OA1NP, OA2NP,
OA4NP
Low power, rail-to-rail input and output,
CMOS op amp
Datasheet - production data
6LQJOH2$13
Tolerance to power supply transient drops
4XDG2$13
Accurate signal conditioning of high impedance
sensors
Fast desaturation
6&
Applications
0LQL62
Wearable
'8$/2$13
Fitness and healthcare
Medical instrumentation
4)1[
Description
')1[
Features
Low power: 580 nA typ. per channel at 25 °C at
VCC = 1.8 V
Low supply voltage: 1.5 V - 5.5 V
Unity gain stable
Rail-to-rail input and output
Gain bandwidth product: 8 kHz typ.
Low input bias current: 5 pA max at 25 °C
High tolerance to ESD: 2 kV HBM
Industrial temperature range: -40 °C to +85 °C
Benefits
The OA1NP, OA2NP, OA4NP series of CMOS
operational amplifiers offer a low power
consumption of 580 nA typical and 750 nA
maximum per channel when supplied by 1.8 V.
Combined with a supply voltage range of 1.5 V to
5.5 V, these features allow the OA1NP, OA2NP,
OA4NP op amp series to be efficiently supplied
by a coin type Lithium battery or a regulated
voltage in low power applications.
The OA1NP, OA2NP, OA4NP are respectively the
single, dual and quad operational amplifier
versions.
The 8 kHz gain bandwidth of these devices make
them ideal for wearable, fitness and healthcare
and sensors signal conditioning applications.
42 years of typical equivalent lifetime (OA1NP)
if supplied by a 220 mAh coin type Lithium
battery
Table 1. Device summary
Order codes
Temperature range
OA1NP22C
Packages
Packing
SC70-5
OA2NP22Q
K22
DFN8 2x2
-40 ° C to +85 ° C
Marking
K24
Tape and reel
OA2NP34S
MiniSO8
K160
OA4NP33Q
QFN16 3x3
K160
March 2014
This is information on a product in full production.
DocID025993 Rev 2
1/31
www.st.com
Contents
OA1NP, OA2NP, OA4NP
Contents
1
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
6
2/31
4.1
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4
Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5
Schematic optimization aiming for low power . . . . . . . . . . . . . . . . . . . . . 19
4.6
PCB layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7
Using the OA1NP, OA2NP, OA4NP series with sensors . . . . . . . . . . . . . 21
4.8
Fast desaturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.9
Using the OA1NP, OA2NP, OA4NP series in comparator mode . . . . . . . 22
4.10
ESD structure of OA1NP, OA2NP, OA4NP series . . . . . . . . . . . . . . . . . . 23
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1
SC70-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2
DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4
QFN16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DocID025993 Rev 2
OA1NP, OA2NP, OA4NP
1
Package pin connections
Package pin connections
Figure 1. Pin connections for each package (top view)
,1
9&&
287
9&&
,1
SC70-5 (OA1NP)
QFN16 3x3 (OA4NP)
287
9&&
287
9&&
,1
287
,1
287
,1
,1
,1
,1
9&&
,1
9&&
,1
DFN8 2x2 (OA2NP)
DocID025993 Rev 2
MiniSO8 (OA2NP)
3/31
31
Absolute maximum ratings and operating conditions
2
OA1NP, OA2NP, OA4NP
Absolute maximum ratings and operating conditions
Table 2. Absolute maximum ratings (AMR)
Symbol
Vcc
Vid
Vin
Iin
Tstg
Parameter
Value
(1)
Supply voltage
Unit
6
(2)
Differential input voltage
±Vcc
V
(3)
Vcc- - 0.2 to Vcc+ + 0.2
(4)
10
mA
-65 to +150
°C
Input voltage
Input current
Storage temperature
(5)(6)
Rthja
Tj
Thermal resistance junction to ambient
SC70-5
DFN8 2x2
MiniSO8
QFN16 3x3
205
117
190
45
Maximum junction temperature
150
HBM: human body
MM: machine
ESD
model(7)
model(8)
°C/W
°C
2000
200
V
model(9)
CDM: charged device
All other packages except SC70-5
SC70-5
1000
900
Latch-up immunity(10)
200
mA
1. All voltage values, except the differential voltage are with respect to the network ground terminal.
2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
3. (Vcc+ - Vin) must not exceed 6 V, (Vin - Vcc-) must not exceed 6 V.
4. The input current must be limited by a resistor in series with the inputs.
5. Short-circuits can cause excessive heating and destructive dissipation.
6. Rth are typical values.
7. Related to ESDA/JEDEC JS-001 Apr. 2010
8. Related to JEDEC JESD22-A115C Nov.2010
9. Related to JEDEC JESD22-C101-E Dec. 2009
10. Related to JEDEC JESD78C Sept. 2010
Table 3. Operating conditions
Symbol
4/31
Parameter
Vcc
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Value
1.5 to 5.5
DocID025993 Rev 2
Vcc- - 0.1 to Vcc+ + 0.1
-40 to +85
Unit
V
°C
OA1NP, OA2NP, OA4NP
3
Electrical characteristics
Electrical characteristics
VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 1 M connected to
VCC/2 (unless otherwise specified)
Table 4. Electrical characteristics
Symbol
Parameter
Conditions
Min.
Typ.
Max.
-3
0.1
3
Unit
DC performance
Vio
Vio/T
Input offset voltage
mV
-40 °C < T< 85 °C
Input offset voltage drift
-40 °C < T< 85 °C
Vio
Long-term input offset
voltage drift
T = 25 °C(1)
Iio
Input offset current (2)
-3.4
3.4
5
V
month
---------------------------
0.18
1
-40 °C < T< 85 °C
V/°C
5
30
pA
Iib
CMR
Avd
VOH
1
Input bias current (2)
-40 °C < T< 85 °C
Common mode rejection
ratio 20 log (Vicm/Vio)
Large signal voltage gain
High level output voltage
(drop from VCC+)
5
30
Vicm = 0 to 0.6 V, Vout = VCC/2
65
-40 °C < T< 85 °C
65
Vicm = 0 to 1.8 V, Vout = VCC/2
55
-40°C < T< 85 °C
55
Vout = 0.3 V to (VCC+ - 0.3 V)
RL = 100 k
95
-40 °C < T< 85 °C
95
85
74
dB
115
RL = 100 k
40
-40 °C < T< 85 °C
40
RL = 100 k
40
-40 °C < T< 85 °C
40
mV
VOL
Low level output voltage
Output sink current
4
-40 °C < T< 85 °C
4
Vout = 0 V, VID = + 200 mV
4
-40 °C < T< 85 °C
4
5
mA
Iout
Output source current
ICC
Vout = VCC, VID = -200 mV
Supply current
(per channel)
No load, Vout = VCC/2
5
580
750
nA
-40 °C < T< 85 °C
800
AC performance
GBP
Gain bandwidth product
8
Fu
Unity gain frequency
8
m
Phase margin
Gm
Gain margin
kHz
RL = 1 M, CL = 60 pF
DocID025993 Rev 2
60
degrees
10
dB
5/31
31
Electrical characteristics
OA1NP, OA2NP, OA4NP
Table 4. Electrical characteristics (continued)
Symbol
Parameter
SR
Slew rate (10 % to 90 %)
en
Equivalent input noise
voltage
en
in
trec
Low-frequency peak-topeak input noise
Equivalent input noise
current
Overload recovery time
Conditions
RL = 1 M, CL = 60 pF
Vout = 0.3 V to (VCC+ - 0.3 V)
Min.
Typ.
3
f = 100 Hz
265
f = 1 kHz
265
Bandwidth: f = 0.1 to 10 Hz
f = 100 Hz
9
Max.
Unit
V/ms
nV
-----------Hz
µVpp
0.64
f = 1 kHz
4.4
100 mV from rail in comparator
RL = 100 k, VID = ±VCC
-40 °C < T< 85 °C
30
1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.
2. Guaranteed by design.
6/31
DocID025993 Rev 2
fA
-----------Hz
µs
OA1NP, OA2NP, OA4NP
Electrical characteristics
VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 1 M connected to
VCC/2 (unless otherwise specified)
Table 5. Electrical characteristics
Symbol
Parameter
Conditions
Min.
Typ.
Max.
-3
0.1
3
Unit
DC performance
Vio
Vio/T
Input offset voltage
mV
-40 °C < T< 85 °C
Input offset voltage drift
-40 °C < T< 85 °C
Vio
Long-term input offset
voltage drift
T = 25 °C(1)
Iio
Input offset current(2)
-3.4
3.4
5
V
month
---------------------------
0.36
1
-40 °C < T< 85 °C
V/°C
5
30
pA
Iib
CMR
Avd
VOH
Input bias
1
current(2)
-40 °C < T< 85 °C
Common mode rejection
ratio 20 log (Vicm/Vio)
Large signal voltage gain
High level output voltage
(drop from VCC+)
5
30
Vicm = 0 to 2.1 V, Vout = VCC/2
70
-40 °C < T< 85 °C
70
Vicm = 0 to 3.3 V, Vout = VCC/2
60
-40 °C < T< 85 °C
60
Vout = 0.3 V to (VCC+ - 0.3 V)
RL= 100 k
105
-40 °C < T< 85 °C
105
92
77
dB
120
RL = 100 k
40
-40 °C < T< 85 °C
40
RL = 100 k
40
-40 °C < T< 85 °C
40
mV
VOL
Low level output voltage
Output sink current
6
-40 °C < T< 85 °C
6
Vout = 0 V, VID = + 200 mV
8
-40 °C < T< 85 °C
8
9
mA
Iout
Output source current
ICC
Vout = VCC, VID= -200 mV
Supply current (per channel)
No load, Vout = VCC/2
11
600
800
nA
-40 °C < T< 85 °C
850
AC performance
GBP
Gain bandwidth product
8
Fu
Unity gain frequency
8
m
Phase margin
Gm
Gain margin
kHz
RL = 1 M, CL = 60 pF
DocID025993 Rev 2
60
degrees
11
dB
7/31
31
Electrical characteristics
OA1NP, OA2NP, OA4NP
Table 5. Electrical characteristics (continued)
Symbol
Parameter
SR
Slew rate (10 % to 90 %)
en
Equivalent input noise
voltage
en
in
trec
Low-frequency peak-topeak input noise
Equivalent input noise
current
Overload recovery time
Conditions
RL = 1 M, CL = 60 pF,
Vout = 0.3 V to (VCC+ - 0.3 V)
Min.
Typ.
3
f = 100 Hz
260
f = 1 kHz
255
Bandwidth: f = 0.1 to 10 Hz
8.6
f = 100 Hz
0.55
f = 1 kHz
3.8
100 mV from rail in comparator
RL = 100 k, VID= ±VCC
-40 °C < T< 85 °C
30
Max.
Unit
V/ms
nV
-----------Hz
µVpp
fA
-----------Hz
µs
1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.
2. Guaranteed by design.
8/31
DocID025993 Rev 2
OA1NP, OA2NP, OA4NP
Electrical characteristics
VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 1 M connected to VCC/2
(unless otherwise specified)
Table 6. Electrical characteristics
Symbol
Parameter
Conditions
Min.
Typ.
Max.
-3
0.1
3
Unit
DC performance
Vio
Vio/T
Input offset voltage
mV
-40 °C < T< 85 °C
Input offset voltage drift
-40 °C < T< 85 °C
Vio
Long-term input offset
voltage drift
T = 25 °C(1)
Iio
Input offset current(2)
-3.4
3.4
5
V
month
---------------------------
1.1
1
-40 °C < T< 85 °C
V/°C
5
30
pA
Iib
CMR
SVR
Avd
VOH
Input bias current
1
(2)
-40 °C < T< 85 °C
Common mode rejection
ratio 20 log (Vicm/Vio)
Supply voltage rejection
ratio
Large signal voltage gain
High level output voltage
(drop from VCC+)
5
30
Vicm = 0 to 3.8 V, Vout = VCC/2
70
-40 °C < T< 85 °C
70
Vicm = 0 to 5 V, Vout = VCC/2
65
-40 °C < T< 85 °C
65
VCC = 1.5 to 5.5 V, Vicm = 0 V
70
-40 °C < T< 85 °C
70
Vout = 0.3 V to (Vcc+ - 0.3 V)
RL= 100 k
110
-40°C < T< 85 °C
110
90
82
dB
90
130
RL = 100 k
40
-40 °C < T< 85 °C
40
RL = 100 k
40
-40 °C < T< 85 °C
40
mV
VOL
Low level output voltage
Output sink current
6
-40 °C < T< 85 °C
6
Vout = 0 V, VID = + 200 mV
8
-40 °C < T< 85 °C
8
9
mA
Iout
Output source current
ICC
Vout = VCC, VID = -200 mV
Supply current (per channel)
No load, Vout = VCC/2
-40 °C < T< 85 °C
DocID025993 Rev 2
11
650
850
nA
950
9/31
31
Electrical characteristics
OA1NP, OA2NP, OA4NP
Table 6. Electrical characteristics (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
AC performance
GBP
Gain bandwidth product
9
kHz
Fu
Unity gain frequency
m
Phase margin
Gm
Gain margin
SR
Slew rate (10 % to 90 %)
en
Equivalent input noise
voltage
en
in
trec
EMIRR
Low-frequency
peak-to-peak input noise
Equivalent input noise
current
8.6
RL = 1 M, CL = 60 pF
RL = 1 M, CL = 60 pF,
Vout = 0.3 V to (VCC+ - 0.3 V)
60
degrees
12
dB
3
V/ms
f = 100 Hz
240
f = 1 kHz
225
Bandwidth: f = 0.1 to 10 Hz
8.1
f = 100 Hz
0.18
f = 1 kHz
3.5
100 mV from rail in comparator
RL = 100 k, VID= ±VCC
-40 °C < T< 85 °C
30
Vin = -10 dBm, f = 400 MHz
73
Vin = -10 dBm, f = 900 MHz
Electromagnetic
(3)
interference rejection ratio
Vin = -10 dBm, f = 1.8 GHz
88
Overload recovery time
Vin = -10 dBm, f = 2.4 GHz
nV
-----------Hz
µVpp
fA
-----------Hz
µs
dB
80
80
1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.
2. Guaranteed by design.
3. Based on evaluations performed only in conductive mode.
10/31
DocID025993 Rev 2
OA1NP, OA2NP, OA4NP
Electrical characteristics
Figure 2. Supply current vs. supply voltage
Figure 3. Supply current vs. input common
mode voltage
1.0
1.0
0.9
Vicm=Vout=Vcc/2
T=85°C
0.8
0.7
Supply Current (µA)
Supply Current (µA)
0.8
0.9
0.6
0.5
0.4
T=25°C
0.3
T=-40°C
0.6
0.5
0.2
0.1
2.5
3.0
3.5
4.0
Supply voltage (V)
4.5
5.0
0.0
5.5
Figure 4. Supply current in saturation mode
Vcc=3.3V, Vout=Vcc/2
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3
Input common mode voltage (V)
Figure 5. Input offset voltage distribution
1.0
50
0.9
Vio distribution at T=25°C
Vcc=3.3V, Vicm=1.65V
45
Temperature
85°C/65°C/45°C/25°C/-5°C/-40°C
0.8
40
0.7
35
Population %
0.6
Icc (A)
T=-40°C
0.3
0.1
2.0
T=25°C
0.4
0.2
0.0
1.5
T=85°C
0.7
0.5
0.4
0.3
Vcc=3.3V
Follower configuration
0.2
30
25
20
15
10
0.1
5
3275
3300
3250
3200
3225
3150
3175
3100
3125
150
175
100
125
50
75
0
25
0.0
0
-3
-2
-1
0
1
2
3
Input offset voltage (mV)
Input voltage (mV)
1.0
5
0.9
4
0.8
3
0.7
0.6
T=25°C
Vcc=3.3V
0.5
0.4
0.3
T=85°C
0.2
0.1
0.0
Input offset voltage (mV)
Input offset voltage (mV)
Figure 6. Input offset voltage vs. common mode Figure 7. Input offset voltage vs. temperature at
voltage
3.3 V supply voltage
Limit for OAxNP
2
1
0
-1
-2
Vcc=3.3V, Vicm=1.65V
-3
T=-40°C
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3
Common mode voltage (V)
-4
-5
-60
DocID025993 Rev 2
-40
-20
0
20
40
Temperature (°C)
60
80
100
11/31
31
Electrical characteristics
OA1NP, OA2NP, OA4NP
Figure 8. Input offset voltage temperature
coefficient distribution
Figure 9. Input bias current vs. temperature at
mid VICM
30
20
Vio/T distribution
15
between T=-40°C and 85°C
for Vcc=3.3V, Vicm=1.65V
Input bias current (pA)
25
Population %
20
15
10
Vcc=3.3V
10
Vcc=5V
5
0
-5
Vcc=1.8V
Vicm=Vcc/2
-10
5
-15
0
-5
-4
-3
-2
-1
0
1
2
3
4
-20
-40
5
Vio/T (µV/°C)
-20
0
20
40
Temperature (°C)
60
80
20
20
15
15
10
Vicm=0V
Input bias current (pA)
Input bias current (pA)
Figure 10. Input bias current vs. temperature at Figure 11. Input bias current vs. temperature at
low VICM
high VICM
Vcc=1.8V
5
0
-5
Vcc=3.3V
-10
-15
-20
-40
0
20
40
Temperature (°C)
60
-10
-20
0
20
40
Temperature (°C)
60
80
Source
Vid=0.2V
2.4
T=25°C
T=85°C
0.6
Sink
Vid=-0.2V
T=25°C
2.1
Vcc=3.3V
Vicm=0.1V
1.8
T=85°C
1.5
1.2
0.9
Sink
Vid=-0.2V
0.6
0.3
T=-40°C
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Output Current (mA)
12/31
Vcc=1.8V
Vicm=Vcc
2.7
Output Voltage (V)
Output Voltage (V)
Vcc=1.8V
Vicm=0.1V
0.8
0.2
-5
3.0
Source
Vid=0.2V
1.2
0.4
0
3.3
1.6
1.0
5
Figure 13. Output characteristics at 3.3 V
supply voltage
1.8
1.4
10
-20
-40
80
Figure 12. Output characteristics at 1.8 V
supply voltage
Vcc=3.3V
-15
Vcc=5V
-20
Vcc=5V
0.0
T=-40°C
0
DocID025993 Rev 2
1
2
3
4
5
6
7
Output Current (mA)
8
9
10
OA1NP, OA2NP, OA4NP
Electrical characteristics
Figure 15. Output voltage vs. input voltage
close to the rails
0
1
2
3
4
5
6
7
Output Current (mA)
8
9
10
3275
3300
0.0
0
0.5
Vcc=3.3V
Follower configuration
3250
T=-40°C
Sink
Vid=-0.2V
1.0
3200
3225
1.5
175
150
125
100
75
50
25
0
3150
3175
T=85°C
2.0
3125
Vcc=5V
Vicm=0.1V
2.5
3100
3.0
150
175
Output voltage (mV)
Output Voltage (V)
T=25°C
3.5
Temperature
85°C/65°C/45°C/25°C/-5°C/-40°C
125
Source
Vid=0.2V
4.0
3300
3275
3250
3225
3200
3175
3150
3125
3100
75
100
4.5
50
5.0
25
Figure 14. Output characteristics at 5 V supply
voltage
Input voltage (mV)
Figure 16. Output saturation with a sine wave
on input
Figure 17. Desaturation time
3
3.300
3.275
Gain=+11, 100k /1M, Vin=3Vpp, T=25°C
Vin
3.250
2
Vout
3.200
Follower configuration, T=25°C
Vcc=3.3V, Vin from rail to 300mV from rail
3.175
3.150
Vrl=Vrail, f=10Hz, Rl=10M , Cl=16pF
0.125
0.100
0.075
Vout
0.050
0.025
0.000
-5
Signal Amplitude (V)
Signal Amplitude (V)
3.225
-1
Vcc=3.3V, Vicm=Vrl=1.65V
Rl=10M , Cl=16pF
Vin
0
5
-3
10 15 20 25 30 35 40 45 50 55 60
Time (ms)
Slew Rate (V/ms)
1
Follower configuration, T=25°C
Vcc=3.3V, Vicm=Vrl=1.65V
Rl=10M, Cl=16pF
0
-1
-2
25
50
75
100
Time (ms)
125
0
1
2
3
Time (ms)
4
5
Figure 19. Slew rate vs. supply voltage
2
Signal Amplitude (V)
0
-2
Figure 18. Phase reversal free
0
1
150
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
1.5
DocID025993 Rev 2
T=-40°C
Vicm=Vrl=Vcc/2
Rl=1M, Cl=60pF
Vin from 0.5V to Vcc-0.5V
SR calculated from 10% to 90%
T=25°C
T=85°C
2.0
2.5
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
13/31
31
Electrical characteristics
OA1NP, OA2NP, OA4NP
Figure 20. Output swing vs. input signal
frequency
Figure 21. Triangulation of a sine wave
4.0
3
Follower configuration, Vin=3Vpp, F=1kHz
3.5
2
Signal Amplitude (V)
Output swing (V)
3.0
2.5
2.0
Follower configuration
Vcc=3.3V, Vin=3.3Vpp
Vicm=Vrl=1.65V
Rl=10M, Cl=16pF
T=25°C
1.5
1.0
0.0
10
100
1000
Frequency (Hz)
Follower configuration, T=25°C
1
0
-1
Vcc=3.3V
Vicm=Vrl=1.65V
Rl=10M , Cl=16pF
-2
1
2
3
4
5
6
Time (ms)
7
8
9
10
Figure 24. Overshoot vs. capacitive load at
3.3 V supply voltage
Vcc=3.3V, Vicm=Vrl=1.65V
Follower configuration
50mVpp step
Rl=10M, T=25°C
Phase margin (deg)
Overshoot (%)
20
18
15
13
10
8
5
3
0
14/31
0
50
100
150
Capacitive load (pF)
200
0
1
2
Time (ms)
3
4
35
30
25
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
0.0
Follower configuration, T=25°C
Vcc=3.3V
Vicm=Vrl=1.65V
Rl=10M , Cl=16pF
0.1
0.2
0.3
0.4 0.5 0.6
Time (ms)
0.7
0.8
0.9
1.0
Figure 25. Phase margin vs. capacitive load at
3.3 V supply voltage
30
23
Vcc=3.3V, Vicm=Vrl=1.65V
Rl=10M , Cl=16pF, T=25°C
Figure 23. Small signal response at 3.3 V supply
voltage
Signal Amplitude (mV)
Signal Amplitude (V)
2
25
-1
-3
10000
Figure 22. Large signal response at 3.3 V
supply voltage
28
0
-2
0.5
0
1
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
Vcc=3.3V, Vicm=Vrl=1.65V
Gain 101 : Rg=10k, Rf=1M
Rl=10M
T=25°C
0
DocID025993 Rev 2
50
100
150
Capacitive load (pF)
200
250
OA1NP, OA2NP, OA4NP
Electrical characteristics
Figure 26. Bode diagram for different feedback Figure 27. Bode diagram at 1.8 V supply voltage
values
20
45
180
Feedback : 1M
150
Gain
30
Vcc=3.3V, Vicm=1.65V, T=25°C
Gain=1
Rl=10M, Cl=16pF, Vrl=Vcc/2
Gain (dB)
5
0
-5
Feedback : 1M //47pF
-10
60
30
T=85°C
0
0
-30
Phase
T=25°C
-15
Feedback : 100k
-15
-20
-120
-150
-45
100
1000
-60
-90
Vcc=1.8V, Vicm=0.9V
G=101 (10k/1M)
Rl=10M, Cl=60pF, Vrl=Vcc/2
-30
10
120
90
15
Gain (dB)
10
T=-40°C
Phase (°)
15
10000
-180
10
100
Frequency (Hz)
1000
10000
Frequency (Hz)
Figure 28. Bode diagram at 3.3 V supply voltage Figure 29. Bode diagram at 5 V supply voltage
45
180
180
150
Gain
30
T=-40°C
150
Gain
30
120
T=-40°C
90
90
15
0
-30
Phase
T=25°C
-15
Gain (dB)
T=85°C
0
Phase (°)
Gain (dB)
15
60
30
60
30
T=85°C
0
-60
Vcc=3.3V, Vicm=1.65V
G=101 (10k /1M )
Rl=10M, Cl=60pF, Vrl=Vcc/2
100
Vcc=5V, Vicm=2.5V
G=101 (10k /1M )
Rl=10M, Cl=60pF, Vrl=Vcc/2
-150
1000
T=25°C
-60
-90
-120
-150
-45
-180
10
-30
Phase
-30
-120
-45
0
-15
-90
-30
120
Phase (°)
45
-180
10
10000
100
1000
10000
Frequency (Hz)
Frequency (Hz)
Figure 30. Gain bandwidth product vs. input
common mode voltage
Figure 31. Gain vs. input common mode voltage
10
100
9
8
6
Riso (k)
GBP (kHz)
7
Vcc=3.3V, Vicm=Vrl
Gain 101 : Rg=10k, Rf=1M
Rl=10M , Cl=60pF
T=25°C
Measured at 20dB
5
4
3
Recommended resistor to
place between the output
of the op-amp and the
capacitive load
Vcc=3.3V, Vicm=1.65V
Follower configuration
2
1
0
0.0
0.5
1.0
1.5
2.0
Vicm (V)
2.5
3.0
10
-2
10
DocID025993 Rev 2
10
-1
0
1
10
10
Capacitive load (nF)
10
2
3
10
15/31
31
Electrical characteristics
OA1NP, OA2NP, OA4NP
Figure 32. Noise at 1.8 V supply voltage in
follower configuration
Figure 33. Noise at 3.3 V supply voltage in
follower configuration
10000
Output voltage noise density (nV/VHz)
Vcc=1.8V
Follower configuration
T=25°C
1000
Vicm=0.9V
100
10
10
Vicm=1.5V
100
1000
Frequency (Hz)
10000
Output voltage noise density (nV/VHz)
10000
Vcc=3.3V
Follower configuration
T=25°C
1000
100
Noise Amplitude (uV)
Output voltage noise density (nV/VHz)
Vicm=4.7V
0
-5
-10
-20
100
1000
Frequency (Hz)
10000
100000
Figure 36. Channel separation on OA2NP
Vcc=3V, Vicm=1.65V
Bandpass filter : 0.1Hz to 10Hz
T=25°C
140
120
120
100
80
60
Vcc=5V
Vicm=2.5V
Vin=2Vpp
T=25°C
0
1k
10k
2
3
4
5
6
Time (s)
7
8
9
10
Ch1 - Ch2
Ch1 - Ch3
Ch1 - Ch4
100
80
60
40
20
100
1
Figure 37. Channel separation on OA4NP
140
Channel separation (dB)
Channel separation (dB)
5
-15
0
10
100000
10
Vicm=2.5V
20
10000
15
1000
40
1000
Frequency (Hz)
20
Vcc=5V
Follower configuration
T=25°C
10
10
0
10
Frequency (Hz)
16/31
100
Figure 35. Noise amplitude on 0.1 to 10 Hz
frequency range
10000
100
Vicm=3V
10
10
100000
Figure 34. Noise at 5 V supply voltage in
follower configuration
Vicm=1.65V
Vcc=5V
Vicm=2.5V
Vin=2Vpp
T=25°C
100
Frequency (Hz)
DocID025993 Rev 2
1k
10k
OA1NP, OA2NP, OA4NP
Application information
4
Application information
4.1
Operating voltages
The OA1NP, OA2NP and OA4NP series of low power op amp can operate from 1.5 V to
5.5 V. Their parameters are fully specified at 1.8 V, 3.3 V, and 5 V supply voltages and are
very stable in the full VCC range. Additionally, main specifications are guaranteed on the
industrial temperature range from -40 to +85 ° C.
4.2
Rail-to-rail input
The OA1NP, OA2NP and OA4NP series is built with two complementary PMOS and NMOS
input differential pairs. Thus, these devices have a rail-to-rail input, and the input common
mode range is extended from VCC- - 0.1 V to VCC+ + 0.1 V.
The devices have been designed to prevent phase reversal behavior.
4.3
Input offset voltage drift over temperature
The maximum input voltage drift over the temperature variation is defined as the offset
variation related to the offset value measured at 25 °C. The operational amplifier is one of
the main circuits of the signal conditioning chain, and the amplifier input offset is a major
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated
during production at application level. The maximum input voltage drift over temperature
enables the system designer to anticipate the effects of temperature variations.
The maximum input voltage drift over temperature is computed in Equation 1.
Equation 1
V io
V io T – V io 25C
------------ = max ------------------------------------------------T
T – 25C
with T = -40 °C and 85 °C.
The datasheet maximum value is guaranteed by measurements on a representative sample
size ensuring a Cpk (process capability index) greater than 2.
DocID025993 Rev 2
17/31
31
Application information
4.4
OA1NP, OA2NP, OA4NP
Long term input offset voltage drift
To evaluate product reliability, two types of stress acceleration are used:
Voltage acceleration, by changing the applied voltage
Temperature acceleration, by changing the die temperature (below the maximum
junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using
Equation 2.
Equation 2
A FV = e
VS – VU
Where:
AFV is the voltage acceleration factor
is the voltage acceleration constant in 1/V, constant technology parameter ( = 1)
VS is the stress voltage used for the accelerated test
VU is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.
Equation 3
A FT = e
Ea 1
1
------ ------ – ------
k
TU TS
Where:
AFT is the temperature acceleration factor
Ea is the activation energy of the technology based on the failure rate
k is the Boltzmann constant (8.6173 x 10-5 eVk-1)
TU is the temperature of the die when VU is used (K)
TS is the temperature of the die under temperature stress (K)
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and
the temperature acceleration factor (Equation 4).
Equation 4
A F = A FT A FV
AF is calculated using the temperature and voltage defined in the mission profile of the
product. The AF value can then be used in Equation 5 to calculate the number of months of
use equivalent to 1000 hours of reliable stress duration.
18/31
DocID025993 Rev 2
OA1NP, OA2NP, OA4NP
Application information
Equation 5
Months = A F 1000 h 12 months 24 h 365.25 days
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined
as a function of the maximum operating voltage and the absolute maximum rating (as
recommended by JEDEC rules).
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at
different measurement conditions (see Equation 6).
Equation 6
V CC = maxV op with V icm = V CC 2
The long term drift parameter (Vio), estimating the reliability performance of the product, is
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the
calculated number of months (Equation 7).
Equation 7
V io drift
V io = ----------------------------- months
where Vio drift is the measured drift value in the specified test conditions after 1000 h stress
duration.
4.5
Schematic optimization aiming for low power
To benefit from the full performance of the The OA1NP, OA2NP and OA4NP series, the
impedances must be maximized so that current consumption is not lost where it is not
required.
For example, an aluminum electrolytic capacitance can have significantly high leakage. This
leakage may be greater than the current consumption of the op amp. For this reason,
ceramic type capacitors are preferred.
For the same reason, big resistor values should be used in the feedback loop. However,
there are three main limitations to be considered when choosing a resistor.
1.
When the The OA1NP, OA2NP and OA4NP series is used with a sensor: the
resistance connected between the sensor and the input must remain much higher than
the impedance of the sensor itself.
2.
Noise generated: a100 k resistor generates 40
even more noise.
3.
Leakage on the PCB: leakage can be generated by moisture. This can be improved by
using a specific coating process on the PCB.
DocID025993 Rev 2
nV
-----------Hz
, a bigger resistor value generates
19/31
31
Application information
4.6
OA1NP, OA2NP, OA4NP
PCB layout considerations
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
Minimizing the leakage from sensitive high impedance nodes on the inputs of the OA1NP,
OA2NP, OA4NP series can be performed with a guarding technique. The technique consists
of surrounding high impedance tracks by a low impedance track (the ring). The ring is at the
same electrical potential as the high impedance node.
Therefore, even if some parasitic impedance exists between the tracks, no leakage current
can flow through them as they are at the same potential (see Figure 38).
Figure 38. Guarding on the PCB
OAxNP
20/31
DocID025993 Rev 2
OA1NP, OA2NP, OA4NP
4.7
Application information
Using the OA1NP, OA2NP, OA4NP series with sensors
The OA1NP, OA2NP, OA4NP series has MOS inputs, thus input bias currents can be
guaranteed down to 5 pA maximum at ambient temperature. This is an important parameter
when the operational amplifier is used in combination with high impedance sensors.
The OA1NP, OA2NP, and OA4NP series is perfectly suited for trans-impedance
configuration as shown in Figure 39. This configuration allows a current to be converted into
a voltage value with a gain set by the user. It is an ideal choice for portable electrochemical
gas sensing or photo/UV sensing applications. The OA1NP, OA2NP, OA4NP series, using
trans-impedance configuration, is able to provide a voltage value based on the physical
parameter sensed by the sensor.
Electrochemical gas sensors
The output current of electrochemical gas sensors is generally in the range of tens of nA to
hundreds of A. As the input bias current of the OA1NP, OA2NP, and OA4NP is very low
(see Figure 9, Figure 10, and Figure 11) compared to these current values, the OA1NP,
OA2NP, OA4NP series is well adapted for use with the electrochemical sensors of two or
three electrodes. Figure 40 shows a potentiostat (electronic hardware required to control a
three electrode cell) schematic using the OA1NP, OA2NP, and OA4NP. In such a
configuration, the devices minimize leakage in the reference electrode compared to the
current being measured on the working electrode.
Figure 39. Trans-impedance amplifier schematic
5
,
9UHI 5,
6HQVRU
HOHFWURFKHPLFDO
SKRWRGLRGH89
9UHI
DocID025993 Rev 2
*$066*
21/31
31
Application information
OA1NP, OA2NP, OA4NP
Figure 40. Potentiostat schematic using the OA1NP (or OA2NP)
2$13
2$13
9UHI
9UHI
4.8
*$066*
Fast desaturation
When the OA1NP, OA2NP, and OA4NP, operational amplifiers go into saturation mode, they
take a short period of time to recover, typically thirty microseconds. When recovering after
saturation, the OA1NP, OA2NP, and OA4NP series does not exhibit any voltage peaks that
could generate issues (such as false alarms) in the application (see Figure 17). This is
because the internal gain of the amplifier decreases smoothly when the output signal gets
close to the VCC+ or VCC- supply rails (see Figure 15 and Figure 16).
Thus, to maintain signal integrity, the user should take care that the output signal stays at
100 mV from the supply rails.
With a trans-impedance schematic, a voltage reference can be used to keep the signal
away from the supply rails.
4.9
Using the OA1NP, OA2NP, OA4NP series in comparator mode
The OA1NP, OA2NP, and OA4NP series can be used as a comparator. In this case, the
output stage of the device always operates in saturation mode. In addition, Figure 4 shows
the current consumption is not bigger and even decreases smoothly close to the rails. The
OA1NP, OA2NP, and OA4NP are obviously operational amplifiers and are therefore
optimized to be used in linear mode. We recommend to use the TS88 series of nanopower
comparators if the primary function is to perform a signal comparison only.
22/31
DocID025993 Rev 2
OA1NP, OA2NP, OA4NP
4.10
Application information
ESD structure of OA1NP, OA2NP, OA4NP series
The OA1NP, OA2NP and OA4NP are protected against electrostatic discharge (ESD) with
dedicated diodes (see Figure 41). These diodes must be considered at application level
especially when signals applied on the input pins go beyond the power supply rails (VCC+ or
VCC-).
Figure 41. ESD structure
2$13
*$066*
Current through the diodes must be limited to a maximum of 10 mA as stated in Table 2. A
serial resistor or a Schottky diode can be used on the inputs to improve protection but the
10 mA limit of input current must be strictly observed.
DocID025993 Rev 2
23/31
31
Package information
5
OA1NP, OA2NP, OA4NP
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
24/31
DocID025993 Rev 2
OA1NP, OA2NP, OA4NP
5.1
Package information
SC70-5 package mechanical data
Figure 42. SC70-5 package mechanical drawing
SIDE VIEW
DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 7. SC70-5 package mechanical data
Dimensions
Ref
Millimeters
Min
A
Typ
0.80
A1
Inches
Max
Min
1.10
0.315
Typ
0.043
0.10
A2
0.80
b
0.90
Max
0.004
1.00
0.315
0.035
0.15
0.30
0.006
0.012
c
0.10
0.22
0.004
0.009
D
1.80
2.00
2.20
0.071
0.079
0.087
E
1.80
2.10
2.40
0.071
0.083
0.094
E1
1.15
1.25
1.35
0.045
0.049
0.053
e
0.65
0.025
e1
1.30
0.051
L
0.26
<
0°
0.36
0.46
0.010
8°
0°
DocID025993 Rev 2
0.014
0.039
0.018
8°
25/31
31
Package information
5.2
OA1NP, OA2NP, OA4NP
DFN8 2x2 package information
Figure 43. DFN8 2x2 package mechanical drawing
'
$
%
& [
(
3,1,1'(;$5($
& [
7239,(:
$
$
&
&
6($7,1*
3/$1(
6,'(9,(:
&
H
ESOFV
3,1,1'(;$5($
& $ %
/
3LQ,'
%277209,(:
*$06&%
Table 8. DFN8 2x2 package mechanical data
Dimensions
Ref.
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.70
0.75
0.80
0.028
0.030
0.031
A1
0.00
0.02
0.05
0.000
0.001
0.002
b
0.15
0.20
0.25
0.006
0.008
0.010
D
2.00
0.079
E
2.00
0.079
e
0.50
0.020
L
0.045
0.55
0.65
N
26/31
0.018
8
DocID025993 Rev 2
0.022
0.026
OA1NP, OA2NP, OA4NP
5.3
Package information
MiniSO8 package information
Figure 44. MiniSO8 package mechanical drawing
Table 9.
MiniSO8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.026
0.80
0.016
0.024
L1
0.95
0.037
L2
0.25
0.010
k
ccc
0°
0.037
8°
0.10
DocID025993 Rev 2
0°
0.031
8°
0.004
27/31
31
Package information
5.4
OA1NP, OA2NP, OA4NP
QFN16 package information
Figure 45. QFN16 package mechanical drawing
Table 10.
QFN16 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
0.80
0.90
1.00
0.032
0.035
0.039
A1
0.02
0.05
0.001
0.002
A3
0.2
A
b
0.18
D
D2
E2
0.23
0.008
0.30
0.007
3.00
1.00
E
28/31
Inches
1.15
1.15
1.25
0.039
0.045
1.25
0.039
0.045
0.5
0.02
K
0.2
0.008
0.30
r
0.09
0.40
0.049
0.118
e
L
0.012
0.118
3.00
1.00
0.009
0.50
0.012
0.006
DocID025993 Rev 2
0.016
0.049
0.020
OA1NP, OA2NP, OA4NP
Package information
Figure 46. QFN16 3x3 footprint recommendation
Table 11. Footprint data
Footprint data
Ref
Millimeters
Inches
4.00
0.158
C
0.50
0.020
D
0.30
0.012
E
1.00
0.039
F
0.70
0.028
G
0.66
0.026
A
B
DocID025993 Rev 2
29/31
31
Revision history
6
OA1NP, OA2NP, OA4NP
Revision history
Table 12. Document revision history
30/31
Date
Revision
Changes
28-Feb-2014
1
Initial release
06-Mar-2014
2
Update Section 4.8 on page 22
DocID025993 Rev 2
OA1NP, OA2NP, OA4NP
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
DocID025993 Rev 2
31/31
31