M950x0-W M950x0-R M950x0-DF
Datasheet
4 Kbit, 2 Kbit and 1 Kbit serial SPI bus EEPROM with high-speed clock
Features
SO8N
(150 mil width)
•
•
•
TSSOP8
(169 mil width)
•
UFDFPN8 (MC)
DFN8 (2 x 3 mm)
Product status link
M95040-DF
M95010-R
M95020-R
M95040-R
•
•
•
•
•
•
•
Compatible with the serial peripheral interface (SPI) bus
Memory array
–
1/2/4-Kbit (128/256/512 bytes) of EEPROM
–
Page size: 16 bytes
–
Additional write lockable page (Identification page) for M95040-DF order
code
Write
–
Byte Write within 5 ms
–
Page Write within 5 ms
Write protect
–
quarter array
–
half array
–
whole memory array
Max clock frequency: 20 MHz
Single supply voltage:
–
2.5 V to 5.5 V for M950x0-W
–
1.8 V to 5.5 V for M950x0-R
–
1.7 V to 5.5 V for M95040-DF
Operating temperature range: from -40 °C up to +85 °C
Enhanced ESD protection
More than 4 million write cycles
More than 200-year data retention
Packages RoHS-compliant and Halongen-free
–
SO8N (ECOPACK2)
–
TSSOP8 (ECOPACK2)
–
UFDFPN8 (ECOPACK2)
M95010-W
M95020-W
M95040-W
DS1639 - Rev 14 - April 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
M950x0-W M950x0-R M950x0-DF
Description
1
Description
The M95010/M95020/M95040 devices (M950x0) are electrically erasable programmable memories (EEPROMs)
organized as 128/256/512 x 8 bits respectively, accessed through the SPI bus.
The M950x0-W can operate with a supply voltage from 2.5 V to 5.5 V, the M950x0-R can operate with a supply
voltage from 1.8 V to 5.5 V and the M950x0-DF can operate with a supply voltage from 1.7 V to 5.5 V, over an
ambient temperature range of -40 °C / +85 °C
The M950x0-DF offers an additional page, named the identification page (16 bytes). The identification page can
be used to store sensitive application parameters that can be (later) permanently locked in read-only mode.
Figure 1. Logic diagram
VCC
D
C
S
M95xxx
Q
W
HOLD
VSS
The SPI bus signals are C, D and Q, as shown in Figure 1 and Table 1. The device is selected when chip select
(S) is driven low. Communications with the device can be interrupted when the HOLD is driven low.
Table 1. Signal names
Signal name
DS1639 - Rev 14
Function
Direction
C
Serial clock
Input
D
Serial data input
Input
Q
Serial data output
Output
S
Chip select
Input
W
Write protect
Input
HOLD
Hold
Input
VCC
Supply voltage
-
VSS
Ground
-
page 2/46
M950x0-W M950x0-R M950x0-DF
Description
Figure 2. 8-pin package connections (top view)
M95xxx
1.
DS1639 - Rev 14
S
1
8
VCC
Q
2
7
HOLD
W
3
6
C
VSS
4
5
D
See Package information for package dimensions, and how to identify pin 1.
page 3/46
M950x0-W M950x0-R M950x0-DF
Block diagram
2
Block diagram
The memory is organized as shown in the following figure.
Figure 3. Block diagram
DATA REGISTER
+
ECC
/S
SENSE AMPLIFIERS
X DECODER
PAGE LATCHES
Q
I/O
D
C
HOLD
1. = Identification page
DS1639 - Rev 14
STATUS
REGISTER
CONTROL
LOGIC
Y DECODER
ARRAY
W
CUSTOM AREA(1)
HV GENERATOR
+
SEQUENCER
ADDRESS
REGISTER
MS67262
page 4/46
M950x0-W M950x0-R M950x0-DF
Signal description
3
Signal description
During all operations, VCC must be held stable and within the specified valid range: VCC(min) to VCC(max).
All of the input and output signals must be held high or low (according to voltages of VIH, VOH, VIL or VOL, as
specified in Table 15 and Table 16). These signals are described next.
3.1
Serial data output (Q)
This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of serial
clock (C).
3.2
Serial data input (D)
This input signal is used to transfer data serially into the device. It receives instructions, addresses, and the data
to be written. Values are latched on the rising edge of serial clock (C).
3.3
Serial clock (C)
This input signal provides the timing of the serial interface. Instructions, addresses, or data present at serial data
input (D) are latched on the rising edge of serial clock (C). Data on serial data output (Q) change from the falling
edge of serial clock (C).
3.4
Chip select (S)
When this input signal is high, the device is deselected and serial data output (Q) is at high impedance. The
device is in the standby power mode, unless an internal write cycle is in progress. Driving chip select (S) low
selects the device, placing it in the active power mode.
After power-up, a falling edge on chip select (S) is required prior to the start of any instruction.
3.5
Hold (HOLD)
The hold (HOLD) signal is used to pause any serial communications with the device without deselecting the
device.
During the hold condition, the serial data output (Q) is high impedance, and serial data input (D) and serial clock
(C) are Don’t care.
To start the hold condition, the device must be selected, with chip select (S) driven low.
3.6
Write protect (W)
This input signal controls whether the memory is write protected. When write protect (W) is held low, writes to the
memory are disabled, but other operations remain enabled.
Write protect (W) must either be driven high or low, but must not be left floating.
3.7
VCC supply voltage
VCC is the supply voltage.
3.8
VSS ground
VSS is the reference for all signals, including the VCC supply voltage.
DS1639 - Rev 14
page 5/46
M950x0-W M950x0-R M950x0-DF
Connecting to the SPI bus
4
Connecting to the SPI bus
The device is fully compatible with the SPI protocol.
All instructions, addresses and input data bytes are shifted in to the device, most significant bit first. The serial
data input (D) is sampled on the first rising edge of the serial clock (C) after chip select (S) goes low.
All output data bytes are shifted out of the device, most significant bit first. The serial data output (Q) is latched
on the first falling edge of the serial clock (C) after the instruction (such as the read from memory array and read
status register instructions) have been clocked into the device.
Figure 4 shows an example of three memory devices connected to an MCU, on an SPI bus. Only one memory
device is selected at a time, so only one memory device drives the serial data output (Q) line at a time, the other
memory devices are high impedance.
The pull-up resistor R (represented in Figure 4) ensures that a device is not selected if the bus master leaves the
S line in the high impedance state.
In applications where the bus master may leave all SPI bus lines in high impedance at the same time (for
example, if the bus master is reset during the transmission of an instruction), it is recommended to connect the
clock line (C) to an external pull-down resistor so that, if all inputs/outputs become high impedance, the C line is
pulled low (while the S line is pulled high): this ensures that S and C do not become high at the same time, and
so, that the tSHCH requirement is met. The typical value of R is 100 kΩ.
Figure 4. Bus master and memory devices on the SPI bus
VCC
SPI interface with
(CPOL, CPHA) =
(0, 0) or 1, 1)
SDO
SDI
SCK
C Q D
SPI bus master
R
CS3 CS2 CS1
SPI memory
device
S W HOLD
(1)
C Q D
VCC
(1)
R
C Q D
VCC
SPI memory
device
R
SPI memory
device
S W HOLD
(1)
VCC
(1)
S W HOLD
(1)
(1)
VSS
1. The Write protect (W) and Hold (HOLD) signals should be driven, high or low as appropriate.
MS19755V3
DS1639 - Rev 14
page 6/46
M950x0-W M950x0-R M950x0-DF
SPI modes
4.1
SPI modes
These devices can be driven by a microcontroller with its SPI peripheral running in either of the following two
modes:
•
•
CPOL = 0, CPHA = 0
CPOL = 1, CPHA = 1
For these two modes, input data is latched in on the rising edge of serial clock (C), and output data is available
from the falling edge of serial clock (C).
The difference between the two modes, as shown in Figure 5, is the clock polarity when the bus master is in
Stand-by mode and not transferring data:
•
•
C remains at 0 for (CPOL = 0, CPHA = 0)
C remains at 1 for (CPOL = 1, CPHA = 1)
Figure 5. SPI modes supported
CPOL
CPHA
0
0
C
1
1
C
D
Q
DS1639 - Rev 14
MSB
MSB
page 7/46
M950x0-W M950x0-R M950x0-DF
Operating features
5
Operating features
5.1
Supply voltage (VCC)
5.1.1
Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified
[VCC(min), VCC(max)] range must be applied (see Table 8, Table 9 and Table 10 in Section 9 DC and AC
parameters). This voltage must remain stable and valid until the end of the transmission of the instruction and,
for a write instruction, until the completion of the internal write cycle (tW). In order to secure a stable DC supply
voltage, it is recommended to decouple the VCC line with a suitable capacitor (usually in the range between 10
and 100 nF) close to the VCC / VSS device pins.
5.1.2
Device reset
In order to prevent erroneous instruction decoding and inadvertent write operations during power‑up, a
power‑on‑reset (POR) circuit is included. At power-up, the device does not respond to any instruction until VCC
reaches the internal reset threshold voltage(this threshold is defined in Table 15 and Table 16 as VRES).
At power-up, when VCC passes over the POR threshold, the device is reset and is in the following state:
•
•
•
Standby power mode
Deselected (note that, to be executed, an instruction must be preceded by a falling edge on chip select (S))
Status register values:
–
–
–
the write enable latch (WEL) bit is reset to 0
the write in progress (WIP) bit is reset to 0
the BP1 and BP0 bits remain unchanged (non-volatile bits).
It is important to note that the device must not be accessed until VCC reaches a valid and stable level within the
specified [VCC(min), VCC(max)] range, as defined in Table 8, Table 9 and Table 10.
5.1.3
Power-up conditions
When the power supply is turned on, VCC rises continuously from VSS to VCC. During this time, the chip select (S)
line is not allowed to float but should follow the VCC voltage. It is therefore recommended to connect the S line to
VCC via a suitable pull-up resistor (see Figure 4).
In addition, the chip select (S) input offers a built-in safety feature, as the S input is edge-sensitive as well as
level-sensitive: after power-up, the device does not become selected until a falling edge has first been detected
on chip select (S). This ensures that chip select (S) must have been high, prior to going low to start the first
operation.
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage defined in Table 8,
Table 9 and Table 10.
5.1.4
Power-down
During power-down (continuous decrease of the VCC supply voltage below the minimum VCC operating voltage
defined in Table 8, Table 9 and Table 10), the device must be:
5.1.5
•
deselected (chip select S must be allowed to follow the voltage applied on VCC)
•
in standby power mode (there must not be any internal write cycle in progress)
Active power and Standby power modes
When chip select (S) is low, the device is selected, and in the active power mode. The device consumes ICC.
When chip select (S) is high, the device is deselected. If a write cycle is not currently in progress, the device then
goes into the standby power mode, and the device consumption drops to ICC1, as specified in DC characteristics
(see Section 9 DC and AC parameters).
DS1639 - Rev 14
page 8/46
M950x0-W M950x0-R M950x0-DF
Hold condition
5.2
Hold condition
The hold (HOLD) signal is used to pause any serial communications with the device without resetting the clocking
sequence.
To enter the hold condition, the device must be selected, with chip select (S) low.
During the hold condition, the serial data output (Q) is high impedance, and the serial data input (D) and the serial
clock (C) are Don’t care.
Normally, the device is kept selected for the whole duration of the hold condition. Deselecting the device while it is
in the hold condition has the effect of resetting the state of the device: this mechanism can be used, if required, to
reset the ongoing processes.
The hold condition starts when the hold (HOLD) signal is driven low at the same time as serial clock (C) already
being low (as shown in Figure 6).
The hold condition ends when the hold (HOLD) signal is driven high at the same time as serial clock (C) already
being low.
Figure 6 also shows what happens if the rising and falling edges are not timed to coincide with serial clock (C)
being low.
Figure 6. Hold condition activation
C
HOLD
Hold
condition
5.3
Hold
condition
Status register
Figure 3 shows the position of the status register in the control logic of the device. This register contains a number
of status and control bits, as shown in Table 5 and as detailed in Section 6.3 Read Status register (RDSR).
DS1639 - Rev 14
page 9/46
M950x0-W M950x0-R M950x0-DF
Data protection and protocol control
5.4
Data protection and protocol control
To help protect the device from data corruption in noisy or poorly controlled environments, a number of safety
features have been built in to the device. The main security measures can be summarized as follows:
•
•
•
•
WEL bit is reset at power-up
Chip select (S) must rise after the eighth clock count (or multiple thereof) in order to start a non-volatile write
cycle (in the memory array or in the status register)
Accesses to the memory array are ignored during the non-volatile programming cycle, and the programming
cycle continues unaffected.
Invalid chip select (S) and hold (HOLD) transitions are ignored.
For any instruction to be accepted and executed, chip select (S) must be driven high after the rising edge of serial
clock (C) that latches the last bit of the instruction, and before the next rising edge of serial clock (C).
For this, “the last bit of the instruction” can be the eighth bit of the instruction code, or the eighth bit of a data byte,
depending on the instruction (except in the case of RDSR and READ instructions). Moreover, the “next rising
edge of CLOCK” might (or might not) be the next bus transaction for some other device on the bus.
When a write cycle is in progress, the device protects it against external interruption by ignoring any subsequent
READ, WRITE or WRSR instruction as defined in Table 3 until the present cycle is complete.
Table 2. Write-protected block size
Status register bits
DS1639 - Rev 14
BP1
BP0
0
0
0
Protected block
Protected array addresses
M95040
M95020
M95010
None
None
None
None
1
Upper quarter
180h - 1FFh
C0h - FFh
60h - 7Fh
1
0
Upper half
100h - 1FFh
80h - FFh
40h - 7Fh
1
1
Whole memory
000h - 1FFh
00h - FFh
00h - 7Fh
page 10/46
M950x0-W M950x0-R M950x0-DF
Error correction code (ECC x 1)
5.5
Error correction code (ECC x 1)
The error correction code (ECC x 1) is an internal logic function, which is transparent for the SPI communication
protocol.
The ECC x 1 logic is implemented on each bytes of memmory array. If a single bit out of byte happens to be
erroneous during a read operation, the ECC x 1 detects this bit and replaces it with the correct value. The read
reliability is therefore much improved.
DS1639 - Rev 14
page 11/46
M950x0-W M950x0-R M950x0-DF
Instructions
6
Instructions
Each command is composed of bytes (MSB transmitted first), initiated with the instruction byte, as summarized in
Table 3
If an invalid instruction is sent (one not contained in Table 3), the device automatically enters in a Wait state until
deselected.
Table 3. Instruction set
Instruction
Description
Instruction format
WREN
Write enable
0000 X110(1)
WRDI
Write disable
0000 X100(1)
RDSR
Read Status register
0000 X101(1)
WRSR
Write Status register
0000 X001(1)
READ
Read from memory array
0000 A8011(2)
WRITE
Write to memory array
0000 A8010(2)
RDID (3)
Read identification page
1000 0011
WRID(3)
Write identification page
1000 0010
RDLS(3)
Reads the identification page lock status
1000 0011
Locks the identification page in read-only mode
1000 0010
LID(3)
1. X = Don’t Care.
2. For M95040, A8 = 1 for the upper half of the memory array and 0 for the lower half, while for M95010 and M95020, A8 is
"Don’t Care".
3. Available only for the M95040-DF device.
Table 4. Significant bits within the address bytes
Instruction
Bit b3 of the instruction byte
LSB address byte(1)(2)
b7
b6
b5
b4
b3
b2
b1
b0
READ
or WRITE
A8/X(3)
A7
A6
A5
A4
A3
A2
A1
A0
RDID
or WRID
0
0
0
0
0
A3
A2
A1
A0
RDLS
or LID
0
1
0
0
0
0
0
0
0
1. A: Significant address bit.
2. X: bit is Don’t Care.
3. For M95040, A8 = 1 for the upper half of the memory array and 0 for the lower half, while for M95010 and M95020, A8 is Don’t Care.
DS1639 - Rev 14
page 12/46
M950x0-W M950x0-R M950x0-DF
Write enable (WREN)
6.1
Write enable (WREN)
The write enable latch (WEL) bit must be set prior to a write instruction (WRITE, WRSR, WRID or LID). The only
way to do this is to send a write enable instruction to the device.
As shown in Figure 7, to send this instruction to the device, chip select (S) is driven low, and the bits of the
instruction byte are shifted in, on serial data input (D). The device then enters a wait state. It waits for a the device
to be deselected, by chip select (S) being driven high.
Figure 7. Write enable (WREN) sequence
S
0
1
2
3
4
5
6
7
C
Instruction
D
Q
DS1639 - Rev 14
High impedance
MS41478V1dita
page 13/46
M950x0-W M950x0-R M950x0-DF
Write disable (WRDI)
6.2
Write disable (WRDI)
One way of resetting the write enable latch (WEL) bit is to send a write disable instruction to the device.
As shown in Figure 8, to send this instruction to the device, chip select (S) is driven low, and the bits of the
instruction byte are shifted in, on serial data input (D).
The device then enters a wait state. It waits for a the device to be deselected, by chip select (S) being driven high.
The write enable latch (WEL) bit, in fact, becomes reset by any of the following events:
•
•
•
•
•
Power-up
WRDI instruction execution
WRSR instruction completion
WRITE instruction completion.
Write protect (W) line being held low
Figure 8. Write disable (WRDI) sequence
S
0
1
2
3
4
5
6
7
C
Instruction
D
Q
DS1639 - Rev 14
High Impedance
page 14/46
M950x0-W M950x0-R M950x0-DF
Read Status register (RDSR)
6.3
Read Status register (RDSR)
The read status register instruction is used to read the status Register.
As shown in Figure 9, to send this instruction to the device, chip select (S) is first driven low. The bits of the
instruction byte are then shifted in, on serial data input (D). The current state of the bits in the Status register is
shifted out, on serial data out (Q). The read cycle is terminated by driving chip select (S) high.
The status register is always readable, even if an internal write cycle (tW) is in progress. During a write status
register cycle, the values of the non-volatile bits (BP0, BP1) become available when a new RDSR instruction is
executed, after completion of the write cycle. On the other hand, the two read-only bits (write enable latch (WEL),
write In progress (WIP)) are dynamically updated during the ongoing write cycle.
It is possible to read the status register contents continuously, as described in Figure 9.
Bits b7, b6, b5 and b4 are always read as 1. The status and control bits of the status register are as follows:
Table 5. Status register format
b7
1
b0
1
1
1
BP1
BP0
WEL
WIP
Block protect bits
Write enable
latch bit
Write in
progress bit
6.3.1
WIP bit
The write in progress (WIP) bit indicates whether the memory is busy with a write (WRITE, WRID/LID) or write
status register cycle. When set to 1, such a cycle is in progress, when reset to 0, no such cycle is in progress.
6.3.2
WEL bit
The write enable latch (WEL) bit indicates the status of the internal write enable latch. When set to 1, the internal
write enable latch is set. When set to 0, the internal write enable latch is reset, and no write or write status register
instruction is accepted.
DS1639 - Rev 14
page 15/46
M950x0-W M950x0-R M950x0-DF
Read Status register (RDSR)
6.3.3
BP1, BP0 bits
The block protect (BP1, BP0) bits are non volatile. They define the size of the area to be software-protected
against write instructions. These bits are written with the write status register (WRSR) instruction. When one or
both of the block protect (BP1, BP0) bits is set to 1, the relevant memory area (as defined in Table 2) becomes
protected against write instructions as defined in Table 3. The block protect (BP1, BP0) bits can be written
provided that the hardware protected mode has not been set.
Figure 9. Read Status Register (RDSR) sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
C
Instruction
D
Q
High impedance
Status Register Out
7
MSB
DS1639 - Rev 14
6
5
4
3
2
1
Status Register Out
0
7
MSB
6
5
4
3
2
1
0 7
MS57015V1
page 16/46
M950x0-W M950x0-R M950x0-DF
Write status register (WRSR)
6.4
Write status register (WRSR)
The write status register (WRSR) instruction is used to write new values to the status register. Before it can be
accepted, a write enable (WREN) instruction must have been previously executed.
The write status register (WRSR) instruction is entered by driving chip select (S) low, followed by the instruction
code, the data byte on serial data input (D) and chip select (S) driven high. Chip select (S) must be driven high
after the rising edge of serial clock (C) that latches in the eighth bit of the data byte, and before the next rising
edge of serial clock (C). Otherwise, the write status register (WRSR) instruction is not executed.
Driving the chip select (S) signal high at a byte boundary of the input data triggers the self-timed write cycle that
takes tW to complete (as specified in Table 17). The instruction sequence is shown in Figure 10.
While the write status register cycle is in progress, the status register may still be read to check the value of the
write in progress (WIP) bit: the WIP bit is 1 during the self-timed write cycle tW, and, 0 when the write cycle is
complete. The WEL bit (write enable latch) is also reset at the end of the write cycle tW.
The WRSR instruction allows the user to change the values of the BP1, BP0 bits, which define the size of the
area that is to be treated as read only, as defined in Table 2. The contents of the BP1, BP0 bits are updated after
the completion of the WRSR instruction, including the tW write cycle.
The WRSR instruction has no effect on the b7, b6, b5, b4, b1 and b0 bits in the status register. B7, b6, b5 and b4
are always read as 1.
Figure 10. Write status register (WRSR) sequence
S
0
1
2
3
4
5
6
7
8
9
10
11 12 13 14 15
C
Instruction
Status Register In
7
D
6
5
4
3
2
1
0
MSB
Q
High impedance
MS47556V1dita
The WRSR instruction is not accepted, and is not executed, under the following conditions:
•
•
•
•
DS1639 - Rev 14
if the write enable latch (WEL) bit has not been set to 1 (by executing a write enable instruction just before)
if a write cycle is already in progress
if the device has not been deselected, by chip select (S) being driven high, after the eighth bit, b0, of the
data byte has been latched in
if write protect (W) is low during the WRSR command (instruction, address and data)
page 17/46
M950x0-W M950x0-R M950x0-DF
Read from memory array (READ)
6.5
Read from memory array (READ)
As shown in Figure 11, to send this instruction to the device, chip select (S) is first driven low. The bits of the
instruction byte and address byte are then shifted in, on serial data input (D). For the M95040, the most significant
address bit, A8, is incorporated as bit b3 of the instruction byte, as shown in Table 3. The address is loaded into
an internal address register, and the byte of data at that address is shifted out, on serial data Output (Q).
If chip select (S) continues to be driven low, an internal bit-pointer is automatically incremented at each clock
cycle, and the corresponding data bit is shifted out.
When the highest address is reached, the address counter rolls over to zero, allowing the read cycle to be
continued indefinitely. The whole memory can, therefore, be read with a single read instruction.
The read cycle is terminated by driving chip select (S) high. The rising edge of the chip select (S) signal can occur
at any time during the cycle.
The first byte addressed can be any byte within any page.
The instruction is not accepted, and is not executed, if a write cycle is currently in progress.
Table 6. Address range bits
Device
M95040
M95020
M95010
Address bits
A8-A0
A7-A0
A6-A0
Figure 11. Read from memory array (READ) sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
C
Instruction
D
A8
Byte Address
A7 A6 A5 A4 A3 A2 A1 A0
Data Out
High Impedance
Q
7
6
5
4
3
2
1
0
MS57016V1
1.
DS1639 - Rev 14
Depending on the memory size, as shown in Table 6, the most significant address bits are "Don’t care".
page 18/46
M950x0-W M950x0-R M950x0-DF
Write to Memory array (WRITE)
6.6
Write to Memory array (WRITE)
As shown in Figure 12, to send this instruction to the device, chip select (S) is first driven low. The bits of the
instruction byte, address byte, and at least one data byte are then shifted in, on serial data input (D).
The instruction is terminated by driving chip select (S) high at a byte boundary of the input data. The self‑timed
write cycle, triggered by the chip select (S) rising edge, continues for a period tW (as specified in Table 17), at the
end of which the write in progress (WIP) bit is reset to 0.
In the case of Figure 12, chip select (S) is driven high after the eighth bit of the data byte has been latched in,
indicating that the instruction is being used to write a single byte. However, if chip select (S) continues to be
driven low (as shown in Figure 13), the next byte of input data is shifted in, so that more than a single byte,
starting from the given address towards the end of the same page, can be written in a single internal write cycle.
If chip select (S) still continues to be driven low, the next byte of input data is shifted in, and used to overwrite the
byte at the start of the current page.
The instruction is not accepted, and is not executed, under the following conditions:
•
•
•
•
Note:
if the write enable latch (WEL) bit has not been set to 1 (by executing a write enable instruction just before)
if a write cycle is already in progress
if the device has not been deselected, by driving high chip select (S), at a byte boundary (after the rising
edge of Serial Clock (C) that latches the last data bit, and before the next rising edge of serial clock (C)
occurs anywhere on the bus)
if write protect (W) is low or if the addressed page is in the area protected by the block brotect (BP1 and
BP0) bits
The self-timed write cycle tW is internally executed as a sequence of two consecutive events: [Erase addressed
byte(s)], followed by [Program addressed byte(s)]. An erased bit is read as “0” and a programmed bit is read as
“1”.
Figure 12. Byte write (WRITE) sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
C
Instruction
D
A8
Byte Address
A7 A6 A5 A4 A3 A2 A1 A0 7
Data Byte
6
5
4
3
2
1
0
High Impedance
Q
MS57017V1
1.
DS1639 - Rev 14
Depending on the memory size, as shown in Table 6, the most significant address bits are "Don’t care".
page 19/46
M950x0-W M950x0-R M950x0-DF
Write to Memory array (WRITE)
Figure 13. Page write (WRITE) sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
C
Instruction
Byte Address
A8
D
Data Byte 1
A7 A6 A5 A4 A3 A2 A1 A0 7
6
5
4
3
2
1
0
7
142
143
141
140
139
138
137
136
15+8N
14+8N
13+8N
12+8N
11+8N
10+8N
9+8N
24 25 26 27 28 29 30 31
8+8N
S
1
0
C
Data Byte 2
D
7
6
5
4
3
Data Byte N
2
1
0
7
6
5
4
3
2
Data Byte 16
1
0
7
6
5
4
3
2
AI01443D_dita
1.
DS1639 - Rev 14
Depending on the memory size, as shown in Table 6, the most significant address bits are "Don’t care".
page 20/46
M950x0-W M950x0-R M950x0-DF
Read identification page (available only in M95040-D device)
6.7
Read identification page (available only in M95040-D device)
The read identification page (RDID) instruction is used to read the identification page (additional page of 16 bytes,
which can be written and later permanently locked in read-only mode).
The chip select (S) signal is first driven low, the bits of the instruction byte and address bytes are then shifted in
(MSB first) on serial data input (D). Address bit A7 must be 0 and the other address bits are Don't Care except
the lower address bits [A3:A0] (it might be easier to define these bits as 0, as shown in Table 3). Data is then
shifted/clocked out (MSB first) on serial data output (Q).
The first byte addressed can be any byte within the identification page.
If chip select (S) continues to be driven low, the internal address register is automatically incremented and the
byte of data at the new address is shifted out.
Note that there is no roll over feature in the identification page. The address of bytes to read must not exceed the
page boundary.
The read cycle is terminated by driving chip select (S) high. The rising edge of the chip select (S) signal can occur
at any time during when the data bits are shifted out.
The instruction is not accepted, and is not executed, if a write cycle is currently in progress.
Figure 14. Read identification page sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
C
Instruction
A7 A6 A5 A4 A3 A2 A1 A0
D
High Impedance
Q
Byte Address
Data Out
7
6
5
4
3
2
1
0
MS57018V1
DS1639 - Rev 14
page 21/46
M950x0-W M950x0-R M950x0-DF
Write identification page (available only in M95040-D device)
6.8
Write identification page (available only in M95040-D device)
The write identification page (WRID) instruction is used to write the identification page (additional page of 16
bytes which can also be permanently locked in read-only mode).
The chip select signal (S) is first driven low, and then the bits of the instruction byte, address bytes, and at least
one data byte are shifted in (MSB first) on serial data input (D). Address bit A7 must be 0 and the other address
bits are Don't Care except the lower address bits [A3:A0] (it might be easier to define these bits as 0, as shown in
Table 3).
The self-timed write cycle starts from the rising edge of chip select (S), and continues for a period tW (as specified
in Section 9 DC and AC parameters).
Figure 15. Write identification page sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
C
Instruction
Byte Address
A7 A6 A5 A4 A3 A2 A1 A0 7
D
Data Byte
6
5
4
3
2
1
0
High Impedance
Q
MS57019V1
The instruction is discarded, and is not executed if the block protect bits (BP1,BP0) = (1,1) or one of the
conditions defined in Section 5.4 Data protection and protocol control is not satisfied.
DS1639 - Rev 14
page 22/46
M950x0-W M950x0-R M950x0-DF
Read lock status (available only in M95040-D device)
6.9
Read lock status (available only in M95040-D device)
The read lock status (RDLS) instruction is used to read the lock status.
To send this instruction to the device, chip select (S) first has to be driven low. The bits of the instruction byte and
address bytes are then shifted (MSB first) in on serial data input (D). Address bit A7 must be 1, all other address
bits are Don't Care (it might be easier to define these bits as 0, as shown in Table 3). The lock bit is the LSB (least
significant bit) of the byte read on serial data output (Q). It is at “1” when the lock is active and at “0” when the lock
is not active. If chip select (S) continues to be driven low, the same data byte is shifted out.
The read cycle is terminated by driving chip select (S) high. The instruction sequence is shown in Figure 16.
The read lock status instruction is not accepted and not executed if a write cycle is currently in progress.
Figure 16. Read lock status sequence
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
C
Instruction
A7 A6 A5 A4 A3 A2 A1 A0
D
High Impedance
Q
Byte Address
Data Out
7
6
5
4
3
2
1
0
MS57018V1
DS1639 - Rev 14
page 23/46
M950x0-W M950x0-R M950x0-DF
Lock identification page (available only in M95040-D device)
6.10
Lock identification page (available only in M95040-D device)
The lock identification page (LID) instruction permanently locks the identification page in read-only mode.
The LID instruction is issued by driving chip select (S) low, sending (MSB first) the instruction code, the address
and a data byte on serial data input (D), and driving chip select (S) high. In the address sent, A7 must be equal to
1, all other address bits are Don't Care (it might be easier to define these bits as 0, as shown in Table 3). The data
byte sent must be equal to the binary value xxxx xx1x, where x = Don't Care. The LID instruction is terminated by
driving Chip Select (S) high at a data byte boundary, otherwise, the instruction is not executed.
Figure 17. Lock ID sequence
S
0
1
2
3
4
5
6
7
8
9 10
13 14 15 16 17 18 19 20 21 22 23 24 25
C
Instruction
D
8-bit address
7
6
5
3
2
Data byte
1
0
7
6
5
4
3
2
1
0
High impedance
Q
MS57020V1
Driving chip select (S) high at a byte boundary of the input data triggers the self-timed write cycle whose duration
is tW (as specified in AC characteristics in Section 9 DC and AC parameters). The instruction sequence is shown
in Figure 17.
The instruction is discarded, and is not executed if the block protect bits (BP1,BP0) = (1,1) or one of the
conditions defined in Section 5.4 Data protection and protocol control is not satisfied.
DS1639 - Rev 14
page 24/46
M950x0-W M950x0-R M950x0-DF
Power-up and delivery state
7
Power-up and delivery state
7.1
Power-up state
After power-up, the device is in the following state:
•
•
•
•
•
Standby power mode
Deselected (after power-up, a falling edge is required on chip select (S) before any instructions can be
started)
Not in the hold condition
The write enable latch (WEL) is reset to 0
Write in progress (WIP) is reset to 0
The BP1 and BP0 bits of the status register are unchanged from the previous power-down (they are non-volatile
bits).
7.2
Initial delivery state
The device is delivered with:
•
•
•
DS1639 - Rev 14
The memory array set to all 1s (each byte = FFh)
The block protect (BP1 and BP0) bits are initialized to 0
The identification page bits, for M95040-D only, set to all 1s (each byte = FFh)
page 25/46
M950x0-W M950x0-R M950x0-DF
Maximum ratings
8
Maximum ratings
Stressing the device outside the ratings listed in Table 7 may cause permanent damage to the device. These
are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in
the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 7. Absolute maximum ratings
Symbol
Parameter
Min.
Max.
TAMB
Ambient operating temperature
–40
130
TSTG
Storage temperature
–65
150
TLEAD
Lead temperature during soldering
See note
Unit
°C
(1)
VO
Output voltage
–0.50
VCC + 0.6
VI
Input voltage
–0.50
VCC + 1.0
IOL
DC output current (Q = 0)
-
5
IIH
DC output current (Q = 1)
-
5
-0.50
6.5
V
-
4000
V
VCC
Supply voltage
VESD
Electrostatic discharge voltage (human body model) (2)
V
mA
1. Compliant with JEDEC standard J-STD-020 (for small-body, Sn-Pb or Pb free assembly), the ST ECOPACK 7191395
specification, and the European directive on Restrictions on Hazardous Substances (RoHS directive 2011/65/EU of July
2011).
2. Positive and negative pulses applied on different combinations of pin connections, according to AEC-Q100-002 (compliant
with ANSI/ESDA/JEDEC JS-001, C1 = 100 pF, R1 = 1500 Ω, R2 = 500 Ω).
DS1639 - Rev 14
page 26/46
M950x0-W M950x0-R M950x0-DF
DC and AC parameters
9
DC and AC parameters
This section summarizes the operating and measurement conditions and the DC/AC characteristics of the device.
Table 8. Operating conditions (M950x0-W)
Symbol
Min.
Max.
Unit
Supply voltage
2.5
5.5
V
Ambient operating temperature
–40
85
°C
Min.
Max.
Unit
Supply voltage
1.8
5.5
V
Ambient operating temperature
-40
85
°C
Min.
Max.
Unit
Supply voltage
1.7
5.5
V
Ambient operating temperature
–40
85
°C
Min.
Max.
Unit
Load capacitance
-
30
pF
-
Input rise and fall times
-
50
ns
-
Input levels
0.2 VCC to 0.8 VCC
V
-
Input and output timing references voltages
0.3 VCC to 0.7 VCC
V
VCC
TA
Parameter
Table 9. Operating conditions (M950x0-R)
Symbol
VCC
TA
Parameter
Table 10. Operating conditions (M95040-DF)
Symbol
VCC
TA
Parameter
Table 11. AC measurement conditions
Symbol
CL
Parameter
Figure 18. AC measurement I/O waveform
Input Levels
Input and Output
Timing Reference Levels
0.8 ₓ VCC
0.7 ₓ VCC
0.3 ₓ VCC
0.2 ₓ VCC
DS1639 - Rev 14
page 27/46
M950x0-W M950x0-R M950x0-DF
DC and AC parameters
Table 12. Cycling performance
Symbol
Parameter
Test condition
Min.
Max.
-
4,000,000
TA ≤ 25 °C,
Ncycle
VCC(min) < VCC < VCC(max)
Write cycle endurance
Unit
Write cycle(1)
TA = 85 °C,
-
VCC(min) < VCC < VCC(max)
1,200,000
1. A Write cycle is executed when either a page write, a byte write, a WRSR, a WRID or an LID instruction is decoded. When using the byte
write, the page write or the WRID instruction, refer also to Section 5.5 Error correction code (ECC x 1) .
Table 13. Memory cell data retention
Parameter
Data
Test condition
Min.
Max.
Unit
-
200
Year
TA = 55 °C
retention(1)
1. The data retention behavior is checked in production, while the 200-year limit is defined from characterization and qualification results.
Table 14. Capacitance
Symbol(1)
COUT
CIN
Parameter
Test condition
Min.
Max.
Unit
VOUT = 0 V
-
8
pF
Input capacitance (D)
VIN = 0 V
-
8
pF
Input capacitance (other pins)
VIN = 0 V
-
6
pF
Output capacitance (Q)
1. Sampled only, not 100% tested, at TA=25 °C and a frequency of 5 MHz
DS1639 - Rev 14
page 28/46
M950x0-W M950x0-R M950x0-DF
DC and AC parameters
Table 15. DC characteristics (M950x0-W)
Symbol
Test conditions in addition to those defined in Table 8 and
Table 11
Parameter
Min.
Max.
Unit
ILI
Input leakage current
VIN = VSS or VCC
-
±2
µA
ILO
Output leakage current
S = VCC, VOUT = VSS or VCC
-
±2
µA
-
2
-
2
-
5
-
5
-
3
VCC= 2.5 V, C= 0.1 VCC / 0.9 VCC
at fC = 5 MHz, Q = open
ICC
Supply current (Read)
VCC= 2.5 V, C = 0.1 VCC / 0.9 VCC
at fC = 10 MHz, Q = open
VCC= 5.5 V, C = 0.1 VCC / 0.9 VCC
at fC = 20 MHz, Q = open
ICC0 (1)
Supply current (Write)
During tW, S = VCC,
2.5 V ≤ VCC < 5.5 V
S = VCC, VCC= 5.5 V,
ICC1
Supply current
VIN = VSS or VCC
(Standby Power mode)
S = VCC, VCC= 2.5 V,
VIN = VSS or VCC
mA
mA
µA
-
2
VIL
Input low voltage
-
–0.45
0.3 VCC
V
VIH
Input high voltage
-
0.7 VCC
VCC+1
V
VOL
Output low voltage
VCC = 2.5 V and IOL = 1.5 mA
-
0.4
V
VOH
Output high voltage
0.8 VCC
-
V
0.5
1.5
V
VRES(1)
Internal reset threshold
voltage
VCC = 2.5 V and IOH = 0.4 mA or
VCC = 5 V and IOH = 2 mA
-
1. Evaluated by characterization - not tested in production.
DS1639 - Rev 14
page 29/46
M950x0-W M950x0-R M950x0-DF
DC and AC parameters
Table 16. DC characteristics (M950x0-R or M950x0-DF)
Symbol
Test conditions in addition to those defined in Table 9, Table 10 and
Table 11
Parameter
Min
Max
Unit
ILI
Input leakage current
VIN = VSS or VCC
-
±2
µA
ILO
Output leakage current
S = VCC, voltage applied on Q = VSS or VCC
-
±2
µA
ICC
Supply current (Read)
-
2
mA
ICC0 (2)
Supply current (Write)
VCC = 1.8 V or 1.7 V, during tW, S = VCC
-
5
mA
ICC1
Supply current (Standby
Power mode)
VCC = 1.8 V or 1.7 V, S = VCC, VIN = VSS or VCC
-
1
µA
VIL
Input low voltage
VCC < 2.5 V
–0.45
0.25 VCC
V
VIH
Input high voltage
VCC < 2.5 V
0.75 VCC
VCC+1
V
VOL
Output low voltage
IOL = 0.15 mA, VCC = 1.8 V or 1.7 V
-
0.3
V
VOH
Output high voltage
IOH = –0.1 mA, VCC = 1.8 V or 1.7 V
0.8 VCC
-
V
Internal reset threshold
voltage
-
0.5
1.5
V
VRES(2)
VCC= 1.8 V or 1.7 V, C = 0.1 VCC or 0.9 VCC
at fC = 5 MHz , Q = open
1. If the application uses the M950x0-R or M95040-DF devices with 2.5 V ≤ VCC ≤ 5.5 V and -40 °C ≤ TA ≤ +85 °C, refer to Table 15.
2. Evaluated by characterization - not tested in production.
DS1639 - Rev 14
page 30/46
M950x0-W M950x0-R M950x0-DF
DC and AC parameters
Table 17. AC characteristics
Test conditions specified in Table 8, Table 9, Table 10 and Table 11
Symbol
Alt.
fC
fSCK
Parameter
Clock frequency
VCC ≥ 1.7 V or 1.8 V
VCC ≥ 2.5VCC
VCC ≥ 4.5V
Min. Max.
Unit
Min.
Max.
Min.
Max.
D.C.
5
D.C.
10
D.C.
20
MHz
tSLCH
tCSS1 S active setup time
60
-
30
-
15
-
ns
tSHCH
tCSS2 S not active setup time
60
-
30
-
15
-
ns
tSHSL
tCS
S deselect time
90
-
40
-
20
-
ns
tCHSH
tCSH
S active hold time
60
-
30
-
15
-
ns
tCHSL
-
S not active hold time
60
-
30
-
15
-
ns
(1)
tCLH
Clock high time
80
-
40
-
20
-
ns
tCL(1)
tCLL
Clock low time
80
-
40
-
20
-
ns
(2)
tRC
Clock rise time
-
2
-
2
-
2
µs
tCHCL (2)
tFC
Clock fall time
-
2
-
2
-
2
µs
tDVCH
tDSU
Data in setup time
20
-
10
-
5
-
ns
tCHDX
tDH
Data in hold time
20
-
10
-
10
-
ns
tHHCH
-
Clock low hold time after HOLD not active
60
-
30
-
15
-
ns
tHLCH
-
Clock low hold time after HOLD active
60
-
30
-
15
-
ns
tCLHL
-
Clock low setup time before HOLD active
0
-
0
-
0
-
ns
tCLHH
-
Clock low setup time before HOLD not active
0
-
0
-
0
-
ns
tSHQZ (2)
tDIS
Output disable time
-
80
-
40
-
20
ns
Clock low to output valid
-
80
-
40
-
20
ns
tHO
Output hold time
0
-
0
-
0
-
ns
(2)
tRO
Output rise time
-
80
-
40
-
20
ns
tQHQL(2)
tFO
Output fall time
-
80
-
40
-
20
ns
tHHQV
tLZ
HOLD high to output valid
-
80
-
40
-
20
ns
tHLQZ
tHZ
HOLD low to output High-Z
-
80
-
40
-
20
ns
tW
tWC
Write time
-
5
-
5
-
5
ms
tCH
tCLCH
tCLQV
(3)
tCLQX
tQLQH
(2)
tV
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max).
2. Evaluated by characterization - not tested in production.
3. tCLQV must be compatible with tCL (clock low time): if the SPI bus master offers a read setup time tSU = 0 ns, tCL can be
equal to (or greater than) tCLQV; in all other cases, tCL must be equal to (or greater than) tCLQV+tSU.
DS1639 - Rev 14
page 31/46
M950x0-W M950x0-R M950x0-DF
DC and AC parameters
Figure 19. Serial input timing
tSHSL
S
tCHSL
tCH
tSLCH
tCHSH
tSHCH
C
tDVCH
tCL
tCHCL
tCLCH
tCHDX
D
LSB IN
MSB IN
High impedance
Q
Figure 20. Hold timing
S
tHLCH
tCLHL
tHHCH
C
tCLHH
tHLQZ
tHHQV
Q
HOLD
Figure 21. Serial output timing
S
tSHSL
tCH
C
tCLQV
tCLCH
tCHCL
tCL
tSHQZ
tCLQX
Q
tQLQH
tQHQL
D
DS1639 - Rev 14
ADDR
LSB IN
page 32/46
M950x0-W M950x0-R M950x0-DF
Package information
10
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
10.1
SO8N package information
This SO8N is an 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package.
Figure 22. SO8N – Outline
h x 45˚
A2
A
c
b
ccc
e
D
0.25 mm
GAUGE PLANE
SEATING
PLANE
C
k
8
E1
E
1
A1
L
L1
1.
Drawing is not to scale.
Table 18. SO8N – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.750
-
-
0.0689
A1
0.100
-
0.250
0.0039
-
0.0098
A2
1.250
-
-
0.0492
-
-
b
0.280
-
0.480
0.0110
-
0.0189
c
0.100
-
0.230
0.0030
-
0.0091
D(2)
4.800
4.900
5.000
0.1890
0.1929
0.1969
E
5.800
6.000
6.200
0.2283
0.2362
0.2441
E1(3)
3.800
3.900
4.000
0.1496
0.1535
0.1575
e
-
1.270
-
-
0.0500
-
h
0.250
-
0.500
0.0098
-
0.0197
k
0°
-
8°
0°
-
8°
L
0.400
-
1.270
0.0157
-
0.0500
L1
-
1.040
-
-
0.0409
-
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
DS1639 - Rev 14
page 33/46
M950x0-W M950x0-R M950x0-DF
SO8N package information
Figure 23. SO8N - Recommended footprint
3.9
6.7
0.6 (x8)
1.27
1.
DS1639 - Rev 14
Dimensions are expressed in millimeters.
page 34/46
M950x0-W M950x0-R M950x0-DF
TSSOP8 package information
10.2
TSSOP8 package information
This TSSOP is an 8-lead, 3 x 6.4 mm, 0.65 mm pitch, thin shrink small outline package.
Figure 24. TSSOP8 – Outline
D
8
5
k
E1
E
A1
1
L
L1
4
A2
A
c
b
e
6P_TSSOP8_ME_V3
1.
Drawing is not to scale.
Table 19. TSSOP8 – Mechanical data
Symbol
inches (1)
millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
D(2)
2.900
3.000
3.100
0.1142
0.1181
0.1220
e
-
0.650
-
-
0.0256
-
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1(3)
4.300
4.400
4.500
0.1693
0.1732
0.1772
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
-
8°
0°
-
8°
aaa
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15 mm per side
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per
side.
DS1639 - Rev 14
page 35/46
M950x0-W M950x0-R M950x0-DF
TSSOP8 package information
Figure 25. TSSOP8 – Recommended footprint
1.55
0.65
0.40
2.35
5.80
7.35
1.
DS1639 - Rev 14
Dimensions are expressed in millimeters.
page 36/46
M950x0-W M950x0-R M950x0-DF
UFDFPN8 (DFN8) package information
10.3
UFDFPN8 (DFN8) package information
This UFDFPN is a 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package.
Figure 26. UFDFPN8 - Outline
D
N
A B
A
ccc C
Pin #1
ID marking
E
A1
C
eee C
Seating plane
A3
Side view
2x
aaa C
1
aaa C
2x
2
Top view
D2
e
1
2
L3
Datum A
b
L1
L L3
Pin #1
ID marking
E2
K
L
e/2
L1
e
Terminal tip
Detail “A”
Even terminal
ND-1 x e
Bottom view
1.
2.
3.
4.
DS1639 - Rev 14
See Detail “A”
Maximum package warpage is 0.05 mm.
Exposed copper is not systematic and can appear partially or totally according to the cross section.
Drawing is not to scale.
The central pad (the area E2 by D2 in the above illustration) must be either connected to VSS or left floating
(not connected) in the end application.
page 37/46
M950x0-W M950x0-R M950x0-DF
UFDFPN8 (DFN8) package information
Table 20. UFDFPN8 - Mechanical data
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
A
0.450
0.550
0.600
0.0177
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
b(2)
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
1.900
2.000
2.100
0.0748
0.0787
0.0827
D2
1.200
-
1.600
0.0472
-
0.0630
E
2.900
3.000
3.100
0.1142
0.1181
0.1220
E2
1.200
-
1.600
0.0472
-
0.0630
e
-
0.500
-
-
0.0197
-
K
0.300
-
-
0.0118
-
-
L
0.300
-
0.500
0.0118
-
0.0197
L1
-
-
0.150
-
-
0.0059
L3
0.300
-
-
0.0118
-
-
aaa
-
-
0.150
-
-
0.0059
bbb
-
-
0.100
-
-
0.0039
ccc
-
-
0.100
-
-
0.0039
ddd
-
-
0.050
-
-
0.0020
eee(3)
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip.
3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring.
Figure 27. UFDFPN8 - Recommended footprint
1.600
0.500
0.300
0.600
1.600
1.400
1.
DS1639 - Rev 14
Dimensions are expressed in millimeters.
page 38/46
M950x0-W M950x0-R M950x0-DF
Ordering information
11
Ordering information
Table 21. Ordering information scheme
Example:
M95
040-D
W
MN
6
T
P
Device type
M95 = SPI serial access EEPROM
Device function
040 = 4 Kbit (512 x 8)
040-D = 4 Kbit (512 x 8) plus identification page
020 = 2 Kbit (256 x 8)
010 = 1 Kbit (128 x 8)
Operating voltage
W = VCC = 2.5 to 5.5 V
R = VCC = 1.8 to 5.5 V
F = VCC = 1.7 to 5.5 V
Package(1)
MN = SO8 (150 mil width)
DW = TSSOP8 (169 mil width)
MC = UFDFPN8 (DFN8)
Device grade
6 = Industrial temperature range, –40 to 85 °C
Device tested with standard test flow
Option
blank = tube packing
T = Tape and reel packing
Plating technology
G or P = RoHS compliant and halogen-free (ECOPACK2)
1. All packages are ECOPACK2 (RoHS-compliant and free of brominated, chlorinated and antimony-oxide flame retardants).
Note:
For a list of available options (memory, package, and so on) or for further information on any aspect of this
device, contact your nearest ST sales office.
Note:
Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and
therefore not approved for use in production. ST is not responsible for any consequences resulting from such
use. In no event will ST be liable for the customer using any of these engineering samples in production. ST
Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
DS1639 - Rev 14
page 39/46
M950x0-W M950x0-R M950x0-DF
Revision history
Table 22. Document revision history
Date
Version
Changes
Document renamed from “M95040 M95020 M95010” to “M950x0 M950x0-W
M950x0-R”
Silhouette of UDFPN8 (MB or MC) on the cover page updated.
Section6.3: Read Status Register (RDSR)updated. Text modified in
Section6.3.1: WIPbit.
02-Feb-2012
10
Table8:Absolutemaximum ratings updated.
Figure24:UFDFPN8(MLP8) 8-leadultrathin finepitchdualflatpackagenolead 2 ×
3mm, outline modified.
Table24: UFDFPN8 (MLP8)8-leadultra thinfine pitch dual flat package no lead
2 × 3mm, data updated.
Removed tables of available products from Section 11: Part numbering.
Document renamed from “M95040 M95020 M95010” to “M950x0-W M950x0R”.
Silhouette of UDFPN8 (MB or MC) on the cover page updated.
24-May-2013
11
Section6.3: Read Status Register (RDSR)updated. Text modified in
Section6.3.1: WIPbit.
Table8and Table24 updated.
Tables 8, 13, 15, 17, 19 removed.
Figure24modified.
Removed tables of available products from Section 11: Part numbering.
Added “M95040-DF” part number. Updated:
Updated:
17-Oct-2013
12
•
Features: Single supply voltage, high-speed clock frequency, memory
array, write cycles and data retention
•
Section 1: Description
•
Figure 6: Block diagram
•
Section 6: Instructions: updated introduction and added Section 6.7 to
Section 6.10
•
Section 7.2: Initial delivery state
•
Note (1) under Table 8: Absolute maximum ratings.
•
Table 16: DC characteristics (M950x0-W, device grade 6), Table 18:
AC characteristics (M950x0-W, device grade 6) and Table 25: Ordering
information scheme
Added Table 13: Cycling performance, Table 14: Memory cell data retention,
Table 17: DC characteristics (M950x0-R or M95040-DF, device grade 6) and
Table 19: AC characteristics (M950x0-R or M95040-DF, device grade 6).
Renamed Table 20 and Table 21.
Updated footnotes:
28-Aug-2014
13
•
1 in Table 13: Cycling performance;
•
1 in Table 14: Memory cell data retention;
•
2 in Table 19: AC characteristics (M950x0-R or M95040-DF, device
grade 6);
•
2 in Table 21: AC characteristics (M950x0-R, device grade 6).
Updated Table 20 with new title AC characteristics (M950x0-W, device grade
6) and addition of footnote 1.
Updated Table 21 with new title AC characteristics (M950x0-R, device grade
6) and addition of footnote 1.
Updated Table 25: Ordering information scheme.
DS1639 - Rev 14
page 40/46
M950x0-W M950x0-R M950x0-DF
Date
Version
Changes
Updated:
05-Apr-2022
14
•
Section Features, Section 2 Block diagram, Section 3.8 VSS
ground, Section 4 Connecting to the SPI bus, Section 5.1 Supply
voltage (VCC) and its subsection, Section 7.1 Power-up state,
Section 7.2 Initial delivery state, Section 10.1 SO8N package
information, Section 10.2 TSSOP8 package information
•
Notes 1 and 2 of Table 7. Absolute maximum ratings, note of
Table 12. Cycling performance, note of Table 13. Memory cell data
retention,
•
Table 11. AC measurement conditions, Table 15. DC characteristics
(M950x0-W), Table 16. DC characteristics (M950x0-R or M950x0-DF),
Table 17. AC characteristics, Table 21. Ordering information scheme
Added:
•
Section 3.7 VCC supply voltage, Section 5.5 Error correction code
(ECC x 1)
Removed: Table 19. AC characteristics (M950x0-R or M95040-DF, device
grade 6), Table 20. AC characteristics (M950x0-W, device grade 6), Table 21.
AC characteristics (M950x0-R, device grade 6)
DS1639 - Rev 14
page 41/46
M950x0-W M950x0-R M950x0-DF
Contents
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
3
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
4
3.1
Serial data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2
Serial data input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3
Serial clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4
Chip select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.6
Write protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.7
VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.8
VSS ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1
5
Operating features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
5.1
6
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1.1
Operating supply voltage (VCC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1.2
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1.3
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1.4
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1.5
Active power and Standby power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2
Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3
Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4
Data protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.5
Error correction code (ECC x 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
6.1
Write enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2
Write disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3
Read Status register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3.1
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3.2
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3.3
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.4
Write status register (WRSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.5
Read from memory array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.6
Write to Memory array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DS1639 - Rev 14
page 42/46
M950x0-W M950x0-R M950x0-DF
Contents
7
6.7
Read identification page (available only in M95040-D device) . . . . . . . . . . . . . . . . . . . . . . . . 21
6.8
Write identification page (available only in M95040-D device) . . . . . . . . . . . . . . . . . . . . . . . . 22
6.9
Read lock status (available only in M95040-D device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.10
Lock identification page (available only in M95040-D device) . . . . . . . . . . . . . . . . . . . . . . . . . 24
Power-up and delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
7.1
Power-up state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
9
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
10
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
11
10.1
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.2
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.3
UFDFPN8 (DFN8) package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
DS1639 - Rev 14
page 43/46
M950x0-W M950x0-R M950x0-DF
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Signal names . . . . . . . . . . . . . . . . . . . . . . .
Write-protected block size . . . . . . . . . . . . . . .
Instruction set . . . . . . . . . . . . . . . . . . . . . . .
Significant bits within the address bytes . . . . .
Status register format . . . . . . . . . . . . . . . . . .
Address range bits . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . .
Operating conditions (M950x0-W) . . . . . . . . .
Operating conditions (M950x0-R). . . . . . . . . .
Operating conditions (M95040-DF). . . . . . . . .
AC measurement conditions . . . . . . . . . . . . .
Cycling performance . . . . . . . . . . . . . . . . . .
Memory cell data retention . . . . . . . . . . . . . .
Capacitance . . . . . . . . . . . . . . . . . . . . . . . .
DC characteristics (M950x0-W) . . . . . . . . . . .
DC characteristics (M950x0-R or M950x0-DF) .
AC characteristics . . . . . . . . . . . . . . . . . . . .
SO8N – Mechanical data . . . . . . . . . . . . . . .
TSSOP8 – Mechanical data . . . . . . . . . . . . .
UFDFPN8 - Mechanical data . . . . . . . . . . . . .
Ordering information scheme. . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . .
DS1639 - Rev 14
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
10
12
12
15
18
26
27
27
27
27
28
28
28
29
30
31
33
35
38
39
40
page 44/46
M950x0-W M950x0-R M950x0-DF
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
DS1639 - Rev 14
Logic diagram. . . . . . . . . . . . . . . . . . . . . . . . .
8-pin package connections (top view) . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . .
Bus master and memory devices on the SPI bus.
SPI modes supported . . . . . . . . . . . . . . . . . . .
Hold condition activation . . . . . . . . . . . . . . . . .
Write enable (WREN) sequence . . . . . . . . . . . .
Write disable (WRDI) sequence . . . . . . . . . . . .
Read Status Register (RDSR) sequence . . . . . .
Write status register (WRSR) sequence . . . . . . .
Read from memory array (READ) sequence . . .
Byte write (WRITE) sequence . . . . . . . . . . . . .
Page write (WRITE) sequence . . . . . . . . . . . . .
Read identification page sequence . . . . . . . . . .
Write identification page sequence . . . . . . . . . .
Read lock status sequence . . . . . . . . . . . . . . .
Lock ID sequence . . . . . . . . . . . . . . . . . . . . . .
AC measurement I/O waveform . . . . . . . . . . . .
Serial input timing . . . . . . . . . . . . . . . . . . . . . .
Hold timing. . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial output timing . . . . . . . . . . . . . . . . . . . . .
SO8N – Outline . . . . . . . . . . . . . . . . . . . . . . .
SO8N - Recommended footprint . . . . . . . . . . . .
TSSOP8 – Outline . . . . . . . . . . . . . . . . . . . . .
TSSOP8 – Recommended footprint. . . . . . . . . .
UFDFPN8 - Outline . . . . . . . . . . . . . . . . . . . . .
UFDFPN8 - Recommended footprint . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 3
. 4
. 6
. 7
. 9
13
14
16
17
18
19
20
21
22
23
24
27
32
32
32
33
34
35
36
37
38
page 45/46
M950x0-W M950x0-R M950x0-DF
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS1639 - Rev 14
page 46/46