0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
M41T62Q6F

M41T62Q6F

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    QFN16_3X3MM_EP

  • 描述:

    实时时钟(RTC) IC时钟/日历I²C, 2线串行16 vfqfn外露Pad

  • 详情介绍
  • 数据手册
  • 价格&库存
M41T62Q6F 数据手册
M41T62, M41T64, M41T65 Datasheet Low-power serial real-time clocks (RTCs) with alarm Features 3mm 3mm • Serial real-time clock (RTC) with alarm functions • • 400 kHz I2C serial interface Memory mapped registers for seconds, minutes, hours, day, date, month, year, and century – Tenths/hundredths of seconds register 350 nA timekeeping current at 3 V Timekeeping down to 1.0 V – – QFN16 3 x 3 mm 1.5 mm 3.2 mm Embedded crystal LCC8 1.5 x 3.2 mm No external crystal required • 1.3 V to 4.4 V I2C bus operating voltage – 4.4 V max VCC suitable for lithium-ion battery operation • • Low operating current of 35 µA (at 400 kHz I2C speed) 32 KHz square wave output is on at power-up. Suitable for driving a microcontroller in low-power mode. Can be disabled. (M41T62/64) Programmable 1 Hz to 32 KHz square wave output (M41T62/64) Programmable alarm with interrupt function (M41T62/65) 32 KHz crystal oscillator integrates crystal load capacitors, works with high series resistance crystals Oscillator stop detection monitors clock operation Accurate programmable watchdog – 62.5 ms to 31 min timeout Software clock calibration. Can adjust timekeeping to within ±2 parts per million (±5 seconds per month) Automatic leap year compensation –40 to +85 °C operation Two package options • • • • • • Maturity status link M41T62 M41T64 M41T65 • • • – Very small 3 x 3 mm, lead-free & halogen-free (ECOPACK2®) 16-lead QFN – Ultra-small 1.5 x 3.2 mm, lead-free & halogen-free (ECOPACK2®) 8-pin ceramic leadless chip carrier with embedded 32 KHz crystal - no external oscillator components required (M41T62) DS3840 - Rev 23 - January 2019 For further information contact your local STMicroelectronics sales office. www.st.com M41T62, M41T64, M41T65 Description 1 Description The M41T6x is a low-power serial real-time clock (RTC) with a built-in 32.768 kHz oscillator. Eight registers are used for the clock/calendar function and are configured in binary-coded decimal (BCD) format. An additional eight registers provide status/control of alarm, 32 KHz output, calibration, and watchdog functions. Addresses and data are transferred serially via a two-line, bidirectional I2C interface. The built-in address register is incremented automatically after each WRITE or READ data byte. Functions available to the user include a time-of-day clock/calendar, alarm interrupts (M41T62/M41T65), 32 KHz output (M41T62/M41T64), programmable square wave output (M41T62/M41T64), and watchdog output (M41T65). The eight clock address locations contain the century, year, month, date, day, hour, minute, second and tenths/hundredths of a second in 24-hour BCD format. Corrections for 28-, 29- (leap year), 30- and 31-day months are made automatically. The M41T6x is supplied in two very small packages: a tiny, 3 x 3 mm 16-pin QFN which requires a user-supplied 32 KHz crystal, and an ultra-small 1.5 x 3.2 mm LCC with embedded crystal - no external crystal is required. Table 1. Device summary Device Basic RTC Alarms OSC fail detect Watchdog timer Calibration SQW output IRQ output M41T62 ✓ ✓ ✓ ✓ ✓ ✓ ✓ M41T64 ✓ ✓ ✓ ✓ ✓ ✓ M41T65 ✓ ✓ ✓ ✓ ✓ WDO output F32K output ✓ ✓ ✓ Figure 1. M41T62 logic diagram VCC (3) XI (3) XO SCL M41T62 IRQ/OUT(1) SQW(2) SDA VSS 1. 2. 3. DS3840 - Rev 23 Open drain. Defaults to 32 KHz on power-up. Not bonded on LCC package. page 2/41 M41T62, M41T64, M41T65 Description Figure 2. M41T64 logic diagram VCC XI SQW(1) XO M41T64 SCL F32K(2) SDA VSS 1. 2. Open drain. Defaults to 32 KHz on power-up. Figure 3. M41T65 logic diagram VCC XI WDO(1) XO M41T65 SCL (1) IRQ/FT/OUT SDA VSS 1. Open drain. 1. 2. DS3840 - Rev 23 VSS 3 SQW(1) 4 NC VCC NC 13 QFN 5 6 7 8 NC 2 14 NC XO 15 NC 1 16 VSS XI NC Figure 4. M41T62 connections 8 SCL 7 NC 3 6 IRQ/OUT(2) 4 5 VCC SDA 1 SQW(1) 2 SCL VSS SDA NC 12 NC 11 IRQ/OUT(2) 10 9 LCC SQW output defaults to 32 KHz upon power-up. Open drain. page 3/41 M41T62, M41T64, M41T65 Description 1. 2. NC NC VCC NC Figure 5. M41T64 connections 16 15 14 13 XO 2 11 SQW(2) VSS 3 10 SCL F32K(1) 4 9 SDA 5 6 7 8 NC NC NC 12 NC 1 VSS XI Enabled on power-up. Open drain. 1. NC NC VCC NC Figure 6. M41T65 connections 16 15 14 13 XO 2 11 (1) IRQ/FT/OUT VSS 3 10 SCL WDO(1) 4 9 SDA 5 6 7 8 NC NC NC 12 NC 1 VSS XI Open drain. Table 2. Signal names XI Oscillator input XO Oscillator output SDA Serial data input/output SCL Serial clock input IRQ /OUT IRQ /FT/OUT DS3840 - Rev 23 Interrupt or OUT output (open drain) Interrupt, frequency test, or OUT output (open drain) SQW Programmable square wave - defaults to 32 KHz on power-up (open drain for M41T64 only) F32K Dedicated 32 KHz output (M41T64 only) WDO Watchdog timer output (open drain) VCC Supply voltage VSS Ground page 4/41 M41T62, M41T64, M41T65 Description Figure 7. M41T62 block diagram REAL TIME CLOCK CALENDAR (3) XTAL (3) 32KHz OSCILLATOR OSCILLATOR FAIL OFIE DETECT RTC W/ALARM SDA I2C INTERFACE SCL 1. 2. 3. AFE IRQ/OUT(1) SQWE SQW(2) WATCHDOG SQUARE WAVE Open drain. Defaults to 32 KHz on power-up. Not bonded on embedded crystal (LCC) package. Figure 8. M41T64 block diagram 32KE REAL TIME CLOCK CALENDAR 32KHz OSCILLATOR XTAL F32K(1) OSCILLATOR FAIL DETECT RTC W/ALARM SDA I2C INTERFACE SCL 1. 2. WATCHDOG SQUARE WAVE SQWE SQW(2) Defaults enabled on power-up. Open drain. Figure 9. M41T65 block diagram REAL TIME CLOCK CALENDAR XTAL 32KHz OSCILLATOR OSCILLATOR FAIL OFIE DETECT FT RTC W/ALARM SDA I2C INTERFACE WATCHDOG AFE IRQ/FT/OUT (1) WDO(1) SCL 1. DS3840 - Rev 23 Open drain. page 5/41 M41T62, M41T64, M41T65 Description Figure 10. Hardware hookup for SuperCap™ backup operation POWER SUPPLY VCC (1) D1 + – Ro LEAKAGE PATH M41T6x VCC XI XO VSS 1. 2. 3. 4. Note: DS3840 - Rev 23 D2 (2) IRQ/FT/OUT (3) WDO (4) SQW MCU VCC Port Reset Input SQWIN SCL Serial Clock Line SDA Serial Data Line F32K 32KHz CLKIN Diode D2 required on open drain pin (M41T65 only) when using SuperCap (or battery) backup. Low threshold BAT42 schottky diode recommended (see note below). D1 and D2 should be of the same type. For M41T62 and M41T65 (open drain). For M41T65 (open drain). For M41T64 (open drain). Some power supplies, when shut off, can present a leakage path to ground which will shorten the backup time provided by the SuperCap (or battery). In such cases, a very low leakage diode is recommended for D1 (and D2). page 6/41 M41T62, M41T64, M41T65 Operation 2 Operation The M41T6x clock operates as a slave device on the serial bus. Access is obtained by implementing a start condition followed by the correct slave address (D0h). The 16 bytes contained in the device can then be accessed sequentially in the following order: 2.1 • 1st byte: tenths/hundredths of a second register • 2nd byte: seconds register • 3rd byte: minutes register • 4th byte: hours register • 5th byte: square wave/day register • 6th byte: date register • 7th byte: century/month register • 8th byte: year register • 9th byte: calibration register • 10th byte: watchdog register • 11th - 15th bytes: alarm registers • 16th byte: flags register 2-wire bus characteristics The bus is intended for communication between different ICs. It consists of two lines: a bi-directional data signal (SDA) and a clock signal (SCL). Both the SDA and SCL lines must be connected to a positive supply voltage via a pull-up resistor. The following protocol has been defined: • Data transfer may be initiated only when the bus is not busy. • During data transfer, the data line must remain stable whenever the clock line is high. • Changes in the data line, while the clock line is high, will be interpreted as control signals. Accordingly, the following bus conditions have been defined. 2.1.1 Bus not busy Both data and clock lines remain high. 2.1.2 Start data transfer A change in the state of the data line, from high to low, while the clock is high, defines the START condition. 2.1.3 Stop data transfer A change in the state of the data line, from low to high, while the clock is high, defines the STOP condition. 2.1.4 Data valid The state of the data line represents valid data when after a start condition, the data line is stable for the duration of the high period of the clock signal. The data on the line may be changed during the Low period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and stop conditions is not limited. The information is transmitted byte-wide and each receiver acknowledges with a ninth bit. By definition a device that gives out a message is called “transmitter,” the receiving device that gets the message is called “receiver.” The device that controls the message is called “master.” The devices that are controlled by the master are called “slaves.” DS3840 - Rev 23 page 7/41 M41T62, M41T64, M41T65 READ mode 2.1.5 Acknowledge Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is a stable Low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case the transmitter must leave the data line high to enable the master to generate the STOP condition. Figure 11. Serial bus data transfer sequence DATA LINE STABLE DATA VALID CLOCK DATA START CONDITION CHANGE OF DATA ALLOWED STOP CONDITION Figure 12. Acknowledgement sequence CLOCK PULSE FOR ACKNOWLEDGEMENT START SCL FROM MASTER DATA OUTPUT BY TRANSMITTER 1 MSB 2 8 9 LSB DATA OUTPUT BY RECEIVER 2.2 READ mode In this mode the master reads the M41T6x slave after setting the slave address (see Figure 14. READ mode sequence). Following the WRITE mode control bit (R/W̅=0) and the acknowledge bit, the word address 'An' is written to the on-chip address pointer. Next the START condition and slave address are repeated followed by the READ mode control bit (R/W̅=1). At this point the master transmitter becomes the master receiver. The data byte which was addressed will be transmitted and the master receiver will send an acknowledge bit to the slave transmitter. the address pointer is only incremented on reception of an acknowledge clock. The M41T6x slave transmitter will now place the data byte at address An+1 on the bus, the master receiver reads and acknowledges the new byte and the address pointer is incremented to “An+2.” This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter. DS3840 - Rev 23 page 8/41 M41T62, M41T64, M41T65 READ mode The system-to-user transfer of clock data will be halted whenever the address being read is a clock address (00h to 07h). The update will resume due to a stop condition or when the pointer increments to any non-clock address (08h-0Fh). Note: This is true both in READ mode and WRITE mode. An alternate READ mode may also be implemented whereby the master reads the M41T6x slave without first writing to the (volatile) address pointer. The first address that is read is the last one stored in the pointer (see Figure 15. Alternative READ mode sequence). Figure 13. Slave address location R/W SLAVE ADDRESS 1 A LSB MSB START 1 0 1 0 0 0 R/W START ACK DATA n+1 SLAVE ADDRESS STOP SLAVE ADDRESS ACK BUS ACTIVITY: DATA n ACK WORD S ADDRESS (An) ACK S R/W SDA LINE ACK BUS ACTIVITY: MASTER START Figure 14. READ mode sequence P NO ACK DATA n+X STOP DATA n+X ACK BUS ACTIVITY: DATA n+1 ACK DATA n P NO ACK R/W S ACK SDA LINE ACK BUS ACTIVITY: MASTER START Figure 15. Alternative READ mode sequence SLAVE ADDRESS DS3840 - Rev 23 page 9/41 M41T62, M41T64, M41T65 WRITE mode 2.3 WRITE mode In this mode the master transmitter transmits to the M41T6x slave receiver. Bus protocol is shown in Figure 16. WRITE mode sequence. Following the START condition and slave address, a logic '0' (R/W̅=0) is placed on the bus and indicates to the addressed device that word address “An” will follow and is to be written to the on-chip address pointer. The data word to be written to the memory is strobed in next and the internal address pointer is incremented to the next address location on the reception of an acknowledge clock. The M41T6x slave receiver will send an acknowledge clock to the master transmitter after it has received the slave address see Figure 13. Slave address location and again after it has received the word address and each data byte. STOP DATA n+X P ACK DATA n+1 ACK BUS ACTIVITY: DATA n ACK WORD ADDRESS (An) ACK S R/W SDA LINE ACK BUS ACTIVITY: MASTER START Figure 16. WRITE mode sequence SLAVE ADDRESS DS3840 - Rev 23 page 10/41 M41T62, M41T64, M41T65 Clock operation 3 Clock operation The M41T6x is driven by a quartz-controlled oscillator with a nominal frequency of 32.768 kHz. The accuracy of the real-time clock depends on the frequency of the quartz crystal that is used as the time-base for the RTC. The eight byte clock register (see Table 3. M41T62 register map, Table 4. M41T64 register map, and Table 5. M41T65 register map) is used to both set the clock and to read the date and time from the clock, in a binary-coded decimal format. Tenths/hundredths of seconds, seconds, minutes, and hours are contained within the first four registers. A WRITE to any clock register will result in the tenths/hundredths of seconds being reset to “00,” and tenths/ hundredths of seconds cannot be written to any value other than “00.” Bits D0 through D2 of register 04h contain the day (day of week). Registers 05h, 06h, and 07h contain the date (day of month), month, and years. The ninth clock register is the calibration register (this is described in the clock calibration section). Bit D7 of register 01h contains the STOP bit (ST). Setting this bit to a '1' will cause the oscillator to stop. When reset to a '0' the oscillator restarts within one second (typical). Upon initial power-up, the user should set the ST bit to a '1,' then immediately reset the ST bit to '0.' This provides an additional “kick-start” to the oscillator circuit. Bit D7 of register 02h (minute register) contains the oscillator fail interrupt enable bit (OFIE). When the user sets this bit to '1,' any condition which sets the oscillator fail bit (OF) (see Section 3.11 Oscillator stop detection) will also generate an interrupt output. Bits D6 and D7 of clock register 06h (century/month register) contain the CENTURY bit 0 (CB0) and CENTURY bit 1 (CB1). A WRITE to ANY location within the first eight bytes of the clock register (00h-07h), including the OFIE bit, RS0RS3 bit, and CB0-CB1 bits will result in an update of the system clock and a reset of the divider chain. This could result in an inadvertent change of the current time. These non-clock related bits should be written prior to setting the clock, and remain unchanged until such time as a new clock time is also written. The eight clock registers may be read one byte at a time, or in a sequential block. Provision has been made to assure that a clock update does not occur while any of the eight clock addresses are being read. If a clock address is being read, an update of the clock registers will be halted. This will prevent a transition of data during the READ. 3.1 RTC registers The M41T6x user interface is comprised of 16 memory mapped registers which include clock, calibration, alarm, watchdog, flags, and square wave control. The eight clock counters are accessed indirectly via a set of buffer/ transfer registers while the other eight registers are directly accessed. Data in the clock and alarm registers is in BCD format. DS3840 - Rev 23 page 11/41 M41T62, M41T64, M41T65 RTC registers Figure 17. Buffer/transfer registers CLOCK COUNTERS ARE ACCES S ED INDIRECTLY THRU BUFFER/TRANS FER REGIS TERS AT S TART OF READ, UDATES FROM COUNTERS ARE HALTED AND P RES ENT TIME IS FROZEN IN BUFFER/TRANS FER REGIS TERS. 32KHz OSC DIVIDE BY 32768 1 Hz READ / WRITE BUFFER TRANS FER REGIS TERS 2 I2C COUNTER COUNTER SECONDS MINUTES HOURS DAY-OF-WEEK DATE MONTHS YEARS CENTURIES I2C INTERFACE COUNTER COUNTER COUNTER COUNTER NON-CLOCK REGISTERS DATA TRANS FERRED OUT OF I2 C INTERFACE ON 8 th FALLING EDGE OF S CL (ON WRITES ) COUNTER COUNTER CALIBRATION WATCHDOG ON WRITES, DATA TRANS FERRED FROM BUFFERS TO COUNTERS WHEN ADDRES S P OINTER INCREMENTS TO 8 OR WHEN I2 C S TOP CONDITION IS RECEIVED FLAGS NON-CLOCK REGIS TERS ARE DIRECTLY ACCES S ED Updates During normal operation when the user is not accessing the device, the buffer/transfer registers are kept updated with a copy of the RTC counters. At the start of an I2C read or write cycle, the updating is halted and the present time is frozen in the buffer/transfer registers. Reads of the clock registers By halting the updates at the start of an I2C access, the user is ensured that all the data transferred out during a read sequence comes from the same instant in time. Write timing When writing to the device, the data is shifted into the M41T62's I2C interface on the rising edge of the SCL signal. As shown in Figure 17. Buffer/transfer registers, on the 8th clock cycle, the data is transferred from the I2C block into whichever register is being pointed to by the address pointer (not shown). Writes to the clock registers (addresses 0-7) Data written to the clock registers (addresses 0-7) is held in the buffer registers until the address pointer increments to 8, or an I2C stop condition occurs, at which time the data in the buffer/registers is simultaneously copied into the counters, and then the clock is re-started. Table 3. M41T62 register map Addr 00h DS3840 - Rev 23 D7 D6 D5 0.1 seconds D4 D3 D2 D1 0.01 seconds D0 Function/range BCD format 10ths/100ths of seconds 00-99 page 12/41 M41T62, M41T64, M41T65 RTC registers 01h ST 10 seconds 02h OFIE 03h 0 0 04h RS3 RS2 05h 0 0 06h CB1 CB0 08h OUT 0 S 09h RB2 BMB4 BMB3 BMB2 0Ah AFE SQWE 0 Al 10M 10 minutes 07h 10 hours RS1 RS0 Seconds 00-59 Minutes Minutes 00-59 Hours (24-hour format) Hours 00-23 Day 01-7 Date 01-31 0 10 date 0 Seconds Day of week Date: day of month 10M Century/ Month 10 years month Year Year Calibration BMB1 0-3/01-12 00-99 Calibration BMB0 RB1 RB0 Alarm month Watchdog Al month 01-12 0Bh RPT4 RPT5 AI 10 date Alarm date Al date 01-31 0Ch RPT3 0 AI 10 hour Alarm hour Al hour 00-23 0Dh RPT2 Alarm 10 minutes Alarm minutes Al min 00-59 0Eh RPT1 Alarm 10 seconds Alarm seconds Al sec 00-59 0Fh WDF AF 0 0 0 OF 0 0 Flags Keys: 0 = must be set to '0' AF = alarm flag (read only) AFE = alarm flag enable flag BMB0 - BMB4 = watchdog multiplier bits CB0-CB1 = century bits OF = oscillator fail bit OFIE = oscillator fail interrupt enable bit OUT = output level RB0 - RB2 = watchdog resolution bits RPT1-RPT5 = alarm repeat mode bits RS0-RS3 = SQW frequency bits S = sign bit SQWE = square wave enable bit ST = stop bit WDF = watchdog flag bit (read only) Table 4. M41T64 register map Addr D7 00h DS3840 - Rev 23 D6 D5 D4 D3 0.1 seconds D2 D1 D0 Function/range BCD format 0.01 seconds 10ths/100ths of seconds 00-99 01h ST 10 seconds Seconds Seconds 00-59 02h 0 10 minutes Minutes Minutes 00-59 03h 0 0 Hours (24-hour format) Hours 00-23 04h RS3 RS2 05h 0 0 06h CB1 CB0 10 hours RS1 RS0 10 Date 0 10M 0 Day of week Date: day of month Month Day 01-7 Date 01-31 Century/ month 0-3/01-12 page 13/41 M41T62, M41T64, M41T65 RTC registers 07h 10 years Year Year 08h 0 0 S 09h RB2 BMB4 BMB3 BMB2 Calibration 0Ah 0 SQWE 32KE Al 10M 0Bh RPT4 RPT5 0Ch RPT3 0 0Dh RPT2 Alarm 10 minutes 0Eh RPT1 Alarm 10 seconds Alarm seconds 0Fh WDF BMB1 AI 10 date AI 10 hour AF 0 0 0 00-99 Calibration BMB0 RB1 RB0 Watchdog Alarm month Al month 01-12 Alarm date Al date 01-31 Alarm hour Al hour 00-23 Alarm minutes Al min 00-59 Al sec 00-59 OF 0 0 Flags Keys: 0 = must be set to '0' 32KE = 32 KHz enable bit AF = alarm flag (read only) BMB0 - BMB4 = watchdog multiplier bits CB0-CB1 = century bits OF = oscillator fail bit RB0 - RB2 = watchdog resolution bits RPT1-RPT5 = alarm repeat mode bits RS0-RS3 = SQW frequency bits S = sign bit SQWE = square wave enable bit ST = stop bit WDF = watchdog flag bit (read only) Table 5. M41T65 register map Addr D7 D6 00h D4 D3 0.1 seconds 01h ST 10 seconds 02h OFIE 03h 0 0 04h 0 0 05h 0 0 06h CB1 CB0 10 minutes 07h DS3840 - Rev 23 D5 10 hours 0 0 D1 D0 10ths/100ths of seconds 00-99 Seconds Seconds 00-59 Minutes Minutes 00-59 Hours (24-hour format) Hours 00-23 Day 01-7 Date 01-31 Day of week Date: day of month 10M Century/ Month 10 years month Year 08h OUT FT S 09h RB2 BMB4 BMB3 BMB2 0Ah AFE 0 0 Al 10M Year Calibration BMB1 Function/range BCD format 0.01 seconds 0 10 date 0 D2 BMB0 0-3/01-12 00-99 Calibration RB1 RB0 Alarm month Watchdog Al month 01-12 0Bh RPT4 RPT5 AI 10 date Alarm date Al date 01-31 0Ch RPT3 0 AI 10 hour Alarm hour Al hour 00-23 0Dh RPT2 Alarm 10 minutes Alarm minutes Al min 00-59 0Eh RPT1 Alarm 10 seconds Alarm seconds Al sec 00-59 0Fh WDF AF 0 0 0 OF 0 0 Flags page 14/41 M41T62, M41T64, M41T65 Calibrating the clock Keys: 0 = must be set to '0' AF = alarm flag (read only) AFE = alarm flag enable flag BMB0 - BMB4 = watchdog multiplier bits CB0-CB1 = century bits FT = frequency test bit OF = oscillator fail bit OFIE = oscillator fail interrupt enable bit OUT = output level RB0 - RB2 = watchdog resolution bits RPT1-RPT5 = alarm repeat mode bits S = sign bit ST = stop bit WDF = watchdog flag bit (read only) 3.2 Calibrating the clock The M41T6x real-time clock is driven by a quartz controlled oscillator with a nominal frequency of 32,768 Hz. This provides the time-base for the RTC. The accuracy of the clock depends on the frequency accuracy of the crystal, and the match between the capacitive load of the oscillator circuit and the capacitive load for which the crystal was trimmed. The M41T6x oscillator is designed for use with a 6 - 7 pF crystal load capacitance. When the calibration circuit is properly employed, accuracy improves to better than ±2 ppm at 25 °C. The oscillation rate of crystals changes with temperature (see Figure 18. Crystal accuracy across temperature). Therefore, the M41T6x design employs periodic counter correction. The calibration circuit adds or subtracts counts from the oscillator divider circuit at the divide by 256 stage, as shown in Figure 19. Calibration waveform. The number of times pulses which are blanked (subtracted, negative calibration) or split (added, positive calibration) depends upon the value loaded into the five calibration bits found in the calibration register. Adding counts speeds the clock up, subtracting counts slows the clock down. The calibration bits occupy the five lower order bits (D4-D0) in the calibration register (08h). These bits can be set to represent any value between 0 and 31 in binary form. Bit D5 is a sign bit; '1' indicates positive calibration, '0' indicates negative calibration. Calibration occurs within a 64 minute cycle. The first 62 minutes in the cycle may, once per minute, have one second either shortened by 128 or lengthened by 256 oscillator cycles. If a binary '1' is loaded into the register, only the first 2 minutes in the 64 minute cycle will be modified; if a binary 6 is loaded, the first 12 will be affected, and so on. Therefore, each calibration step has the effect of adding 512 or subtracting 256 oscillator cycles for every 125,829,120 actual oscillator cycles, that is +4.068 or –2.034 ppm of adjustment per calibration step in the calibration register. Assuming that the oscillator is running at exactly 32,768 Hz, each of the 31 increments in the calibration byte would represent +10.7 or –5.35 seconds per day which corresponds to a total range of +5.5 or –2.75 minutes per month (see Figure 19. Calibration waveform). Two methods are available for ascertaining how much calibration a given M41T6x may require: • The first involves setting the clock, letting it run for a month and comparing it to a known accurate reference and recording deviation over a fixed period of time. Calibration values, including the number of seconds lost or gained in a given period, can be found in application note AN934. This allows the designer to give the end user the ability to calibrate the clock as the environment requires, even if the final product is packaged in a non-user serviceable enclosure. The designer could provide a simple utility that accesses the calibration byte. • The second approach is better suited to a manufacturing environment, and involves the use of either the SQW pin (M41T62/64) or the IRQ /FT/OUT pin (M41T65). The SQW pin will toggle at 512 Hz when RS3 = '0,' RS2 = '1,' RS1 = '1,' RS0 = '0,' SQWE = '1,' and ST = '0.' Alternatively, for the M41T65, the IRQ /FT/OUT pin will toggle at 512 Hz when FT and OUT bits = '1' and ST = '0.' Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature. For example, a reading of 512.010124 Hz would indicate a +20 ppm oscillator frequency error, requiring a –10 (XX001010) to be loaded into the calibration byte for correction. Note that setting or changing the calibration byte does not affect the frequency test or square wave output frequency. DS3840 - Rev 23 page 15/41 M41T62, M41T64, M41T65 Setting alarm clock registers Figure 18. Crystal accuracy across temperature Frequency (ppm) 20 0 –20 –40 –60 DF = K x (T – T)2 O F –80 2 2 K = –0.036 ppm/ °C ± 0.006 ppm/ °C –100 TO = 25°C ± 5°C –120 –140 –160 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 Temperature °C Figure 19. Calibration waveform NORMAL POSITIVE CALIBRATION NEGATIVE CALIBRATION 3.3 Setting alarm clock registers Address locations 0Ah-0Eh contain the alarm settings. The alarm can be configured to go off at a prescribed time on a specific month, date, hour, minute, or second, or repeat every year, month, day, hour, minute, or second. Bits RPT5–RPT1 put the alarm in the repeat mode of operation. Table 6. Alarm repeat modes shows the possible configurations. Codes not listed in the table default to the once per second mode to quickly alert the user of an incorrect alarm setting. When the clock information matches the alarm clock settings based on the match criteria defined by RPT5–RPT1, the AF (alarm flag) is set. If AFE (alarm flag enable) is also set (M41T62/65), the alarm condition activates the IRQ /OUT or IRQ /FT/OUT pin. To disable the alarm, write '0' to the alarm date register and to RPT5–RPT1. Note: If the address pointer is allowed to increment to the flag register address, an alarm condition will not cause the interrupt/flag to occur until the address pointer is moved to a different address. It should also be noted that if the last address written is the “Alarm Seconds,” the address pointer will increment to the flag address, causing this situation to occur. The IRQ output is cleared by a READ to the flags register as shown in Figure 20. Alarm interrupt reset waveform. A subsequent READ of the flags register is necessary to see that the value of the alarm flag has been reset to '0.' DS3840 - Rev 23 page 16/41 M41T62, M41T64, M41T65 Watchdog timer Figure 20. Alarm interrupt reset waveform 0Eh Register address 0Fh 00h ALARM FLAG BIT (AF) HIGH-Z IRQ/OUT or IRQ/FT/OUT Table 6. Alarm repeat modes 3.4 RPT5 RPT4 RPT3 RPT2 RPT1 Alarm setting 1 1 1 1 1 Once per second 1 1 1 1 0 Once per minute 1 1 1 0 0 Once per hour 1 1 0 0 0 Once per day 1 0 0 0 0 Once per month 0 0 0 0 0 Once per year Watchdog timer The watchdog timer can be used to detect an out-of-control microprocessor. The user programs the watchdog timer by setting the desired amount of time-out into the watchdog register, address 09h. Bits BMB4-BMB0 store a binary multiplier and the three bits RB2-RB0 select the resolution where: 000=1/16 second (16 Hz); 001=1/4 second (4 Hz); 010=1 second (1 Hz); 011=4 seconds (1/4 Hz); and 100 = 1 minute (1/60 Hz). Note: Invalid combinations (101, 110, and 111) will NOT enable a watchdog time-out. Setting BMB4-BMB0 = 00000 with any combination of RB2-RB0, other than 000, will result in an immediate watchdog time-out. The amount of time-out is then determined to be the multiplication of the five-bit multiplier value with the resolution. (For example: writing 00001110 in the watchdog register = 3*1 or 3 seconds). If the processor does not reset the timer within the specified period, the M41T6x sets the WDF (watchdog flag) and generates an interrupt on the IRQ pin (M41T62), or a watchdog output pulse (M41T65 only) on the WDO pin. The watchdog timer can only be reset by having the microprocessor perform a WRITE of the watchdog register. The time-out period then starts over. Should the watchdog timer time-out, any value may be written to the watchdog register in order to clear the IRQ pin. A value of 00h will disable the watchdog function until it is again programmed to a new value. A READ of the flags register will reset the watchdog flag (bit D7; register 0Fh). The watchdog function is automatically disabled upon power-up, and the watchdog register is cleared. Note: A WRITE to any clock register will restart the watchdog timer. 3.5 Watchdog output ( WDO - M41T65 only) If the processor does not reset the watchdog timer within the specified period, the watchdog output ( WDO ) will pulse low for trec (see Table 7. Square wave output frequency). This output may be connected to the reset input of the processor in order to generate a processor reset. After a watchdog time-out occurs, the timer will remain disabled until such time as a new countdown value is written into the watchdog register. Note: DS3840 - Rev 23 The crystal oscillator must be running for the WDO pulse to be available. The WDO output is an N-channel, open drain output driver (with IOL as specified in Table 13. DC characteristics). page 17/41 M41T62, M41T64, M41T65 Square wave output (M41T62/64) 3.6 Square wave output (M41T62/64) The M41T62/64 offers the user a programmable square wave function which is output on the SQW pin. RS3-RS0 bits located in 04h establish the square wave output frequency. These frequencies are listed in Table 7. Square wave output frequency. Once the selection of the SQW frequency has been completed, the SQW pin can be turned on and off under software control with the square wave enable bit (SQWE) located in register 0Ah. The SQW output is an N-channel, open drain output driver for the M41T64, and a full CMOS output driver for the M41T62. The initial power-up default for the SQW output is 32 KHz (except for M41T64, which defaults disabled). Table 7. Square wave output frequency Square wave bits 3.7 Square wave RS3 RS2 RS1 RS0 Frequency Units 0 0 0 0 None – 0 0 0 1 32.768 kHz 0 0 1 0 8.192 kHz 0 0 1 1 4.096 kHz 0 1 0 0 2.048 kHz 0 1 0 1 1.024 kHz 0 1 1 0 512 Hz 0 1 1 1 256 Hz 1 0 0 0 128 Hz 1 0 0 1 64 Hz 1 0 1 0 32 Hz 1 0 1 1 16 Hz 1 1 0 0 8 Hz 1 1 0 1 4 Hz 1 1 1 0 2 Hz 1 1 1 1 1 Hz Full-time 32 KHz square wave output (M41T64) The M41T64 offers the user a special 32 KHz square wave function which is enabled on power-up to output on the F32K pin as long as VCC ≥ 1.3 V, and the oscillator is running (ST bit = '0'). This function is available within one second (typ) of initial power-up and can only be disabled by setting the 32KE bit to '0' or the ST bit to '1.' If not used, the F32K pin should be disconnected and allowed to float. DS3840 - Rev 23 page 18/41 M41T62, M41T64, M41T65 Century bits 3.8 Century bits The two century bits, CB1 and CB0, are bits D7 and D6, respectively, in the century/month register at address 06h. Together, they comprise a 2-bit counter which increments at the turn of each century. CB1 is the most significant bit. The user may arbitrarily assign the meaning of CB1:CB0 to represent any century value, but the simplest way of using these bits is to extend the year register (07h) by mapping them directly to bits 9 and 8. (The reader is reminded that the year register is in BCD format.) Higher order year bits can be maintained in the application software. Figure 21. Century bits CB1 and CB0 Example: 16-bit year value CB1:CB0 00 MAINTAIN ADDITIONAL YEAR BITS IN SOFTWAR 01 LOWER 8 BITS CONTAINED IN YEAR REGISTER (07h) 11 b15 b14 b13 b12 b11 b10 CB1 b9 CB0 b8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 LET CB1:CB0 REPRESENT BITS 9 AND 8 TO EXTEND THE YEAR REGISTER Table 8. Examples using century bits 3.9 CB1 CB0 CENTURY 0 0 2000 0 1 2100 1 0 2200 1 1 2300 Leap year Leap year occurs every four years, in years which are multiples of 4. For example, 2012 was a leap year. An exception to that is any year which is a multiple of 100. For example, the year 2100 is not a leap year. A further exception is that years which are multiples of 400 are indeed leap years. Hence, while 2100 is not a leap year, 2400 is. During any year which is a multiple of 4, the M41T6x RTC will automatically insert leap day, February 29. Therefore, the application software must correct for this during the exception years (2100, 2200, etc.) as noted above. 3.10 Output driver pin (M41T62/65) When the OFIE bit, AFE bit, and watchdog register are not set to generate an interrupt, the IRQ /OUT pin becomes an output driver that reflects the contents of D7 of the calibration register. In other words, when D7 (OUT bit) is a '0,' then the IRQ /OUT pin will be driven low. Note: DS3840 - Rev 23 The IRQ /OUT pin is an open drain which requires an external pull-up resistor. page 19/41 M41T62, M41T64, M41T65 Oscillator stop detection 3.11 Oscillator stop detection If the oscillator fail (OF) bit is internally set to a '1,' this indicates that the oscillator has either stopped, or was stopped for some period of time and can be used to judge the validity of the clock and date data. This bit will be set to '1' any time the oscillator stops. In the event the OF bit is found to be set to '1' at any time other than the initial power-up, the STOP bit (ST) should be written to a '1,' then immediately reset to '0.' This will restart the oscillator. The following conditions can cause the OF bit to be set: • The first time power is applied (defaults to a '1' on power-up). Note: If the OF bit cannot be written to '0' four (4) seconds after the initial power-up, the STOP bit (ST) should be written to a '1,' then immediately reset to '0.' • The voltage present on VCC or battery is insufficient to support oscillation. • • The ST bit is set to '1.' External interference of the crystal If the oscillator fail interrupt enable bit (OFIE) is set to a '1,' the IRQ pin will also be activated. The IRQ output is cleared by resetting the OFIE or OF bit to '0' (NOT by reading the flag register). The OF bit will remain set to '1' until written to logic '0.' The oscillator must start and have run for at least 4 seconds before attempting to reset the OF bit to '0.' If the trigger event occurs during a power-down condition, this bit will be set correctly. 3.12 Initial power-on defaults Upon application of power to the device, the register bits will initially power-on in the state indicated in Table 9. Initial power-up values. Table 9. Initial power-up values Condition Initial powerup(1) Device ST OF OFIE OUT FT AFE SQWE 32KE RS3-1 RS0 Watchdog M41T62 0 1 0 1 N/A 0 1 N/A 0 1 0 M41T64 0 1 N/A N/A N/A N/A 0 1 0 1 0 M41T65 0 1 0 1 0 0 N/A N/A N/A N/A 0 1. All other control bits power up in an undetermined state. DS3840 - Rev 23 page 20/41 M41T62, M41T64, M41T65 Maximum ratings 4 Maximum ratings Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 10. Absolute maximum ratings Sym Parameter Condition (1) Value (2) Unit TSTG Storage temperature (VCC off, oscillator off) –55 to 125 °C VCC Supply voltage –0.3 to 5.0 V 260 °C –0.2 to Vcc+0.3 V TSLD (3) VIO Lead solder temperature for 10 seconds Input or output voltages IO Output current 20 mA PD Power dissipation 1 W TA = 25 °C >1500 V TA = 25 °C >1000 V VESD(HBM) VESD(RCDM) Electro-static discharge voltage (human body model) Electro-static discharge voltage (robotic charged device model) 1. Test conforms to JEDEC standard. 2. Data based on characterization results, not tested in production. 3. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds. DS3840 - Rev 23 page 21/41 M41T62, M41T64, M41T65 DC and AC parameters 5 DC and AC parameters This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC characteristic tables are derived from tests performed under the measurement conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 11. Operating and AC measurement conditions Note: Parameter M41T6x Supply voltage (VCC) 1.3 V to 4.4 V Ambient operating temperature (TA) –40 to 85 °C Load capacitance (CL) 50 pF Input rise and fall times ≤ 5 ns Input pulse voltages 0.2 VCC to 0.8 VCC Input and output timing ref. voltages 0.3 VCC to 0.7 VCC Output Hi-Z is defined as the point where data is no longer driven. Figure 22. AC measurement I/O waveform 0.8VCC 0.7VCC 0.3VCC 0.2VCC Figure 23. Crystal isolation example Local Grounding Plane (Layer 2) Crystal XI XO GND Note: DS3840 - Rev 23 Substrate pad should be tied to VSS. page 22/41 M41T62, M41T64, M41T65 DC and AC parameters Table 12. Capacitance Parameter (1) (2) Symbol CIN COUT (3) tLP Min. Max. Unit Input capacitance - 7 pF Output capacitance - 10 pF Low-pass filter input time constant (SDA and SCL) - 50 ns 1. At 25°C, f = 1 MHz. 2. Effective capacitance measured with power supply at 3.6 V; sampled only, not 100% tested. 3. Outputs deselected. Table 13. DC characteristics Sym VCC (2) Test condition(1) Parameter Operating voltage Min. Typ. Supply current 1.0 4.4 V I2C bus (400 kHz) 1.3 4.4 V 100 µA 70 µA SCL = 400 kHz (no load) 3.6 V 50 3.0 V 35 µA 2.5 V 30 µA 2.0 V 20 µA 4.4 V SCL = 0 Hz ICC2 Supply current (standby) Unit Clock 4.4 V ICC1 Max. all inputs ≥ VCC – 0.2 V SQW off ≤ VSS + 0.2 V 950 nA 700 nA 3.6 V 375 3.0 V at 25 °C 350 nA 2.0 V at 25 °C 310 nA VIL Input low voltage –0.2 0.3 VCC V VIH Input high voltage 0.7 VCC VCC+0.3 V 0.4 V 0.4 V VCC = 4.4 V, IOL = 3.0 mA VOL Output low voltage (SDA) VCC = 4.4 V, IOL = 1.0 mA (SQW, WDO , IRQ ) VOH Output high voltage VCC = 4.4 V, IOH = –1.0 mA (CMOS) 2.4 V M41T62: IRQ /OUT Open drain pull-up supply voltage M41T64: SQW (3) 4.4 V M41T65: WDO and IRQ /FT/OUT ILI Input leakage current 0 V ≤ VIN ≤ VCC ±1 µA ILO Output leakage current 0 V ≤ VOUT ≤ VCC ±1 µA 1. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 1.3 V to 4.4 V (except where noted). 2. Oscillator startup guaranteed at 1.5 V only. 3. While the M41T64’s SQW output is open drain, the reader is reminded that the SQW output on the M41T62 is CMOS and hence is not included in this list. DS3840 - Rev 23 page 23/41 M41T62, M41T64, M41T65 DC and AC parameters Table 14. Crystal electrical characteristics Parameter (1) (2) Sym Min. Typ. 32.768 fO Resonant frequency - RS Series resistance (TA = –40 to 70 °C, oscillator startup at 2.0 V) - CL Load capacitance - Max. Units kHz 75 (3) (4) 6 kW pF 1. Load capacitors are integrated within the M41T6x. Circuit board layout considerations for the 32.768 kHz crystal of minimum trace lengths and isolation from RF generating signals should be taken into account. 2. For the QFN16 package, user-supplied external crystals are required. The 6 and 7 pF crystals listed in Table 15. Crystals suitable for use with M41T6x series RTCs have been evaluated by ST and have been found to be satisfactory for use with the M41T6x series RTC. 3. RS (max) = 65 kΩ for TA = –40 to 85 °C and oscillator startup at 1.5 V. 4. Guaranteed by design. Table 15. Crystals suitable for use with M41T6x series RTCs Manufacturer’s specifications Vendor Order number Package ESR max. Temp. range (°C) Rated tolerance at 25 °C Rated load cap. Citizen CMJ206T-32.768KDZB-UB 8.3 x 2.5 mm leaded SMT 50 kΩ –40/+85 ±20 ppm 6 pF Citizen CM315-32.768KDZY-UB 3.2 x 1.5 x 0.9 mm SMT 70 kΩ –40/+85 ±20 ppm 7 pF Ecliptek E4WCDA06-32.768K (1) 2.0 x 6.0 mm thru-hole 50 kΩ –10/+60 ±20 ppm 6 pF Ecliptek E5WSDC 07 - 32.768K 7 x 1.5 x 1.4 mm SMT 65 kΩ –40/+85 ±20 ppm 7 pF ECS ECS-.327-6-17X-TR 3.8 x 8.5 x 2.5 mm SMT 50 kΩ –40/+85 ±20 ppm 6 pF ECS ECS-.327-7-34B-TR 3.2 x 1.5 x 0.9 mm SMT 70 kΩ –40/+85 ±20 ppm 7 pF ECS ECS-.327-7-38-TR 7 x 1.5 x 1.4 mm SMT 65 kΩ –40/+85 ±20 ppm 7 pF 7 x 1.5 x 1.4 mm SMT 65 kΩ –40/+85 ±20 ppm 7 pF Epson MC-146 32.7680KA-AG: ROHS (2) Fox 298LF-0.032768-19 1.5 x 5.0 mm thru-hole 50 kΩ –20/+60 ±20 ppm 6 pF Fox 299LF-0.032768-37 2.0 x 6.0 mm thru-hole 50 kΩ –20/+60 ±20 ppm 6 pF Fox 414LF-0.032768-12 3.8 x 8.5 x 2.5 mm SMT 50 kΩ –40/+85 ±20 ppm 6 pF Fox 501LF-0.032768-5 7 x 1.5 x 1.4 mm SMT 65 kΩ –40/+85 ±20 ppm 7 pF 65 kΩ –40/+85 ±20 ppm 7 pF Micro Crystal MS3V-T1R 32.768KHZ 7PF 20PPM 6.7 x 1.4 mm leaded SMT Pletronics SM20S - 32.768K - 6pF 3.8 x 8.5 x 2.5 mm SMT 50 kΩ –40/+85 ±20 ppm 6 pF Seiko SSPT7F-7PF20PPM 7 x 1.5 x 1.4 mm SMT 65 kΩ –40/+85 ±20 ppm 7 pF Seiko VT200F-6PF20PPM 2.0 x 6.0 mm thru-hole 50 kΩ –10/+60 ±20 ppm 6 pF 1. ST has been informed that this crystal has been terminated by the vendor. 2. Epson MC-146 32.7680KA-E: ROHS is 6 pF version. Table 16. Oscillator characteristics Sym Parameter Conditions VSTA Oscillator start voltage ≤ 10 seconds tSTA Oscillator start time VCC = 3.0 V Cg DS3840 - Rev 23 XIN capacitance Min. Typ. Max. 1.5 Unit V 1 12 s pF page 24/41 M41T62, M41T64, M41T65 DC and AC parameters Sym Cd Parameter Conditions Min. Typ. XOUT capacitance Max. 12 IC-to-IC frequency variation (1) (2) Unit pF –10 +10 ppm 1. Devices in LCC8 package ((M41T62LC6F) are tested not to exceed ±20 ppm oscillator frequency error at 25 °C, which equates to about 52 seconds per month. 2. Reference value. TA = 25 °C, VCC = 3.0 V, CMJ-145 (CL = 6 pF, 32,768 Hz) manufactured by Citizen, CL = Cg · Cd / (Cg + Cd). Figure 24. Bus timing requirements sequence SDA t BUF t HD:STA tR t HD:STA tF SCL t HIGH P S t LOW t SU:DAT t HD:DAT SR t SU:STA P t SU:STO Table 17. AC characteristics Parameter (1) Sym Min. Max. Units 0 400 kHz fSCL SCL clock frequency tLOW Clock low period 1.3 µs tHIGH Clock high period 600 ns tR SDA and SCL rise time 300 ns tF SDA and SCL fall time 300 ns tHD:STA tSU:STA START condition hold time (after this period the first clock pulse is generated) START condition setup time (only relevant for a repeated start condition) 600 ns 600 ns tSU:DAT (2) Data setup time 100 ns tHD:DAT Data hold time 0 µs tSU:STO STOP condition setup time 600 ns 1.3 µs tBUF trec Time the bus must be free before a new transmission can start Watchdog output pulse width 96 98 ms 1. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 1.3 to 4.4 V (except where noted). 2. Transmitter must internally provide a hold time to bridge the undefined region (300 ns max) of the falling edge of SCL. DS3840 - Rev 23 page 25/41 M41T62, M41T64, M41T65 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DS3840 - Rev 23 page 26/41 M41T62, M41T64, M41T65 QFN16 package information 6.1 QFN16 package information Figure 25. QFN16 — 16-pin, quad, flat package, no-lead, 3x3 mm, package outline 7509604_4 Note: DS3840 - Rev 23 Drawing is not to scale. page 27/41 M41T62, M41T64, M41T65 QFN16 package information Table 18. QFN16 — 16-pin, quad, flat package, no-lead, 3x3 mm, package mechanical data Symbol mm Min. Typ. Max. Min. Typ. Max. A 0.80 0.90 1.00 0.032 0.035 0.039 A1 0.00 0.02 0.05 0.000 0.001 0.002 A3 b 0.20 0.18 D D2 E2 1.55 0.30 0.007 1.70 1.55 1.70 1.80 0.061 0.30 0.012 0.067 0.071 0.118 1.80 0.061 0.50 0.20 0.010 0.118 3.00 e L 0.25 0.008 3.00 E DS3840 - Rev 23 inches 0.067 0.071 0.020 0.40 0.008 0.012 K 0.20 0.008 aaa 0.50 0.020 bbb 0.10 0.004 ccc 0.10 0.004 ddd 0.05 0.002 eee 0.08 0.003 0.016 page 28/41 M41T62, M41T64, M41T65 QFN16 package information Figure 26. QFN16 — 16-pin, quad, flat package, no-lead, 3 x 3 mm recommended footprint Note: DS3840 - Rev 23 Dimensions shown are in millimeters (mm). page 29/41 M41T62, M41T64, M41T65 LCC8 package information 6.2 LCC8 package information Figure 27. LCC8 — 8-pin, 1.5 x 3.2 mm leadless chip carrier package outline 8241725_2 Table 19. LCC8 — 8-pin, 1.5 x 3.2 mm leadless chip carrier package mechanical data Symbol mm Min. Typ. A Max. Min. Typ. 0.80 Max. 0.031 b 0.30 0.40 0.50 0.012 0.016 0.020 D 1.40 1.50 1.60 0.055 0.059 0.063 D1 0.40 0.50 0.60 0.016 0.020 0.024 E 3.10 3.20 3.30 0.122 0.126 0.130 E1 2.20 2.30 2.40 0.087 0.091 0.094 e 0.80 0.90 1.00 0.032 0.035 0.039 L 0.32 0.42 0.52 0.013 0.017 0.020 N DS3840 - Rev 23 inches 8 8 page 30/41 M41T62, M41T64, M41T65 LCC8 package information Figure 28. LCC8 — 8-pin, 1.5 x 3.2 mm leadless chip carrier recommended footprint 0.9 0.9 0.9 2.0 0.8 0.4 0.8 0.5 3.2 Note: DS3840 - Rev 23 Dimensions shown are typical values, in millimeters (mm). page 31/41 M41T62, M41T64, M41T65 Packing information 7 Packing information 7.1 QFN16 carrier tape Figure 29. Carrier tape for QFN16 3 x 3 mm package P0 E P2 D T A0 F TOP COVER TAPE W B0 P1 CENTER LINES OF CAVI TY K0 USER DIRECTION OF FEED Table 20. Carrier tape dimensions for QFN16 3 x 3 mm package Package QFN16 DS3840 - Rev 23 W 12.00 ±0.30 D 1.50 +0.10 /-0.00 E P0 P2 F A0 B0 K0 P1 T 1.75 4.00 2.00 5.50 3.30 3.30 1.10 8.00 0.30 ±0.10 ±0.10 ±0.10 ±0.05 ±0.10 ±0.10 ±0.10 ±0.10 ±0.05 Unit Bulk qty mm 3000 page 32/41 M41T62, M41T64, M41T65 LCC8 carrier tape 7.2 LCC8 carrier tape 0.3 ±0.02 76 04 76 04 12 ±0.2 1.75 ±0.1 5.5 ±0.05 3.45 ±0.1 Ø1 2 ±0.1 Ø1 .5 ± 0 .5 ± 0 .1 4 ±0.1 .1 Figure 30. Carrier tape for LCC8 1.5 x 3.2 mm package 4 ±0.1 1.75 ±0.1 User Direction of Feed Note: Dimensions shown are in millimeters (mm). 7.3 Reel information for QFN16 and LCC8 Figure 31. Reel schematic T 40m m m in. Access hole At slot location B D C N A Full radius DS3840 - Rev 23 Tape slot In core for Tape start 2.5m m m in.width G m easured At hub page 33/41 M41T62, M41T64, M41T65 Reel information for QFN16 and LCC8 Table 21. Reel dimensions for 12 mm carrier tape - QFN16 and LCC8 packages Package QFN16 LCC8 Note: DS3840 - Rev 23 A B (max) (min) 330 mm (13-inch) 180 mm (7-inch) 1.5 mm 1.5 mm C 13 mm ± 0.2 mm 13 mm ± 0.2 mm D N (min) (min) 20.2 mm 60 mm 20.2 mm 60 mm G 12.4 mm + 2/–0 mm 12.4 mm + 2/–0 mm T (max) 18.4 mm 18.4 mm The dimensions given in Table 21. Reel dimensions for 12 mm carrier tape - QFN16 and LCC8 packages incorporate tolerances that cover all variations on critical parameters. page 34/41 M41T62, M41T64, M41T65 Part numbering 8 Part numbering Table 22. Ordering information scheme Example: M41T 62 Q 6 F Device family M41T Device type and supply voltage 62 = VCC = 1.3 V to 4.4 V 64 = VCC = 1.3 V to 4.4 V 65 = VCC = 1.3 V to 4.4 V Package Q = QFN16 (3 x 3 mm) LC = LCC8 (1.5 x 3.2 mm) (M41T62 only) Temperature range 6 = –40 °C to 85 °C Shipping method F = ECOPACK® package, tape & reel For other options, or for more information on any aspect of this device, please contact the ST sales office nearest you. DS3840 - Rev 23 page 35/41 M41T62, M41T64, M41T65 Revision history Table 23. Document revision history Date 21-Feb-2013 Revision 20 Changes Updated title of datasheet; updated Section 3.8: "Century bits"; added Figure 21: "Century bits CB1 and CB0; moved and modified Table 8: "Examples using century bits"; added Section 3.9: "Leap year"; added footnote 1 to Table 15: "Crystals suitable for use with M41T6x series RTCs. Removed M41T63 part number and all references to it from document. Moved Table 1: "Device summary" to Section 1: "Description" 21-Aug-2015 21 Replaced Figure 10: "Hardware hookup for SuperCapTM backup operation" Updated Section 6.1: "QFN16 package information" Updated dimension e in Table 19: "LCC8 – 8-pin, 1.5 x 3.2 mm leadless chip carrier package mechanical data" DS3840 - Rev 23 01-Oct-2015 22 Clarified open drain pull-up supply voltage for devices in Table 13: "DC characteristics" 18-Jan-2019 23 Updated note on Figure 10. Hardware hookup for SuperCap™ backup operation page 36/41 M41T62, M41T64, M41T65 Contents Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.1 3 2-wire bus characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Bus not busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Start data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Stop data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 Data valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.5 Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 READ mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 WRITE mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Clock operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.1 RTC registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Calibrating the clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Setting alarm clock registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.5 Watchdog output (WDO - M41T65 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6 Square wave output (M41T62/64). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7 Full-time 32 KHz square wave output (M41T64) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8 Century bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9 Leap year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.10 Output driver pin (M41T62/65). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 Oscillator stop detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 Initial power-on defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 6 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 7 6.1 QFN16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.2 LCC8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 DS3840 - Rev 23 page 37/41 M41T62, M41T64, M41T65 Contents 8 7.1 QFN16 carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.2 LCC8 carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.3 Reel information for QFN16 and LCC8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 DS3840 - Rev 23 page 38/41 M41T62, M41T64, M41T65 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T62 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T64 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T65 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm repeat modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Square wave output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examples using century bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initial power-up values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystals suitable for use with M41T6x series RTCs . . . . . . . . . . . . . . . . . . . . . . Oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QFN16 — 16-pin, quad, flat package, no-lead, 3x3 mm, package mechanical data. LCC8 — 8-pin, 1.5 x 3.2 mm leadless chip carrier package mechanical data . . . . . Carrier tape dimensions for QFN16 3 x 3 mm package . . . . . . . . . . . . . . . . . . . . Reel dimensions for 12 mm carrier tape - QFN16 and LCC8 packages . . . . . . . . . Ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DS3840 - Rev 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 4 12 13 14 17 18 19 20 21 22 23 23 24 24 24 25 28 30 32 34 35 36 page 39/41 M41T62, M41T64, M41T65 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. DS3840 - Rev 23 M41T62 logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T64 logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T65 logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T62 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T64 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T65 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T62 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T64 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M41T65 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware hookup for SuperCap™ backup operation . . . . . . . . . . . . . . . . . . . . Serial bus data transfer sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slave address location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . READ mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alternative READ mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WRITE mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buffer/transfer registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystal accuracy across temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alarm interrupt reset waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Century bits CB1 and CB0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystal isolation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus timing requirements sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QFN16 — 16-pin, quad, flat package, no-lead, 3x3 mm, package outline . . . . . . QFN16 — 16-pin, quad, flat package, no-lead, 3 x 3 mm recommended footprint LCC8 — 8-pin, 1.5 x 3.2 mm leadless chip carrier package outline . . . . . . . . . . LCC8 — 8-pin, 1.5 x 3.2 mm leadless chip carrier recommended footprint . . . . . Carrier tape for QFN16 3 x 3 mm package . . . . . . . . . . . . . . . . . . . . . . . . . . . Carrier tape for LCC8 1.5 x 3.2 mm package . . . . . . . . . . . . . . . . . . . . . . . . . Reel schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 3 . 3 . 4 . 4 . 5 . 5 . 5 . 6 . 8 . 8 . 9 . 9 . 9 10 12 16 16 17 19 22 22 25 27 29 30 31 32 33 33 page 40/41 M41T62, M41T64, M41T65 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS3840 - Rev 23 page 41/41
M41T62Q6F
物料型号:M41T62, M41T64, M41T65 器件简介:低功耗串行实时时钟(RTC)带有报警功能 引脚分配:QFN16 3 x 3 mm; LCC8 1.5 x 3.2 mm 参数特性: - 400 kHz I²C串行接口 - 1.3 V至4.4 V I²C总线工作电压 - 32 KHz方波输出 - 可编程报警与中断功能 - 集成32 KHz晶振,无需外部晶振组件 功能详解: - 提供时钟/日历功能 - 可编程报警(M41T62/M41T65) - 32 KHz输出(M41T62/M41T64) - 可编程方波输出(M41T62/M41T64) - 看门狗输出(M41T65) 应用信息:适用于需要低功耗和实时时钟功能的电子设备 封装信息:QFN16 3 x 3 mm; LCC8 1.5 x 3.2 mm,均符合ECOPACK2环保标准,无铅无卤化物。
M41T62Q6F 价格&库存

很抱歉,暂时无法提供与“M41T62Q6F”相匹配的价格&库存,您可以联系我们找货

免费人工找货
M41T62Q6F
  •  国内价格
  • 1+5.51621
  • 10+5.03654
  • 30+4.94060

库存:0