M68AW031A
256 Kbit (32K x8) 3.0V Asynchronous SRAM
FEATURES SUMMARY
■ SUPPLY VOLTAGE: 2.7 to 3.6V
■
32K x 8 bits SRAM with OUTPUT ENABLE
■
EQUAL CYCLE and ACCESS TIME: 70ns
■
LOW STANDBY CURRENT
■
LOW VCC DATA RETENTION: 1.5V
■
TRI-STATE COMMON I/O
■
AUTOMATIC POWER DOWN
Figure 1. Packages
SO28 (MS)
330 mm
TSOP28 (N)
8 x 13.4 mm
TSOP28 Reverse (NS)
8 x 13.4 mm
November 2003
1/19
M68AW031A
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. SO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. TSOP Connections (Reverse) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 5. TSOP Connections (Normal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 9. Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 10. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms. . . . . . . . . . . . . 10
Figure 11. Chip Enable Controlled, Standby Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 12. Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 13. Chip Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 14. Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 9. Low VCC Data Retention Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
SO28 - 28 lead Plastic Small Outline, 330 mils body width, Package Outline . . . . . . . . . . . . . . . . 15
SO28 - 28 lead Plastic Small Outline, 330 mils body width, Package Mechanical Data . . . . . . . . . 15
TSOP28 - 28 lead Normal and Reverse Pinout Plastic Small Outline, Package Outline . . . . . . . . 16
TSOP28 - 28 lead Normal and Reverse Pinout Plastic Small Outline, Package Mechanical Data . 16
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/19
M68AW031A
SUMMARY DESCRIPTION
The M68AW031A is a 256 Kbit (262,144 bit)
CMOS SRAM, organized as 32,768 bytes by 8
bits. The device features fully static operation requiring no external clocks or timing strobes, with
equal address access and cycle times. It requires
a single 2.7 to 3.6V supply. This device has an au-
tomatic power-down feature, reducing the power
consumption by over 99% when deselected.
The M68AW031A is available in SO28 (28-lead
Small Outline) and TSOP28 (28-lead Thin Small
Outline, Standard and Reverse Pinout) packages.
Figure 2. Logic Diagram
Table 1. Signal Names
VCC
15
8
A0-A14
DQ0-DQ7
W
M68AW031A
E
A0-A14
Address Inputs
DQ0-DQ7
Data Input/Output
E
Chip Enable
G
Output Enable
W
Write Enable
VCC
Supply Voltage
VSS
Ground
G
VSS
AI05935c
3/19
M68AW031A
Figure 3. SO Connections
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
DQ0
DQ1
DQ2
VSS
Figure 5. TSOP Connections (Normal)
1
28
27
2
26
3
25
4
24
5
23
6
22
7
M68AW031A
21
8
20
9
19
10
18
11
17
12
13
16
14
15
VCC
W
A4
A3
A2
A1
G
A0
E
DQ7
DQ6
DQ5
DQ4
DQ3
AI04836c
22
21
28
M68AW031A
15
(Reverse)
14
1
7
8
AI05989D
4/19
22
21
VCC
A5
A6
A7
A8
A9
A10
A11
28
M68AW031A
15
(Normal)
14
1
7
8
AI05959D
Figure 4. TSOP Connections (Reverse)
A11
A10
A9
A8
A7
A6
A5
VCC
W
A4
A3
A2
A1
G
G
A1
A2
A3
A4
W
A12
A13
A14
DQ0
DQ1
DQ2
VSS
DQ3
DQ4
DQ5
DQ6
DQ7
E
A0
A0
E
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A14
A13
A12
M68AW031A
Figure 6. Block Diagram
A14
ROW
DECODER
MEMORY
ARRAY
A7
DQ7
I/O CIRCUITS
COLUMN
DECODER
DQ0
A0
A6
E
W
G
AI05919
5/19
M68AW031A
OPERATION
The M68AW031A has a Chip Enable power down
feature which invokes an automatic standby mode
whenever Chip Enable is de-asserted (E = High).
An Output Enable (G) signal provides a high
speed tri-state control, allowing fast read/write cy-
cles to be achieved with the common I/O data bus.
Operational modes are determined by device control inputs W and E as summarized in the Operating Modes table (see Table 2).
Table 2. Operating Modes
Operation
E
W
G
DQ0-DQ7
Power
Deselected
VIH
X
X
Hi-Z
Standby (ISB)
Read
VIL
VIH
VIL
Data Output
Active (ICC)
Write
VIL
VIL
X
Data Input
Active (ICC)
Output Disabled
VIL
VIH
VIH
Hi-Z
Active (ICC)
Note: X = VIH or VIL.
Read Mode
The M68AW031A is in the Read mode whenever
Write Enable (W) is High with Output Enable (G)
Low, and Chip Enable (E) is asserted. This provides access to data of the 262,144 locations in
the static memory array, specified by the 15 address inputs. Valid data will be available at the
eight output pins within tAVQV after the last stable
address, providing G is Low and E is Low. If Chip
Enable or Output Enable access times are not
met, data access will be measured from the limiting parameter (tELQV or tGLQV) rather than the address. Data out may be indeterminate at tELQX and
tGLQX but data lines will always be valid at tAVQV.
See Figures 9, 10, 11 and Table 7 for details on
Read mode AC timings and Characteristics.
Write Mode
The M68AW031A is in the Write mode whenever
the W and E are Low. Either the Chip Enable input
(E) or the Write Enable input (W) must be de-
6/19
asserted
during
Address
transitions
for
subsequent write cycles. When E (W) is Low, write
cycle begins on the W (E)'s falling edge.
Therefore, address setup time is referenced to
Write Enable or Chip Enable as tAVWL and tAVEL
respectively, and is determined by the latter
occurring edge.
The Write cycle can be terminated by the earlier
rising edge of E or W.
If the Output is enabled (E = Low, G = Low), then
W will return the outputs to high impedance within
tWLQZ of its falling edge. Care must be taken to
avoid bus contention in this type of operation. Data
input must be valid for tDVWH before the rising
edge of Write Enable, or for tDVEH before the rising
edge of E, whichever occurs first, and remain valid
for tWHDX and tEHDX respectively.
See Figures 12, 10 and Table 8 for details on Write
mode AC timings and Characteristics.
M68AW031A
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for periods greater than 1s periods may
affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant
quality documents.
Table 3. Absolute Maximum Ratings
Symbol
Value
Unit
20
mA
Ambient Operating Temperature
–55 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
TLEAD
Lead Temperature during Soldering(2)
260(3)
°C
–0.5 to 4.6
V
–0.5 to VCC +0.5
V
1
W
IO (1)
TA
VCC
VIO (4)
PD
Note: 1.
2.
3.
4.
Parameter
Output Current
Supply Voltage
Input or Output Voltage
Power Dissipation
One output at time not to exceed 1 second duration.
Compliant with the ECOPACK® 7191395 specification for Lead-free soldering processes.
Not exceeding 250°C for more than 30s, and peaking at 260°C.
Up to a maximum operating VCC of 3.6V only.
7/19
M68AW031A
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 4. Operating and AC Measurement Conditions
Parameter
M68AW031A
VCC Supply Voltage
2.7 to 3.6V
Range 1
0 to 70°C
Range 6
–40 to 85°C
Ambient Operating Temperature
Load Capacitance (CL)
30pF
Output Circuit Protection Resistance (R1)
3.0kΩ
Load Resistance (R2)
3.1kΩ
Input Rise and Fall Times
1ns/V
0 to VCC
Input Pulse Voltages
Input and Output Timing Ref. Voltages
VCC/2
Output Transition Timing Ref. Voltages
VRL = 0.3VCC; VRH = 0.7VCC
Figure 7. AC Measurement I/O Waveform
Figure 8. AC Measurement Load Circuit
VCC
I/O Timing Reference Voltage
R1
VCC
VCC/2
0V
DEVICE
UNDER
TEST
OUT
CL
Output Timing Reference Voltage
VCC
0V
R2
0.7VCC
0.3VCC
AI05831
CL includes probe capacitance
AI05932
8/19
M68AW031A
Table 5. Capacitance
CIN
COUT
Test
Condition
Parameter(1,2)
Symbol
Input Capacitance on all pins (except DQ)
Output Capacitance
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
8
pF
Note: 1. Sampled only, not 100% tested.
2. At TA = 25°C, f = 1 MHz, VCC = 3.0V.
Table 6. DC Characteristics
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
30
mA
ICC1 (1,2)
Operating Supply Current
VCC = 3.6V, f = 1/tAVAV,
IOUT = 0mA
ICC2 (3)
Operating Supply Current
VCC = 3.6V, f = 1MHz,
IOUT = 0mA
2
5
mA
VCC = 3.6V, f = 0,
E ≥ VCC –0.2V or
VIN = 0.2V or
VIN = VCC –0.2V
4
10
µA
ISB
Standby Supply Current CMOS
ILI
Input Leakage Current
ILO (4)
Output Leakage Current
0V ≤ VIN ≤ VCC
–1
1
µA
0V ≤ VOUT ≤ VCC
–1
1
µA
VIH
Input High Voltage
2.2
VCC + 0.3
V
VIL
Input Low Voltage
–0.3
0.6
V
VOH
Output High Voltage
IOH = –1.0mA
VOL
Output Low Voltage
IOL = 2.1mA
Note: 1.
2.
3.
4.
2.4
V
0.4
V
Average AC current, cycling at tAVAV minimum.
E = VIL, VIN = VIL or VIH.
E ≤ 0.2V, VIN ≤ 0.2V or VIN ≥ VCC –0.2V.
Output disabled.
9/19
M68AW031A
Figure 9. Address Controlled, Read Mode AC Waveforms
tAVAV
A0-A14
VALID
tAVQV
tAXQX
DATA VALID
DQ0-DQ7
AI05939
Note: E = Low, G = Low, W = High.
Figure 10. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.
tAVAV
VALID
A0-A14
tAVQV
tAXQX
tELQV
tEHQZ
E
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ7
VALID
AI05940
Note: Write Enable (W) = High.
Figure 11. Chip Enable Controlled, Standby Mode AC Waveforms
E
ICC
ISB
tPU
tPD
50%
AI05956
10/19
M68AW031A
Table 7. Read and Standby Mode AC Characteristics
M68AW031A
Symbol
Parameter
Unit
70
tAVAV
Read Cycle Time
Min
70
ns
tAVQV
Address Valid to Output Valid
Max
70
ns
tAXQX (1)
Data hold from address change
Min
10
ns
tEHQZ (2,3)
Chip Enable High to Output Hi-Z
Max
25
ns
tELQV
Chip Enable Low to Output Valid
Max
70
ns
Chip Enable Low to Output Transition
Min
10
ns
tGHQZ (2,3)
Output Enable High to Output Hi-Z
Max
25
ns
tGLQV
Output Enable Low to Output Valid
Max
35
ns
Output Enable Low to Output Transition
Min
5
ns
tPD (4)
Chip Enable High to Power Down
Max
70
ns
tPU (4)
Chip Enable Low to Power Up
Min
0
ns
tELQX (1)
tGLQX (1)
Note: 1. Test conditions assume transition timing reference level = 0.3VCC or 0.7VCC.
2. At any given temperature and voltage condition, tGHQZ is less than tGLQX and tEHQZ is less than tELQX for any given device.
3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
4. Tested initially and after any design or process changes that may affect these parameters.
11/19
M68AW031A
Figure 12. Write Enable Controlled, Write AC Waveforms
tAVAV
VALID
A0-A14
tAVWH
tELWH
tWHAX
E
tWLWH
tAVWL
W
tWLQZ
tWHQX
tWHDX
DQ0-DQ7
DATA (1)
DATA (1)
DATA INPUT
tDVWH
AI05941
Note: 1. During this period DQ0-DQ7 are in output state and input signals should not be applied.
Figure 13. Chip Enable Controlled, Write AC Waveforms
tAVAV
A0-A14
VALID
tAVEH
tAVEL
tELEH
tEHAX
E
tWLEH
W
tEHDX
DQ0-DQ7
DATA INPUT
tDVEH
AI05942
12/19
M68AW031A
Table 8. Write Mode AC Characteristics
M68AW031A
Symbol
Parameter
Unit
70
tAVAV
Write Cycle Time
Min
70
ns
tAVEH
Address Valid to Chip Enable High
Min
60
ns
tAVEL
Address valid to Chip Enable Low
Min
0
ns
tAVWH
Address Valid to Write Enable High
Min
60
ns
tAVWL
Address Valid to Write Enable Low
Min
0
ns
tDVEH
Input Valid to Chip Enable High
Min
30
ns
tDVWH
Input Valid to Write Enable High
Min
30
ns
tEHAX
Chip Enable High to Address Transition
Min
0
ns
tEHDX
Chip enable High to Input Transition
Min
0
ns
tELEH
Chip Enable Low to Chip Enable High
Min
60
ns
tELWH
Chip Enable Low to Write Enable High
Min
60
ns
tWHAX
Write Enable High to Address Transition
Min
0
ns
tWHDX
Write Enable High to Input Transition
Min
0
ns
tWHQX(1)
Write Enable High to Output Transition
Min
5
ns
tWLEH
Write Enable Low to Chip Enable High
Min
60
ns
Write Enable Low to Output Hi-Z
Max
25
ns
Write Enable Low to Write Enable High
Min
60
ns
tWLQZ(1,2)
tWLWH
Note: 1. At any given temperature and voltage condition, tWLQZ is less than tWHQX for any given device.
2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
13/19
M68AW031A
Figure 14. Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
3.6V
VCC
2.7V
VDR > 1.5V
tCDR
tR
E ≥ VDR – 0.2V
E
AI05905
Table 9. Low VCC Data Retention Characteristics
Symbol
Parameter
ICCDR (1) Supply Current (Data Retention)
Test Condition
VCC = 1.5V, E ≥ VCC –0.2V, f = 0 (3)
Chip Deselected to Data
tCDR (1,2) Retention Time
tR (2)
VDR (1)
Operation Recovery Time
Supply Voltage (Data Retention)
Min
E ≥ VCC –0.2V, f = 0
Typ
Max
Unit
6
µA
0
ns
tAVAV
ns
1.5
V
Note: 1. All other Inputs at VIH ≥ VCC –0.2V or VIL ≤ 0.2V.
2. Tested initially and after any design or process changes that may affect these parameters. tAVAV is Read cycle time.
3. No input may exceed VCC +0.2V.
14/19
M68AW031A
PACKAGE MECHANICAL
Figure 15. SO28 - 28 lead Plastic Small Outline, 330 mils body width, Package Outline
D
28
15
c
E1 E
θ
1
14
A1
A2
b
L
A
L1
ddd
e
SO-G
Note: Drawing is not to scale.
Table 10. SO28 - 28 lead Plastic Small Outline, 330 mils body width, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
2.850
A1
0.1122
0.100
A2
2.489
b
0.406
c
2.362
Max
0.0039
2.620
0.0980
0.0930
0.1031
0.0079
0.0142
0.0160
0.200
0.360
D
18.110
18.618
0.7130
0.7330
E
11.811
12.116
0.4650
0.4770
E1
8.407
e
1.270
–
–
0.0500
–
–
L
0.914
0.711
1.117
0.0360
0.0280
0.0440
L1
1.702
1.499
1.905
0.0670
0.0590
0.0750
0
10
0
10
Q
0.3310
15/19
M68AW031A
Figure 16. TSOP28 - 28 lead Normal and Reverse Pinout Plastic Small Outline, Package Outline
A2
22
21
e
28
1
E
B
7
8
D1
A
CP
D
DIE
C
A1
TSOP-c
α
L
Note: Drawing is not to scale.
Table 11. TSOP28 - 28 lead Normal and Reverse Pinout Plastic Small Outline, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
Typ
Min
Max
A
1.250
0.0492
A1
0.200
0.0079
A2
0.950
1.150
0.0374
0.0453
B
0.170
0.270
0.0067
0.0106
C
0.100
0.210
0.0039
0.0083
CP
0.100
0.0039
D
13.200
13.600
0.5197
0.5354
D1
11.700
11.900
0.4606
0.4685
E
7.900
8.100
0.3110
0.3189
–
–
–
–
L
0.500
0.700
0.0197
0.0276
α
0°
5°
0°
5°
N
28
e
16/19
Max
0.550
0.0217
28
M68AW031A
PART NUMBERING
Table 12. Ordering Information Scheme
Example:
M68AW031 A
L
70 MS
6
U
Device Type
M68
Mode
A = Asynchronous
Operating Voltage
W = 2.7 to 3.6V
Array Organization
031 = 256 Kbit (32K x8)
Option 1
A = 1 Chip Enable
Option 2
L = L-Die
M = M-Die
Speed Class
70 = 70 ns
Package
MS = SO28
N = TSOP28 8x13.4mm
NS = TSOP28 8x13.4mm (Reverse Pinout)
Operative Temperature
6 = –40 to 85 °C
1 = 0 to 70 °C
Shipping
U = Tube
T = Tape and Reel
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
17/19
M68AW031A
REVISION HISTORY
Table 13. Document Revision History
Date
Version
January 2002
1.0
First Issue
07-Feb-2002
2.0
TSOP28 Package Order Code clarified
08-Feb-2002
3.0
AC Measurement Load Circuit clarified (Figure 8)
06-Mar-2002
4.0
Document status changed to Data Sheet
5.0
Absolute Maximum Ratings table clarified (Table 3)
Operating and AC Measurement Conditions table clarified (Table 4)
DC Characteristics table clarified (Table 6)
Low VCC Data Retention AC Waveforms and Characteristics table clarified (Figure 14, Table
4)
01-Jun-2002
6.0
TSOP28 8x13.4mm Standard pinout added (Figure 5, Table 12)
Block Diagram clarified (Figure 6)
TA clarified in Absolute Maximum Ratings (Table 3)
Operating and AC Measurement Conditions table clarified (Table 4)
ICC2 Max added in DC Characteristics (Table 6)
tPD, tPU clarified in Read and Standby Mode AC Characteristics (Table 7)
tWLEH, tWLWH clarified in Write Mode AC Characteristics (Table 8)
09-Sep-2002
6.1
Load Capacitance (CL) changed from 100pF to 30pF (Table 4)
02-Oct-2002
6.2
New part number added.
09-Oct-2002
6.3
Part number modified.
22-May-2003
6.4
Temperature range 1 added to Ordering Information Scheme. TSOP pin numbering
corrected
02-Jul-2003
6.5
Value of ISB(typ) changed in DC Characteristics table
6.6
SO28 package modified. Part numbering scheme updated.
TLEAD parameter added in Table 3, Absolute Maximum Ratings.
AC, DC Characteristics and waveforms grouped together.
tPD maximum value and tPU minimum value updated in Table 7, Read and Standby Mode
AC Characteristics.
20-May-2002
25-Nov-2003
18/19
Revision Details
M68AW031A
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2003 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
19/19