for further information on any aspect of the devices,
please contact your nearest ST sales office.
Note:
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and
therefore not yet ready to be used in production and any consequences deriving from such usage will not be at
ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST
Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
DS9133 - Rev 8
page 33/39
M24C32-A125
Revision history
Table 17. Document revision history
Date
Revision
03-Aug-2012
1
Changes
Initial release.
Document reformatted.
Document status changed from “Preliminary data” to “Production data”.
05-Mar-2013
25-Mar-2013
2
3
Updated:
•
Section 3.6: Identification page
•
Section 6: Delivery state
•
ICC, VIL and VRES values in Table 10: DC characteristics
Updated ICC1 and VIL rows in Table 10: DC characteristics.
Added WFDFPN8 (MF) package.
Removed UFDFPN8 (MLP8) package.
05-Sep-2013
4
Updated:
•
Note (1) under Table 5: Absolute maximum ratings.
•
Third waveform in Figure 12: AC waveforms.
Changed Data retention from “40 years at 55 °C” to “50 years at
10-Feb-2014
5
125 °C” in Features.
Updated Figure 15: WFDFPN8 (MLP8) – 8-lead, 2 x 3 mm, 0.5 mm pitch very very thin fine pitch
dual flat package outline.
Updated:
08-Jan-2015
6
•
note 2 on Table 5.
•
Figure 5
•
Table 20 and Table 16
Added sentence related Engineering Sample on Section 10 and note 2 on Figure 5
Updated:
23-Feb-2016
7
•
Features
•
Table 6, Table 10, Figure 15, Table 16
Updated:
06-Jun-2022
8
•
Section Features, Section 2.2 Serial data (SDA), Section 9.1 TSSOP8 package
information, Section 9.2 SO8N package information
•
Figure 1. Logic diagram
•
Table 5. Absolute maximum ratings, Table 3. Significant bits within the two address bytes,
Table 6. Cycling performance by groups of four bytes, Section 9.3 WFDFPN8 (DFN8)
package information, Table 16. Ordering information scheme
Added note in Figure 7 and in Figure 8
DS9133 - Rev 8
page 34/39
M24C32-A125
Contents
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
3
4
2.1
Serial Clock (SCL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3
Chip Enable (E2, E1, E0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4
Write Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3
Data input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4
Acknowledge bit (ACK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5
Device addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6
Identification page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
4.1
4.2
5
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.1
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.2
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3
Write Identification Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.4
Lock Identification Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.5
Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1
Random Address Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.4
Read Identification Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.5
Read the lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.6
Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Application design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
DS9133 - Rev 8
page 35/39
M24C32-A125
Contents
5.1
5.2
Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.1
Operating supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.3
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Cycling with Error Correction Code (ECC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
7
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
8
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
9
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
10
9.1
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.3
WFDFPN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
DS9133 - Rev 8
page 36/39
M24C32-A125
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . .
Significant bits within the two address bytes . . . . . . . .
Device identification code . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . .
Cycling performance by groups of four bytes . . . . . . . .
Operating conditions (voltage range R, device grade 3)
AC measurement conditions . . . . . . . . . . . . . . . . . . .
Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .
400 kHz AC characteristics . . . . . . . . . . . . . . . . . . . .
1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . .
TSSOP8 – Mechanical data . . . . . . . . . . . . . . . . . . .
SO8N – Mechanical data . . . . . . . . . . . . . . . . . . . . .
WFDFPN8 (DFN8) – Mechanical data . . . . . . . . . . . .
Ordering information scheme. . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . . . .
DS9133 - Rev 8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 7
. 8
. 9
19
20
20
20
21
22
23
24
28
29
32
33
34
page 37/39
M24C32-A125
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Logic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write mode sequences with WC = 0 (data write enabled) .
Write mode sequences with WC = 1 (data write inhibited).
Write cycle polling flowchart using ACK . . . . . . . . . . . . .
Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . .
AC measurement I/O waveform . . . . . . . . . . . . . . . . . .
Figure 10.
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency fC = 400 kHz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency fC = 1 MHz
AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TSSOP8 – Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TSSOP8 – Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO8N – Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO8N - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WFDFPN8 (DFN8) – Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WFDFPN8 (DFN8) – Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS9133 - Rev 8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 5
11
12
14
15
20
25
26
27
28
29
30
31
32
page 38/39
M24C32-A125
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS9133 - Rev 8
page 39/39