0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OA2NP22Q

OA2NP22Q

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    WFDFN8

  • 描述:

    ICOPAMPCMOSRRIODUAL8DFN

  • 数据手册
  • 价格&库存
OA2NP22Q 数据手册
OA1NP, OA2NP, OA4NP Low power, rail-to-rail input and output, CMOS op amp Datasheet - production data 6LQJOH 2$13  Tolerance to power supply transient drops 4XDG 2$13  Accurate signal conditioning of high impedance sensors  Fast desaturation 6& Applications 0LQL62  Wearable '8$/ 2$13  Fitness and healthcare  Medical instrumentation 4)1[ Description ')1[ Features  Low power: 580 nA typ. per channel at 25 °C at VCC = 1.8 V  Low supply voltage: 1.5 V - 5.5 V  Unity gain stable  Rail-to-rail input and output  Gain bandwidth product: 8 kHz typ.  Low input bias current: 5 pA max at 25 °C  High tolerance to ESD: 2 kV HBM  Industrial temperature range: -40 °C to +85 °C Benefits The OA1NP, OA2NP, OA4NP series of CMOS operational amplifiers offer a low power consumption of 580 nA typical and 750 nA maximum per channel when supplied by 1.8 V. Combined with a supply voltage range of 1.5 V to 5.5 V, these features allow the OA1NP, OA2NP, OA4NP op amp series to be efficiently supplied by a coin type Lithium battery or a regulated voltage in low power applications. The OA1NP, OA2NP, OA4NP are respectively the single, dual and quad operational amplifier versions. The 8 kHz gain bandwidth of these devices make them ideal for wearable, fitness and healthcare and sensors signal conditioning applications.  42 years of typical equivalent lifetime (OA1NP) if supplied by a 220 mAh coin type Lithium battery Table 1. Device summary Order codes Temperature range OA1NP22C Packages Packing SC70-5 OA2NP22Q K22 DFN8 2x2 -40 ° C to +85 ° C Marking K24 Tape and reel OA2NP34S MiniSO8 K160 OA4NP33Q QFN16 3x3 K160 March 2014 This is information on a product in full production. DocID025993 Rev 2 1/31 www.st.com Contents OA1NP, OA2NP, OA4NP Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 6 2/31 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Schematic optimization aiming for low power . . . . . . . . . . . . . . . . . . . . . 19 4.6 PCB layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.7 Using the OA1NP, OA2NP, OA4NP series with sensors . . . . . . . . . . . . . 21 4.8 Fast desaturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.9 Using the OA1NP, OA2NP, OA4NP series in comparator mode . . . . . . . 22 4.10 ESD structure of OA1NP, OA2NP, OA4NP series . . . . . . . . . . . . . . . . . . 23 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1 SC70-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 QFN16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DocID025993 Rev 2 OA1NP, OA2NP, OA4NP 1 Package pin connections Package pin connections Figure 1. Pin connections for each package (top view) ,1   9&&  287  9&&  ,1   SC70-5 (OA1NP) QFN16 3x3 (OA4NP) 287   9&& 287 9&& ,1   287 ,1 287 ,1   ,1 ,1 ,1 9&&   ,1 9&& ,1 DFN8 2x2 (OA2NP) DocID025993 Rev 2 MiniSO8 (OA2NP) 3/31 31 Absolute maximum ratings and operating conditions 2 OA1NP, OA2NP, OA4NP Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings (AMR) Symbol Vcc Vid Vin Iin Tstg Parameter Value (1) Supply voltage Unit 6 (2) Differential input voltage ±Vcc V (3) Vcc- - 0.2 to Vcc+ + 0.2 (4) 10 mA -65 to +150 °C Input voltage Input current Storage temperature (5)(6) Rthja Tj Thermal resistance junction to ambient SC70-5 DFN8 2x2 MiniSO8 QFN16 3x3 205 117 190 45 Maximum junction temperature 150 HBM: human body MM: machine ESD model(7) model(8) °C/W °C 2000 200 V model(9) CDM: charged device All other packages except SC70-5 SC70-5 1000 900 Latch-up immunity(10) 200 mA 1. All voltage values, except the differential voltage are with respect to the network ground terminal. 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. 3. (Vcc+ - Vin) must not exceed 6 V, (Vin - Vcc-) must not exceed 6 V. 4. The input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Related to ESDA/JEDEC JS-001 Apr. 2010 8. Related to JEDEC JESD22-A115C Nov.2010 9. Related to JEDEC JESD22-C101-E Dec. 2009 10. Related to JEDEC JESD78C Sept. 2010 Table 3. Operating conditions Symbol 4/31 Parameter Vcc Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Value 1.5 to 5.5 DocID025993 Rev 2 Vcc- - 0.1 to Vcc+ + 0.1 -40 to +85 Unit V °C OA1NP, OA2NP, OA4NP 3 Electrical characteristics Electrical characteristics VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 1 M connected to VCC/2 (unless otherwise specified) Table 4. Electrical characteristics Symbol Parameter Conditions Min. Typ. Max. -3 0.1 3 Unit DC performance Vio Vio/T Input offset voltage mV -40 °C < T< 85 °C Input offset voltage drift -40 °C < T< 85 °C Vio Long-term input offset voltage drift T = 25 °C(1) Iio Input offset current (2) -3.4 3.4 5 V month --------------------------- 0.18 1 -40 °C < T< 85 °C V/°C 5 30 pA Iib CMR Avd VOH 1 Input bias current (2) -40 °C < T< 85 °C Common mode rejection ratio 20 log (Vicm/Vio) Large signal voltage gain High level output voltage (drop from VCC+) 5 30 Vicm = 0 to 0.6 V, Vout = VCC/2 65 -40 °C < T< 85 °C 65 Vicm = 0 to 1.8 V, Vout = VCC/2 55 -40°C < T< 85 °C 55 Vout = 0.3 V to (VCC+ - 0.3 V) RL = 100 k 95 -40 °C < T< 85 °C 95 85 74 dB 115 RL = 100 k 40 -40 °C < T< 85 °C 40 RL = 100 k 40 -40 °C < T< 85 °C 40 mV VOL Low level output voltage Output sink current 4 -40 °C < T< 85 °C 4 Vout = 0 V, VID = + 200 mV 4 -40 °C < T< 85 °C 4 5 mA Iout Output source current ICC Vout = VCC, VID = -200 mV Supply current (per channel) No load, Vout = VCC/2 5 580 750 nA -40 °C < T< 85 °C 800 AC performance GBP Gain bandwidth product 8 Fu Unity gain frequency 8 m Phase margin Gm Gain margin kHz RL = 1 M, CL = 60 pF DocID025993 Rev 2 60 degrees 10 dB 5/31 31 Electrical characteristics OA1NP, OA2NP, OA4NP Table 4. Electrical characteristics (continued) Symbol Parameter SR Slew rate (10 % to 90 %) en Equivalent input noise voltage en in trec Low-frequency peak-topeak input noise Equivalent input noise current Overload recovery time Conditions RL = 1 M, CL = 60 pF Vout = 0.3 V to (VCC+ - 0.3 V) Min. Typ. 3 f = 100 Hz 265 f = 1 kHz 265 Bandwidth: f = 0.1 to 10 Hz f = 100 Hz 9 Max. Unit V/ms nV -----------Hz µVpp 0.64 f = 1 kHz 4.4 100 mV from rail in comparator RL = 100 k, VID = ±VCC -40 °C < T< 85 °C 30 1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. 2. Guaranteed by design. 6/31 DocID025993 Rev 2 fA -----------Hz µs OA1NP, OA2NP, OA4NP Electrical characteristics VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 1 M connected to VCC/2 (unless otherwise specified) Table 5. Electrical characteristics Symbol Parameter Conditions Min. Typ. Max. -3 0.1 3 Unit DC performance Vio Vio/T Input offset voltage mV -40 °C < T< 85 °C Input offset voltage drift -40 °C < T< 85 °C Vio Long-term input offset voltage drift T = 25 °C(1) Iio Input offset current(2) -3.4 3.4 5 V month --------------------------- 0.36 1 -40 °C < T< 85 °C V/°C 5 30 pA Iib CMR Avd VOH Input bias 1 current(2) -40 °C < T< 85 °C Common mode rejection ratio 20 log (Vicm/Vio) Large signal voltage gain High level output voltage (drop from VCC+) 5 30 Vicm = 0 to 2.1 V, Vout = VCC/2 70 -40 °C < T< 85 °C 70 Vicm = 0 to 3.3 V, Vout = VCC/2 60 -40 °C < T< 85 °C 60 Vout = 0.3 V to (VCC+ - 0.3 V) RL= 100 k 105 -40 °C < T< 85 °C 105 92 77 dB 120 RL = 100 k 40 -40 °C < T< 85 °C 40 RL = 100 k 40 -40 °C < T< 85 °C 40 mV VOL Low level output voltage Output sink current 6 -40 °C < T< 85 °C 6 Vout = 0 V, VID = + 200 mV 8 -40 °C < T< 85 °C 8 9 mA Iout Output source current ICC Vout = VCC, VID= -200 mV Supply current (per channel) No load, Vout = VCC/2 11 600 800 nA -40 °C < T< 85 °C 850 AC performance GBP Gain bandwidth product 8 Fu Unity gain frequency 8 m Phase margin Gm Gain margin kHz RL = 1 M, CL = 60 pF DocID025993 Rev 2 60 degrees 11 dB 7/31 31 Electrical characteristics OA1NP, OA2NP, OA4NP Table 5. Electrical characteristics (continued) Symbol Parameter SR Slew rate (10 % to 90 %) en Equivalent input noise voltage en in trec Low-frequency peak-topeak input noise Equivalent input noise current Overload recovery time Conditions RL = 1 M, CL = 60 pF, Vout = 0.3 V to (VCC+ - 0.3 V) Min. Typ. 3 f = 100 Hz 260 f = 1 kHz 255 Bandwidth: f = 0.1 to 10 Hz 8.6 f = 100 Hz 0.55 f = 1 kHz 3.8 100 mV from rail in comparator RL = 100 k, VID= ±VCC -40 °C < T< 85 °C 30 Max. Unit V/ms nV -----------Hz µVpp fA -----------Hz µs 1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. 2. Guaranteed by design. 8/31 DocID025993 Rev 2 OA1NP, OA2NP, OA4NP Electrical characteristics VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and RL = 1 M connected to VCC/2 (unless otherwise specified) Table 6. Electrical characteristics Symbol Parameter Conditions Min. Typ. Max. -3 0.1 3 Unit DC performance Vio Vio/T Input offset voltage mV -40 °C < T< 85 °C Input offset voltage drift -40 °C < T< 85 °C Vio Long-term input offset voltage drift T = 25 °C(1) Iio Input offset current(2) -3.4 3.4 5 V month --------------------------- 1.1 1 -40 °C < T< 85 °C V/°C 5 30 pA Iib CMR SVR Avd VOH Input bias current 1 (2) -40 °C < T< 85 °C Common mode rejection ratio 20 log (Vicm/Vio) Supply voltage rejection ratio Large signal voltage gain High level output voltage (drop from VCC+) 5 30 Vicm = 0 to 3.8 V, Vout = VCC/2 70 -40 °C < T< 85 °C 70 Vicm = 0 to 5 V, Vout = VCC/2 65 -40 °C < T< 85 °C 65 VCC = 1.5 to 5.5 V, Vicm = 0 V 70 -40 °C < T< 85 °C 70 Vout = 0.3 V to (Vcc+ - 0.3 V) RL= 100 k 110 -40°C < T< 85 °C 110 90 82 dB 90 130 RL = 100 k 40 -40 °C < T< 85 °C 40 RL = 100 k 40 -40 °C < T< 85 °C 40 mV VOL Low level output voltage Output sink current 6 -40 °C < T< 85 °C 6 Vout = 0 V, VID = + 200 mV 8 -40 °C < T< 85 °C 8 9 mA Iout Output source current ICC Vout = VCC, VID = -200 mV Supply current (per channel) No load, Vout = VCC/2 -40 °C < T< 85 °C DocID025993 Rev 2 11 650 850 nA 950 9/31 31 Electrical characteristics OA1NP, OA2NP, OA4NP Table 6. Electrical characteristics (continued) Symbol Parameter Conditions Min. Typ. Max. Unit AC performance GBP Gain bandwidth product 9 kHz Fu Unity gain frequency m Phase margin Gm Gain margin SR Slew rate (10 % to 90 %) en Equivalent input noise voltage en in trec EMIRR Low-frequency peak-to-peak input noise Equivalent input noise current 8.6 RL = 1 M, CL = 60 pF RL = 1 M, CL = 60 pF, Vout = 0.3 V to (VCC+ - 0.3 V) 60 degrees 12 dB 3 V/ms f = 100 Hz 240 f = 1 kHz 225 Bandwidth: f = 0.1 to 10 Hz 8.1 f = 100 Hz 0.18 f = 1 kHz 3.5 100 mV from rail in comparator RL = 100 k, VID= ±VCC -40 °C < T< 85 °C 30 Vin = -10 dBm, f = 400 MHz 73 Vin = -10 dBm, f = 900 MHz Electromagnetic (3) interference rejection ratio Vin = -10 dBm, f = 1.8 GHz 88 Overload recovery time Vin = -10 dBm, f = 2.4 GHz nV -----------Hz µVpp fA -----------Hz µs dB 80 80 1. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. 2. Guaranteed by design. 3. Based on evaluations performed only in conductive mode. 10/31 DocID025993 Rev 2 OA1NP, OA2NP, OA4NP Electrical characteristics Figure 2. Supply current vs. supply voltage Figure 3. Supply current vs. input common mode voltage 1.0 1.0 0.9 Vicm=Vout=Vcc/2 T=85°C 0.8 0.7 Supply Current (µA) Supply Current (µA) 0.8 0.9 0.6 0.5 0.4 T=25°C 0.3 T=-40°C 0.6 0.5 0.2 0.1 2.5 3.0 3.5 4.0 Supply voltage (V) 4.5 5.0 0.0 5.5 Figure 4. Supply current in saturation mode Vcc=3.3V, Vout=Vcc/2 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 Input common mode voltage (V) Figure 5. Input offset voltage distribution 1.0 50 0.9 Vio distribution at T=25°C Vcc=3.3V, Vicm=1.65V 45 Temperature 85°C/65°C/45°C/25°C/-5°C/-40°C 0.8 40 0.7 35 Population % 0.6 Icc (A) T=-40°C 0.3 0.1 2.0 T=25°C 0.4 0.2 0.0 1.5 T=85°C 0.7 0.5 0.4 0.3 Vcc=3.3V Follower configuration 0.2 30 25 20 15 10 0.1 5 3275 3300 3250 3200 3225 3150 3175 3100 3125 150 175 100 125 50 75 0 25 0.0 0 -3 -2 -1 0 1 2 3 Input offset voltage (mV) Input voltage (mV) 1.0 5 0.9 4 0.8 3 0.7 0.6 T=25°C Vcc=3.3V 0.5 0.4 0.3 T=85°C 0.2 0.1 0.0 Input offset voltage (mV) Input offset voltage (mV) Figure 6. Input offset voltage vs. common mode Figure 7. Input offset voltage vs. temperature at voltage 3.3 V supply voltage Limit for OAxNP 2 1 0 -1 -2 Vcc=3.3V, Vicm=1.65V -3 T=-40°C 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 Common mode voltage (V) -4 -5 -60 DocID025993 Rev 2 -40 -20 0 20 40 Temperature (°C) 60 80 100 11/31 31 Electrical characteristics OA1NP, OA2NP, OA4NP Figure 8. Input offset voltage temperature coefficient distribution Figure 9. Input bias current vs. temperature at mid VICM 30 20 Vio/T distribution 15 between T=-40°C and 85°C for Vcc=3.3V, Vicm=1.65V Input bias current (pA) 25 Population % 20 15 10 Vcc=3.3V 10 Vcc=5V 5 0 -5 Vcc=1.8V Vicm=Vcc/2 -10 5 -15 0 -5 -4 -3 -2 -1 0 1 2 3 4 -20 -40 5 Vio/T (µV/°C) -20 0 20 40 Temperature (°C) 60 80 20 20 15 15 10 Vicm=0V Input bias current (pA) Input bias current (pA) Figure 10. Input bias current vs. temperature at Figure 11. Input bias current vs. temperature at low VICM high VICM Vcc=1.8V 5 0 -5 Vcc=3.3V -10 -15 -20 -40 0 20 40 Temperature (°C) 60 -10 -20 0 20 40 Temperature (°C) 60 80 Source Vid=0.2V 2.4 T=25°C T=85°C 0.6 Sink Vid=-0.2V T=25°C 2.1 Vcc=3.3V Vicm=0.1V 1.8 T=85°C 1.5 1.2 0.9 Sink Vid=-0.2V 0.6 0.3 T=-40°C 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Output Current (mA) 12/31 Vcc=1.8V Vicm=Vcc 2.7 Output Voltage (V) Output Voltage (V) Vcc=1.8V Vicm=0.1V 0.8 0.2 -5 3.0 Source Vid=0.2V 1.2 0.4 0 3.3 1.6 1.0 5 Figure 13. Output characteristics at 3.3 V supply voltage 1.8 1.4 10 -20 -40 80 Figure 12. Output characteristics at 1.8 V supply voltage Vcc=3.3V -15 Vcc=5V -20 Vcc=5V 0.0 T=-40°C 0 DocID025993 Rev 2 1 2 3 4 5 6 7 Output Current (mA) 8 9 10 OA1NP, OA2NP, OA4NP Electrical characteristics Figure 15. Output voltage vs. input voltage close to the rails 0 1 2 3 4 5 6 7 Output Current (mA) 8 9 10 3275 3300 0.0 0 0.5 Vcc=3.3V Follower configuration 3250 T=-40°C Sink Vid=-0.2V 1.0 3200 3225 1.5 175 150 125 100 75 50 25 0 3150 3175 T=85°C 2.0 3125 Vcc=5V Vicm=0.1V 2.5 3100 3.0 150 175 Output voltage (mV) Output Voltage (V) T=25°C 3.5 Temperature 85°C/65°C/45°C/25°C/-5°C/-40°C 125 Source Vid=0.2V 4.0 3300 3275 3250 3225 3200 3175 3150 3125 3100 75 100 4.5 50 5.0 25 Figure 14. Output characteristics at 5 V supply voltage Input voltage (mV) Figure 16. Output saturation with a sine wave on input Figure 17. Desaturation time 3 3.300 3.275 Gain=+11, 100k /1M, Vin=3Vpp, T=25°C Vin 3.250 2 Vout 3.200 Follower configuration, T=25°C Vcc=3.3V, Vin from rail to 300mV from rail 3.175 3.150 Vrl=Vrail, f=10Hz, Rl=10M , Cl=16pF 0.125 0.100 0.075 Vout 0.050 0.025 0.000 -5 Signal Amplitude (V) Signal Amplitude (V) 3.225 -1 Vcc=3.3V, Vicm=Vrl=1.65V Rl=10M , Cl=16pF Vin 0 5 -3 10 15 20 25 30 35 40 45 50 55 60 Time (ms) Slew Rate (V/ms) 1 Follower configuration, T=25°C Vcc=3.3V, Vicm=Vrl=1.65V Rl=10M, Cl=16pF 0 -1 -2 25 50 75 100 Time (ms) 125 0 1 2 3 Time (ms) 4 5 Figure 19. Slew rate vs. supply voltage 2 Signal Amplitude (V) 0 -2 Figure 18. Phase reversal free 0 1 150 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 1.5 DocID025993 Rev 2 T=-40°C Vicm=Vrl=Vcc/2 Rl=1M, Cl=60pF Vin from 0.5V to Vcc-0.5V SR calculated from 10% to 90% T=25°C T=85°C 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 13/31 31 Electrical characteristics OA1NP, OA2NP, OA4NP Figure 20. Output swing vs. input signal frequency Figure 21. Triangulation of a sine wave 4.0 3 Follower configuration, Vin=3Vpp, F=1kHz 3.5 2 Signal Amplitude (V) Output swing (V) 3.0 2.5 2.0 Follower configuration Vcc=3.3V, Vin=3.3Vpp Vicm=Vrl=1.65V Rl=10M, Cl=16pF T=25°C 1.5 1.0 0.0 10 100 1000 Frequency (Hz) Follower configuration, T=25°C 1 0 -1 Vcc=3.3V Vicm=Vrl=1.65V Rl=10M , Cl=16pF -2 1 2 3 4 5 6 Time (ms) 7 8 9 10 Figure 24. Overshoot vs. capacitive load at 3.3 V supply voltage Vcc=3.3V, Vicm=Vrl=1.65V Follower configuration 50mVpp step Rl=10M, T=25°C Phase margin (deg) Overshoot (%) 20 18 15 13 10 8 5 3 0 14/31 0 50 100 150 Capacitive load (pF) 200 0 1 2 Time (ms) 3 4 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 0.0 Follower configuration, T=25°C Vcc=3.3V Vicm=Vrl=1.65V Rl=10M , Cl=16pF 0.1 0.2 0.3 0.4 0.5 0.6 Time (ms) 0.7 0.8 0.9 1.0 Figure 25. Phase margin vs. capacitive load at 3.3 V supply voltage 30 23 Vcc=3.3V, Vicm=Vrl=1.65V Rl=10M , Cl=16pF, T=25°C Figure 23. Small signal response at 3.3 V supply voltage Signal Amplitude (mV) Signal Amplitude (V) 2 25 -1 -3 10000 Figure 22. Large signal response at 3.3 V supply voltage 28 0 -2 0.5 0 1 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Vcc=3.3V, Vicm=Vrl=1.65V Gain 101 : Rg=10k, Rf=1M Rl=10M T=25°C 0 DocID025993 Rev 2 50 100 150 Capacitive load (pF) 200 250 OA1NP, OA2NP, OA4NP Electrical characteristics Figure 26. Bode diagram for different feedback Figure 27. Bode diagram at 1.8 V supply voltage values 20 45 180 Feedback : 1M 150 Gain 30 Vcc=3.3V, Vicm=1.65V, T=25°C Gain=1 Rl=10M, Cl=16pF, Vrl=Vcc/2 Gain (dB) 5 0 -5 Feedback : 1M //47pF -10 60 30 T=85°C 0 0 -30 Phase T=25°C -15 Feedback : 100k -15 -20 -120 -150 -45 100 1000 -60 -90 Vcc=1.8V, Vicm=0.9V G=101 (10k/1M) Rl=10M, Cl=60pF, Vrl=Vcc/2 -30 10 120 90 15 Gain (dB) 10 T=-40°C Phase (°) 15 10000 -180 10 100 Frequency (Hz) 1000 10000 Frequency (Hz) Figure 28. Bode diagram at 3.3 V supply voltage Figure 29. Bode diagram at 5 V supply voltage 45 180 180 150 Gain 30 T=-40°C 150 Gain 30 120 T=-40°C 90 90 15 0 -30 Phase T=25°C -15 Gain (dB) T=85°C 0 Phase (°) Gain (dB) 15 60 30 60 30 T=85°C 0 -60 Vcc=3.3V, Vicm=1.65V G=101 (10k /1M ) Rl=10M, Cl=60pF, Vrl=Vcc/2 100 Vcc=5V, Vicm=2.5V G=101 (10k /1M ) Rl=10M, Cl=60pF, Vrl=Vcc/2 -150 1000 T=25°C -60 -90 -120 -150 -45 -180 10 -30 Phase -30 -120 -45 0 -15 -90 -30 120 Phase (°) 45 -180 10 10000 100 1000 10000 Frequency (Hz) Frequency (Hz) Figure 30. Gain bandwidth product vs. input common mode voltage Figure 31. Gain vs. input common mode voltage 10 100 9 8 6 Riso (k) GBP (kHz) 7 Vcc=3.3V, Vicm=Vrl Gain 101 : Rg=10k, Rf=1M Rl=10M , Cl=60pF T=25°C Measured at 20dB 5 4 3 Recommended resistor to place between the output of the op-amp and the capacitive load Vcc=3.3V, Vicm=1.65V Follower configuration 2 1 0 0.0 0.5 1.0 1.5 2.0 Vicm (V) 2.5 3.0 10 -2 10 DocID025993 Rev 2 10 -1 0 1 10 10 Capacitive load (nF) 10 2 3 10 15/31 31 Electrical characteristics OA1NP, OA2NP, OA4NP Figure 32. Noise at 1.8 V supply voltage in follower configuration Figure 33. Noise at 3.3 V supply voltage in follower configuration 10000 Output voltage noise density (nV/VHz) Vcc=1.8V Follower configuration T=25°C 1000 Vicm=0.9V 100 10 10 Vicm=1.5V 100 1000 Frequency (Hz) 10000 Output voltage noise density (nV/VHz) 10000 Vcc=3.3V Follower configuration T=25°C 1000 100 Noise Amplitude (uV) Output voltage noise density (nV/VHz) Vicm=4.7V 0 -5 -10 -20 100 1000 Frequency (Hz) 10000 100000 Figure 36. Channel separation on OA2NP Vcc=3V, Vicm=1.65V Bandpass filter : 0.1Hz to 10Hz T=25°C 140 120 120 100 80 60 Vcc=5V Vicm=2.5V Vin=2Vpp T=25°C 0 1k 10k 2 3 4 5 6 Time (s) 7 8 9 10 Ch1 - Ch2 Ch1 - Ch3 Ch1 - Ch4 100 80 60 40 20 100 1 Figure 37. Channel separation on OA4NP 140 Channel separation (dB) Channel separation (dB) 5 -15 0 10 100000 10 Vicm=2.5V 20 10000 15 1000 40 1000 Frequency (Hz) 20 Vcc=5V Follower configuration T=25°C 10 10 0 10 Frequency (Hz) 16/31 100 Figure 35. Noise amplitude on 0.1 to 10 Hz frequency range 10000 100 Vicm=3V 10 10 100000 Figure 34. Noise at 5 V supply voltage in follower configuration Vicm=1.65V Vcc=5V Vicm=2.5V Vin=2Vpp T=25°C 100 Frequency (Hz) DocID025993 Rev 2 1k 10k OA1NP, OA2NP, OA4NP Application information 4 Application information 4.1 Operating voltages The OA1NP, OA2NP and OA4NP series of low power op amp can operate from 1.5 V to 5.5 V. Their parameters are fully specified at 1.8 V, 3.3 V, and 5 V supply voltages and are very stable in the full VCC range. Additionally, main specifications are guaranteed on the industrial temperature range from -40 to +85 ° C. 4.2 Rail-to-rail input The OA1NP, OA2NP and OA4NP series is built with two complementary PMOS and NMOS input differential pairs. Thus, these devices have a rail-to-rail input, and the input common mode range is extended from VCC- - 0.1 V to VCC+ + 0.1 V. The devices have been designed to prevent phase reversal behavior. 4.3 Input offset voltage drift over temperature The maximum input voltage drift over the temperature variation is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations. The maximum input voltage drift over temperature is computed in Equation 1. Equation 1 V io V io  T  – V io  25C  ------------ = max ------------------------------------------------T T – 25C with T = -40 °C and 85 °C. The datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a Cpk (process capability index) greater than 2. DocID025993 Rev 2 17/31 31 Application information 4.4 OA1NP, OA2NP, OA4NP Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used:  Voltage acceleration, by changing the applied voltage  Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e    VS – VU  Where: AFV is the voltage acceleration factor  is the voltage acceleration constant in 1/V, constant technology parameter ( = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e Ea  1 1 ------   ------ – ------ k TU TS Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eVk-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT  A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. 18/31 DocID025993 Rev 2 OA1NP, OA2NP, OA4NP Application information Equation 5 Months = A F  1000 h  12 months   24 h  365.25 days  To evaluate the op amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC  2 The long term drift parameter (Vio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 V io drift V io = ----------------------------- months  where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 4.5 Schematic optimization aiming for low power To benefit from the full performance of the The OA1NP, OA2NP and OA4NP series, the impedances must be maximized so that current consumption is not lost where it is not required. For example, an aluminum electrolytic capacitance can have significantly high leakage. This leakage may be greater than the current consumption of the op amp. For this reason, ceramic type capacitors are preferred. For the same reason, big resistor values should be used in the feedback loop. However, there are three main limitations to be considered when choosing a resistor. 1. When the The OA1NP, OA2NP and OA4NP series is used with a sensor: the resistance connected between the sensor and the input must remain much higher than the impedance of the sensor itself. 2. Noise generated: a100 k resistor generates 40 even more noise. 3. Leakage on the PCB: leakage can be generated by moisture. This can be improved by using a specific coating process on the PCB. DocID025993 Rev 2 nV -----------Hz , a bigger resistor value generates 19/31 31 Application information 4.6 OA1NP, OA2NP, OA4NP PCB layout considerations For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. Minimizing the leakage from sensitive high impedance nodes on the inputs of the OA1NP, OA2NP, OA4NP series can be performed with a guarding technique. The technique consists of surrounding high impedance tracks by a low impedance track (the ring). The ring is at the same electrical potential as the high impedance node. Therefore, even if some parasitic impedance exists between the tracks, no leakage current can flow through them as they are at the same potential (see Figure 38). Figure 38. Guarding on the PCB OAxNP 20/31 DocID025993 Rev 2 OA1NP, OA2NP, OA4NP 4.7 Application information Using the OA1NP, OA2NP, OA4NP series with sensors The OA1NP, OA2NP, OA4NP series has MOS inputs, thus input bias currents can be guaranteed down to 5 pA maximum at ambient temperature. This is an important parameter when the operational amplifier is used in combination with high impedance sensors. The OA1NP, OA2NP, and OA4NP series is perfectly suited for trans-impedance configuration as shown in Figure 39. This configuration allows a current to be converted into a voltage value with a gain set by the user. It is an ideal choice for portable electrochemical gas sensing or photo/UV sensing applications. The OA1NP, OA2NP, OA4NP series, using trans-impedance configuration, is able to provide a voltage value based on the physical parameter sensed by the sensor. Electrochemical gas sensors The output current of electrochemical gas sensors is generally in the range of tens of nA to hundreds of A. As the input bias current of the OA1NP, OA2NP, and OA4NP is very low (see Figure 9, Figure 10, and Figure 11) compared to these current values, the OA1NP, OA2NP, OA4NP series is well adapted for use with the electrochemical sensors of two or three electrodes. Figure 40 shows a potentiostat (electronic hardware required to control a three electrode cell) schematic using the OA1NP, OA2NP, and OA4NP. In such a configuration, the devices minimize leakage in the reference electrode compared to the current being measured on the working electrode. Figure 39. Trans-impedance amplifier schematic 5 ,  9UHI 5, 6HQVRU HOHFWURFKHPLFDO SKRWRGLRGH89  9UHI DocID025993 Rev 2 *$066* 21/31 31 Application information OA1NP, OA2NP, OA4NP Figure 40. Potentiostat schematic using the OA1NP (or OA2NP)  2$13  2$13   9UHI 9UHI 4.8 *$066* Fast desaturation When the OA1NP, OA2NP, and OA4NP, operational amplifiers go into saturation mode, they take a short period of time to recover, typically thirty microseconds. When recovering after saturation, the OA1NP, OA2NP, and OA4NP series does not exhibit any voltage peaks that could generate issues (such as false alarms) in the application (see Figure 17). This is because the internal gain of the amplifier decreases smoothly when the output signal gets close to the VCC+ or VCC- supply rails (see Figure 15 and Figure 16). Thus, to maintain signal integrity, the user should take care that the output signal stays at 100 mV from the supply rails. With a trans-impedance schematic, a voltage reference can be used to keep the signal away from the supply rails. 4.9 Using the OA1NP, OA2NP, OA4NP series in comparator mode The OA1NP, OA2NP, and OA4NP series can be used as a comparator. In this case, the output stage of the device always operates in saturation mode. In addition, Figure 4 shows the current consumption is not bigger and even decreases smoothly close to the rails. The OA1NP, OA2NP, and OA4NP are obviously operational amplifiers and are therefore optimized to be used in linear mode. We recommend to use the TS88 series of nanopower comparators if the primary function is to perform a signal comparison only. 22/31 DocID025993 Rev 2 OA1NP, OA2NP, OA4NP 4.10 Application information ESD structure of OA1NP, OA2NP, OA4NP series The OA1NP, OA2NP and OA4NP are protected against electrostatic discharge (ESD) with dedicated diodes (see Figure 41). These diodes must be considered at application level especially when signals applied on the input pins go beyond the power supply rails (VCC+ or VCC-). Figure 41. ESD structure  2$13  *$066* Current through the diodes must be limited to a maximum of 10 mA as stated in Table 2. A serial resistor or a Schottky diode can be used on the inputs to improve protection but the 10 mA limit of input current must be strictly observed. DocID025993 Rev 2 23/31 31 Package information 5 OA1NP, OA2NP, OA4NP Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 24/31 DocID025993 Rev 2 OA1NP, OA2NP, OA4NP 5.1 Package information SC70-5 package mechanical data Figure 42. SC70-5 package mechanical drawing SIDE VIEW DIMENSIONS IN MM GAUGE PLANE COPLANAR LEADS SEATING PLANE TOP VIEW Table 7. SC70-5 package mechanical data Dimensions Ref Millimeters Min A Typ 0.80 A1 Inches Max Min 1.10 0.315 Typ 0.043 0.10 A2 0.80 b 0.90 Max 0.004 1.00 0.315 0.035 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 D 1.80 2.00 2.20 0.071 0.079 0.087 E 1.80 2.10 2.40 0.071 0.083 0.094 E1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 L 0.26 < 0° 0.36 0.46 0.010 8° 0° DocID025993 Rev 2 0.014 0.039 0.018 8° 25/31 31 Package information 5.2 OA1NP, OA2NP, OA4NP DFN8 2x2 package information Figure 43. DFN8 2x2 package mechanical drawing ' $ %  & [ ( 3,1,1'(;$5($  & [ 7239,(: $ $  & & 6($7,1* 3/$1( 6,'(9,(:  & H E SOFV 3,1,1'(;$5($    & $ % / 3LQ,'   %277209,(: *$06&% Table 8. DFN8 2x2 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.20 0.25 0.006 0.008 0.010 D 2.00 0.079 E 2.00 0.079 e 0.50 0.020 L 0.045 0.55 0.65 N 26/31 0.018 8 DocID025993 Rev 2 0.022 0.026 OA1NP, OA2NP, OA4NP 5.3 Package information MiniSO8 package information Figure 44. MiniSO8 package mechanical drawing Table 9. MiniSO8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.026 0.80 0.016 0.024 L1 0.95 0.037 L2 0.25 0.010 k ccc 0° 0.037 8° 0.10 DocID025993 Rev 2 0° 0.031 8° 0.004 27/31 31 Package information 5.4 OA1NP, OA2NP, OA4NP QFN16 package information Figure 45. QFN16 package mechanical drawing Table 10. QFN16 package mechanical data Dimensions Ref. Millimeters Min. Typ. Max. Min. Typ. Max. 0.80 0.90 1.00 0.032 0.035 0.039 A1 0.02 0.05 0.001 0.002 A3 0.2 A b 0.18 D D2 E2 0.23 0.008 0.30 0.007 3.00 1.00 E 28/31 Inches 1.15 1.15 1.25 0.039 0.045 1.25 0.039 0.045 0.5 0.02 K 0.2 0.008 0.30 r 0.09 0.40 0.049 0.118 e L 0.012 0.118 3.00 1.00 0.009 0.50 0.012 0.006 DocID025993 Rev 2 0.016 0.049 0.020 OA1NP, OA2NP, OA4NP Package information Figure 46. QFN16 3x3 footprint recommendation Table 11. Footprint data Footprint data Ref Millimeters Inches 4.00 0.158 C 0.50 0.020 D 0.30 0.012 E 1.00 0.039 F 0.70 0.028 G 0.66 0.026 A B DocID025993 Rev 2 29/31 31 Revision history 6 OA1NP, OA2NP, OA4NP Revision history Table 12. Document revision history 30/31 Date Revision Changes 28-Feb-2014 1 Initial release 06-Mar-2014 2 Update Section 4.8 on page 22 DocID025993 Rev 2 OA1NP, OA2NP, OA4NP  Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID025993 Rev 2 31/31 31
OA2NP22Q 价格&库存

很抱歉,暂时无法提供与“OA2NP22Q”相匹配的价格&库存,您可以联系我们找货

免费人工找货
OA2NP22Q
    •  国内价格
    • 1+14.27292
    • 10+9.71960

    库存:3000