0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PM6680TR

PM6680TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VFQFN32_EP

  • 描述:

    IC CTLR DUAL STEP DOWN 32VFQFPN

  • 数据手册
  • 价格&库存
PM6680TR 数据手册
PM6680 No Rsense dual step-down controller with adjustable voltages for notebook system power Features ■ 6 V to 28 V input voltage range ■ Adjustable output voltages ■ 5 V always voltage available deliver 100 mA peak current ■ 1.237 V ± 1% reference voltage available ■ Lossless current sensing using low side MOSFETs RDS(on) ■ Negative current limit ■ Soft-start internally fixed at 2ms ■ Soft output discharge ■ Latched OVP and UVP ■ Selectable pulse skipping at light loads ■ Selectable minimum frequency (33 kHz) in pulse skip mode ■ 4 mW maximum quiescent power ■ Independent power good signals ■ Output voltage ripple compensation Applications ■ Notebook computers ■ Tablet PC or slates ■ Mobile system power supply ■ 3-4 cells Li+ battery powered devices Table 1. VFQFPN-32 5X5 Description PM6680 is a dual step-down controller specifically designed to provide extremely high efficiency conversion, with lossless current sensing technique. The constant on-time architecture assures fast load transient response and the embedded voltage feed-forward provides nearly constant switching frequency operation. An embedded integrator control loop compensates the DC voltage error due to the output ripple. Pulse skipping technique increases efficiency at very light load. Moreover a minimum switching frequency of 33kHz is selectable to avoid audio noise issues. The PM6680 provides a selectable switching frequency, allowing three different values of switching frequencies for the two switching sections. The output voltages OUT1 and OUT2 can be adjusted from 0.9 V to 5.5 V and from 0.9 V to 3.3 V respectively. Device summary Order codes Package PM6680 Packaging Tray VFQFPN-32 5mm x 5mm (Exposed pad) PM6680TR January 2008 Tape and reel Rev 7 1/49 www.st.com 49 Contents PM6680 Contents 1 Simplified application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 2.1 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2/49 7.1 Constant On time PWM control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.2 Constant on time architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.3 Output ripple compensation and loop stability . . . . . . . . . . . . . . . . . . . . . 22 7.4 Pulse skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.5 No-audible skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.6 Current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.7 Soft start and soft end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.8 Gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.9 Reference voltage and bandgap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.10 Internal linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.11 Power up sequencing and operative modes . . . . . . . . . . . . . . . . . . . . . . . 28 7.12 Monitoring and protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.12.1 Power good signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.12.2 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.12.3 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.12.4 Undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PM6680 Contents 7.13 Design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.13.1 Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.13.2 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.13.3 Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.13.4 Input capacitors selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.13.5 Power MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.13.6 Closing the integrator loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.13.7 Other parts design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.13.8 Design example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3/49 List of figures PM6680 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. 4/49 Simplified application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connection (Through top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5V output efficiency vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.05V output efficiency vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PWM no load input battery vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Skip no load battery current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 No-audible skip no load battery current vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Stand-by mode input battery current vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Shutdown mode input battery current vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5V switching frequency vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.05V switching frequency vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 LDO5 vs output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5V voltage regulation vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.05V voltage regulation vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Voltage reference vs load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 OUT1, OUT2 and LDO5 power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5V load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.05V load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5V soft start (0.25Ω load). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.05V soft start (0.175Ω load). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5V soft end (No load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.05V soft end (No load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5V soft end (1Ω Load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.05V soft end (1Ω Load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5V no-audible skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.05V no-audible skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Constant ON time PWM control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Constant on-time block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Circuitry for output ripple compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PWM and pulse skip mode inductor current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 No audible skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 RDSON sensing technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Current waveforms in current limit conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Soft start waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Circuitry for output ripple compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Virtual ESR network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 VIN pin filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Inductor current waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Current paths, ground connection and driver traces layout . . . . . . . . . . . . . . . . . . . . . . . . 44 Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 PM6680 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 FSEL pin selection: typical switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V5SW multifunction pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Operatives modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Protections and operatives modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Inductor manufacturer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Output capacitor manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Input capacitor manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 High side MOSFET manufacturer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Low side MOSFET manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Dual MOSFET manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Shottky diode manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 VFQFPN 5x5x1.0 32L Pitch 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Exposed pad variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5/49 OUT1- 1 OUT1+ 1 SGND FB1 VIN + PGND SGND PGOOD2 PGOOD1 V+ V+ PGND 5 27 26 16 30 29 17 20 15 21 22 23 SGND SGND SGND BOOT2 SHDN PGOOD2 PGOOD1 SGND2 COMP1 OUT1 V5SW CSENSE1 LGATE1 PHASE1 HGATE1 BOOT1 SGND PM6680 EN2 4 EN1 25 V+ 31 VCC V+ 32 + 18 LDO5 VREF 19 LGATE2 PHASE2 HGATE2 BOOT2 SGND FB2 FB1 NC COMP2 OUT2 SGND PGND CSENSE2 VIN SKIP 6/49 24 7 28 FB1 6 2 8 1 14 12 13 11 10 SGND 9 SGND PGND SGND PGND PGND + VIN SGND 1 1 O O Figure 1. FSEL 1 3 BOOT1 Simplified application schematic PM6680 Simplified application schematic Simplified application schematic PM6680 Electrical data 2 Electrical data 2.1 Maximum rating Table 2. Absolute maximum ratings Parameter Value Unit V5SW, LDO5 to PGND -0.3 to 6 V VIN to PGND -0.3 to 36 V HGATEx and BOOTx, to PHASEx -0.3 to 6 V (1) V PHASEx to PGND -0.6 CSENSEx , to PGND CSENSEx to BOOTx LGATEx to PGND -0.3 FBx, COMPx, SKIP, , FSEL,VREF to SGND1,SGND2 PGND to SGND1,SGND2 SHDN,PGOODx, OUTx, VCC, ENx to SGND1,SGND2 Power dissipation at TA = 25ºC Maximum withstanding voltage range test condition: CDF-AEC-Q100-002- “Human Body Model” acceptance criteria: “Normal Performance” to36 -0.6 to 42 V -6 to 0.3 V (2) to LDO5 +0.3 V -0.3 to Vcc +0.3 V -0.3 to 0.3 V -0.3 to 6 V 2.8 W VIN ±1000 Other pins ±2000 V 1. PHASE to PGND up to -2.5 V for t VREF, Vref in regulation, V5WS to 5 V Ish Operating current sunk by VIN SHDN connected to GND, 14 18 µA Isb Operating current sunk by VIN ENx to GND, V5SW to GND 190 250 µA Shutdown section VSHDN Device on threshold 1.2 1.5 1.7 V Device off threshold 0.8 0.85 0.9 V 3.5 ms 110 µA Soft start section Soft start ramp time 2 Current limit and zero crossing comparator ICSENSE 12/49 Input bias current limit 90 100 Comparator offset VCSENSE-VPGND -6 6 mV Zero crossing comparator offset VPGND - VPHASE -1 11 mV Fixed negative current limit threshold VPGND - VPHASE -120 mV PM6680 Table 5. Electrical characteristics Electrical characteristics (continued) VIN = 12 V, TA = 0 °C to 85 °C, unless otherwise specified (1) Symbol Parameter Test condition Min Typ Max Unit OUT1=1.5 V 550 650 750 OUT2=1.05 V 230 270 315 OUT1=1.5 V 375 445 515 OUT2=1.05 V 175 210 245 OUT1=1.5 V 285 340 395 OUT2=1.05 V 125 150 175 350 500 ns 1.236 1.249 V 4 mV 0.95 mV 909 mV On time pulse width FSEL to GND Ton On time duration FSEL to VREF FSEL to LDO5 ns OFF time TOFFMIN Minimum off time Voltage reference VREF Voltage accuracy 4 V < VLDO5 < 5.5 V Load regulation -100 µA< IREF < 100 µA Undervoltage lockout fault threshold Falling edge of REF 1.224 -4 Integrator FB Voltage accuracy FB Input bias current -909 900 0.1 Normal mode 250 Pulse skip mode 60 µA Over voltage clamp COMP Under voltage clamp mV -150 Line regulation Both SMPS, 6 V k × fZout = k 2π × C out × R out where k is a design parameter greater than 3 and Rout is the ESR of the output capacitor. It determinates the minimum integrator capacitor value CINT: Equation 24 CINT > gm Vr × ⎛ fsw ⎞ VOUT 2π × ⎜ − fZout ⎟ ⎝ k ⎠ where gm = 50 us is the integrator transconductance. In order to ensure stability it must be also verified that: Equation 25 C INT > gm Vr × 2π × fZout VOUT 37/49 Device description PM6680 In order to reduce ground noise due to load transient on the other section, it is recommended to add a resistor RINT and a capacitor Cfilt that, together with CINT, realize a low pass filter (see Figure 36). The cutoff frequency fCUT must be much greater (10 or more times) than the switching frequency of the section: Equation 26 R INT = 2π × fCUT 1 C × C filt × INT C INT + C filt Due to the capacitive divider (CINT, Cfilt), the ripple voltage at the COMP pin is given by: Equation 27 VRIPPLEINT = VRIPPLEout × CINT = VRIPPLEout × q CINT + Cfilt Where VRIPPLEout is the output ripple and q is the attenuation factor of the output ripple. If the ripple is very small (lower than approximately 30 mV), a further compensation network, named virtual ESR network, is needed. This additional part generates a triangular ripple that is added to the ESR output voltage ripple at the input of the integrator network. The complete control schematic is represented in Figure 37. Figure 37. Virtual ESR network COMP PIN VOLTAGE T NODE VOLTAGE ? V1 ? V1 Vr OUTPUT VOLTAGE t ?V t CFILT Vr COMP + - PWM t T RINT Vr C R OUT L ROUT D 38/49 COUT R2 R1 Comparator gm CINT - R1 FB + V1 PM6680 Device description The T node voltage is the sum of the output voltage and the triangular waveform generated by the virtual ESR network. In fact the virtual ESR network behaves like a further equivalent ESR RESR. A good trade-off is to design the network in order to achieve an RESR given by: Equation 28 RESR = VRIPPLE − Rout ∆IL where ∆IL is the inductor current ripple and VRIPPLE is the overall ripple of the T node voltage. It should be chosen higher than approximately 30 mV. The new closed loop gain depends on CINT. In order to ensure stability it must be verified that: Equation 29 C INT > gm Vr × 2π × fZ VOUT Where: Equation 30 fZ = 1 2π × C out × R TOT where RTOT is the sum of the ESR of the output capacitor Rout and the equivalent ESR given by the virtual ESR network RESR. Moreover CINT must meet the following condition: Equation 31 fsw > k × fZ = k 2π × C out × R TOT Where k is a free design parameter greater than 3 and determines the minimum integrator capacitor value CINT: Equation 32 CINT > gm Vr × V f ⎞ ⎛ OUT 2π × ⎜⎜ sw − fZ ⎟⎟ k ⎠ ⎝ C must be selected as shown: Equation 33 C > 5 × C INT 39/49 Device description PM6680 R must be chosen in order to have enough ripple voltage on integrator input: Equation 34 R= L RESR × C R1 can be selected as follows: Equation 35 ⎛ 1 R × ⎜⎜ ⎝ C × π × fZ R1 = 1 R− C × π × fZ ⎞ ⎟⎟ ⎠ Example: OUT1 = 1.5 V, fSW = 290 kHz, L = 2.5 uH, Cout = 330 uF with Rout ≈ 12 mΩ. We design RESR = 12mW. We choose CINT = 1nF by equations 30, 33 and Cfilt = 47 pF, RINT = 1 kΩ by eq.27, 28. C = 5.6 nF by Eq.34. Then R = 36 kΩ (eq.35) and R1 = 3 kΩ (eq.36). 7.13.7 Other parts design ● VIN filter A VIN pin low pass filter is suggested to reduce switching noise. The low pass filter is shown in the next figure: Figure 38. VIN pin filter R Input voltage VIN C 100pF Typical components values are: R = 3.9 Ω and C = 4.7 uF. ● 40/49 VCC filter A VCC low pass filter helps to reject switching commutations noise: PM6680 Device description Figure 39. Inductor current waveforms LDO5 R VC C C Typical components values are: R=47 Ω and C = 1 uF. ● VREF capacitor A 10 nF to 100 nF ceramic capacitor on VREF pin must be added to ensure noise rejection. ● LDO5 output capacitors Bypass the output of each linear regulator with 1 uF ceramic capacitor closer to the LDO pin and a 4.7 uF tantalum capacitor (ESR = 2 Ω). In most applicative conditions a 4.7 uF ceramic output capacitor can be enough to ensure stability. ● Bootstrap circuit The external bootstrap circuit is represented in the next figure: Figure 40. Bootstrap circuit D RBOOT L CBOOT LDO5 BOOT PHASE The bootstrap circuit capacitor value CBOOT must provide the total gate charge to the high side MOSFET during turn on phase. A typical value is 100nF. The bootstrap diode D must charge the capacitor during the off time phases. The maximum rated voltage must be higher than VINmax. A resistor RBOOT on the BOOT pin could be added in order to reduce noise when the phase node rises up, working like a gate resistor for the turn on phase of the high side MOSFET. 41/49 Device description 7.13.8 PM6680 Design example The following design example considers an input voltage from 7 V to 16 V. The two switching outputs are OUT1=1.5 V and OUT2=1.05 V and must deliver a maximum current of 5 A. The selected switching frequencies are about 290 kHz for OUT1 section and about 425 kHz for OUT2 section (see Table 7 on page 30). 1. Inductor selection OUT1: ILOAD = 5 A, 35 % ripple current. Equation 36 L= 1.5V ⋅ (16V − 1.5V) ≈ 2.5µH 290KHz ⋅ 16V ⋅ 0.35 ⋅ 5 We choose standard value L = 2.5 uH. ∆IL(max) = 1.8 A @VIN =12 V ILRMS = 5.03 A IPEAK = 5 A + 0.9 A = 5.9 A OUT2: ILOAD = 5 A, 30 % ripple current. Equation 37 L= 1.05V ⋅ (16V − 1.05V) ≈ 1.6µH 425KHz ⋅ 16V ⋅ 0.3 ⋅ 5 ∆IL(max) = 1.6 A @VIN = 12 V. ILRMS = 5.02 A IPEAK = 5 A + 0.8 A = 5.8 A 2. Output capacitor selection We would like to have an output ripple smaller than 25 mV. OUT1: POSCAP 6TPB330M OUT2: POSCAP 6TPB330M 3. Power MOSFETS OUT1: High side: STS12NH3LL Low side: STS12NH3LL OUT2:High side: STS12NH3LL Low side: STS12NH3LL 4. Current limit OUT1: Equation 38 ILvalley (min) = ILOAD (max) − 42/49 ∆IL (min) = 4.12A 2 PM6680 Device description Equation 39 RCSENSE ≡ 4.12A ⋅ 16.25mΩ ≈ 670Ω 100µA (Let's assume the maximum temperature Tmax = 75 °C in RDSon calculation) OUT2: Equation 40 ILvalley (min) = ILOAD (max) − ∆IL (min) = 4.2A 2 Equation 41 RCSENSE ≡ 4 .2 A ⋅ 16.25mΩ ≈ 680Ω 100µA (Let's assume Tmax = 75 °C in RDSon calculation) 5. Input capacitor Maximum input capacitor RMS current is about 2.8 A. Then ICinRMS > 2.8 A. We put three 10 uF ceramic capacitors with Irms = 1.5 A. 6. Synchronous rectifier OUT1: Shottky diode STPS1L30M OUT2: Shottky diode STPS1L30M 7. Integrator loop (Refer to Figure 37) OUT1: The ripple is smaller than 40mV, then the virtual ESR network is required. CINT = 1 nF; Cfilt = 47 pF; RINT =1 kΩ C = 5.6 nF; R= 36 kΩ; R1 = 3 kΩ OUT2: The ripple is smaller than 40 mV, then the virtual ESR network is required. CINT = 1 nF; Cfilt = 110pF; RINT = 1 kΩ C = 5.6 nF; R = 22 kΩ; R1 = 3.3 kΩ 8. Output feedback divider (Refer to Figure 30 on page 24) OUT1: R1 = 10 kΩ; R2 = 6.8 kΩ OUT2: R1 = 11 kΩ; R2 = 1.8 kΩ 9. Layout guidelines The layout is very important in terms of efficiency, stability and noise of the system. It is possible to refer to the PM6680 demoboard for a complete layout example. For good PC board layout follows these guidelines: ● Place on the top side all the power components (inductors, input and output capacitors, MOSFETs and diodes). Refer them to a power ground plan, PGND. If possible, reserve a layer to PGND plan. The PGND plan is the same for both the switching sections. ● AC current paths layout is very critical (see Figure 41 on page 44). The first priority is to minimize their length. Trace the LS MOSFET connection to PGND plan as short as 43/49 Device description ● ● PM6680 possible. Place the synchronous diode D near the LS MOSFET. Connect the LS MOSFET drain to the switching node with a short trace. Place input capacitors near HS MOSFET drain. It is recommended to use the same input voltage plan for both the switching sections, in order to put together all input capacitors. Place all the sensitive analog signals (feedbacks, voltage reference, current sense paths) on the bottom side of the board or in an inner layer. Isolate them from the power top side with a signal ground layer, SGND. Connect the SGND and PGND plans only in one point (a multiple vias connection is preferable to a 0 ohm resistor connection) near the PGND device pin. Place the device on the top or on the bottom size and connect the exposed pad and the SGND pins to the SGND plan (see Figure 41). Figure 41. Current paths, ground connection and driver traces layout ● ● ● ● 44/49 As general rule, make the high side and low side drivers traces wide and short. The high side driver is powered by the bootstrap circuit. It's very important to place capacitor CBOOT and diode DBOOT as near as possible to the HGATE pin (for example on the layer opposite to the device). Route HGATE and PHASE traces as near as possible in order to minimize the area between them. The Low side gate driver is powered by the 5V linear regulator output. Placing PGND and LGATE pins near the low side MOSFETs reduces the length of the traces and the crosstalk noise between the two sections. The linear regulator output LDO5 is referred to SGND as long as the reference voltage Vref. Place their output filtering capacitors as near as possible to the device. Place input filtering capacitors near VCC and VIN pins. It would be better if the feedback networks connected to COMP, FB and OUT pins are "referred" to SGND in the same point as reference voltage Vref. To avoid capacitive PM6680 Device description ● coupling place these traces as far as possible from the gate drivers and phase (switching) paths. Place the current sense traces on the bottom side. If low side MOSFET RDSon sensing is enabled, use a dedicated connection between the switching node and the current limit resistor RCSENSE. 45/49 Package mechanical data 8 PM6680 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Table 17. VFQFPN 5x5x1.0 32L Pitch 0.50 Databook (mm) Dim. Min Typ Max A 0.8 0.9 1 A1 0 0.02 0.05 A3 0.2 b 0.18 0.25 D 4.85 5 D2 0.3 5.15 See exposed pad variations E 4.85 E2 (2) 5 5.15 See exposed pad variations e (2) 0.5 L 0.3 0.4 0.5 ddd Table 18. 0.05 Exposed pad variations (1)(2)D2 E2 Min Typ Max Min Typ Max 2.90 3.10 3.20 2.90 3.10 3.20 1. VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead. Very thin: A = 1.00mm Max. 2. Dimensions D2 & E2 are not in accordance with JEDEC. 46/49 PM6680 Package mechanical data Figure 42. Package dimensions 47/49 Revision history 9 PM6680 Revision history Table 19. 48/49 Document revision history Date Revision Changes 17-Mar-2006 1 Initial release 10-May-2006 2 Few updates 29-Jun-2006 3 Mechanical data updated 28-Jul-2006 4 Application schematic updated Figure 27 on page 16 25-Oct-2006 5 Changes electrical characteristics, added COMP value skip mode, Order code table updated 28-Aug-2007 6 Updated: Current sensing option and Absolute Maximum Ratings 21-Jan-2008 7 Updated: Table 1 on page 1, Table 3 on page 7, Section 4 on page 12 PM6680 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 49/49
PM6680TR 价格&库存

很抱歉,暂时无法提供与“PM6680TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货