M24C64-W M24C64-R
M24C64-F M24C64-DF
Datasheet
64-Kbit serial I²C bus EEPROMs
Features
•
WLCSP (CS)
WLCSP (CU)
•
SO8N (MN)
UFDFPN5 (MH)
150 mil width
DFN5 - 1.7 x 1.4 mm
•
•
TSSOP8 (DW)
UFDFPN8 (MC)
169 mil width
DFN8 - 2 x 3 mm
Thin WLCSP (CT)
Unsawn wafer
Product status link
M24C64-W
•
•
•
•
•
Compatible with following I2C bus modes:
–
1 MHz
–
400 kHz
–
100 kHz
Memory array:
–
64 Kbit (8 Kbyte) of EEPROM
–
Page size: 32 byte
–
Additional Write lockable page (M24C64-D order codes)
Single supply voltage:
–
1.7 V to 5.5 V over –40 °C / +85 °C
–
1.6 V to 5.5 V over 0 °C / +85 °C
Write:
–
Byte write within 5 ms
–
Page write within 5 ms
Random and sequential read modes
Write protect of the whole memory array
Enhanced ESD/latch-Up protection
More than 4 million write cycles
More than 200-years data retention
Packages
Packages RoHS-compliant and Halogen-free
•
SO8N (ECOPACK2)
•
TSSOP8 (ECOPACK2)
•
UFDFPN (ECOPACK2)
•
WLCSP (ECOPACK2)
•
Unsawn wafer (each die is tested)
M24C64-R
M24C64-F
M24C64-DF
DS6638 - Rev 37 - July 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
M24C64-W M24C64-R M24C64-F M24C64-DF
Description
1
Description
The M24C64 is a 64-Kbit I2C-compatible EEPROM (electrically erasable programmable memory) organized as
8K × 8 bits.
Over an ambient temperature range of -40 °C / +85 °C, the M24C64-W can operate with a supply voltage from
2.5 V to 5.5 V, the M24C64-R can operate with a supply voltage from 1.8 V to 5.5 V, and the M24C64-F and
M24C64-DF can operate with a supply voltage from 1.7 V to 5.5 V ( the M24C64-F can also operate down to 1.6
V, under some restricting conditions).
The M24C64-D offers an additional page, named the identification page (32 byte). The identification page can be
used to store sensitive application parameters which can be (later) permanently locked in read-only mode.
Figure 1. Logic diagram
VCC
3
E0-E2
SDA
M24xxx
SCL
WC
VSS
Table 1. Signal names
Signal name
Function
Direction
E2, E1, E0
Chip enable
Input
SDA
Serial data
I/O
SCL
Serial clock
Input
WC
Write control
Input
VCC
Supply voltage
-
VSS
Ground
-
Figure 2. 8-pin package connections, top view
1.
DS6638 - Rev 37
E0
1
8
VCC
E1
2
7
WC
E2
3
6
SCL
VSS
4
5
SDA
See Section 9 Package information for package dimensions, and how to identify pin 1
page 2/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Description
Figure 3. UFDFPN5 (DFN5) package connections
1.
VCC
1
VSS
2
SDA
3
ABCD
XYZW
5
WC
5
1
2
VSS
2
2
4
SCL
4
3
Top view
Bottom view
(marking side)
(pads side)
Inputs E2, E1 and E0 are not connected, therefore read as (000). Refer to Section 2.3 Chip enable (E2, E1,
E0) for further explanations.
Figure 4. WLCSP 4-bump ultra thin package connections
1
2
2
1
A
VCC
VSS
VSS
VCC
A
B
SCL
SDA
SDA
SCL
B
Marking side
(top view)
1.
Bump side
(bottom view)
MS57081
Inputs E2, E1, E0 are read as (000). Refer to Section 2.3 Chip enable (E2, E1, E0) for further explanations.
Table 2. WLCSP 4-bump signal vs. bump position
Position
A
B
1
VCC
SCL
2
VSS
SDA
Figure 5. WLCSP 5-bump connections
1
A
VCC
3
3
VSS
VSS
WC
SCL
Marking side
(top view)
1.
DS6638 - Rev 37
2
1
VCC
SCL
A
B
SDA
SDA
B
C
2
WC
Bump side
(bottom view)
C
MS35045V2
Inputs E2, E1, E0 are internally connected to (001). Refer to Section 2.3 Chip enable (E2, E1, E0) for further
explanations.
page 3/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Description
Table 3. WLCSP 5-bump signals vs. bump position
Position
A
B
C
1
VCC
-
WC
2
-
SDA
-
3
VSS
-
SCL
Figure 6. WLCSP 8-bump connections
1 2 3 4 5
A
B
C
VCC
WC
SDA
SCL
E1
5 4 3 2 1
E1
VCC
E0
VSS
E0
E2
Marking side (top view)
E2
WC
B
SDA
VSS
A
SCL
C
Bump side (bottom view)
MS35046V2
Table 4. WLCSP 8-bump signals vs. bump position
DS6638 - Rev 37
Position
A
B
C
1
WC
-
SCL
2
-
SDA
-
3
VCC
-
VSS
4
-
E0
-
5
E1
-
E2
page 4/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Signal description
2
Signal description
2.1
Serial clock (SCL)
The signal applied on the SCL input is used to strobe the data available on SDA(in) and to output the data on
SDA(out).
2.2
Serial data (SDA)
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an open drain output
that may be wired-AND with other open drain or open collector signals on the bus. A pull-up resistor must be
connected from serial data (SDA) to VCC (Figure 15 and Figure 16 indicates how to calculate the value of the
pull-up resistor).
2.3
Chip enable (E2, E1, E0)
(E2, E1,E0) input signals are used to set the value that is to be looked for on the three least significant bits (b3,
b2, b1) of the 7-bit device select code (see Table 5. These inputs must be tied to VCC or VSS to establish the
device select code as shown in Figure 7. When not connected (left floating), these inputs are read as low (0, 0, 0).
For the 4-balls WLCSP package (see Figure 4), the (E2,E1,E0) inputs are internally connected to (0, 0, 0).
For the 5-balls WLCSP package (see Figure 5), the (E2,E1,E0) inputs are internally connected to (0,0,1).
Figure 7. Chip enable inputs connection
VCC
VCC
M24xxx
M24xxx
Ei
Ei
VSS
2.4
VSS
Write control (WC)
This input signal is useful for protecting the entire contents of the memory from inadvertent write operations. Write
operations are disabled to the entire memory array when write control (WC) is driven high. Write operations are
enabled when write control (WC) is either driven low or left floating.
When write control (WC) is driven high, device select and address bytes are acknowledged, data bytes are not
acknowledged.
2.5
VSS (ground)
VSS is the reference for all signals, including the VCC supply voltage.
DS6638 - Rev 37
page 5/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Supply voltage (VCC)
2.6
Supply voltage (VCC)
2.6.1
Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified
[VCC(min), VCC(max)] range must be applied (see Operating conditions in Section 8 DC and AC parameters). In
order to secure a stable DC supply voltage, it is recommended to decouple the VCC line with a suitable capacitor
(usually of the order of 10 nF to 100 nF) close to the VCC/VSS package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction and, for a write
instruction, until the completion of the internal write cycle (tW).
2.6.2
Power-up conditions
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage (see Operating
conditions in Section 8 DC and AC parameters).
2.6.3
Device reset
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR) circuit is included.
At power-up, the device does not respond to any instruction until VCC has reached the internal reset
threshold voltage. This threshold is lower than the minimum VCC operating voltage (see Operating conditions
in Section 8 DC and AC parameters). When VCC passes over the POR threshold, the device is reset and enters
the standby power mode; however, the device must not be accessed until VCC reaches a valid and stable DC
voltage within the specified [VCC(min), VCC(max)] range (see Operating conditions in Section 8 DC and AC
parameters).
In a similar way, during power-down (continuous decrease in VCC), the device must not be accessed when VCC
drops below VCC(min). When VCC drops below the power-on-reset threshold voltage, the device stops responding
to any instruction sent to it.
2.6.4
Power-down conditions
During power-down (continuous decrease in VCC), the device must be in the standby power mode (mode reached
after decoding a stop condition, assuming that there is no internal write cycle in progress).
DS6638 - Rev 37
page 6/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Block diagram
3
Block diagram
The block diagram of the device is described below.
Figure 8. Block diagram
SENSE AMPLIFIERS
PAGE LATCHES
ARRAY
SCL
I/O
X DECODER
Y DECODER
DATA REGISTER
+
ECC
SDA
WC
START & STOP
DETECT
Ei
CONTROL
LOGIC
IDENTIFICATION PAGE
HV GENERATOR
+
SEQUENCER
ADDRESS
REGISTER
DS6638 - Rev 37
page 7/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Device operation
4
Device operation
The device supports the I2C protocol. This is summarized in Figure 9. Any device that sends data on to the bus
is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the
data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated
by the bus master, which also provides the serial clock for synchronization. The device is always a slave in all
communications.
Figure 9. I2C bus protocol
SCL
SDA
SDA
Input
START
Condition
SCL
1
SDA
MSB
2
SDA
Change
STOP
Condition
3
7
8
9
ACK
START
Condition
SCL
1
SDA
MSB
2
3
7
8
9
ACK
STOP
Condition
DS6638 - Rev 37
page 8/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Start condition
4.1
Start condition
Start is identified by a falling edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A start
condition must precede any data transfer instruction. The device continuously monitors (except during a write
cycle) serial data (SDA) and serial clock (SCL) for a start condition.
4.2
Stop condition
Stop is identified by a rising edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A stop
condition terminates communication between the device and the bus master. A read instruction that is followed by
NoAck can be followed by a stop condition to force the device into the standby mode.
A stop condition at the end of a write instruction triggers the internal write cycle.
4.3
Data input
During data input, the device samples serial data (SDA) on the rising edge of serial clock (SCL). For correct
device operation, serial data (SDA) must be stable during the rising edge of serial clock (SCL), and the serial data
(SDA) signal must change only when serial clock (SCL) is driven low.
4.4
Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master
or slave device, releases serial data (SDA) after sending eight bits of data. During the 9th clock pulse period, the
receiver pulls serial data (SDA) low to acknowledge the receipt of the eight data bits.
DS6638 - Rev 37
page 9/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Device addressing
4.5
Device addressing
To start communication between the bus master and the slave device, the bus master must initiate a Start
condition. Following this, the bus master sends the device select code, shown in Table 5 (most significant bit first).
Table 5. Device select code
Device type identifier(1)
Chip Enable address(2)
RW
b7
b6
b5
b4
b3
b2
b1
b0
Device select code when addressing the memory array
1
0
1
0
E2
E1
E0
RW
Device select code when accessing the identification page
1
0
1
1
E2
E1
E0
RW
1. The MSB, b7, is sent first.
2. E0, E1 and E2 are compared with the value read on input pins E0, E1 and E2.
When the device select code is received, the device only responds if the chip enable address is the same as the
value on its chip enable E2,E1,E0 inputs.
The 8th bit is the Read/Write bit (RW). This bit is set to 1 for read and 0 for write operations.
If a match occurs on the device select code, the corresponding device gives an acknowledgement on serial data
(SDA) during the 9th bit time. If the device does not match the device select code, it deselects itself from the bus,
and goes into standby mode.
DS6638 - Rev 37
page 10/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Instructions
5
Instructions
5.1
Write operations
Following a start condition the bus master sends a device select code with the R/W bit (RW) reset to 0. The
device acknowledges this, as shown in Figure 10, and waits for two address byte. The device responds to each
address byte with an acknowledge bit, and then waits for the data byte.
Table 6. Most significant address byte
A7
A6
A5
A4
A3
A2
A1
A0
A1
A0
Table 7. Least significant address byte
A7
A6
A5
A4
A3
A2
When the bus master generates a stop condition immediately after a data byte Ack bit (in the “10th bit” time slot),
either at the end of a byte write or a page write, the internal write cycle tW is triggered. A stop condition at any
other time slot does not trigger the internal write cycle.
After the stop condition and the successful completion of an internal write cycle (tW), the device internal address
counter is automatically incremented to point to the next byte after the last modified byte.
During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any
requests.
If the write control input (WC) is driven high, the write instruction is not executed and the accompanying data
bytes are not acknowledged, as shown in Figure 11.
DS6638 - Rev 37
page 11/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Write operations
5.1.1
Byte write
After the device select code and the address bytes, the bus master sends one data byte. If the addressed location
is write-protected, by write control (WC) being driven high, the device replies with NoAck, and the location is not
modified. If, instead, the addressed location is not write-protected, the device replies with Ack. The bus master
terminates the transfer by generating a stop condition, as shown in Figure 10.
Figure 10. Write mode sequences with WC = 0 (data write enabled)
WC
ACK
ACK
Data in
Stop
Byte address
Dev Select
Start
Byte Write
ACK
R/W
WC
ACK
Dev Select
Start
Page Write
ACK
Byte address
ACK
Data in 1
ACK
Data in 2
Data in 3
R/W
WC (cont'd)
ACK
Data in N
Stop
Page Write(cont'd)
ACK
DS6638 - Rev 37
page 12/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Write operations
5.1.2
Page write
The page write mode allows up to 32 byte to be written in a single write cycle, provided that they are all located
in the same page in the memory: that is, the most significant memory address bits, A15/A5, are the same. If more
bytes are sent than fit up to the end of the page, a “roll-over” occurs, i.e. the bytes exceeding the page end are
written on the same page, from location 0.
The bus master sends from 1 to 32 byte of data, each of which is acknowledged by the device if write control
(WC) is low. If write control (WC) is high, the contents of the addressed memory location are not modified, and
each data byte is followed by a NoAck, as shown in Figure 11. After each transferred byte, the internal page
address counter is incremented.
The transfer is terminated by the bus master generating a stop condition.
Figure 11. Write mode sequences with WC = 1 (data write inhibited)
WC
ACK
Byte address
NO ACK
Data in
Stop
Dev select
Start
Byte Write
ACK
R/W
WC
ACK
Dev select
Start
Page Write
ACK
Byte address
NO ACK
Data in 1
NO ACK
Data in 2
Data in 3
R/W
WC (cont'd)
NO ACK
Data in N
Stop
Page Write(cont'd)
NO ACK
AI02803d_dita
DS6638 - Rev 37
page 13/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Write operations
5.1.3
Write identification page (M24C64-D only)
The identification page (32 byte) is an additional page which can be written and (later) permanently locked in
read-only mode. It is written by issuing the write identification page instruction. This instruction uses the same
protocol and format as page write (into memory array), except for the following differences:
•
•
Device type identifier = 1011b
MSB address bits A15/A5 are don't care except for address bit A10 which must be ‘0’. LSB address bits
A4/A0 define the byte address inside the identification page.
If the identification page is locked, the data bytes transferred during the write identification page instruction are not
acknowledged (NoAck).
5.1.4
Lock identification page (M24C64-D only)
The lock identification page instruction (Lock ID) permanently locks the identification page in read-only mode. The
lock ID instruction is similar to byte write (into memory array) with the following specific conditions:
•
•
•
5.1.5
Device type identifier = 1011b
Address bit A10 must be ‘1’; all other address bits are don't care
The data byte must be equal to the binary value xxxx xx1x, where x is don't care
ECC (error correction code) and write cycling
The ECC is offered only in devices identified with process letter K, all other devices (identified with a different
process letter) do not embed the ECC logic.
The error correction code (ECC) is an internal logic function which is transparent for the I2C communication
protocol.
The ECC logic is implemented on each group of four EEPROM bytes (A group of four bytes is located at
addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer). Inside a group, if a single bit out of the four bytes
happens to be erroneous during a read operation, the ECC detects this bit and replaces it with the correct value.
The read reliability is therefore much improved.
Even if the ECC function is performed on groups of four bytes, a single byte can be written/cycled independently.
In this case, the ECC function also writes/cycles the three other bytes located in the same group (A group of
four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer). As a consequence, the
maximum cycling budget is defined at group level and the cycling can be distributed over the 4 bytes of the group:
the sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain below the maximum
value defined Table 14.
DS6638 - Rev 37
page 14/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Write operations
5.1.6
Minimizing write delays by polling on ACK
During the internal Write cycle, the device disconnects itself from the bus, and writes a copy of the data from
its internal latches to the memory cells. The maximum write time (tw) is shown in AC characteristics tables in
Section 8 DC and AC parameters, but the typical time is shorter. To make use of this, a polling sequence can be
used by the bus master.
The sequence, as shown in Figure 12, is:
•
•
•
Initial condition: a write cycle is in progress.
Step 1: the bus master issues a Start condition followed by a device select code (the first byte of the new
instruction).
Step 2: if the device is busy with the internal write cycle, no Ack is returned and the bus master goes back
to step 1. If the device has terminated the internal write cycle, it responds with an Ack, indicating that the
device is ready to receive the second part of the instruction (the first byte of this instruction having been sent
during Step 1).
Figure 12. Write cycle polling flowchart using ACK
Write cycle
in progress
Start condition
Device select
with RW = 0
NO
ACK
returned
YES
First byte of instruction
with RW = 0 already
decoded by the device
NO
Next
operation is
addressing the
memory
YES
Send address
and receive ACK
Re-start
Stop
1.
DS6638 - Rev 37
NO
StartCondition
YES
Data for the
write operation
Device select
with RW = 1
Continue the
write operation
Continue the
random read operation
The seven most significant bits of the device select code of a random read (bottom right box in the
Figure 12) must be identical to the seven most significant bits of the device select code of the write (polling
instruction in the Figure 12).
page 15/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Read operations
5.2
Read operations
Read operations are performed independently of the state of the write control (WC) signal.
After the successful completion of a read operation, the device internal address counter is incremented by one, to
point to the next byte address.
For the read instructions, after each byte read (data out), the device waits for an acknowledgement (data in)
during the 9th bit time. If the bus master does not acknowledge during this 9th time, the device terminates the data
transfer and switches to its standby mode after a stop condition.
Figure 13. Read mode sequences
ACK
Data out
Stop
Start
Dev select
R/W
ACK
Start
Dev select *
Byte address
R/W
ACK
Sequential Current Read
Dev select *
NO ACK
Data out
R/W
ACK
ACK
Data out 1
NO ACK
Data out N
Stop
Start
Dev select
R/W
ACK
Start
Dev select *
ACK
Byte address
R/W
ACK
ACK
Dev select *
Start
Sequential Random Read
ACK
Start
Random Address Read
ACK
Stop
Current Address Read
NO ACK
ACK
Data out 1
R/W
NO ACK
Stop
Data out N
Note:
DS6638 - Rev 37
The seven most significant bits of the first device select code of a random read must be identical to the seven
most significant bits of the device select code of the write.
page 16/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Read operations
5.2.1
Random address read
A dummy write is first performed to load the address into this address counter (as shown in Figure 13) but without
sending a stop condition. Then, the bus master sends another start condition, and repeats the device select code,
with the RW bit set to 1. The device acknowledges this, and outputs the contents of the addressed byte. The bus
master must not acknowledge the byte, and terminates the transfer with a stop condition.
5.2.2
Current address read
For the current address read operation, following a start condition, the bus master only sends a device select
code with the R/W bit set to 1. The device acknowledges this, and outputs the byte addressed by the internal
address counter. The counter is then incremented. The bus master terminates the transfer with a stop condition,
as shown in Figure 13, without acknowledging the byte.
Note that the address counter value is defined by instructions accessing either the memory or the Identification
page. When accessing the Identification page, the address counter value is loaded with the byte location in the
Identification page, therefore the next Current Address Read in the memory uses this new address counter value.
When accessing the memory, it is safer to always use the Random Address Read instruction (this instruction
loads the address counter with the byte location to read in the memory, see Section 5.2.1 Random address read)
instead of the Current Address Read instruction.
5.2.3
Sequential read
This operation can be used after a current address read or a random address read. The bus master does
acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the
next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and
must generate a Stop condition, as shown in Figure 13.
The output data comes from consecutive addresses, with the internal address counter automatically incremented
after each byte output. After the last memory address, the address counter “rolls-over”, and the device continues
to output data from memory address 00h.
5.2.4
Read identification page (M24C64-D only)
The Identification Page (32 bytes) is an additional page which can be written and (later) permanently locked in
Read-only mode.
The identification page can be read by issuing an read identification page instruction. This instruction uses the
same protocol and format as the random address read (from memory array) with device type identifier defined as
1011b. The MSB address bits A15/A5 are don't care, the LSB address bits A4/A0 define the byte address inside
the identification page. The number of bytes to read in the ID page must not exceed the page boundary (e.g.:
when reading the identification page from location 10d, the number of bytes should be less than or equal to 22, as
the ID page boundary is 32 bytes).
5.2.5
Read the lock status (M24C64-D only)
The locked/unlocked status of the identification page can be checked by transmitting a specific truncated
command [identification page write instruction + one data byte] to the device. The device returns an acknowledge
bit if the identification page is unlocked, otherwise a NoAck bit if the identification page is locked.
Right after this, it is recommended to transmit to the device a start condition followed by a stop condition, so that:
•
•
DS6638 - Rev 37
Start: the truncated command is not executed because the start condition resets the device internal logic,
Stop: the device is then set back into standby mode by the stop condition.
page 17/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Initial delivery state
6
Initial delivery state
The device is delivered with all the memory array bits and identification page bits set to 1 (each byte contains
FFh).
When delivered in unsawn wafer, all memory bits are set to 1 (each memory byte contains FFh) except the last
byte located at address 1FFFh which is written with the value 22h.
DS6638 - Rev 37
page 18/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Maximum rating
7
Maximum rating
Stressing the device outside the ratings listed in Table 8 may cause permanent damage to the device. These
are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in
the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 8. Absolute maximum ratings
Symbol
Min.
Max.
Unit
Ambient operating temperature
-40
130
°C
TSTG
Storage temperature
-65
150
°C
TLEAD
Lead temperature during soldering
-
Parameter
IOL
DC output current (SDA = 0)
VIO
see note (1)
°C
–
5
mA
Input or output range
-0.50
6.5
V
VCC
Supply voltage
-0.50
6.5
V
VESD
Electrostatic pulse (human body model)(2)
–
3000(3)
V
1. Compliant with JEDEC Std J-STD-020 (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK 7191395
specification, and the European directive on Restrictions of Hazardous Substances (RoHS directive 2011/65/EU of July
2011).
2. Positive and negative pulses applied on different combinations of pin connections, according to ANSI/ESDA/JEDEC JS-001
(C1=100 pF, R1=1500 Ω).
3. 4000 V for devices identified with process letter K.
DS6638 - Rev 37
page 19/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
8
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the
device.
Table 9. Operating conditions (voltage range W)
Symbol
Min.
Max.
Unit
Supply voltage
2.5
5.5
V
TA
Ambient operating temperature
–40
85
°C
fC
Operating clock frequency
-
1
MHz
Min.
Max.
Unit
Supply voltage
1.8
5.5
V
TA
Ambient operating temperature
–40
85
°C
fC
Operating clock frequency
-
1
MHz
VCC
Parameter
Table 10. Operating conditions (voltage range R)
Symbol
VCC
Parameter
Table 11. Operating conditions (voltage range F)
Symbol
VCC
TA
fC
Parameter
Min.
Max.
Unit
1.7
5.5
V
-40
-40
85
0
-40
85
1.6(1)
Ambient operating temperature: READ
Ambient operating temperature: WRITE
Supply voltage
Operating clock frequency, VCC ≥ 1.6 V(1)
-
400
Operating clock frequency, VCC ≥ 1.7 V
-
1000
°C
kHz
1. Only for devices identified with process letter T.
Table 12. AC measurement conditions
Symbol
Min.
Max.
Unit
Load capacitance
-
100
pF
-
SCL input rise/fall time, SDA input fall time
-
50
ns
-
Input levels
0.2 VCC to 0.8 VCC
V
-
Input and output timing reference levels
0.3 VCC to 0.7 VCC
V
Cbus
DS6638 - Rev 37
Parameter
page 20/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
Figure 14. AC measurement I/O waveform
Input voltage levels
Input and output
Timing reference levels
0.8VCC
0.7VCC
0.3V CC
0.2VCC
Table 13. Input parameters
Parameter(1)
Symbol
Test condition
Min.
Max.
Unit
CIN
Input capacitance (SDA)
-
-
8
pF
CIN
Input capacitance (other pins)
-
-
6
pF
VIN < 0.3 VCC
30
-
kΩ
VIN > 0.7 VCC
500
-
kΩ
ZL
ZH
Input impedance (E2, E1, E0,WC)(2)
1. Evaluated by characterization – Not tested in production.
2. Input impedance when the memory is selected (after a start condition).
Table 14. Cycling performance
Symbol
Ncycle
Parameter
Write cycle endurance(1)
Test condition
Max.
TA ≤ 25 °C, VCC(min) < VCC < VCC(max)
4,000,000
TA = 85 °C, VCC(min) < VCC < VCC(max)
1,200,000
Unit
Write cycle(2)
1. The Write cycle endurance is evaluated by characterization and qualification. For devices embedding the ECC functionality
(see Section 5.1.5 ECC (error correction code) and write cycling), the write cycle endurance is defined for group of four
bytes located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where N is an integer.
2. A Write cycle is executed when either a page write, a byte write, a write Identification Page or a lock identification
page instruction is decoded. When using the byte write, the Page Write or the write identification page, refer also to
Section 5.1.5 ECC (error correction code) and write cycling
Table 15. Memory cell data retention
Parameter
Data retention(1)
Test condition
TA = 55 °C
Min.
Unit
200
Year
1. The data retention behavior is checked in production, while the data retention limit defined in this table is extracted from
characterization and qualification results.
DS6638 - Rev 37
page 21/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
Table 16. DC characteristics (M24C64-W)
Symbol
ILI
Parameter
Input leakage current
(Ei, SCL, SDA)
Test conditions (in addition to those in Table 9 and Table 12)
VIN = VSS or VCC, device in standby mode
Min.
Max.
Unit
-
±2
µA
µA
ILO
Output leakage current SDA in Hi-Z, external voltage applied on SDA: VSS or VCC
-
±2
ICC
Supply current (Read)
fC = 400 kHz, 2.5 V ≤ VCC ≤ 5.5 V
-
2
fC = 1 MHz, 2.5 V ≤ VCC ≤ 5.5 V
-
2.5
ICC0(1)
Supply current (Write)
-
2.5
mA
-
2
μA
-
3
μA
-
–0.45
0.3 VCC
V
-
0.7 VCC
6.5
During tW,
2.5 V ≤ VCC ≤ 5.5 V
Device not selected(2),
ICC1
Standby supply current
VIN = VSS or VCC, VCC = 2.5 V
Device not selected(2),
VIN = VSS or VCC, VCC = 5.5 V
mA
Input low voltage
VIL
(SCL, SDA, WC,Ei)
(3)
Input high voltage
(SCL, SDA)
VIH
V
Input high voltage
(WC, Ei)
-
0.7 VCC VCC+ 0.6
(4)
VOL
Output low voltage
IOL = 2.1 mA, VCC = 2.5 V or
IOL = 3 mA, VCC = 5.5 V
-
0.4
V
1. Evaluated by characterization - Not tested in production.
2. The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the
internal write cycle tW (tW is triggered by the correct decoding of a write instruction).
3. Ei inputs should be tied to VSS (see Section 2.3 Chip enable (E2, E1, E0)).
4. Ei inputs should be tied to VCC (see Section 2.3 Chip enable (E2, E1, E0))
DS6638 - Rev 37
page 22/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
Table 17. DC characteristics (M24C64-R)
Symbol
ILI
Parameter
Input leakage current
(Ei, SCL, SDA)
ILO
Output leakage current
ICC
Supply current (Read)
ICC0(2)
Supply current (Write)
ICC1
Standby supply current
Test conditions(1) (in addition to those in Table 10)
Min.
Max.
Unit
VIN = VSS or VCC, device in standby mode
-
±2
µA
SDA in Hi-Z, external voltage applied on SDA: VSS or VCC
-
±2
µA
VCC = 1.8 V, fc= 400 kHz
-
0.8
fc= 1 MHz
-
2.5
-
1.5
mA
-
1
µA
1.8 V ≤ VCC ≤ 2.5 V
-0.45
0.25 VCC
V
1.8 V ≤ VCC < 2.5 V
0.75 VCC
6.5
V
1.8 V ≤ VCC < 2.5 V
0.75 VCC VCC + 0.6
During tW,
1.8 V ≤ VCC ≤ 2.5 V
Device not selected,(3)
VIN = VSS or VCC, VCC = 1.8 V
mA
Input low voltage
VIL
(SCL, SDA, WC, Ei)
(4)
Input high voltage
(SCL, SDA)
VIH
Input high voltage
(WC, Ei)
V
(5)
VOL
Output low voltage
IOL = 1 mA, VCC = 1.8 V
-
0.2
V
1. If the application uses the voltage range R device with 2.5 V ≤ Vcc ≤ 5.5 V and -40 °C < TA < +85 °C, refer to Table 16
instead of this table.
2. Evaluated by characterization - Not tested in production.
3. The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the
internal write cycle tW (tW is triggered by the correct decoding of a write instruction).
4. Ei inputs should be tied to VSS (see Section 2.3 Chip enable (E2, E1, E0))
5. Ei inputs should be tied to VCC (see Section 2.3 Chip enable (E2, E1, E0))
DS6638 - Rev 37
page 23/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
Table 18. DC characteristics (M24C64-F, M24C64-DF)
Symbol
Parameter
Test conditions(1) (in addition to those in Table 11)
Min.
Max.
Unit
-
±2
µA
µA
Input leakage current
VIN = VSS or VCC
(Ei, SCL, SDA)
device in Standby mode
ILO
Output leakage current
SDA in Hi-Z, external voltage applied on SDA: VSS or VCC
-
±2
ICC
Supply current (Read)
VCC = 1.6 V or 1.7 V, fc= 400 kHz
-
0.8
fC = 1 MHz
-
2.5
ICC0(2)
Supply current (Write)
-
1.5
mA
ICC1
Standby supply current
-
1
µA
VCC < 2.5 V
-0.45
0.25 VCC
V
VCC < 2.5 V
0.75 VCC
6.5
V
VCC < 2.5 V
0.75 VCC VCC + 0.6
ILI
During tW,
VCC ≤ 1.8 V
Device not selected(3),
VIN = VSS or VCC, VCC = 1.6 V or 1.7 V
mA
Input low voltage
VIL
(SCL, SDA, WC, Ei)
(4)
Input high voltage
(SCL, SDA)
VIH
Input high voltage
(WC, Ei)
V
(5)
VOL
Output low voltage
IOL = 1 mA, VCC = 1.6 V or 1.7 V
-
0.2
V
1. If the application uses the voltage range F device with 2.5 V ≤ VCC ≤ 5.5 V and -40 °C < TA < +85 °C, refer to Table 16
instead of this table.
2. Evaluated by characterization - Not tested in production.
3. The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the
internal write cycle tW (tW is triggered by the correct decoding of a write instruction).
4. Ei inputs should be tied to VSS (see Section 2.3 Chip enable (E2, E1, E0))
5. Ei inputs should be tied to VCC (see Section 2.3 Chip enable (E2, E1, E0))
DS6638 - Rev 37
page 24/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
Table 19. 400 kHz AC characteristics
Symbol
Alt.
Min.
Max.
Unit
fC
fSCL
Clock frequency
-
400
kHz
tCHCL
tHIGH
Clock pulse width high
600
-
ns
tCLCH
tLOW
Clock pulse width low
1300
-
ns
tQL1QL2(1)
tF
SDA (out) fall time
20(2)
300
ns
tXH1XH2
tR
Input signal rise time
(3)
(3)
ns
tXL1XL2
tF
Input signal fall time
(3)
(3)
ns
tDXCH
tSU:DAT
Data in set up time
100
-
ns
tCLDX
tHD:DAT
Data in hold time
0
-
ns
tCLQX(4)
tDH
Data out hold time
50
-
ns
tCLQV(5)
tAA
Clock low to next data valid (access time)
-
900
ns
tCHDL
tSU:STA
Start condition setup time
600
-
ns
tDLCL
tHD:STA
Start condition hold time
600
-
ns
tCHDH
tSU:STO
Stop condition set up time
600
-
ns
tDHDL
tBUF
Time between Stop condition and next Start condition
1300
-
ns
tWLDL(1)(6)
tSU:WC
WC set up time (before the start condition)
0
-
(1)(7)
tHD:WC
WC hold time (after the stop condition)
1
-
Write time
-
5
ms
Pulse width ignored (input filter on SCL and SDA) - single glitch
-
50
ns
tDHWH
Parameter
μs
tW
tWR
tNS(1)
-
1. Evaluated by characterization - Not tested in production.
2. With CL = 10 pF.
3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the I²C specification
that the input signal rise and fall times be more than 20 ns and less than 300 ns when fC < 400 kHz.
4. To avoid spurious start and stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of
SDA.
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or 0.7 VCC, assuming
that Rbus × Cbus time constant is within the values specified in Figure 15.
6. WC=0 set up time condition to enable the execution of a WRITE command
7. WC=0 hold time condition to enable the execution of a WRITE command.
DS6638 - Rev 37
page 25/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
Table 20. 1 MHz AC characteristics
Symbol
Alt.
Min.
Max.
Unit
fC
fSCL
Clock frequency
-
1
MHz
tCHCL
tHIGH
Clock pulse width high
260
-
ns
tCLCH
tLOW
Clock pulse width low
500
-
ns
tXH1XH2
tR
Input signal rise time
(1)
(1)
ns
tXL1XL2
tF
Input signal fall time
(1)
(1)
ns
tQL1QL2(2)
tF
SDA (out) fall time
20(3)
120
ns
tDXCH
tSU:DAT
Data in setup time
50
-
ns
tCLDX
tHD:DAT
Data in hold time
0
-
ns
tCLQX(4)
tDH
Data out hold time
50
-
ns
tCLQV(5)
tAA
Clock low to next data valid (access time)
-
450
ns
tCHDL
tSU:STA
Start condition setup time
250
-
ns
tDLCL
tHD:STA
Start condition hold time
250
-
ns
tCHDH
tSU:STO
Stop condition setup time
250
-
ns
tDHDL
tBUF
Time between Stop condition and next Start condition
500
-
ns
tWLDL(2)(6)
tSU:WC
WC set up time (before the Start condition)
0
-
µs
(2)(7)
tHD:WC
WC hold time (after the Stop condition)
1
-
µs
Write time
-
5
ms
Pulse width ignored (input filter on SCL and SDA)
-
50
ns
tDHWH
tW
tWR
tNS(2)
-
Parameter
1. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the I²C specification
that the input signal rise and fall times be less than 120 ns when fC < 1 MHz.
2. Evaluated by characterization - Not tested in production.
3. With CL = 10 pF.
4. To avoid spurious start and stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of
SDA.
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or 0.7 VCC, assuming
that the Rbus × Cbus time constant is within the values specified in Figure 16.
6. WC=0 set up time condition to enable the execution of a WRITE command.
7. WC=0 hold time condition to enable the execution of a WRITE command.
DS6638 - Rev 37
page 26/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
Figure 15. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum
frequency fC = 400 kHz
Bus line Pull up resistor (kΩ)
100
VCC
The Rbus x Cbus time
constant must be below
the 400 ns time constant
line represented on the left
Rb
us
10
xC
bu
s
00
Here Rbus x Cbus= 120 ns
4
=4
Rbus
I²C bus
master
SCL
M24xxx
SDA
ns
Cbus
1
10
30
100
1000
Bus line capacitor (pF)
Figure 16. Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum
frequency fC = 1 MHz
Bus line pull-up resistor (kΩ )
100
10
Rbu
s
xC
bus
The Rbus x Cbus time
constant must be below
the 150 ns time
constant line
represented on the left
= 15
0 ns
4
VCC
Rbus
I²C bus
master
SCL
M24xxx
SDA
Here Rbus x Cbus = 120 ns
Cbus
1
10
30
100
Bus line capacitor (pF)
DS6638 - Rev 37
page 27/51
M24C64-W M24C64-R M24C64-F M24C64-DF
DC and AC parameters
Figure 17. AC waveforms
Start
condition
Start
Stop
condition condition
tXL1XL2
tXH1XH2
tCHCL
tCLCH
SCL
tDLCL
tXL1XL2
SDA In
tCHDL
tXH1XH2
SDA
Input
tCLDX
SDA tDXCH
Change
tCHDH
tDHDL
WC
tDHWH
tWLDL
Stop
condition
Start
condition
SCL
SDA In
tW
tCHDH
tCHDL
Write cycle
tCHCL
SCL
tCLQV
SDA Out
DS6638 - Rev 37
tCLQX
Data valid
tQL1QL2
Data valid
page 28/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Package information
9
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com.
ECOPACK is an ST trademark.
9.1
WLCSP4 (CU) ultra thin package information
This WLCSP4 is a 4-bump, 0.795 x 0.674 mm, 0.400 mm pitch, ultra thin wafer level chip scale package.
Figure 18. WLCSP4 (CU) - Outline
WLCSP4 package (package code A0Z7_c)
bbb Z
Back side coating
thickness 0.025 mm
Orientation reference
Detail A
D
X
e
Y
F
E
e
F
aaa
Orientation reference
(4X)
A3
Wafer back side
A
A2
G
Side view
G
Bump Side
Bump
A1
eee
Z
Z
b (4X)
Ø ccc M Z X Y
Ø ddd M Z
Seating plane
Detail A
Rotated 90 °
A0Z7_PTc_WLCSP4_ME_V1
1.
2.
3.
DS6638 - Rev 37
Drawing is not to scale.
Primary datum Z and seating plane are defined by the spherical crowns of the bump.
Bump position designation per JESD 95-1, SPP-010.
page 29/51
M24C64-W M24C64-R M24C64-F M24C64-DF
WLCSP4 (CU) ultra thin package information
Table 21. WLCSP4 (CU) - Mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
0.285
0.315
0.345
0.0112
0.0124
0.0136
A1
-
0.115
-
-
0.0045
-
A2
-
0.175
-
-
0.0069
-
A3 (BSC)
-
0.025
-
-
0.0010
-
b(2)(3)
-
0.160
-
-
0.0063
-
D
-
0.795
0.815
-
0.0313
0.0321
E
-
0.674
0.694
-
0.0265
0.0273
e
-
0.400
-
-
0.0157
-
F
-
0.137
-
-
0.0054
-
G
-
0.198
-
-
0.0078
-
aaa
-
-
0.110
-
-
0.0043
bbb
-
-
0.110
-
-
0.0043
ccc
-
-
0.110
-
-
0.0043
ddd
-
-
0.060
-
-
0.0024
eee
-
-
0.060
-
-
0.0024
1. 1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
3. 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
9.1.1
WLCSP4 (CU) package footprint
Figure 19. WLCSP4 (CU) - Recommended footprint
0.400
0.400
4x
0.160
A0Z7_PTc_WLCSP4_FP_V2
1.
DS6638 - Rev 37
Dimensions are expressed in millimeters.
page 30/51
M24C64-W M24C64-R M24C64-F M24C64-DF
WLCSP5 (CS) package information
9.2
WLCSP5 (CS) package information
This WLCSP is a 5-bump, 0.959 x 1.073 mm, 0.4 mm pitch wafer level chip scale package.
Figure 20. WLCSP5 - Outline
Package WLCSP5 (package code 1C_d)
bbb
D
Z
e1
X Y
1
2
3
C
Detail A
E
e2
e
B
A
(4x)
Orientation
reference
Wafer back side
Orientation
reference
aaa
A2
A
Side view
F
G
Bump side
Bump
Detail A
rotated by 90°
eee
Ø ccc M
Ø ddd M
1.
2.
3.
DS6638 - Rev 37
A1
Z
b (5X)
Z X Y
Z
Z
Seating plane
1Cd_WLCSP5_ME_V3
Drawing is not to scale.
Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Primary datum Z and seating plane are defined by the spherical crowns of the bump.
page 31/51
M24C64-W M24C64-R M24C64-F M24C64-DF
WLCSP5 (CS) package information
Table 22. WLCSP5 - Mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
0.455
0.545
0.635
0.0179
0.0215
0.0250
A1
-
0.190
-
-
0.0075
-
A2
-
0.355
-
-
0.0140
-
b(2)
-
0.270
-
-
0.0106
-
D
-
0.959
1.074
-
0.0378
0.0423
E
-
1.073
1.168
-
0.0422
0.0460
e
-
0.693
-
-
0.0273
-
e1
-
0.400
-
-
0.0157
-
e2
-
0.3465
-
-
0.0136
-
F
-
0.280
-
-
0.0110
-
G
-
0.190
-
-
0.0075
-
aaa
-
0.110
-
-
0.0043
-
bbb
-
0.110
-
-
0.0043
-
ccc
-
0.110
-
-
0.0043
-
ddd
-
0.060
-
-
0.0024
-
eee
-
0.060
-
-
0.0024
-
1. 1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
9.2.1
WLCSP5 (CS) recommended footprint
Figure 21. WLCSP5 - Recommended footprint
0.3465
0.693
0.400
1.
DS6638 - Rev 37
1Cd_WLCSP_FP_V2
Dimensions are expressed in millimeters.
page 32/51
M24C64-W M24C64-R M24C64-F M24C64-DF
UFDFPN5 (DFN5) package information
9.3
UFDFPN5 (DFN5) package information
UFDFPN5 is a 5-lead, 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitch dual flat package.
Figure 22. UFDFPN5 - Outline
Package UFDFN5 (package code A0UK)
D
k
L
Pin 1
Pin 1
b
X
E
E1
Y
D1
Top view
(marking side)
e
L1
Bottom view
(pads side)
A
A1
Side view
1.
2.
3.
4.
A0UK_UFDFN5_ME_V3
Maximum package warpage is 0.05 mm.
Exposed copper is not systematic and can appear partially or totally according to the cross section.
Drawing is not to scale.
On the bottom side, pin 1 is identified by the specific pad shape and, on the top side, pin 1 is defined from
the orientation of the marking. When reading the marking, pin 1 is below the upper left package corner.
Table 23. UFDFPN5 - Mechanical data
Symbol
millimeters
inches
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
-
0.050
0.0000
-
0.0020
b(1)
0.175
0.200
0.225
0.0069
0.0079
0.0089
D
1.600
1.700
1.800
0.0630
0.0669
0.0709
D1
1.400
1.500
1.600
0.0551
0.0591
0.0630
E
1.300
1.400
1.500
0.0512
0.0551
0.0591
E1
0.175
0.200
0.225
0.0069
0.0079
0.0089
X
-
0.200
-
-
0.0079
-
Y
-
0.200
-
-
0.0079
-
e
-
0.400
-
-
0.0157
-
L
0.500
0.550
0.600
0.0197
0.0217
0.0236
L1
-
0.100
-
-
0.0039
-
k
-
0.400
-
-
0.0157
-
1. Dimension b applies to plated terminal and is measured between 0.15 and 0.30mm from the terminal tip.
DS6638 - Rev 37
page 33/51
M24C64-W M24C64-R M24C64-F M24C64-DF
UFDFPN5 (DFN5) package information
9.3.1
UFDFPN5 recommended footprint
Figure 23. UFDFPN5 - Recommended footprint
Pin 1
0.400
0.600
0.200
0.200
0.200
0.200
0.400
1.600
1.
DS6638 - Rev 37
Dimensions are expressed in millimeters.
page 34/51
M24C64-W M24C64-R M24C64-F M24C64-DF
UFDFPN8 (DFN8) package information
9.4
UFDFPN8 (DFN8) package information
This UFDFPN is a 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package.
Figure 24. UFDFPN8 - Outline
D
N
A B
Package UFDFN8 (package code ZW)
A
ccc C
Pin #1
ID marking
E
A1
C
eee C
Seating plane
Side view
2x
aaa C
1
aaa C
2x
2
Top view
D2
e
1
2
L3
Datum A
b
L1
L L3
Pin #1
ID marking
E2
K
e/2
L1
e
Terminal tip
L
Detail “A”
Even terminal
ND-1 x e
See Detail “A”
Bottom view
1.
2.
3.
4.
DS6638 - Rev 37
Maximum package warpage is 0.05 mm.
Exposed copper is not systematic and can appear partially or totally according to the cross section.
Drawing is not to scale.
The central pad (the area E2 by D2 in the above illustration) must be either connected to VSS or left floating
(not connected) in the end application.
page 35/51
M24C64-W M24C64-R M24C64-F M24C64-DF
UFDFPN8 (DFN8) package information
Table 24. UFDFPN8 - Mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
0.450
0.550
0.600
0.0177
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
b(2)
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
1.900
2.000
2.100
0.0748
0.0787
0.0827
D2
1.200
-
1.600
0.0472
-
0.0630
E
2.900
3.000
3.100
0.1142
0.1181
0.1220
E2
1.200
-
1.600
0.0472
-
0.0630
e
-
0.500
-
-
0.0197
-
K
0.300
-
-
0.0118
-
-
L
0.300
-
0.500
0.0118
-
0.0197
L1
-
-
0.150
-
-
0.0059
L3
0.300
-
-
0.0118
-
-
aaa
-
-
0.150
-
-
0.0059
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee(3)
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip.
3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring.
9.4.1
UFDFPN8 recommended footprint
Figure 25. UFDFPN8 - Recommended footprint
1.600
0.500
0.300
0.600
1.600
1.400
1.
DS6638 - Rev 37
Dimensions are expressed in millimeters.
page 36/51
M24C64-W M24C64-R M24C64-F M24C64-DF
TSSOP8 package information
9.5
TSSOP8 package information
This TSSOP is an 8-lead, 3 x 6.4 mm, 0.65 mm pitch, thin shrink small outline package.
Figure 26. TSSOP8 – Outline
D
8
Package TSSOP8 (package code 6P)
5
k
E1 E
A1
1
L
L1
4
A2
A
c
1.
6P_TSSOP8_ME_V3
e
b
Drawing is not to scale.
Table 25. TSSOP8 – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
D(2)
2.900
3.000
3.100
0.1142
0.1181
0.1220
e
-
0.650
-
-
0.0256
-
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1(3)
4.300
4.400
0.0177
0.1693
0.1732
0.1772
L
0.450
0.600
0.750
0.0181
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
-
8°
0°
-
8°
aaa
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
Note:
DS6638 - Rev 37
The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the
outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash,
but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash,
protusions or gate burrs is bottom side.
page 37/51
M24C64-W M24C64-R M24C64-F M24C64-DF
TSSOP8 package information
9.5.1
TSSOP8 recommended footprint
Figure 27. TSSOP8 – Recommended footprint
1.55
0.65
0.40
2.35
5.80
7.35
1.
DS6638 - Rev 37
6P_TSSOP8_FP_V2
Dimensions are expressed in millimeters.
page 38/51
M24C64-W M24C64-R M24C64-F M24C64-DF
SO8N package information
9.6
SO8N package information
This SO8N is an 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package.
Figure 28. SO8N – Outline
Package SO8N (package code O7)
A2
h x 45˚
A
c
b
ccc
e
D
0.25 mm
GAUGE PLANE
SEATING
PLANE
C
k
8
E1
E
1
L
A1
L1
1.
Drawing is not to scale.
Table 26. SO8N – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.750
-
-
0.0689
A1
0.100
-
0.250
0.0039
-
0.0098
A2
1.250
-
-
0.0492
-
-
b
0.280
-
0.480
0.0110
-
0.0189
c
0.100
-
0.230
0.0030
-
0.0091
D(2)
4.800
4.900
5.000
0.1890
0.1929
0.1969
E
5.800
6.000
6.200
0.2283
0.2362
0.2441
E1(3)
3.800
3.900
4.000
0.1496
0.1535
0.1575
e
-
1.270
-
-
0.0500
-
h
0.250
-
0.500
0.0098
-
0.0197
k
0°
-
8°
0°
-
8°
L
0.400
-
1.270
0.0157
-
0.0500
L1
-
1.040
-
-
0.0409
-
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
Note:
DS6638 - Rev 37
The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the
outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash,
but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash,
protusions or gate burrs is bottom side.
page 39/51
M24C64-W M24C64-R M24C64-F M24C64-DF
SO8N package information
9.6.1
SO8N recommended footprint
Figure 29. SO8N - Recommended footprint
3.9
6.7
0.6 (x8)
1.27
1.
DS6638 - Rev 37
Dimensions are expressed in millimeters.
page 40/51
M24C64-W M24C64-R M24C64-F M24C64-DF
WLCSP8 (CT) package information
9.7
WLCSP8 (CT) package information
WLCSP8 is a 8 balls, 1.073 x 0.959 mm, 0.4 mm pitch, wafer level chip scale package.
Figure 30. WLCSP8 - Outline
Package WLCSP8 (package code “(V_d”)
bbb Z
D
X
e1
Y
Detail A
E
Reference
e
e2
aaa
A
A2
(4X)
Wafer back side
Side view
F
Orientation
G
reference
Bumps side
Bump
A1
eee Z
Z
b
Ø ccc M
Ø ddd M
1.
2.
DS6638 - Rev 37
Z X Y
Z
Seating plane
Detail A
Rotated 90°
(Vd_WLCSP8_ME_V1
Drawing is not to scale.
Primary datum Z and seating plane are defined by the spherical crowns of the bump.
page 41/51
M24C64-W M24C64-R M24C64-F M24C64-DF
WLCSP8 (CT) package information
Table 27. WLCSP8 - Mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
0.300
0.315
0.330
0.0118
0.0124
0.0130
A1
-
0.115
-
-
0.0045
-
A2
-
0.200
-
-
0.0079
-
b(2)
-
0.160
-
-
0.0063
-
D
-
1.073
1.093
-
0.0422
0.0430
E
-
0.959
0.979
-
0.0378
0.0385
e
-
0.693
-
-
0.0273
-
e1
-
0.800
-
-
0.0315
-
e2
-
0.400
-
-
0.0157
-
F
-
0.133
-
-
0.0052
-
G
-
0.137
-
-
0.0054
-
aaa
-
0.110
-
-
0.0043
-
bbb
-
0.110
-
-
0.0043
-
ccc
-
0.110
-
-
0.0043
-
ddd
-
0.060
-
-
0.0024
-
eee
-
0.060
-
-
0.0024
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
9.7.1
WLCSP8 recommended footprint
Figure 31. WLCSP8 - Recommended footprint
0.400
0.800
0.693
0.400
8 bumps x Ø 0.160
Orientation
reference
1.
DS6638 - Rev 37
Dimensions are expressed in millimetres.
page 42/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Ordering information
10
Ordering information
Table 28. Ordering information scheme
Example:
M24
C64
-D
W
MC
6
T
P
/T
F
Device type
M24 = I2C serial access EEPROM
Device function
C64 = 64 Kbit (8192 x 8 bit)
Device family
Blank = Without identification page
D = With identification page
Operating voltage
W = VCC = 2.5 V to 5.5 V
R = VCC = 1.8 V to 5.5 V
F = VCC = 1.6 V or 1.7 V to 5.5 V
Package(1)
MN = SO8N (150 mil width)
DW = TSSOP8 (169 mil width)
MC = UFDFPN8 (DFN8)
CT = 8-bump WLCSP
MH = UFDFPN5 (DFN5)
CS = 5-bump WLCSP
CU = 4-bump WLCSP
Device grade
6 = Industrial: device tested with standard test flow over -40 to 85 °C
Option
T = Tape and reel packing
blank = tube packing
Plating technology
P or G = RoHS compliant and halogen-free (ECOPACK2)
Process(2) or Packing option
/K or /T = Manufacturing technology code
/12 = Packing 12 mm tape
Option
Blank = No back side coating
F = Back side coating
1. All packages are ECOPACK2 (RoHS-compliant and free of brominated, chlorinated and antimony-oxide flame retardants).
2. These process letters appear on the device package (marking) and on the shipment box. Contact your nearest ST Sales
Office for further information.
DS6638 - Rev 37
page 43/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Ordering information
Table 29. Ordering information scheme (unsawn wafer)
Example:(1)
M24
C64 -
F
T
W
20
I
/90
Device type
M24 = I2C serial access EEPROM
Device function
C64 = 64 Kbit (8192 x 8 bit)
Operating voltage
F = VCC = 1.7 V to 5.5 V
Process
T = F8H+
Delivery form
W =Wafer (bare die)
Wafer thickness
20 = Non-backlapped wafer
Wafer testing
I = Inkless test
Device grade
90 = -40°C to 85°C
1. For all information concerning the M24C64 delivered in unsawn wafer, contact your nearest ST Sales Office.
Note:
For a list of available options (memory, package, and so on) or for further information on any aspect of this
device, contact your nearest ST sales office.
Note:
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and
therefore not approved for use in production. ST is not responsible for any consequences resulting from such
use. In no event will ST be liable for the customer using any of these engineering samples in production. ST
Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
DS6638 - Rev 37
page 44/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Revision history
Table 30. Document revision history
Date
Revision
Changes
Updated information concerning E2, E1, E0 for the WLCSP package:
14-Mar-2011
07-Apr-2011
22
23
•
note under Figure 3: UFDFPN5 package connections
•
comment under Figure 7:Chip enableinputs connection
•
note 3 under Table 2: Device select code
Updated MLP8 package data and Section 10: Part numberingAdded footnote
(a) in Section 4.5: Memory addressing.
Updated:
18-May-2011
24
•
Figure3:UFDFPN5 package connections
•
Table 6:Absolute maximum ratings
•
Smalltextchanges
Added:
•
Figure12:Memory cellcharacteristics
Updated:
08-Sep-2011
•
Table22: UFDFPN8 (MLP8) – 8-lead ultra thin fine pitch dualflat no lead,
2 x 3 mm, data
•
Figure16:MaximumRbusvalueversus busparasitic capacitance Cbus) for
an I2Cbus at maximumfrequencyfC= 1MHz
•
Figure6: I2CFastmode Plus (fC =1 MHz): maximumRbus value versus
busparasiticcapacitance(Cbus).
25
Added tWLDL and tDHWH in:
•
Table17: 400 kHz ACcharacteristics
•
Table18: 1 MHzAC characteristics
•
Figure:
Minor text changes.
16-Dec-2011
26
Updated Adimension in Table 25: WLCSP- 5-bump, 0.959 x1.073 mm,
0.4mmpitch wafer level chipscale packagemechanicaldata.
Datasheet split into:
•
M24C64-DF, M24C64-W, M24C64-R,M24C64-F (this datasheet)
forstandard products (range 6),
•
M24C64-125 datasheet for automotive products (range 3). Added 8bump thin WLCSP.
Updated
•
28-Aug-2012
27
single supply voltage and number of Write cycles on cover page.
•
Section 2.1: Serial Clock (SCL) and Section 2.2: Serial Data (SDA).
•
Figure 8, Figure 11
•
Section 5.1.5: ECC (Error Correction Code)and Write cycling and
Section 5.1.6: Minimizing Write delays by polling on ACK. Section 5.1.2:
Page Write. Section 5.1.4: Lock Identification Page (M24C64-D only).
Section 5.1: Write operations
•
Table 13, Table 27
Added:
•
Table12
•
note 1in Table 7 and Table 8:
•
Section 4.5: Device addressing,
Moved Figure 10 to Section 5.1.1: Byte Write
Removed note 2 in Table 17
18-Nov-2013
DS6638 - Rev 37
28
Updated:
•
Chapter 5.2.2: Current Address Read,
page 45/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Date
Revision
Changes
•
Table14, Table 15, Table 25
•
Figure 19, Figure 24., Figure 26
Added note (1) under Table 6. Removed note (3) in Table 3.
Updated Figure 3, Figure 6, Table 15, Table 9, Table 17, Table 18 and Table
27. Table 18 and Figure 18 related to UFDFPN5 package. Section 5.1.5
Updated ECOPACK info on front page. Updated notes:
21-Jul-2014
29
•
(1) on Table 7, Table 8, Table 14, Table 18, (8) on Table 15, (2) on Table
16, (3) on Table 27, (2) merged with (3) on Table 15, (1) on Table 9
Added:
•
supply voltage level specification on Cover page
•
package UFDFPN5 on Cover page
Added:
12-Nov-2014
30
•
note 2 on Table 14, note 2 on DW, MC and CS package on Table 27,
note 1 on BN package on Table 27
•
Figure 3
Updated:
•
Section1: Description, Chapter5.1.5, Table 14, Table 15, Table 16
•
note 3 on Table 6, note 1 on Table 9, note 1 on Table 12, note 1 on
Table 13, note 2 on Table 27
30-Jul-2015
31
Added WLCSP package. Updated Table 27.
18-Feb-2016
32
Updated Figure 4, Figure 18,Table 19 and added Table 2
22-Jun-2016
33
Added Reference to unsawn wafer inside cover page and added
Table 28: Ordering information scheme (unsawn wafer)
Added reference to DFN8 and DFN5 in:
13-Sep-2017
34
cover page figure, Figure 3, Section 9.1: UFDFPN5 (DFN5) package
information, Section 9.2: UFDFPN8 (DFN8) package information and Table
29: Ordering information scheme.
Added Figure 19. Updated Table 28
16-Nov-2017
35
Updated Table 29: Ordering information scheme
14-Mar-2018
36
Added Table 3:WLCSP 5-bumpsignals vs.bump position, Table 4: WLCSP
8-bump signals vs bump position
Updated Figure 6: WLCSP 8-bump thin connections(M24C64- DFCT6TP/K)
Updated:
28-Jul-2022
37
•
Section Features, Section 2.2 Serial data (SDA), Section 3 Block
diagram, Section 4.2 Stop condition, Section 9 Package information
with all its subsection
•
added note in Figure 13
•
Table 8, Table 9, Table 10, Table 13, Table 14, Table 15, Table 16. DC
characteristics (M24C64-W), Table 17, Table 18, Table 19, Table 20,
Table 28
Removed any reference to package PDIP8
DS6638 - Rev 37
page 46/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Contents
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.1
Serial clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2
Serial data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3
Chip enable (E2, E1, E0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4
Write control (WC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6.1
Operating supply voltage (VCC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6.2
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6.3
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6.4
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
5
4.1
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3
Data input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4
Acknowledge bit (ACK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5
Device addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5.1
5.2
6
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.1
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.2
Page write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.3
Write identification page (M24C64-D only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.4
Lock identification page (M24C64-D only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.5
ECC (error correction code) and write cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.6
Minimizing write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.1
Random address read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2
Current address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3
Sequential read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.4
Read identification page (M24C64-D only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.5
Read the lock status (M24C64-D only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
DS6638 - Rev 37
page 47/51
M24C64-W M24C64-R M24C64-F M24C64-DF
Contents
7
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
8
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
9
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
9.1
WLCSP4 (CU) ultra thin package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1.1
9.2
WLCSP5 (CS) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.2.1
9.3
SO8N recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
WLCSP8 (CT) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.7.1
10
TSSOP8 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.6.1
9.7
UFDFPN8 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.5.1
9.6
UFDFPN5 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
UFDFPN8 (DFN8) package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.4.1
9.5
WLCSP5 (CS) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
UFDFPN5 (DFN5) package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.3.1
9.4
WLCSP4 (CU) package footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
WLCSP8 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
DS6638 - Rev 37
page 48/51
M24C64-W M24C64-R M24C64-F M24C64-DF
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Signal names . . . . . . . . . . . . . . . . . . . . . .
WLCSP 4-bump signal vs. bump position . . .
WLCSP 5-bump signals vs. bump position . .
WLCSP 8-bump signals vs. bump position . .
Device select code . . . . . . . . . . . . . . . . . . .
Most significant address byte. . . . . . . . . . . .
Least significant address byte . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . .
Operating conditions (voltage range W) . . . .
Operating conditions (voltage range R) . . . . .
Operating conditions (voltage range F) . . . . .
AC measurement conditions . . . . . . . . . . . .
Input parameters . . . . . . . . . . . . . . . . . . . .
Cycling performance . . . . . . . . . . . . . . . . .
Memory cell data retention . . . . . . . . . . . . .
DC characteristics (M24C64-W). . . . . . . . . .
DC characteristics (M24C64-R) . . . . . . . . . .
DC characteristics (M24C64-F, M24C64-DF) .
400 kHz AC characteristics . . . . . . . . . . . . .
1 MHz AC characteristics . . . . . . . . . . . . . .
WLCSP4 (CU) - Mechanical data . . . . . . . . .
WLCSP5 - Mechanical data. . . . . . . . . . . . .
UFDFPN5 - Mechanical data . . . . . . . . . . . .
UFDFPN8 - Mechanical data . . . . . . . . . . . .
TSSOP8 – Mechanical data . . . . . . . . . . . .
SO8N – Mechanical data . . . . . . . . . . . . . .
WLCSP8 - Mechanical data. . . . . . . . . . . . .
Ordering information scheme. . . . . . . . . . . .
Ordering information scheme (unsawn wafer)
Document revision history . . . . . . . . . . . . . .
DS6638 - Rev 37
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 3
. 4
. 4
10
11
11
19
20
20
20
20
21
21
21
22
23
24
25
26
30
32
33
36
37
39
42
43
44
45
page 49/51
M24C64-W M24C64-R M24C64-F M24C64-DF
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Logic diagram. . . . . . . . . . . . . . . . . . . . . . . .
8-pin package connections, top view . . . . . . . .
UFDFPN5 (DFN5) package connections . . . . .
WLCSP 4-bump ultra thin package connections
WLCSP 5-bump connections . . . . . . . . . . . . .
WLCSP 8-bump connections . . . . . . . . . . . . .
Chip enable inputs connection . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write mode sequences with WC = 0 (data write enabled) .
Write mode sequences with WC = 1 (data write inhibited).
Write cycle polling flowchart using ACK . . . . . . . . . . . . .
Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . .
AC measurement I/O waveform . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 8
12
13
15
16
21
Figure 15.
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency fC = 400 kHz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at maximum frequency fC = 1 MHz
AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WLCSP4 (CU) - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WLCSP4 (CU) - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WLCSP5 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WLCSP5 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UFDFPN5 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UFDFPN5 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UFDFPN8 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UFDFPN8 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TSSOP8 – Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TSSOP8 – Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO8N – Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SO8N - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WLCSP8 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WLCSP8 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS6638 - Rev 37
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2
2
3
3
3
4
5
7
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
page 50/51
M24C64-W M24C64-R M24C64-F M24C64-DF
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS6638 - Rev 37
page 51/51