M48Z35AY
M48Z35AV
5.0 or 3.3V, 256 Kbit (32 Kbit x 8) ZEROPOWER® SRAM
FEATURES SUMMARY
■ INTEGRATED, ULTRA LOW POWER SRAM,
POWER-FAIL CONTROL CIRCUIT, and
BATTERY
■
READ CYCLE TIME EQUALS WRITE CYCLE
TIME
■
BATTERY LOW FLAG (BOK)
■
AUTOMATIC POWER-FAIL CHIP DESELECT
and WRITE PROTECTION
■
WRITE PROTECT VOLTAGES:
(VPFD = Power-fail Deselect Voltage)
– M48Z35AY: 4.2V ≤ VPFD ≤ 4.5V
Figure 1. 28-pin, CAPHAT™ DIP Package
28
1
PCDIP28 (PC)
Battery CAPHAT
– M48Z35AV: 2.7V ≤ VPFD ≤ 3.0V
■
SELF-CONTAINED BATTERY IN THE
CAPHAT™ DIP PACKAGE
■
PACKAGING INCLUDES A 28-LEAD SOIC and
SNAPHAT® TOP (to be Ordered Separately)
■
PIN and FUNCTION COMPATIBLE WITH
JEDEC STANDARD 32K x 8 SRAMs
■
SOIC PACKAGE PROVIDES DIRECT
CONNECTION FOR A SNAPHAT TOP WHICH
CONTAINS THE BATTERY
Figure 2. 28-pin SOIC Package
SNAPHAT (SH)
Battery
28
1
SOH28 (MH)
April 2003
Rev. 3.0
1/21
M48Z35AY, M48Z35AV
TABLE OF CONTENTS
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 4. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 5. SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 7. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.....6
.....6
.....6
.....7
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 7. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 9. WRITE Enable Controlled, WRITE Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 10. Chip Enable Controlled, WRITE Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 8. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Data Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. BOK Check Routine Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 16. SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/21
M48Z35AY, M48Z35AV
DESCRIPTION
The M48Z35AY/V ZEROPOWER ® RAM is a 32
Kbit x 8, non-volatile static RAM that integrates
power-fail deselect circuitry and battery control
logic on a single die. The monolithic chip is available in two special packages to provide a highly integrated battery backed-up memory solution.
The M48Z35AY/V is a non-volatile pin and function equivalent to any JEDEC standard 32K x8
SRAM. It also easily fits into many ROM, EPROM,
and EEPROM sockets, providing the non-volatility
of PROMs without any requirement for special
WRITE timing or limitations on the number of
WRITEs that can be performed. The 28 pin 600mil
DIP CAPHAT™ houses the M48Z35AY/V silicon
with a long life lithium button cell in a single package.
The 28-pin, 330mil SOIC provides sockets with
gold plated contacts at both ends for direct connection to a separate SNAPHAT® housing containing the battery. The unique design allows the
SNAPHAT battery package to be mounted on top
of the SOIC package after the completion of the
surface mount process. Insertion of the SNAPHAT
housing after reflow prevents potential battery
damage due to the high temperatures required for
device surface-mounting. The SNAPHAT housing
is keyed to prevent reverse insertion.
The SOIC and battery packages are shipped separately in plastic anti-static tubes or in Tape & Reel
form.
For the 28-lead SOIC, the battery package (e.g.,
SNAPHAT) part number is “M4Z28-BR00SH1.”
Figure 3. Logic Diagram
Table 1. Signal Names
VCC
A0-A14
DQ0-DQ7
15
8
A0-A14
W
Address Inputs
Data Inputs / Outputs
E
Chip Enable Input
G
Output Enable Input
W
WRITE Enable Input
DQ0-DQ7
M48Z35AY
M48Z35AV
E
G
VSS
VCC
Supply Voltage
VSS
Ground
AI02781B
3/21
M48Z35AY, M48Z35AV
Figure 4. DIP Connections
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
VSS
Figure 5. SOIC Connections
28
1
27
2
26
3
25
4
24
5
23
6
7 M48Z35AY 22
8 M48Z35AV 21
20
9
19
10
18
11
17
12
13
16
14
15
VCC
W
A13
A8
A9
A11
G
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
VSS
1
28
27
2
26
3
25
4
24
5
23
6
7 M48Z35AY 22
8 M48Z35AV 21
20
9
19
10
18
11
17
12
16
13
15
14
AI02782B
VCC
W
A13
A8
A9
A11
G
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
AI02783
Figure 6. Block Diagram
A0-A14
LITHIUM
CELL
POWER
VOLTAGE SENSE
AND
SWITCHING
CIRCUITRY
32K x 8
SRAM ARRAY
DQ0-DQ7
E
VPFD
W
G
VCC
4/21
VSS
AI01619B
M48Z35AY, M48Z35AV
MAXIMUM RATING
Stressing the device above the rating listed in the
“Absolute Maximum Ratings” table may cause
permanent damage to the device. These are
stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this specification is
not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability.
Refer
also
to
the
STMicroelectronics SURE Program and other relevant quality documents.
Table 2. Absolute Maximum Ratings
Symbol
TA
TSTG
TSLD(1)
Parameter
Value
Unit
Grade 1
0 to 70
°C
Grade 6
–40 to 85
°C
SNAPHAT®
–40 to 85
°C
SOIC
–55 to 125
°C
260
°C
M48Z35AY
–0.3 to 7.0
V
M48Z35AV
–0.3 to 4.6
V
M48Z35AY
–0.3 to 7.0
V
M48Z35AV
–0.3 to 4.6
V
Ambient Operating Temperature
Storage Temperature (VCC Off, Oscillator Off)
Lead Solder Temperature for 10 seconds
VIO
Input or Output Voltages
VCC
Supply Voltage
IO
Output Current
20
mA
PD
Power Dissipation
1
W
Note: 1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer
than 30 seconds).
2. For SO package: Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for
between 90 to 120 seconds).
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.
5/21
M48Z35AY, M48Z35AV
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 3. Operating and AC Measurement Conditions
Parameter
M48Z35AY
M48Z35AV
Unit
4.5 to 5.5V
3.0 to 3.6
V
Grade 1
0 to 70
0 to 70
°C
Grade 6
–40 to 85
–40 to 85
°C
Load Capacitance (CL)
100
50
pF
Input Rise and Fall Times
≤5
≤5
ns
0 to 3
0 to 3
V
1.5
1.5
V
Supply Voltage (VCC)
Ambient Operating Temperature (TA)
Input Pulse Voltages
Input and Output Timing Ref. Voltages
Note: Output Hi-Z is defined as the point where data is no longer driven.
Figure 7. AC Measurement Load Circuit
645Ω
DEVICE
UNDER
TEST
CL = 100pF or
5pF
CL includes JIG capacitance
1.75V
AI03211
Note: 50pF for M48Z35AV.
Table 4. Capacitance
Symbol
CIN
CIO(3)
Parameter(1,2)
Min
Max
Unit
Input Capacitance
10
pF
Input / Output Capacitance
10
pF
Note: 1. Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested.
2. At 25°C, f = 1MHz.
3. Outputs deselected.
6/21
M48Z35AY, M48Z35AV
Table 5. DC Characteristics
Symbol
Parameter
ILI(2)
Input Leakage Current
ILO(2)
Output Leakage Current
Test Condition(1)
Min
Max
Unit
0V ≤ VIN ≤ VCC
±1
µA
0V ≤ VOUT ≤ VCC
±5
µA
Outputs open
50
mA
E = VIH
3
mA
E = VCC – 0.2V
3
mA
ICC
Supply Current
ICC1
Supply Current (TTL Standby)
ICC2
Supply Current (CMOS Standby)
VIL(3)
Input Low Voltage
–0.3
0.8
V
VIH
Input High Voltage
2.2
VCC + 0.3
V
VOL
Output Low Voltage
IOL = 2.1mA
0.4
V
VOH
Output High Voltage
IOH = –1mA
2.4
V
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).
2. Outputs deselected.
3. Negative spikes of –1V allowed for up to 10ns once per cycle.
OPERATING MODES
The M48Z35AY/V also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single power supply for an out of tolerance
condition. When VCC is out of tolerance, the circuit
write protects the SRAM, providing a high degree
of data security in the midst of unpredictable system operation brought on by low VCC. As VCC falls
below approximately VSO, the control circuitry connects the battery which maintains data until valid
power returns.
Table 6. Operating Modes
Mode
VCC
Deselect
WRITE
READ
4.5 to 5.5V
or
3.0 to 3.6V
READ
E
G
W
DQ0-DQ7
Power
VIH
X
X
High Z
Standby
VIL
X
VIL
DIN
Active
VIL
VIL
VIH
DOUT
Active
VIL
VIH
VIH
High Z
Active
Deselect
VSO to VPFD (min)(1)
X
X
X
High Z
CMOS Standby
Deselect
≤ VSO(1)
X
X
X
High Z
Battery Back-up Mode
Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.
1. See Table 10, page 13 for details.
7/21
M48Z35AY, M48Z35AV
READ Mode
The M48Z35AY/V is in the READ Mode whenever
W (WRITE Enable) is high, E (Chip Enable) is low.
The device architecture allows ripple-through access of data from eight of 264,144 locations in the
static storage array. Thus, the unique address
specified by the 15 Address Inputs defines which
one of the 32,768 bytes of data is to be accessed.
Valid data will be available at the Data I/O pins
within Address Access time (tAVQV) after the last
address input signal is stable, providing that the E
and G access times are also satisfied. If the E and
G access times are not met, valid data will be
available after the latter of the Chip Enable Access
time (tELQV) or Output Enable Access time
(tGLQV).
The state of the eight three-state Data I/O signals
is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an
indeterminate state until tAVQV. If the Address Inputs are changed while E and G remain active,
output data will remain valid for Output Data Hold
time (tAXQX) but will go indeterminate until the next
Address Access.
Figure 8. READ Mode AC Waveforms
tAVAV
VALID
A0-A14
tAVQV
tAXQX
tELQV
tEHQZ
E
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ7
VALID
AI00925
Note: WRITE Enable (W) = High.
8/21
M48Z35AY, M48Z35AV
Table 7. READ Mode AC Characteristics
Symbol
M48Z35AY
M48Z35AV
–70
–100
(1)
Parameter
Min
Max
Min
Unit
Max
tAVAV
READ Cycle Time
tAVQV
Address Valid to Output Valid
70
100
ns
tELQV
Chip Enable Low to Output Valid
70
100
ns
tGLQV
Output Enable Low to Output Valid
35
50
ns
70
100
ns
tELQX(2)
Chip Enable Low to Output Transition
5
10
ns
tGLQX(2)
Output Enable Low to Output Transition
5
5
ns
tEHQZ(2)
Chip Enable High to Output Hi-Z
25
50
ns
tGHQZ(2)
Output Enable High to Output Hi-Z
25
40
ns
tAXQX
Address Transition to Output Transition
10
10
ns
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).
2. CL = 5pF (see Figure 7, page 6).
9/21
M48Z35AY, M48Z35AV
WRITE Mode
The M48Z35AY/V is in the WRITE Mode whenever W and E are low. The start of a WRITE is referenced from the latter occurring falling edge of W or
E. A WRITE is terminated by the earlier rising
edge of W or E. The addresses must be held valid
throughout the cycle. E or W must return high for
a minimum of tEHAX from Chip Enable or tWHAX
from WRITE Enable prior to the initiation of anoth-
er READ or WRITE cycle. Data-in must be valid tDVWH prior to the end of WRITE and remain valid for
tWHDX afterward. G should be kept high during
WRITE cycles to avoid bus contention; although, if
the output bus has been activated by a low on E
and G, a low on W will disable the outputs tWLQZ
after W falls.
Figure 9. WRITE Enable Controlled, WRITE Mode AC Waveforms
tAVAV
VALID
A0-A14
tAVWH
tAVEL
tWHAX
E
tWLWH
tAVWL
W
tWHQX
tWLQZ
tWHDX
DQ0-DQ7
DATA INPUT
tDVWH
AI00926
Figure 10. Chip Enable Controlled, WRITE Mode AC Waveforms
tAVAV
A0-A14
VALID
tAVEH
tAVEL
tELEH
tEHAX
E
tAVWL
W
tEHDX
DQ0-DQ7
DATA INPUT
tDVEH
AI00927
10/21
M48Z35AY, M48Z35AV
Table 8. WRITE Mode AC Characteristics
Symbol
Parameter
M48Z35AY
M48Z35AV
–70
–100
(1)
Min
tAVAV
WRITE Cycle Time
tAVWL
Max
Min
Unit
Max
70
100
ns
Address Valid to WRITE Enable Low
0
0
ns
tAVEL
Address Valid to Chip Enable Low
0
0
ns
tWLWH
WRITE Enable Pulse Width
50
80
ns
tELEH
Chip Enable Low to Chip Enable High
55
80
ns
tWHAX
WRITE Enable High to Address Transition
0
10
ns
tEHAX
Chip Enable High to Address Transition
0
10
ns
tDVWH
Input Valid to WRITE Enable High
30
50
ns
tDVEH
Input Valid to Chip Enable High
30
50
ns
tWHDX
WRITE Enable High to Input Transition
5
5
ns
tEHDX
Chip Enable High to Input Transition
5
5
ns
tWLQZ(2,3)
WRITE Enable Low to Output Hi-Z
25
50
ns
tAVWH
Address Valid to WRITE Enable High
60
80
ns
tAVEH
Address Valid to Chip Enable High
60
80
ns
5
10
ns
tWHQX(2,3)
WRITE Enable High to Output Transition
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).
2. CL = 5pF (see Figure 7, page 6).
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.
11/21
M48Z35AY, M48Z35AV
Data Retention Mode
With valid VCC applied, the M48Z35AY/V operates
as a conventional BYTEWIDE™ static RAM.
Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when VCC falls within the VPFD (max), VPFD
(min) window. All outputs become high impedance, and all inputs are treated as “Don't care.”
Note: A power failure during a WRITE cycle may
corrupt data at the currently addressed location,
but does not jeopardize the rest of the RAM's content. At voltages below VPFD(min), the user can be
assured the memory will be in a write protected
state, provided the VCC fall time is not less than tF.
The M48Z35AY/V may respond to transient noise
spikes on VCC that reach into the deselect window
during the time the device is sampling VCC. Therefore, decoupling of the power supply lines is recommended.
When VCC drops below VSO , the control circuit
switches power to the internal battery which preserves data. The internal button cell will maintain
data in the M48Z35AY/V for an accumulated period of at least 10 years (at 25°C) when VCC is less
than VSO.
As system power returns and VCC rises above
VSO, the battery is disconnected, and the power
supply is switched to external VCC. Write protection continues until VCC reaches VPFD(min) plus
tREC(min). Normal RAM operation can resume
tREC after VCC exceeds VPFD(max).
Also, as VCC rises, the battery voltage is checked.
If the voltage is less than approximately 2.5V, an
internal Battery Not OK (BOK) flag will be set. The
BOK flag can be checked after power up. If the
BOK flag is set, the first WRITE attempted will be
blocked. The flag is automatically cleared after the
first WRITE, and normal RAM operation resumes.
Figure 11 illustrates how a BOK check routine
could be structured.
For more information on Battery Storage Life refer
to the Application Note AN1012.
12/21
Figure 11. BOK Check Routine Example
POWER-UP
READ DATA
AT ANY ADDRESS
WRITE DATA
COMPLEMENT BACK
TO SAME ADDRESS
READ DATA
AT SAME
ADDRESS AGAIN
IS DATA
COMPLEMENT
OF FIRST
READ?
(BATTERY OK)
YES
NO (BATTERY LOW)
NOTIFY SYSTEM
OF LOW BATTERY
(DATA MAY BE
CORRUPTED)
WRITE ORIGINAL
DATA BACK TO
SAME ADDRESS
CONTINUE
AI00607
M48Z35AY, M48Z35AV
Figure 12. Power Down/Up Mode AC Waveforms
VCC
VPFD (max)
VPFD (min)
VSO
tF
tR
tFB
tRB
tDR
tPD
INPUTS
tREC
DON'T CARE
RECOGNIZED
RECOGNIZED
HIGH-Z
OUTPUTS
VALID
VALID
(PER CONTROL INPUT)
(PER CONTROL INPUT)
AI01168C
Table 9. Power Down/Up AC Characteristics
Symbol
Parameter(1)
Min
tPD
E or W at VIH before Power Down
tF(2)
VPFD (max) to VPFD (min) VCC Fall Time
tFB(3)
Max
Unit
0
µs
300
µs
VPFD (min) to VSS VCC Fall Time
10
µs
tR
VPFD (min) to VPFD (max) VCC Rise Time
10
µs
tRB
VSS to VPFD (min) VCC Rise Time
1
µs
tREC(4)
VPFD (max) to Inputs Recognized
40
200
ms
Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).
2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC passes VPFD (min).
3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data.
4. tREC (min) = 20ms for industrial temperature Grade (6) device.
Table 10. Power Down/Up Trip Points DC Characteristics
Symbol
Parameter(1,2)
VPFD
Power-fail Deselect Voltage
VSO
Battery Back-up Switchover Voltage
tDR(3)
Expected Data Retention Time
Min
Typ
Max
Unit
M48Z35AY
4.2
4.35
4.5
V
M48Z35AV
2.7
2.9
3.0
V
M48Z35AY
3.0
V
M48Z35AV
VPFD – 100mV
V
10
YEARS
Note: 1. All voltages referenced to VSS.
2. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).
3. At 25°C, VCC = 0V.
13/21
M48Z35AY, M48Z35AV
VCC Noise And Negative Going Transients
ICC transients, including those produced by output
switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients
can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy
stored in the bypass capacitors will be released as
low going spikes are generated or energy will be
absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (see Figure 13) is
recommended in order to provide the needed filtering.
In addition to transients that are caused by normal
SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values
below VSS by as much as one volt. These negative
spikes can cause data corruption in the SRAM
while in battery backup mode. To protect from
these voltage spikes, ST recommends connecting
a schottky diode from VCC to VSS (cathode connected to VCC, anode to VSS). (Schottky diode
1N5817 is recommended for through hole and
MBRS120T3 is recommended for surface mount).
14/21
Figure 13. Supply Voltage Protection
VCC
VCC
0.1µF
DEVICE
VSS
AI02169
M48Z35AY, M48Z35AV
PACKAGE MECHANICAL INFORMATION
Figure 14. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT™, Package Outline
A2
A1
B1
B
A
L
C
e1
eA
e3
D
N
E
1
PCDIP
Note: Drawing is not to scale.
Table 11. PMDIP28 – 28-pin Plastic DIP, battery CAPHAT™, Package Mechanical Data
mm
inches
Symb
Typ
Min
Max
A
8.89
A1
Typ
Min
Max
9.65
0.350
0.380
0.38
0.76
0.015
0.030
A2
8.38
8.89
0.330
0.350
B
0.38
0.53
0.015
0.021
B1
1.14
1.78
0.045
0.070
C
0.20
0.31
0.008
0.012
D
39.37
39.88
1.550
1.570
E
17.83
18.34
0.702
0.722
e1
2.29
2.79
0.090
0.110
e3
29.72
36.32
1.170
1.430
eA
15.24
16.00
0.600
0.630
L
3.05
3.81
0.120
0.150
N
28
28
15/21
M48Z35AY, M48Z35AV
Figure 15. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Outline
A2
A
C
B
eB
e
CP
D
N
E
H
A1
α
L
1
SOH-A
Note: Drawing is not to scale.
Table 12. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Mechanical Data
mm
inch
Symbol
Typ
Min
A
Typ
Min
3.05
Max
0.120
A1
0.05
0.36
0.002
0.014
A2
2.34
2.69
0.092
0.106
B
0.36
0.51
0.014
0.020
C
0.15
0.32
0.006
0.012
D
17.71
18.49
0.697
0.728
E
8.23
8.89
0.324
0.350
–
–
–
–
eB
3.20
3.61
0.126
0.142
H
11.51
12.70
0.453
0.500
L
0.41
1.27
0.016
0.050
α
0°
8°
0°
8°
N
28
e
CP
16/21
Max
1.27
0.050
28
0.10
0.004
M48Z35AY, M48Z35AV
Figure 16. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Outline
A1
eA
A2
A
A3
B
L
eB
D
E
SHZP-A
Note: Drawing is not to scale.
Table 13. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Mechanical Data
mm
inches
Symb
Typ
Min
A
Max
Typ
Min
9.78
Max
0.385
A1
6.73
7.24
0.265
0.285
A2
6.48
6.99
0.255
0.275
A3
0.38
0.015
B
0.46
0.56
0.018
0.022
D
21.21
21.84
0.835
0.860
E
14.22
14.99
0.560
0.590
eA
15.55
15.95
0.612
0.628
eB
3.20
3.61
0.126
0.142
L
2.03
2.29
0.080
0.090
17/21
M48Z35AY, M48Z35AV
Figure 17. SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Outline
A1
eA
A2
A
A3
B
L
eB
D
E
SHZP-A
Note: Drawing is not to scale.
Table 14. SH – 4-pin SNAPHAT Housing for 120 mAh Battery, Package Mechanical Data
mm
inches
Symb
Typ
Min
A
Typ
Min
10.54
Max
0.415
A1
8.00
8.51
0.315
0.335
A2
7.24
8.00
0.285
0.315
A3
18/21
Max
0.38
0.015
B
0.46
0.56
0.018
0.022
D
21.21
21.84
0.835
0.860
E
17.27
18.03
0.680
0.710
eA
15.55
15.95
0.612
0.628
eB
3.20
3.61
0.126
0.142
L
2.03
2.29
0.080
0.090
M48Z35AY, M48Z35AV
PART NUMBERING
Table 15. Ordering Information Scheme
Example:
M48Z
35AY
–70
MH
1
TR
Device Type
M48Z
Supply Voltage and Write Protect Voltage
35AY = VCC = 4.5 to 5.5V; VPFD = 4.2 to 4.5V
35AV = VCC = 3.0 to 3.6V; VPFD = 2.7 to 3.0V
Speed
–70 = 70ns (35AY)
–10 = 100ns (35AV)
Package
PC = PCDIP28
MH(1) = SOH28
Temperature Range
1 = 0 to 70°C
6(2) = –40 to 85°C
Shipping Method for SOIC
blank = Tubes
TR = Tape & Reel
Note: 1. The SOIC package (SOH28) requires the battery package (SNAPHAT ®) which is ordered separately under the part number
“M4Zxx-BR00SH” in plastic tube or “M4Zxx-BR00SHTR” in Tape & Reel form.
2. Industrial temperature grade available in SOIC package (SOH28) only.
Caution: Do not place the SNAPHAT battery package “M4Zxx-BR00SH” in conductive foam as it will drain the lithium button-cell battery.
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,
please contact the ST Sales Office nearest to you.
Table 16. SNAPHAT Battery Table
Part Number
Description
Package
M4Z28-BR00SH
Lithium Battery (48mAh) SNAPHAT
SH
M4Z32-BR00SH
Lithium Battery (120mAh) SNAPHAT
SH
19/21
M48Z35AY, M48Z35AV
REVISION HISTORY
Table 17. Revision History
Date
Rev. #
September 1999
1.0
First Issue
20-Apr-00
1.1
SH and SH28 packages for 2-pin and 2-socket removed
22-Jun-01
2.0
Reformatted; added temperature information (Table 4, 5, 7, 8, 9, 10)
05-Jul-01
2.1
Removed reference to “Crystal” in Features Summary
17-Dec-01
2.2
Changed speed grade designator to “–10” (Table 15)
29-May-02
2.3
Modified reflow time and temperature footnotes (Table 2)
03-Oct-02
2.4
Update VCC for Supply Voltage (Table 2)
07-Nov-02
2.5
Update Absolute Maximum Ratings (Table 2)
02-Apr-03
3.0
v2.2 template applied; test condition updated (Table 10)
20/21
Revision Details
M48Z35AY, M48Z35AV
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
www.st.com
21/21