0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
M27V160-150F1

M27V160-150F1

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    M27V160-150F1 - 16 Mbit (2Mb x8 or 1Mb x16) Low Voltage UV EPROM and OTP EPROM - STMicroelectronics

  • 数据手册
  • 价格&库存
M27V160-150F1 数据手册
M27V160 16 Mbit (2Mb x8 or 1Mb x16) Low Voltage UV EPROM and OTP EPROM Features ■ ■ ■ ■ ■ 3V to 3.6V Low Voltage in Read Operation Access Time: 100 ns Byte-wide or Word-wide Configurable 16 Mbit Mask ROM Replacement Low Power Consumption – Active Current: 30 mA at 8 MHz – Standby Current: 60 µA Programming Voltage: 12.5V ± 0.25V Programming Time: 50 µs/word 1 42 42 42 1 1 FDIP42W (F) PDIP42 (B) ■ ■ ■ Electronic Signature – Manufacturer Code: 20h – Device Code: B1h ECOPACK® packages available SDIP42 (S) ■ 44 1 PLCC44 (K) SO44 (M) April 2006 Rev 5 1/25 www.st.com 1 Contents M27V160 Contents 1 2 Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Two-line output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 System considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Presto III programming algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Program Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Erasure operation (applies to UV EPROM) . . . . . . . . . . . . . . . . . . . . . . . 11 3 4 5 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1 5.2 5.3 5.4 5.5 42-pin Ceramic Frit-seal DIP with window (FDIP42WB) . . . . . . . . . . . . . 18 42-pin Plastic DIP, 600 mils width (PDIP42) . . . . . . . . . . . . . . . . . . . . . . . 19 42-lead Shrink Plastic DIP, 600 mils width (SDIP42) . . . . . . . . . . . . . . . . 20 44-lead Square Plastic Leaded Chip Carrier (PLCC44) . . . . . . . . . . . . . . 21 44-lead Plastic Small Outline, 525 mils body width (SO44) . . . . . . . . . . . 22 6 7 Part Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2/25 M27V160 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Read Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Programming Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Programming Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 FDIP42WB package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PDIP42 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SDIP42 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 PLCC44 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SO44 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3/25 List of figures M27V160 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PLCC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 AC Testing Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Word-Wide Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Byte-Wide Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 BYTE Transition AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Programming and Verify Modes AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FDIP42WB package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PDIP42 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SDIP42 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 PLCC44 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SO44 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4/25 M27V160 Summary description 1 Summary description The M27V160 is a low voltage 16 Mbit EPROM offered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems requiring large data or program storage. It is organised as either 2 Mbit words of 8 bit or 1 Mbit words of 16 bit. The pin-out is compatible with a 16 Mbit Mask ROM. The M27V160 operates in the read mode with a supply voltage as low as 3V. The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery recharges. The FDIP42W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written rapidly to the device by following the programming procedure. For applications where the content is programmed only one time and erasure is not required, the M27V160 is offered in PDIP42, SDIP42, PLCC44 and SO44 packages. In order to meet environmental requirements, ST offers the M27V160 in ECOPACK® packages. ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK® specifications are available at: www.st.com. See Figure 1: Logic Diagram and Table 1: Signal descriptions for a brief overview of the signals connected to this device. Figure 1. Logic Diagram VCC 20 A0-A19 15 Q15A–1 Q0-Q14 E G BYTEVPP M27V160 VSS AI01898 5/26 Summary description Table 1. Signal descriptions Signal A0-A19 Q0-Q7 Q8-Q14 Q15A–1 E G BYTEVPP VCC VSS NC Address Inputs Data Outputs Data Outputs Data Output / Address Input Chip Enable Output Enable Byte Mode / Program Supply Supply Voltage Ground Not Connected Internally Description M27V160 Figure 2. DIP Connections A18 A17 A7 A6 A5 A4 A3 A2 A1 A0 E VSS G Q0 Q8 Q1 Q9 Q2 Q10 Q3 Q11 1 42 2 41 40 3 39 4 38 5 37 6 36 7 8 35 9 34 10 33 M27V160 11 32 12 31 13 30 14 29 15 28 16 27 17 26 18 25 19 24 20 23 21 22 AI01899 A19 A8 A9 A10 A11 A12 A13 A14 A15 A16 BYTEVPP VSS Q15A-1 Q7 Q14 Q6 Q13 Q5 Q12 Q4 VCC 6/26 M27V160 Figure 3. SO Connections NC A18 A17 A7 A6 A5 A4 A3 A2 A1 A0 E VSS G Q0 Q8 Q1 Q9 Q2 Q10 Q3 Q11 1 44 2 43 42 3 4 41 5 40 6 39 7 38 8 37 9 36 10 35 11 34 M27V160 12 33 13 32 14 31 15 30 16 29 28 17 27 18 26 19 25 20 24 21 22 23 AI01900 Summary description NC A19 A8 A9 A10 A11 A12 A13 A14 A15 A16 BYTEVPP VSS Q15A-1 Q7 Q14 Q6 Q13 Q5 Q12 Q4 VCC Figure 4. PLCC Connections A5 A6 A7 A17 A18 VSS A19 A8 A9 A10 A11 1 44 A4 A3 A2 A1 A0 E VSS G Q0 Q8 Q1 23 A12 A13 A14 A15 A16 BYTEVPP VSS Q15A–1 Q7 Q14 Q6 12 M27V160 34 Q9 Q2 Q10 Q3 Q11 NC VCC Q4 Q12 Q5 Q13 AI04829 7/26 Device description M27V160 2 Device description Table 2 lists the operating modes of the M27V160. A single power supply is required in the read mode. All inputs are TTL compatible except for VPP and 12V on A9 for the Electronic Signature. Table 2. Operating Modes (1) Mode Read Word-wide Read Byte-wide Upper Read Byte-wide Lower Output Disable Program Verify Program Inhibit Standby Electronic Signature E VIL VIL VIL VIL VIL Pulse VIH VIH VIH VIL G VIL VIL VIL VIH VIH VIL VIH X VIL BYTEVPP VIH VIL VIL X VPP VPP VPP X VIH A9 X X X X X X X X VID Q15A–1 Data Out VIH VIL Hi-Z Data In Data Out Hi-Z Hi-Z Code Q14-Q8 Data Out Hi-Z Hi-Z Hi-Z Data In Data Out Hi-Z Hi-Z Codes Q7-Q0 Data Out Data Out Data Out Hi-Z Data In Data Out Hi-Z Hi-Z Codes 1. X = VIH or VIL, VID = 12V ± 0.5V. 2.1 Read mode The M27V160 has two organisations, Word-wide and Byte-wide. The organisation is selected by the signal level on the BYTEVPP pin. When BYTEVPP is at VIH the Word-wide organisation is selected and the Q15A–1 pin is used for Q15 Data Output. When the BYTEVPP pin is at VIL the Byte-wide organisation is selected and the Q15A–1 pin is used for the Address Input A–1. When the memory is logically regarded as 16 bit wide, but read in the Byte-wide organisation, then with A–1 at VIL the lower 8 bits of the 16 bit data are selected and with A–1 at VIH the upper 8 bits of the 16 bit data are selected. The M27V160 has two control functions, both of which must be logically active in order to obtain data at the outputs. In addition the Word-wide or Byte- wide organisation must be selected. Chip Enable (E) is the power control and should be used for device selection. Output Enable (G) is the output control and should be used to gate data to the output pins independent of device selection. Assuming that the addresses are stable, the address access time (tAVQV) is equal to the delay from E to output (tELQV). Data is available at the output after a delay of tGLQV from the falling edge of G, assuming that E has been low and the addresses have been stable for at least tAVQV-tGLQV. 2.2 Standby mode The M27V160 has a standby mode which reduces the active current from 20mA to 20µA with low voltage operation VCC ≤ 3.6V, see Read Mode DC Characteristics table for details.The M27V160 is placed in the standby mode by applying a CMOS high signal to the 8/26 M27V160 Device description E input. When in the standby mode, the outputs are in a high impedance state, independent of the G input. 2.3 Two-line output control Because EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows: ● ● the lowest possible memory power dissipation, complete assurance that output bus contention will not occur. For the most efficient use of these two control lines, E should be decoded and used as the primary device selecting function, while G should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device. 2.4 System considerations The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the supplies to the devices. The supply current ICC has three segments of importance to the system designer: the standby current, the active current and the transient peaks that are produced by the falling and rising edges of E. The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device outputs. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1µF ceramic capacitor is used on every device between VCC and VSS. This should be a high frequency type of low inherent inductance and should be placed as close as possible to the device. In addition, a 4.7µF electrolytic capacitor should be used between VCC and VSS for every eight devices. This capacitor should be mounted near the power supply connection point. The purpose of this capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces. 2.5 Programming The M27V160 has been designed to be fully compatible with the M27C160. As a result the M27V160 can be programmed as the M27C160 on the same programming equipments applying 12.75V on VPP and 6.25V on VCC by the use of the same PRESTO III algorithm. When delivered (and after each erasure for UV EPROM), all bits of the M27V160 are in the '1' state. Data is introduced by selectively programming '0's to the desired bit locations. Although only '0's will be programmed, both '1's and '0's can be present in the data word. The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The M27V160 is in the programming mode when Vpp input is at 12.5V, G is at VIH and E is pulsed to VIL. The data to be programmed is applied to 16 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. VCC is specified to be 6.25V ± 0.25V. 9/26 Device description M27V160 2.6 Presto III programming algorithm The Presto III Programming Algorithm allows the whole array to be programed with a guaranteed margin in a typical time of 52.5 seconds. Programming with Presto III consists of applying a sequence of 50µs program pulses to each word until a correct Verify occurs (see Figure 5.). During programing and verify operation a Margin Mode circuit is automatically activated to guarantee that each cell is programed with enough margin. No overprogram pulse is applied since the Verify in Margin Mode at VCC much higher than 3.6V provides the necessary margin to each programmed cell. Figure 5. Programming Flowchart VCC = 6.25V, VPP = 12.5V n=0 E = 50µs Pulse NO ++n = 25 YES NO VERIFY YES Last Addr NO ++ Addr FAIL YES CHECK ALL WORDS BYTEVPP =VIH 1st: VCC = 5V 2nd: VCC = 3V AI00901B 2.7 Program Inhibit Programming of multiple M27V160s in parallel with different data is also easily accomplished. Except for E, all like inputs including G of the parallel M27V160 may be common. A TTL low level pulse applied to a M27V160's E input and VPP at 12.5V, will program that M27V160. A high level E input inhibits the other M27V160s from being programmed. 2.8 Program Verify A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with E at VIH and G at VIL, VPP at 12.5V and VCC at 6.25V. 10/26 M27V160 Device description 2.9 Electronic Signature The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25°C ± 5°C ambient temperature range that is required when programming the M27V160. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27V160, with VPP = VCC = 5V. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during Electronic Signature mode. Byte 0 (A0 = VIL) represents the manufacturer code and byte 1 (A0 = VIH) the device identifier code. For the STMicroelectronics M27V160, these two identifier bytes are given in Table 3 and can be read-out on outputs Q7 to Q0. Note that the M27V160 and M27C160 have the same identifier bytes. Table 3. Electronic Signature A0 VIL VIH Q15 and Q7 0 1 Q14 and Q6 0 0 Q13 and Q5 1 1 Q12 and Q4 0 1 Q11 and Q3 0 0 Q10 and Q2 0 0 Q9 and Q1 0 0 Q8 and Q0 0 1 Hex Data 20h B1h Identifier Manufacturer’s Code Device Code 2.10 Erasure operation (applies to UV EPROM) The erasure characteristics of the M27V160 is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27V160 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27V160 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27V160 window to prevent unintentional erasure. The recommended erasure procedure for M27V160 is exposure to short wave ultraviolet light which has a wavelength of 2537 Å. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 30 W-sec/cm2. The erasure time with this dosage is approximately 30 to 40 minutes using an ultraviolet lamp with 12000 µW/cm2 power rating. The M27V160 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure. 11/26 Maximum ratings M27V160 3 Maximum ratings Table 4. Symbol TA TBIAS TSTG VIO (3) VCC VA9 (3) Absolute Maximum Ratings (1) Parameter Ambient Operating Temperature (2) Temperature Under Bias Storage Temperature Input or Output Voltage (except A9) Supply Voltage A9 Voltage Program Supply Voltage Value –40 to 125 –50 to 125 –65 to 150 –2 to 7 –2 to 7 –2 to 13.5 –2 to 14 Unit °C °C °C V V V V VPP 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. 2. Depends on range. 3. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than 20ns. 12/26 M27V160 DC and AC parameters 4 DC and AC parameters TA = 0 to 70°C or –40 to 85°C; VCC = 3.3V ± 10%; VPP = VCC Table 5. Symbol ILI ILO Read Mode DC Characteristics (1) Parameter Input Leakage Current Output Leakage Current Test Condition 0V ≤ VIN ≤ VCC 0V ≤ VOUT ≤ VCC E = VIL, G = VIL, IOUT = 0mA, f = 8MHz, VCC ≤ 3.6V E = VIL, G = VIL, IOUT = 0mA, f = 5MHz, VCC ≤ 3.6V Supply Current (Standby) TTL Supply Current (Standby) CMOS Program Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage TTL IOL = 2.1mA IOH = –400µA 2.4 E = VIH E > VCC – 0.2V, VCC ≤ 3.6V VPP = VCC –0.3 0.7VCC Min. Max. ±1 ±10 30 20 1 60 10 0.2VCC VCC + 1 0.4 Unit µA µA mA mA mA µA µA V V V V ICC Supply Current ICC1 ICC2 IPP VIL VIH (2) VOL VOH 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Maximum DC voltage on Output is VCC +0.5V. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.5V ± 0.25V Table 6. Symbol ILI ICC IPP VIL VIH VOL VOH VID Programming Mode DC Characteristics (1) Parameter Input Leakage Current Supply Current Program Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage TTL A9 Voltage IOL = 2.1mA IOH = –2.5mA 3.6 11.5 12.5 E = VIL –0.3 2.4 Test Condition 0 ≤ VIN ≤ VCC Min Max ±1 50 50 0.8 VCC + 0.5 0.4 Unit µA mA mA V V V V V 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 13/26 DC and AC parameters Table 7. AC Measurement Conditions Parameter Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages High Speed ≤ 10ns 0 to 3V 1.5V M27V160 Standard ≤ 20ns 0.4V to 2.4V 0.8V and 2V TA = 25 °C, f = 1 MHz Table 8. Symbol CIN COUT Capacitance (1) Parameter Input Capacitance (except BYTEVPP) Input Capacitance (BYTEVPP) Output Capacitance Test Condition VIN = 0V VIN = 0V VOUT = 0V Min. Max. 10 120 12 Unit pF pF pF 1. Sampled only, not 100% tested. Figure 6. AC Testing Input Output Waveform High Speed 3V 1.5V 0V Standard 2.4V 2.0V 0.8V AI01822 0.4V Figure 7. AC Testing Load Circuit 1.3V 1N914 3.3kΩ DEVICE UNDER TEST CL OUT CL = 30pF for High Speed CL = 100pF for Standard CL includes JIG capacitance AI01823B 14/26 M27V160 TA = 0 to 70°C or –40 to 85°C; VCC = 3.3V ± 10%; VPP = VCC Table 9. Read Mode AC Characteristics (1) DC and AC parameters M27V160 Symbol Alt Parameter Test Condition -100 (2) -120 -150 Unit Min. Max. Min. Max. Min. Max. tAVQV tBHQV tELQV tGLQV tBLQZ (3) tEHQZ (3) tGHQZ (3) tAXQX tBLQX tACC Address Valid to Output Valid tST tCE tOE BYTE High to Output Valid Chip Enable Low to Output Valid Output Enable Low to Output Valid E = VIL, G = VIL E = VIL, G = VIL G = VIL E = VIL E = VIL, G = VIL G = VIL E = VIL E = VIL, G = VIL E = VIL, G = VIL 0 0 5 5 100 100 100 50 45 45 45 0 0 5 5 120 120 120 60 50 50 50 0 0 5 5 150 150 150 60 50 50 50 ns ns ns ns ns ns ns ns ns tSTD BYTE Low to Output Hi-Z tDF tDF tOH tOH Chip Enable High to Output HiZ Output Enable High to Output Hi-Z Address Transition to Output Transition BYTE Low to Output Transition 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Speed obtained with High Speed measurement conditions. 3. Sampled only, not 100% tested. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.5V ± 0.25V Table 10. Symbol tAVEL tQVEL tVPHAV tVCHAV tELEH tEHQX tQXGL tGLQV tGHQZ (2) Programming Mode AC Characteristics (1) Alt tAS tDS tVPS tVCS tPW tDH tOES tOE tDFP tAH Parameter Address Valid to Chip Enable Low Input Valid to Chip Enable Low VPP High to Address Valid VCC High to Address Valid Chip Enable Program Pulse Width Chip Enable High to Input Transition Input Transition to Output Enable Low Output Enable Low to Output Valid Output Enable High to Output Hi-Z Output Enable High to Address Transition 0 0 Test Condition Min. 2 2 2 2 45 2 2 120 130 55 Max. Unit µs µs µs µs µs µs µs ns ns ns tGHAX 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Sampled only, not 100% tested. 15/26 DC and AC parameters Figure 8. Word-Wide Read Mode AC Waveforms M27V160 A0-A19 VALID tAVQV tAXQX VALID E tGLQV G tELQV Q0-Q15 tGHQZ Hi-Z tEHQZ AI00741B Note: Figure 9. BYTEVPP = VIH. Byte-Wide Read Mode AC Waveforms A–1,A0-A19 VALID tAVQV tAXQX VALID E tGLQV G tELQV Q0-Q7 tGHQZ Hi-Z tEHQZ AI00742B Note: BYTEVPP = VIL. 16/26 M27V160 Figure 10. BYTE Transition AC Waveforms A0-A19 VALID DC and AC parameters A–1 tAVQV BYTEVPP VALID tAXQX tBHQV Q0-Q7 tBLQX Hi-Z Q8-Q15 tBLQZ AI00743C DATA OUT DATA OUT Note: Chip Enable (E) and Output Enable (G) = VIL. Figure 11. Programming and Verify Modes AC Waveforms A0-A19 tAVEL Q0-Q15 DATA IN tQVEL BYTEVPP tVPHAV VCC tVCHAV E tELEH G tQXGL tGHAX tGLQV tGHQZ tEHQX DATA OUT VALID PROGRAM VERIFY AI00744 17/26 Package mechanical data M27V160 5 5.1 Package mechanical data 42-pin Ceramic Frit-seal DIP with window (FDIP42WB) Figure 12. FDIP42WB package outline A2 A1 B1 B D2 D S N A L α C eA eB e K 1 E1 E K1 FDIPW-C Table 11. Symbol FDIP42WB package mechanical data millimeters Min. Typ. Max. 5.71 0.50 3.90 0.40 1.27 0.22 – 14.50 2.29 15.40 16.17 9.32 11.30 3.18 1.52 4° 42 50.80 15.24 14.90 2.79 15.80 18.32 9.47 11.55 4.10 2.49 15° 0.571 0.090 0.606 0.637 0.367 0.445 0.125 0.060 4° 42 1.78 5.08 0.55 1.52 0.31 54.81 – – 2.000 0.600 0.587 0.110 0.622 0.721 0.373 0.455 0.161 0.098 15° 0.020 0.154 0.016 0.050 0.009 Min. inches Typ. Max. 0.225 0.070 0.200 0.022 0.060 0.012 2.158 – A A1 A2 B B1 C D D2 E E1 e eA eB K K1 L S α N 18/26 M27V160 Package mechanical data 5.2 42-pin Plastic DIP, 600 mils width (PDIP42) Figure 13. PDIP42 package outline A2 A1 B1 B D2 D S N A L α eA eB C e1 E1 1 E PDIP Table 12. Symbol PDIP42 package mechanical data millimeters Min. Typ. Max. 5.08 – 4.06 0.53 1.65 0.36 52.71 50.80 15.24 2.54 14.99 – – 13.84 – – 17.78 3.43 1.37 10° 42 Min. – 0.010 0.140 0.015 0.050 0.008 2.055 – – 0.535 – – 0.600 0.125 0.034 0° 42 0.100 0.590 2.000 0.600 inches Typ. Max. 0.200 – 0.160 0.021 0.065 0.014 2.075 – – 0.545 – – 0.700 0.135 0.054 10° A A1 A2 B B1 C D D2 E E1 e1 eA eB L S α N – 0.25 3.56 0.38 1.27 0.20 52.20 – – 13.59 – – 15.24 3.18 0.86 0° 19/26 Package mechanical data M27V160 5.3 42-lead Shrink Plastic DIP, 600 mils width (SDIP42) Figure 14. SDIP42 package outline A2 A1 b2 b D2 D S N A L eA eB c e E1 1 E SDIP Table 13. Symbol SDIP42 package mechanical data millimeters Min. Typ. Max. 5.08 0.51 3.05 0.38 0.89 0.23 36.58 – 15.24 12.70 13.72 15.24 18.54 2.54 3.30 0.64 42 3.56 0.100 0.130 0.025 42 3.81 0.46 1.02 0.25 36.83 1.78 4.57 0.56 1.14 0.38 37.08 – 16.00 14.48 0.020 0.120 0.015 0.035 0.009 1.440 – 0.600 0.500 0.540 0.600 0.730 0.140 0.150 0.018 0.040 0.010 1.450 0.070 0.180 0.022 0.045 0.015 1.460 – 0.630 0.570 Min. inches Typ. Max. 0.200 A A1 A2 b b2 c D e E E1 eA eB L S N 20/26 M27V160 Package mechanical data 5.4 44-lead Square Plastic Leaded Chip Carrier (PLCC44) Figure 15. PLCC44 package outline D D1 1N A1 c B1 E3 E1 E E2 B e D3 A2 A CP PLCC-B D2 Table 14. Symbol PLCC44 package mechanical data millimeters Min. Typ. Max. 4.570 3.040 3.700 0.533 0.812 0.101 0.510 17.400 16.510 14.990 – 17.400 16.510 14.990 – – 12.700 1.270 44 12.700 17.650 16.662 16.000 – 17.650 16.660 16.000 – – 0.6850 0.6500 0.5902 – 0.6850 0.6500 0.5902 – – 0.5000 0.0500 44 0.5000 0.0201 0.6949 0.6560 0.6299 – 0.6949 0.6559 0.6299 – – Min. 0.1654 0.0902 0.1437 0.0130 0.0260 inches Typ. Max. 0.1799 0.1197 0.1457 0.0210 0.0320 0.0040 A A1 A2 B B1 CP c D D1 D2 D3 E E1 E2 E3 e N 4.200 2.290 3.650 0.331 0.661 21/26 Package mechanical data M27V160 5.5 44-lead Plastic Small Outline, 525 mils body width (SO44) Figure 16. SO44 package outline A2 b e D A C CP N E EH α 1 A1 L SO-d Table 15. Symbol SO44 package mechanical data millimeters Min. Typ. Max. 2.80 0.10 2.20 0.35 0.10 28.00 13.20 15.75 – 2.30 0.40 0.15 28.20 13.30 16.00 1.27 0.80 8° 44 44 2.40 0.50 0.20 0.08 28.40 13.50 16.25 – 1.1024 0.5197 0.6201 – 1.1102 0.5236 0.6299 0.0500 0.0315 8° 0.0039 0.0866 0.0138 0.0039 0.0906 0.0157 0.0059 0.0945 0.0197 0.0079 0.0030 1.1181 0.5315 0.6398 – Min. inches Typ. Max. 0.1102 A A1 A2 b C CP D E EH e L α N 22/26 M27V160 Part Numbering 6 Part Numbering Table 16. Example: Device Type M27 Supply Voltage V = 3V to 3.6V Device Function 160 = 16 Mbit (2Mb x 8 or 1Mb x 16) Speed -100 (1)= 100 ns -120 = 120 ns -150 = 150 ns VCC Tolerance blank = 3.3V ± 10% X = 3.3V ± 5% Package F = FDIP42W (2) B = PDIP42 S = SDIP42 K = PLCC44 M = SO44 (2) Temperature Range 1 = 0 to 70 °C 6 = –40 to 85 °C Ordering Information Scheme M27V160 -100 X M 1 1. High Speed, see AC Characteristics section for further information. 2. Packages option available on request. Please contact STMicroelectronics local Sales Office. For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you. 23/26 Revision history M27V160 7 Revision history Table 17. Date 10-Mar-2000 23-Apr-2001 19-Jul-2001 21-Mar-2002 12-Apr-2006 Document revision history Revision 1 2 3 4 5 First Issue PLCC44 package added SDIP42 package added SO44 package mechanical and data clarified Converted to new template. Added ECOPACK® information. Removed “On-board Programming” section. Removed Tape & Reel Packing option. Changes 24/26 M27V160 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 25/25
M27V160-150F1 价格&库存

很抱歉,暂时无法提供与“M27V160-150F1”相匹配的价格&库存,您可以联系我们找货

免费人工找货