0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
M27W512-100N6E

M27W512-100N6E

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    M27W512-100N6E - 512 Kbit (64K x8) Low Voltage UV EPROM and OTP EPROM - STMicroelectronics

  • 数据手册
  • 价格&库存
M27W512-100N6E 数据手册
M27W512 512 Kbit (64K x8) Low Voltage UV EPROM and OTP EPROM FEATURES SUMMARY ■ ■ ■ ■ ■ ■ ■ ■ 2.7 to 3.6V SUPPLY VOLTAGE in READ OPERATION ACCESS TIME: – 70ns at VCC = 3.0 to 3.6V – 80ns at VCC = 2.7 to 3.6V PIN COMPATIBLE with M27C512 LOW POWER CONSUMPTION: – 15µA max Standby Current – 15mA max Active Current at 5MHz PROGRAMMING TIME 100µs/byte HIGH RELIABILITY CMOS TECHNOLOGY – 2000V ESD Protection – 200mA Latchup Protection Immunity ELECTRONIC SIGNATURE – Manufacturer Code: 20h – Device Code: 3Dh PACKAGES – Lead-Free Versions Figure 1. Packages 28 1 FDIP28W (F) 28 1 PDIP28 (B) PLCC32 (K) TSOP28 (N) 8 x 13.4 mm November 2004 1/21 M27W512 TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Table 1. Figure 3. Figure 4. Figure 5. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 LCC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Two Line Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 System Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 6. Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PRESTO IIB Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Program Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ERASURE OPERATION (APPLIES FOR UV EPROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 4. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 7. AC Testing Input Output Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 8. AC Testing Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 6. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 7. Read Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 8. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 9. Programming Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 10. Margin Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 10.Margin Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 11. Programming Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 11.Programming and Verify Modes AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2/21 M27W512 Figure 12.FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline. . . . . . . . . . . . 15 Table 12. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data . . . . 15 Figure 13.PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline . . . . . . . . . . . . . . . . . . . . 16 Table 13. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data . . . . . . . . . . . . 16 Figure 14.PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline . . . . . . . . . . . . . . . . . 17 Table 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data . . . . . . . . . . 17 Figure 15.TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline . . . . . . . . 18 Table 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data 18 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 16. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 17. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3/21 M27W512 SUMMARY DESCRIPTION The M27W512 is a low voltage 512 Kbit EPROM offered in the two range UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems and is organized as 65536 by 8 bits. The M27W512 operates in the read mode with a supply voltage as low as 2.7V at –40 to 85°C temperature range. The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery recharges. The FDIP28W (window ceramic frit-seal package) has transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure. For applications where the content is programmed only one time and erasure is not required, the M27W512 is offered in PDIP28, PLCC32 and TSOP28 (8 x 13.4 mm) packages. In addition to the standard versions, the packages are also available in Lead-free versions, in compliance with JEDEC Std J-STD-020B, the ST ECOPACK 7191395 Specification, and the RoHS (Restriction of Hazardous Substances) directive. Figure 2. Logic Diagram VCC 16 A0-A15 8 Q0-Q7 E GVPP M27W512 VSS AI01584 Table 1. Signal Names A0-A15 Q0-Q7 E GVPP VCC VSS NC DU Address Inputs Data Outputs Chip Enable Output Enable / Program Supply Supply Voltage Ground Not Connected Internally Don’t Use 4/21 M27W512 Figure 3. DIP Connections Figure 5. TSOP Connections A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 Q0 Q1 Q2 VSS 1 28 2 27 3 26 4 25 5 24 6 23 7 22 M27W512 8 21 9 20 10 19 11 18 12 17 13 16 14 15 AI02679 VCC A14 A13 A8 A9 A11 GVPP A10 E Q7 Q6 Q5 Q4 Q3 GVPP A11 A9 A8 A13 A14 VCC A15 A12 A7 A6 A5 A4 A3 22 21 28 1 M27W512 15 14 7 8 AI01586 A10 E Q7 Q6 Q5 Q4 Q3 VSS Q2 Q1 Q0 A0 A1 A2 Figure 4. LCC Connections A7 A12 A15 DU VCC A14 A13 1 32 A6 A5 A4 A3 A2 A1 A0 NC Q0 A8 A9 A11 NC GVPP A10 E Q7 Q6 9 M27W512 25 17 Q1 Q2 VSS DU Q3 Q4 Q5 AI01585 5/21 M27W512 DEVICE OPERATION The modes of operations of the M27W512 are listed in the Operating Modes table. A single power supply is required in the read mode. All inputs are TTL levels except for GVPP and 12V on A9 for Electronic Signature. Read Mode The M27W512 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (E) is the power control and should be used for device selection. Output Enable (G) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time (tAVQV) is equal to the delay from E to output Table 2. Operating Modes Mode Read Output Disable Program Program Inhibit Standby Electronic Signature Note: X = VIH or VIL, VID = 12V ± 0.5V. (tELQV). Data is available at the output after a delay of tGLQV from the falling edge of G, assuming that E has been low and the addresses have been stable for at least tAVQV-tGLQV. Standby Mode The M27W512 has a standby mode which reduces the supply current from 15mA to 15µA with low voltage operation VCC ≤ 3.6V, see Read Mode DC Characteristics table for details. The M27W512 is placed in the standby mode by applying a CMOS high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the GVPP input. E VIL VIL VIL Pulse VIH VIH VIL GVPP VIL VIH VPP VPP X VIL A9 X X X X X VID Q7-Q0 Data Out Hi-Z Data In Hi-Z Hi-Z Codes Table 3. Electronic Signature Identifier Manufacturer’s Code Device Code A0 VIL VIH Q7 0 0 Q6 0 0 Q5 1 1 Q4 0 1 Q3 0 1 Q2 0 1 Q1 0 0 Q0 0 1 Hex Data 20h 3Dh Two Line Output Control Because EPROMs are usually used in larger memory arrays, the product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows: a. the lowest possible memory power dissipation, b. complete assurance that output bus contention will not occur. For the most efficient use of these two control lines, E should be decoded and used as the primary device selecting function, while G should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device. System Considerations The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, ICC, has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of E. The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling ca- 6/21 M27W512 pacitors. It is recommended that a 0.1µF ceramic capacitor be used on every device between VCC and VSS. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7µF bulk electrolytic capacitor should be used between VCC and VSS for every eight devices. The bulk capacitor should be located near the power supply connection point.The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces. Figure 6. Programming Flowchart in the '1' state. Data is introduced by selectively programming '0's into the desired bit locations. Although only '0's will be programmed, both '1's and '0's can be present in the data word. The only way to change a ‘0’ to a ‘1’s by die exposure to ultraviolet light (UV EPROM). The M27W512 is in the programming mode when VPP input is at 12.75V and E is pulsed to VIL. The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. VCC is specified to be 6.25V ± 0.25V. PRESTO IIB Programming Algorithm PRESTO IIB Programming Algorithm allows the whole array to be programmed with a guaranteed margin, in a typical time of 6.5 seconds. This can be achieved with STMicroelectronics M27W512 due to several design innovations described in the M27W512 datasheet to improve programming efficiency and to provide adequate margin for reliability. Before starting the programming the internal MARGIN MODE circuit must be set in order to guarantee that each cell is programmed with enough margin. Then a sequence of 100µs program pulses is applied to each byte until a correct verify occurs (see Figure 6.). No overprogram pulses are applied since the verify in MARGIN MODE at VCC much higher than 3.6V, provides the necessary margin. Program Inhibit Programming of multiple M27W512s in parallel with different data is also easily accomplished. Except for E, all like inputs including GVPP of the parallel M27W512 may be common. A TTL low level pulse applied to a M27W512's E input, with VPP at 12.75V, will program that M27W512. A high level E input inhibits the other M27W512s from being programmed. Program Verify A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with G at VIL. Data should be verified with tELQV after the falling edge of E. Electronic Signature The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25°C ± 5°C ambient temperature range that is required when programming the M27W512. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27W512. Two identifier bytes may then be se- VCC = 6.25V, VPP = 12.75V SET MARGIN MODE n=0 E = 100µs Pulse NO ++n = 25 YES NO VERIFY YES Last Addr NO ++ Addr FAIL YES RESET MARGIN MODE CHECK ALL BYTES 1st: VCC = 5V 2nd: VCC = 2.7V AI00738C Programming The M27W512 has been designed to be fully compatible with the M27C512 and has the same electronic signature. As a result the M27W512 can be programmed as the M27C512 on the same programming equipment applying 12.75V on VPP and 6.25V on VCC. The M27W512 can use PRESTO IIB Programming Algorithm that drastically reduces the programming time. Nevertheless to achieve compatibility with all programming equipments, PRESTO II Programming Algorithm can be used as well. When delivered (and after each ‘1’s erasure for UV EPROM), all bits of the M27W512 are 7/21 M27W512 quenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during Electronic Signature mode. Byte 0 (A0 = VIL) represents the manufacturer code and byte 1 (A0 = VIH) the device identifier code. For the STMicroelectronics M27W512, these two identifier bytes are given in Table 3. and can be read-out on outputs Q7 to Q0. Note that the M27W512 and M27C512 have the same identifier byte. ERASURE OPERATION (APPLIES FOR UV EPROM) The erasure characteristics of the M27W512 is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27W512 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27W512 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27W512 window to prevent unintentional erasure. The recommended erasure procedure for the M27W512 is exposure to short wave ultraviolet light which has wavelength 2537 Å. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 15 W-sec/cm2. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 µW/cm2 power rating. The M27W512 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure. 8/21 M27W512 MAXIMUM RATING Stressing the device outside the ratings listed in Table 4. may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the Operating sections of Table 4. Absolute Maximum Ratings Symbol TA TBIAS TSTG TLEAD VIO (2) VCC VA9 (2) VPP Parameter Ambient Operating Temperature Temperature Under Bias Storage Temperature Lead Temperature during Soldering Input or Output Voltage (except A9) Supply Voltage A9 Voltage Program Supply Voltage (3) this specification, is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Value –40 to 125 –50 to 125 –65 to 150 (note 1) –2 to 7 –2 to 7 –2 to 13.5 –2 to 14 ECOPACK® Unit °C °C °C °C V V V V Note: 1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the ST 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU. 2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than 20ns. 3. Depends on range. 9/21 M27W512 DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the MeasureTable 5. AC Measurement Conditions High Speed Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages ≤ 10ns 0 to 3V 1.5V Standard ≤ 20ns 0.4V to 2.4V 0.8V and 2V ment Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Figure 7. AC Testing Input Output Waveform Figure 8. AC Testing Load Circuit 1.3V High Speed 3V 1.5V 0V DEVICE UNDER TEST 2.0V 0.8V AI01822 1N914 3.3kΩ Standard 2.4V OUT CL 0.4V CL = 30pF for High Speed CL = 100pF for Standard CL includes JIG capacitance AI01823B Table 6. Capacitance Symbol CIN COUT Parameter Input Capacitance Output Capacitance Test Condition (1,2) VIN = 0V VOUT = 0V Min Max 6 12 Unit pF pF Note: 1. TA = 25°C, f = 1MHz 2. Sampled only, not 100% tested. 10/21 M27W512 Table 7. Read Mode DC Characteristics Symbol ILI ILO ICC ICC1 ICC2 IPP VIL VIH (2) VOL VOH Parameter Input Leakage Current Output Leakage Current Supply Current Supply Current (Standby) TTL Supply Current (Standby) CMOS Program Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage TTL IOL = 2.1mA IOH = –1mA 2.4 Test Condition (1) 0V ≤ VIN ≤ VCC 0V ≤ VOUT ≤ VCC E = VIL, G = VIL, IOUT = 0mA, f = 5MHz VCC ≤ 3.6V E = VIH E > VCC – 0.2V, VCC ≤ 3.6V VPP = VCC –0.6 0.7 VCC Min Max ±10 ±10 15 1 15 10 0.2 VCC VCC + 0.5 0.4 Unit µA µA mA mA µA µA V V V V Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Maximum DC voltage on Output is VCC +0.5V. Table 8. Read Mode AC Characteristics M27W512 Test Condition (1) -80 (3) VCC = 3.0 to 3.6V VCC = 2.7 to 3.6V Symbol Alt Parameter -100 (-120/-150/-200) VCC = 2.7 to 3.6V Unit Min tAVQV tELQV tGLQV tEHQZ (2) tGHQZ (2) tAXQX tACC tCE tOE tDF tDF tOH Address Valid to Output Valid Chip Enable Low to Output Valid Output Enable Low to Output Valid Chip Enable High to Output Hi-Z Output Enable High to Output Hi-Z Address Transition to Output Transition E = VIL, G = VIL G = VIL E = VIL G = VIL E = VIL E = VIL, G = VIL 0 0 0 Max 70 70 40 40 40 Min Max 80 80 50 Min Max 100 100 60 ns ns ns ns ns ns 0 0 0 50 50 0 0 0 60 60 Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 2. Sampled only, not 100% tested. 3. Speed obtained with High Speed AC measurement conditions. 11/21 M27W512 Figure 9. Read Mode AC Waveforms A0-A15 VALID tAVQV tAXQX VALID E tGLQV G tELQV Q0-Q7 tGHQZ Hi-Z tEHQZ AI00735B Table 9. Programming Mode DC Characteristics Symbol ILI ICC IPP VIL VIH VOL VOH VID Parameter Input Leakage Current Supply Current Program Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage TTL A9 Voltage IOL = 2.1mA IOH = –1mA 3.6 11.5 12.5 E = VIL –0.3 2 Test Condition (1,2) VIL ≤ VIN ≤ VIH Min Max ±10 50 50 0.8 VCC + 0.5 0.4 Unit µA mA mA V V V V V Note: 1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 12/21 M27W512 Table 10. Margin Mode AC Characteristics Symbol tA9HVPH tVPHEL tA10HEH tA10LEH tEXA10X tEXVPX tVPXA9X Alt tAS9 tVPS tAS10 tAS10 tAH10 tVPH tAH9 Parameter VA9 High to VPP High VPP High to Chip Enable Low VA10 High to Chip Enable High (Set) VA10 Low to Chip Enable High (Reset) Chip Enable Transition to VA10 Transition Chip Enable Transition to VPP Transition VPP Transition to VA9 Transition Test Condition (1,2) Min 2 2 1 1 1 2 2 Max Unit µs µs µs µs µs µs µs Note: 1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. Figure 10. Margin Mode AC Waveforms VCC A8 A9 tA9HVPH GVPP tVPHEL E tA10HEH A10 Set tEXA10X tEXVPX tVPXA9X A10 Reset tA10LEH AI00736B Note: A8 High level = 5V; A9 High level = 12V. 13/21 M27W512 Table 11. Programming Mode AC Characteristics Symbol tAVEL tQVEL tVCHEL tVPHEL tVPLVPH tELEH tEHQX tEHVPX tVPLEL tELQV tEHQZ (2) tEHAX Alt tAS tDS tVCS tOES tPRT tPW tDH tOEH tVR tDV tDFP tAH Parameter Address Valid to Chip Enable Low Input Valid to Chip Enable Low VCC High to Chip Enable Low VPP High to Chip Enable Low VPP Rise Time Chip Enable Program Pulse Width (Initial) Chip Enable High to Input Transition Chip Enable High to VPP Transition VPP Low to Chip Enable Low Chip Enable Low to Output Valid Chip Enable High to Output Hi-Z Chip Enable High to Address Transition 0 0 Test Condition (1,2) Min 2 2 2 2 50 95 2 2 2 1 130 105 Max Unit µs µs µs µs ns µs µs µs µs µs ns ns Note: 1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V 2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP. 3. Sampled only, not 100% tested. Figure 11. Programming and Verify Modes AC Waveforms A0-A15 tAVEL Q0-Q7 tQVEL VCC tVCHEL GVPP tVPHEL E tELEH PROGRAM DATA IN VALID tEHAX DATA OUT tEHQX tELQV tEHVPX tEHQZ tVPLEL VERIFY AI00737 14/21 M27W512 PACKAGE MECHANICAL Figure 12. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline A2 A3 A1 B1 B D2 D S N ∅ 1 A L α eA eB C e E1 E FDIPW-a Note: Drawing is not to scale. Table 12. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data Symbol A A1 A2 A3 B B1 C D D2 E E1 e eA eB L S ∅ α N 7.11 2.54 14.99 33.02 15.24 1.45 0.51 3.91 3.89 0.41 – 0.23 36.50 – – 13.06 – – 16.18 3.18 1.52 – 4° 28 millimeters Typ Min Max 5.72 1.40 4.57 4.50 0.56 – 0.30 37.34 – – 13.36 – – 18.03 4.10 2.49 – 11° 0.280 0.100 0.590 1.300 0.600 0.057 0.020 0.154 0.153 0.016 – 0.009 1.437 – – 0.514 – – 0.637 0.125 0.060 – 4° 28 Typ inches Min Max 0.225 0.055 0.180 0.177 0.022 – 0.012 1.470 – – 0.526 – – 0.710 0.161 0.098 – 11° 15/21 M27W512 Figure 13. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline A2 A1 B1 B D2 D S N A L α eA eB C e1 E1 1 E PDIP Note: Drawing is not to scale. Table 13. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data millimeters Symbol Typ A A1 A2 B B1 C D D2 E E1 e1 eA eB L S α N 3.300 1.78 0° 28 2.08 10° 36.830 33.020 15.240 13.720 2.540 15.000 12.700 – 14.800 15.200 14.480 – 15.200 16.680 0.1299 0.070 0° 28 0.082 10° 4.445 0.630 3.810 0.450 1.270 0.230 36.580 – 0.310 37.080 – 1.4500 1.3000 0.6000 0.5402 0.1000 0.5906 0.5000 – 0.5827 0.5984 0.5701 – 0.5984 0.6567 3.050 4.570 Min Max Typ 0.1750 0.0248 0.1500 0.0177 0.0500 0.0091 1.4402 – 0.0122 1.4598 – 0.1201 0.1799 Min Max inches 16/21 M27W512 Figure 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline D D1 1N A1 A2 B1 E2 E3 E1 E e F 0.51 (.020) 1.14 (.045) D3 R CP A E2 B D2 D2 PLCC-A Note: Drawing is not to scale. Table 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data Symbol A A1 A2 B B1 CP D D1 D2 D3 E E1 E2 E3 e F R N 0.89 10.16 1.27 7.62 12.32 11.35 4.78 – 14.86 13.89 6.05 – – 0.00 – 32 millimeters Typ Min 3.18 1.53 0.38 0.33 0.66 Max 3.56 2.41 – 0.53 0.81 0.10 12.57 11.51 5.66 – 15.11 14.05 6.93 – – 0.13 – 0.035 0.400 0.050 0.300 0.485 0.447 0.188 – 0.585 0.547 0.238 – – 0.000 – 32 Typ inches Min 0.125 0.060 0.015 0.013 0.026 Max 0.140 0.095 – 0.021 0.032 0.004 0.495 0.453 0.223 – 0.595 0.553 0.273 – – 0.005 – 17/21 M27W512 Figure 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline A2 1 N e E B N/2 D1 D A CP DIE C TSOP-a A1 α L Note: Drawing is not to scale Table 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data millimeters Symbol A A1 A2 B C CP D D1 e E L α N 0.550 13.200 11.700 – 7.900 0.500 0° 28 0.950 0.170 0.100 Typ Min Max 1.250 0.200 1.150 0.270 0.210 0.100 13.600 11.900 – 8.100 0.700 5° 0.0217 0.5197 0.4606 – 0.3110 0.0197 0° 28 0.0374 0.0067 0.0039 Typ inches Min Max 0.0492 0.0079 0.0453 0.0106 0.0083 0.0039 0.5354 0.4685 – 0.3189 0.0276 5° 18/21 M27W512 PART NUMBERING Table 16. Ordering Information Scheme Example: Device Type M27 Supply Voltage W = 2.7V to 3.6V Device Function 512 = 512 Kbit (64Kb x 8) Speed -80 (1,2) = 80 ns -100 = 100 ns Not For New Design (3) -120 = 120 ns -150 = 150 ns -200 = 200 ns Package F = FDIP28W (4) B = PDIP28 K = PLCC32 N = TSOP28: 8 x 13.4 mm (4) Temperature Range 6 = –40 to 85 °C Options Blank = Standard Packing TR = Tape and Reel Packing E = Lead-free and RoHS Package, Standard Packing F = Lead-free and RoHS Package, Tape and Reel Packing Note: 1. 2. 3. 4. High Speed, see AC Characteristics section for further information. This speed also guarantees 70ns access time at VCC = 3.0V to 3.6V. These speeds are replaced by the 100ns. Packages option available on request. Please contact STMicroelectronics local Sales Office. M27W512 -80 K 6 TR For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST Sales Office. 19/21 M27W512 REVISION HISTORY Table 17. Revision History Date Version Revision Details FDIP28W Package Dimension, L Max added (Table 12.) TSOP32 Package Dimension changed (Table 15.) 0 to 70°C Temperature Range deleted Speed Classes changed Typing error (Table 8.) Package mechanical data clarified for FDIP28W (Table 12.), PDIP28 (Table 13.), PLCC32 (Table 14., Figure 14.) and TSOP28 (Table 15., Figure 15.) Details of ECOPACK lead-free package options added 20-Mar-2000 1.1 15-Jun-2001 30-Aug-2002 08-Nov-2004 1.2 1.3 2.0 20/21 M27W512 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 21/21
M27W512-100N6E 价格&库存

很抱歉,暂时无法提供与“M27W512-100N6E”相匹配的价格&库存,您可以联系我们找货

免费人工找货