0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PSD813F2VA-20UI

PSD813F2VA-20UI

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP80

  • 描述:

    IC FLASH 1MBIT 200NS 80LQFP

  • 详情介绍
  • 数据手册
  • 价格&库存
PSD813F2VA-20UI 数据手册
PSD8XXFX Flash in-system programmable (ISP) peripherals for 8-bit MCUs, 5 V Features ■ Flash in-system programmable (ISP) peripheral for 8-bit MCUs ■ Dual bank Flash memories – Up to 2 Mbit of primary Flash memory (8 uniform sectors, 32K x8) – Up to 256 Kbit secondary Flash memory (4 uniform sectors) – Concurrent operation: read from one memory while erasing and writing the other Up to 256 Kbit SRAM ■ 27 reconfigurable I/Oports ■ Enhanced JTAG serial port ■ PLD with macrocells – Over 3000 gates of PLD: CPLD and DPLD – CPLD with 16 output macrocells (OMCs) and 24 input macrocells (IMCs) – DPLD - user defined internal chip select decoding ) (s ■ u d o r P e t e l o ■ t c u d o r 27 individually configurable I/O port pins They can be used for the following functions: – MCU I/Os – PLD I/Os – Latched MCU address output – Special function I/Os. – 16 of the I/O ports may be configured as open-drain outputs. P e t e l o ■ TQFP64 (U) ■ Programmable power management ■ Packages are ECOPACK® Table 1. In-system programming (ISP) with JTAG – Built-in JTAG compliant serial port allows full-chip in-system programmability – Efficient manufacturing allow easy product testing and programming – Use low cost FlashLINK cable with PC Page register – Internal page register that can be used to expand the microcontroller address space by a factor of 256 May 2009 PLCC52 (J) s b O s b O ■ ) s ( ct PQFP52 (M) Doc ID 7833 Rev 7 Device summary Reference Part number PSD813F2 PSD813F4 PSD813F5 PSD8XXFX PSD833F2 PSD834F2 PSD853F2 PSD854F2 1/128 www.st.com 1 Contents PSD8XXFX Contents 1 Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 PSD architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Page register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 PLDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 MCU bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.6 JTAG port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.7 In-system programming (ISP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.8 Power management unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ) s ( ct u d o r P e t e l o s b O 4 Development system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 PSD register description and address offset . . . . . . . . . . . . . . . . . . . . 24 6 Detailed operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ) (s 6.1 let 6.3 b O 7 2/128 d o r Memory blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 P e 6.2 so t c u Description of primary Flash memory and secondary Flash memory . . . 27 Memory block select signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.3.1 Ready/Busy (PC3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.3.2 Memory operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.1 Power-up mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.2 READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.3 Read memory contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.4 Read Primary Flash Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.5 Read Memory Sector Protection status . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.6 Reading the Erase/Program Status bits . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.7 Data Polling flag (DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Doc ID 7833 Rev 7 PSD8XXFX 8 Contents 7.8 Toggle flag (DQ6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.9 Error flag (DQ5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.10 Erase timeout flag (DQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9 Programming Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.1 Data Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.2 Data Toggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.3 Unlock Bypass (PSD833F2x, PSD834F2x, PSD853F2x, PSD854F2x) . . 36 ) s ( ct 10 Erasing Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.1 Flash Bulk Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.2 Flash Sector Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.3 Suspend Sector Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.4 Resume Sector Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 u d o r P e t e l o Specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 s b O 10.1 Flash Memory Sector Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.2 Reset Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.3 Reset (RESET) signal (on the PSD83xF2 and PSD85xF2) . . . . . . . . . . . 41 ) (s t c u 11 SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 12 Sector Select and SRAM Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 d o r P e 12.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 12.2 Memory select configuration for MCUs with separate program and data spaces 43 12.3 Configuration modes for MCUs with separate program and data spaces 44 t e l o s b O 12.3.1 Separate Space modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 12.3.2 Combined Space modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 13 Page register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 14 PLDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 14.1 The Turbo Bit in PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 14.2 Decode PLD (DPLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 14.3 Complex PLD (CPLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Doc ID 7833 Rev 7 3/128 Contents 15 PSD8XXFX 14.4 Output macrocell (OMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 14.5 Product Term Allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 14.6 Loading and reading the Output macrocells (OMC) . . . . . . . . . . . . . . . . . 54 14.7 The OMC Mask register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 14.8 The Output Enable of the OMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 14.9 Input macrocells (IMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 16 MCU bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 15.1 PSD interface to a multiplexed 8-bit bus . . . . . . . . . . . . . . . . . . . . . . . . . . 60 15.2 PSD interface to a non-multiplexed 8-bit bus . . . . . . . . . . . . . . . . . . . . . . 60 15.3 Data Byte Enable reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 15.4 MCU bus interface examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 15.5 80C31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 15.6 80C251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 15.7 80C51XA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 15.8 68HC11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ) s ( ct u d o r P e t e l o ) (s s b O I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 16.1 General port architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 16.2 Port operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 16.3 MCU I/O mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 16.4 PLD I/O mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 16.5 Address Out mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 16.6 Address In mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 16.7 Data port mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 16.8 Peripheral I/O mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 16.9 JTAG in-system programming (ISP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 t c u d o r P e t e l o bs O 16.10 Port configuration registers (PCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 16.11 Control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 16.12 Direction register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 16.13 Drive Select register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 16.14 Port Data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 16.15 Data In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 16.16 Data Out register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4/128 Doc ID 7833 Rev 7 PSD8XXFX Contents 16.17 OMC Mask register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 16.18 Input macro (IMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 16.19 Enable Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 16.20 Ports A and B – functionality and structure . . . . . . . . . . . . . . . . . . . . . . . 75 16.21 Port C – functionality and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 16.22 Port D – functionality and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 16.23 External Chip Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 17 18 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 ) s ( ct 17.1 Automatic Power-down (APD) Unit and Power-down mode . . . . . . . . . . . 80 17.2 For users of the HC11 (or compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 17.3 Other power saving options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 17.4 PLD power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 17.5 PSD Chip Select input (CSI, PD2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 17.6 Input clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 17.7 Input control signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 u d o r P e t e l o ) (s s b O Reset timing and device status at reset . . . . . . . . . . . . . . . . . . . . . . . . 85 18.1 Power-up reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 18.2 Warm reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 18.3 I/O pin, register and PLD status at Reset . . . . . . . . . . . . . . . . . . . . . . . . . 85 18.4 Reset of Flash memory erase and program cycles (on the PSD834Fx) . 85 s b O d o r P e t e l o 19 t c u Programming in-circuit using the JTAG serial interface . . . . . . . . . . . 87 19.1 Standard JTAG signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 19.2 JTAG extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 19.3 Security and Flash memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 20 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 21 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 22 AC/DC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 23 Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Doc ID 7833 Rev 7 5/128 Contents 24 PSD8XXFX Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Appendix A PQFP52 pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Appendix B PLCC52 pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Appendix C TQFP64 pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 6/128 Doc ID 7833 Rev 7 PSD8XXFX List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Product range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PLCC52 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PLD I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 JTAG SIgnals on port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Methods for programming different functional blocks of the PSD. . . . . . . . . . . . . . . . . . . . 22 I/O port latched address output assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Register address offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Memory block size and organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Status bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Sector Protection/Security Bit definition – Flash Protection register. . . . . . . . . . . . . . . . . . 41 Sector Protection/Security Bit definition – PSD/EE Protection register . . . . . . . . . . . . . . . 41 VM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 DPLD and CPLD inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Output macrocell port and data bit assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 MCUs and their control signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8-bit data bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 80C251 configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Port operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Port operating mode settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 I/O port Latched address output assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Port configuration registers (PCR)t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Port Pin Direction Control, Output Enable P.T. not defined . . . . . . . . . . . . . . . . . . . . . . . . 73 Port Pin Direction Control, Output Enable P.T. defined . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Port Direction assignment example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Drive register pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Port Data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Power-down mode’s effect on ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 PSD timing and standby current during Power-down mode . . . . . . . . . . . . . . . . . . . . . . . . 81 Power Management mode registers PMMR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Power Management mode registers PMMR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 APD counter operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Status during Power-on reset, Warm reset and Power-down mode. . . . . . . . . . . . . . . . . . 86 JTAG port signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 JTAG Enable register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Example of PSD typical power calculation at VCC=5.0 V (Turbo mode on) . . . . . . . . . . . . 93 Example of PSD typical power calculation at VCC = 5.0 V (Turbo mode off) . . . . . . . . . . . 94 Operating conditions (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Operating conditions (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 AC signal letters for PLD timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 AC signal behavior symbols for PLD timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 DC characteristics (5 V devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 DC Characteristics (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 CPLD combinatorial timing (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e s b O t e l o Doc ID 7833 Rev 7 7/128 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. PSD8XXFX CPLD combinatorial timing (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 CPLD macrocell Synchronous clock mode timing (5 V devices) . . . . . . . . . . . . . . . . . . . 101 CPLD macrocell synchronous clock mode timing (3 V devices). . . . . . . . . . . . . . . . . . . . 102 CPLD macrocell asynchronous clock mode timing (5 V devices). . . . . . . . . . . . . . . . . . . 103 CPLD macrocell Asynchronous clock mode timing (3 V devices) . . . . . . . . . . . . . . . . . . 104 Input macrocell timing (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 input macrocell timing (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 READ timing (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 READ timing (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 WRITE timing (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 WRITE timing (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Program, WRITE and Erase times (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Program, WRITE and Erase times (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Port A Peripheral Data mode READ timing (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . 111 Port A Peripheral Data mode READ timing (3V devices) . . . . . . . . . . . . . . . . . . . . . . . . . 112 Port A Peripheral Data mode WRITE timing (5 V devices). . . . . . . . . . . . . . . . . . . . . . . . 112 Port A Peripheral Data mode WRITE timing (3 V devices). . . . . . . . . . . . . . . . . . . . . . . . 113 Reset (RESET) timing (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Reset (RESET) timing (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ISC timing (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 ISC timing (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Power-down timing (5 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Power-down timing (3 V devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 PQFP52 - 52-pin plastic quad flat package mechanical dimensions . . . . . . . . . . . . . . . . 117 PLCC52-52-lead plastic lead chip carrier mechanical dimensions . . . . . . . . . . . . . . . . . . 118 TQFP64 - 64-lead thin quad flatpack, package mechanical data . . . . . . . . . . . . . . . . . . . 119 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 PQFP52 connections (see Features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 PLCC52 connections (see Features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 TQFP64 connections (see Features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 8/128 Doc ID 7833 Rev 7 PSD8XXFX List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. PQFP52 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PLCC52 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 TQFP64 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PSD block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PSDsoft Express development tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Data Polling flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Data Toggle flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Priority level of memory and I/O components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8031 memory modules – separate space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8031 memory modules – combined space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Page register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 PLD diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 DPLD logic array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Macrocell and I/O port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 CPLD Output macrocell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Input macrocell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Handshaking communication using input macrocells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 An example of a typical 8-bit multiplexed bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 An example of a typical 8-bit non-multiplexed bus interface. . . . . . . . . . . . . . . . . . . . . . . . 61 Interfacing the PSD with an 80C31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Interfacing the PSD with the 80C251, with One READ input . . . . . . . . . . . . . . . . . . . . . . . 63 Interfacing the PSD with the 80C251, with RD and PSEN inputs. . . . . . . . . . . . . . . . . . . . 64 Interfacing the PSD with the 80C51X, 8-bit data bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Interfacing the PSD with a 68HC11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 General I/O port architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Peripheral I/O mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Port A and port B structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Port C structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Port D structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Port D external Chip Select signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 APD unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Enable Power-down flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Reset (RESET) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 PLD ICC /frequency consumption (5 V range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 PLD ICC /frequency consumption (3 V range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Switching waveforms – key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Input to output disable / enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Synchronous clock mode timing – PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Asynchronous Reset / Preset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Asynchronous Clock mode Timing (product term clock). . . . . . . . . . . . . . . . . . . . . . . . . . 103 Input macrocell timing (product term clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 READ timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 WRITE timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Peripheral I/O READ timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Peripheral I/O WRITE timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Reset (RESET) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e s b O t e l o Doc ID 7833 Rev 7 9/128 List of figures Figure 49. Figure 50. Figure 51. Figure 52. PSD8XXFX ISC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 PQFP52 - 52-pin plastic quad flat package mechanical drawing . . . . . . . . . . . . . . . . . . . 117 PLCC52 - 52-lead plastic lead chip carrier package mechanical drawing . . . . . . . . . . . . 118 TQFP64 - 64-lead thin quad flatpack, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . 119 ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 10/128 Doc ID 7833 Rev 7 PSD8XXFX 1 Summary description Summary description The PSD8XXFX family of memory systems for microcontrollers (MCUs) brings in-systemprogrammability (ISP) to Flash memory and programmable logic. The result is a simple and flexible solution for embedded designs. PSD devices combine many of the peripheral functions found in MCU based applications. Table 2 summarizes all the devices. The CPLD in the PSD devices features an optimized macrocell logic architecture. The PSD macrocell was created to address the unique requirements of embedded system designs. It allows direct connection between the system address/data bus, and the internal PSD registers, to simplify communication between the MCU and other supporting devices. ) s ( ct The PSD device includes a JTAG serial programming interface, to allow in-system programming (ISP) of the entire device. This feature reduces development time, simplifies the manufacturing flow, and dramatically lowers the cost of field upgrades. Using ST’s special Fast-JTAG programming, a design can be rapidly programmed into the PSD in as little as seven seconds. u d o r P e The innovative PSD8XXFX family solves key problems faced by designers when managing discrete Flash memory devices, such as: ● First-time in-system programming (ISP) ● Complex address decoding ● Simultaneous read and write to the device. ) (s t e l o s b O The JTAG Serial Interface block allows in-system programming (ISP), and eliminates the need for an external Boot EPROM, or an external programmer. To simplify Flash memory updates, program execution is performed from a secondary Flash memory while the primary Flash memory is being updated. This solution avoids the complicated hardware and software overhead necessary to implement IAP. t c u d o r ST makes available a software development tool, PSDsoft™ Express, that generates ANSIC compliant code for use with your target MCU. This code allows you to manipulate the nonvolatile memory (NVM) within the PSD. Code examples are also provided for: P e t e l o ● ● bs O Table 2. ● Flash memory IAP via the UART of the host MCU Memory paging to execute code across several PSD memory pages Loading, reading, and manipulation of PSD macrocells by the MCU. Product range Primary Flash memory Secondary Flash memory (8 sectors) (4 sectors) PSD813F2 1 Mbit 256 Kbit 16 Kbit PSD813F4 1 Mbit 256 Kbit PSD813F5 1 Mbit PSD833F2 PSD834F2 Part number(1) SRAM I/O ports Number of macrocells Serial ISP JTAG/ISC port Turbo mode Input Output 27 24 16 yes yes none 27 24 16 yes yes none none 27 24 16 yes yes 1 Mbit 256 Kbit 64 Kbit 27 24 16 yes yes 2 Mbit 256 Kbit 64 Kbit 27 24 16 yes yes Doc ID 7833 Rev 7 11/128 Summary description Table 2. PSD8XXFX Product range (continued) Primary Flash memory Secondary Flash memory (8 sectors) (4 sectors) PSD853F2 1 Mbit 256 Kbit 256 Kbit PSD854F2 2 Mbit 256 Kbit 256 Kbit (1) Part number SRAM Number of macrocells I/O ports Serial ISP JTAG/ISC port Turbo mode Input Output 27 24 16 yes yes 27 24 16 yes yes 1. All products support: JTAG serial ISP, MCU parallel ISP, ISP Flash memory, ISP CPLD, Security features, Power Management Unit (PMU), Automatic Power-down (APD) 40 CNTLO 41 RESET 42 CNTL2 43 CNTL1 44 PB7 45 PB6 46 GND 47 PB5 48 PB4 49 PB3 50 PB2 51 PB1 PQFP52 connections 52 PB0 Figure 1. PD1 2 PC7 4 PC6 5 PC5 6 (s) PC4 7 37 AD13 36 AD12 -O 35 AD11 34 AD10 33 AD9 t c u VCC 8 GND 9 32 AD8 31 VCC d o r 12/128 AD3 26 AD2 25 AD1 24 AD0 23 PA0 22 PA1 21 PA2 20 27 AD4 GND 19 28 AD5 PC0 13 PA3 18 29 AD6 PC1 12 PA4 17 PC2 11 PA5 16 s b O 30 AD7 PA6 15 t e l o PC3 10 PA7 14 P e 39 AD15 38 AD14 bs PD0 3 u d o r P e t e l o PD2 1 ) s ( ct AI02858 Doc ID 7833 Rev 7 PSD8XXFX Summary description PB7 CNTL1 CNTL2 RESET CNTL0 PB5 PB6 PB4 GND PB3 47 PB2 48 PB1 49 2 50 3 51 4 52 5 1 PD1 6 8 7 PD2 PB0 PLCC52 connections 46 AD15 9 45 AD14 PD0 10 44 AD13 PC7 11 43 AD12 PC6 12 42 PC5 13 41 PC4 14 40 VCC 15 39 AD8 GND 16 38 VCC PC3 17 37 AD7 PC2 18 36 AD6 35 AD5 34 AD4 24 25 26 27 28 29 30 31 32 33 PA3 GND PA2 PA1 PA0 AD0 AD1 AD2 AD3 PA6 PA4 O ) s ( t c PA7 o s b 23 PC0 o r P PA5 19 20 e t e l 22 PC1 ) s ( ct du 21 Figure 2. AD11 AD10 AD9 AI02857 u d o r P e t e l o s b O Doc ID 7833 Rev 7 13/128 Summary description 49 NC 50 RESET 51 CNTL2 52 CNTL1 53 PB7 54 PB6 55 GND 56 GND 57 PB5 58 PB4 59 PB3 60 PB2 61 PB1 62 PB0 63 NC TQFP64 connections 64 NC Figure 3. PSD8XXFX PD2 1 48 CNTL0 PD1 2 47 AD15 PD0 3 46 AD14 PC7 4 45 AD13 PC6 5 44 AD12 PC5 6 43 AD11 PC4 7 42 AD10 VCC 8 41 AD9 u d o VCC 9 40 AD8 GND 10 39 VCC r P e GND 11 PC3 12 PC2 13 r P e t e l o s b O 14/128 Doc ID 7833 Rev 7 AD1 30 AD0 29 PA1 27 PA2 26 GND 25 GND 24 PA3 23 PA4 22 PA5 21 PA6 20 PA7 19 NC 18 NC 17 u d o ct ) (s b O PA0 28 so 16 38 VCC 37 AD7 36 AD6 35 AD5 34 AD4 33 AD3 AD2 32 PC0 15 ND 31 let PC1 14 NC ) s ( ct AI09645b PSD8XXFX Pin description 2 Pin description Table 3. PLCC52 pin description (1) Pin name ADIO0-7 Pin 30-37 Type Description I/O This is the lower Address/Data port. Connect your MCU address or address/data bus according to the following rules: If your MCU has a multiplexed address/data bus where the data is multiplexed with the lower address bits, connect AD0-AD7 to this port. If your MCU does not have a multiplexed address/data bus, or you are using an 80C251 in page mode, connect A0-A7 to this port. If you are using an 80C51XA in burst mode, connect A4/D0 through A11/D7 to this port. ALE or AS latches the address. The PSD drives data out only if the READ signal is active and one of the PSD functional blocks was selected. The addresses on this port are passed to the PLDs. ) s ( ct u d o This is the upper Address/Data port. Connect your MCU address or address/data bus according to the following rules: If your MCU has a multiplexed address/data bus where the data is multiplexed with the lower address bits, connect A8-A15 to this port. If your MCU does not have a multiplexed address/data bus, connect A8-A15 to this port. If you are using an 80C251 in page mode, connect AD8-AD15 to this port. If you are using an 80C51XA in burst mode, connect A12/D8 through A19/D15 to this port. ALE or AS latches the address. The PSD drives data out only if the READ signal is active and one of the PSD functional blocks was selected. The addresses on this port are passed to the PLDs. r P e ADIO8-15 39-46 t e l o I/O ) (s CNTL0 47 P e s b O CNTL1 50 t c u The following control signals can be connected to this port, based on your MCU: WR – active low Write Strobe input. R_W – active high READ/active low write input. This port is connected to the PLDs. Therefore, these signals can be used in decode and other logic equations. d o r I t e l o s b O I The following control signals can be connected to this port, based on your MCU: RD – active low Read Strobe input. E – E clock input. DS – active low Data Strobe input. PSEN – connect PSEN to this port when it is being used as an active low READ signal. For example, when the 80C251 outputs more than 16 address bits, PSEN is actually the READ signal. This port is connected to the PLDs. Therefore, these signals can be used in decode and other logic equations. CNTL2 49 I This port can be used to input the PSEN (Program Select Enable) signal from any MCU that uses this signal for code exclusively. If your MCU does not output a Program Select Enable signal, this port can be used as a generic input. This port is connected to the PLDs. Reset 48 I Resets I/O ports, PLD macrocells and some of the Configuration registers. Must be low at Power-up. Doc ID 7833 Rev 7 15/128 Pin description Table 3. Pin name PLCC52 pin description (1) (continued) Pin PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 29 28 27 25 24 23 22 21 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 7 6 5 4 3 2 52 51 PC0 PSD8XXFX Type Description I/O These pins make up port A. These port pins are configurable and can have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellAB0-7) outputs. Inputs to the PLDs. Latched address outputs (see Table 7). Address inputs. For example, PA0-3 could be used for A0-A3 when using an 80C51XA in burst mode. As the data bus inputs D0-D7 for non-multiplexed address/data bus MCUs. D0/A16-D3/A19 in M37702M2 mode. Peripheral I/O mode. Note: PA0-PA3 can only output CMOS signals with an option for high slew rate. However, PA4-PA7 can be configured as CMOS or Open Drain outputs. ) s ( ct u d o These pins make up port B. These port pins are configurable and can have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellAB0-7 or McellBC0-7) outputs. Inputs to the PLDs. Latched address outputs (see Table 7). Note: PB0-PB3 can only output CMOS signals with an option for high slew rate. However, PB4-PB7 can be configured as CMOS or Open Drain outputs. r P e t e l o 20 I/O I/O ) (s s b O PC0 pin of port C. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellBC0) output. Input to the PLDs. TMS input(2) for the JTAG Serial Interface. This pin can be configured as a CMOS or Open Drain output. t c u d o r t e l o P e PC1 19 I/O PC1 pin of port C. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellBC1) output. Input to the PLDs. TCK input(2) for the JTAG Serial Interface. This pin can be configured as a CMOS or Open Drain output. I/O PC2 pin of port C. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellBC2) output. Input to the PLDs. This pin can be configured as a CMOS or Open Drain output. s b O PC2 16/128 18 Doc ID 7833 Rev 7 PSD8XXFX Table 3. Pin name PC3 PC4 Pin description PLCC52 pin description (1) (continued) Pin 17 14 Type Description I/O PC3 pin of port C. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellBC3) output. Input to the PLDs. TSTAT output(2) for the JTAG Serial Interface. Ready/Busy output for parallel in-system programming (ISP). This pin can be configured as a CMOS or Open Drain output. I/O PC4 pin of port C. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellBC4) output. Input to the PLDs. TERR output(2) for the JTAG Serial Interface. This pin can be configured as a CMOS or Open Drain output. ) s ( ct u d o PC5 PC6 13 12 r P e I/O PC5 pin of port C. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellBC5) output. Input to the PLDs. TDI input(2) for the JTAG Serial Interface. This pin can be configured as a CMOS or Open Drain output. I/O PC6 pin of port C. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellBC6) output. Input to the PLDs. TDO output(2) for the JTAG Serial Interface. This pin can be configured as a CMOS or Open Drain output. t e l o ) (s s b O t c u d o r s b O PD0 PD1 11 10 9 I/O I/O PD0 pin of port D. This port pin can be configured to have the following functions: ALE/AS input latches address output from the MCU. MCU I/O – write or read from a standard output or input port. Input to the PLDs. CPLD output (External Chip Select). I/O PD1 pin of port D. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. Input to the PLDs. CPLD output (External Chip Select). CLKIN – clock input to the CPLD macrocells, the APD Unit’s Power-down counter, and the CPLD AND Array. P e t e l o PC7 PC7 pin of port C. This port pin can be configured to have the following functions: MCU I/O – write to or read from a standard output or input port. CPLD macrocell (McellBC7) output. Input to the PLDs. DBE – active low Data Byte Enable input from 68HC912 type MCUs. This pin can be configured as a CMOS or Open Drain output. Doc ID 7833 Rev 7 17/128 Pin description Table 3. Pin name PSD8XXFX PLCC52 pin description (1) (continued) Pin Type Description I/O PD2 pin of port D. This port pin can be configured to have the following functions: MCU I/O - write to or read from a standard output or input port. Input to the PLDs. CPLD output (External Chip Select). PSD Chip Select input (CSI). When low, the MCU can access the PSD memory and I/O. When high, the PSD memory blocks are disabled to conserve power. PD2 8 VCC 15, 38 Supply voltage GND 1, 16, 26 Ground pins ) s ( ct 1. The pin numbers in this table are for the PLCC package only. See the package information from Table 73 onwards, for pin numbers on other package types. 2. These functions can be multiplexed with other functions. u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 18/128 Doc ID 7833 Rev 7 s b O Doc ID 7833 Rev 7 FLASH ISP CPLD (CPLD) CSIOP CLKIN 256 KBIT SRAM 256 KBIT SECONDARY NON-VOLATILE MEMORY (BOOT OR DATA) 4 SECTORS 3 EXT CS TO PORT D PORT A ,B & C 16 OUTPUT MACROCELLS JTAG SERIAL CHANNEL PORT A ,B & C 24 INPUT MACROCELLS PLD, CONFIGURATION & FLASH MEMORY LOADER 8 SECTORS 1 OR 2 MBIT PRIMARY FLASH MEMORY RUNTIME CONTROL AND I/O REGISTERS PERIP I/O MODE SELECTS SRAM SELECT SECTOR SELECTS MACROCELL FEEDBACK OR PORT INPUT 73 FLASH DECODE PLD (DPLD) SECTOR SELECTS EMBEDDED ALGORITHM r P e CLKIN (PD1) CLKIN 73 t c u ) (s s b O t e l o GLOBAL CONFIG. & SECURITY ADIO PORT PROG. MCU BUS INTRF. 8 d o r AD0 – AD15 P e t e l o CNTL0, CNTL1, CNTL2 PAGE REGISTER PORT D PROG. PORT PORT C PROG. PORT PORT B PROG. PORT PORT A PROG. PORT PD0 – PD2 PC0 – PC7 PB0 – PB7 PA0 – PA7 Figure 4. PLD INPUT BUS ADDRESS/DATA/CONTROL BUS PSD8XXFX Pin description PSD block diagram u d o ) s ( ct AI02861f 19/128 PSD architectural overview 3 PSD8XXFX PSD architectural overview PSD devices contain several major functional blocks. Figure 4 shows the architecture of the PSD device family. The functions of each block are described briefly in the following sections. Many of the blocks perform multiple functions and are user configurable. 3.1 Memory Each of the memory blocks is briefly discussed in the following paragraphs. A more detailed discussion can be found in Section 6.1: Memory blocks. ) s ( ct The 1 Mbit or 2 Mbit (128K x 8, or 256K x 8) Flash memory is the primary memory of the PSD. It is divided into 8 equally-sized sectors that are individually selectable. The optional 256 Kbit (32K x 8) secondary Flash memory is divided into 4 equally-sized sectors. Each sector is individually selectable. u d o r P e The optional SRAM is intended for use as a scratch-pad memory or as an extension to the MCU SRAM. t e l o Each sector of memory can be located in a different address space as defined by the user. The access times for all memory types includes the address latching and DPLD decoding time. 3.2 Page register ) (s s b O The 8-bit Page register expands the address range of the MCU by up to 256 times. The paged address can be used as part of the address space to access external memory and peripherals, or internal memory and I/O. The Page register can also be used to change the address mapping of sectors of the Flash memories into different memory spaces for IAP. t c u 3.3 d o r P e PLDs s b O t e l o The device contains two PLDs, the Decode PLD (DPLD) and the Complex PLD (CPLD), as shown in Table 4, each optimized for a different function. The functional partitioning of the PLDs reduces power consumption, optimizes cost/performance, and eases design entry. The DPLD is used to decode addresses and to generate Sector Select signals for the PSD internal memory and registers. The DPLD has combinatorial outputs. The CPLD has 16 Output macrocells (OMC) and 3 combinatorial outputs. The PSD also has 24 input macrocells (IMC) that can be configured as inputs to the PLDs. The PLDs receive their inputs from the PLD input bus and are differentiated by their output destinations, number of product terms, and macrocells. The PLDs consume minimal power. The speed and power consumption of the PLD is controlled by the Turbo Bit in PMMR0 and other bits in the PMMR2. These registers are set by the MCU at run-time. There is a slight penalty to PLD propagation time when invoking the power management features. 20/128 Doc ID 7833 Rev 7 PSD8XXFX 3.4 PSD architectural overview I/O ports The PSD has 27 individually configurable I/O pins distributed over the four ports (Port A, B, C, and D). Each I/O pin can be individually configured for different functions. ports can be configured as standard MCU I/O ports, PLD I/O, or latched address outputs for MCUs using multiplexed address/data buses. The JTAG pins can be enabled on port C for in-system programming (ISP). Ports A and B can also be configured as a data port for a non-multiplexed bus. 3.5 MCU bus interface ) s ( ct PSD interfaces easily with most 8-bit MCUs that have either multiplexed or non-multiplexed address/data buses. The device is configured to respond to the MCU control signals, which are also used as inputs to the PLDs. For examples, please see Section 15.4: MCU bus interface examples. Table 4. u d o Name 3.6 r P e PLD I/O Inputs Decode PLD (DPLD) 73 Complex PLD (CPLD) 73 ) (s JTAG port s b O t e l o Outputs Product terms 17 42 19 140 In-system programming (ISP) can be performed through the JTAG signals on port C. This serial interface allows complete programming of the entire PSD device. A blank device can be completely programmed. The JTAG signals (TMS, TCK, TSTAT, TERR, TDI, TDO) can be multiplexed with other functions on port C. Table 5 indicates the JTAG pin assignments. t c u 3.7 d o r t e l o s b O 3.8 P e In-system programming (ISP) Using the JTAG signals on port C, the entire PSD device can be programmed or erased without the use of the MCU. The primary Flash memory can also be programmed in-system by the MCU executing the programming algorithms out of the secondary memory, or SRAM. The secondary memory can be programmed the same way by executing out of the primary Flash memory. The PLD or other PSD configuration blocks can be programmed through the JTAG port or a device programmer. Table 6 indicates which programming methods can program different functional blocks of the PSD. Power management unit (PMU) The power management unit (PMU) gives the user control of the power consumption on selected functional blocks based on system requirements. The PMU includes an Automatic Power-down (APD) Unit that turns off device functions during MCU inactivity. The APD unit has a Power-down mode that helps reduce power consumption. Doc ID 7833 Rev 7 21/128 PSD architectural overview PSD8XXFX The PSD also has some bits that are configured at run-time by the MCU to reduce power consumption of the CPLD. The Turbo Bit in PMMR0 can be reset to '0' and the CPLD latches its outputs and goes to sleep until the next transition on its inputs. Additionally, bits in PMMR2 can be set by the MCU to block signals from entering the CPLD to reduce power consumption. Please see Section 17: Power management for more details. Table 5. JTAG SIgnals on port C Port C pins JTAG signal PC0 TMS PC1 TCK PC3 TSTAT PC4 TERR PC5 TDI PC6 TDO Table 6. ) s ( ct u d o Primary Flash memory bs Yes s ( t c IAP Yes Yes Yes Yes Yes No Yes Yes No Yes PLD array (DPLD and CPLD) Device programmer Yes O ) Secondary Flash memory PSD configuration t e l o JTAG programming Functional block u d o r P e t e l o s b O 22/128 r P e Methods for programming different functional blocks of the PSD Doc ID 7833 Rev 7 PSD8XXFX 4 Development system Development system The PSD8XXFX family is supported by PSDsoft Express, a Windows-based software development tool. A PSD design is quickly and easily produced in a point and click environment. The designer does not need to enter Hardware Description Language (HDL) equations, unless desired, to define PSD pin functions and memory map information. The general design flow is shown in Figure 5. PSDsoft Express is available from our web site (the address is given on the back page of this data sheet) or other distribution channels. PSDsoft Express directly supports two low cost device programmers form ST: PSDpro and FlashLINK (JTAG). Both of these programmers may be purchased through your local distributor/representative, or directly from our web site using a credit card. The PSD is also supported by third party device programmers. See our web site for the current list. Figure 5. ) s ( ct PSDsoft Express development tool u d o r P e PSDabel PLD DESCRIPTION MODIFY ABEL TEMPLATE FILE OR GENERATE NEW FILE PSD Configuration ) (s CONFIGURE MCU BUS INTERFACE AND OTHER PSD ATTRIBUTES t e l o s b O t c u d o r PSD TOOLS GENERATE C CODE SPECIFIC TO PSD FUNCTIONS PSD Fitter P e s b O t e l o LOGIC SYNTHESIS AND FITTING FIRMWARE ADDRESS TRANSLATION AND MEMORY MAPPING HEX OR S-RECORD FORMAT USER'S CHOICE OF MICROCONTROLLER COMPILER/LINKER *.OBJ FILE PSD Simulator PSD Programmer PSDsilos III DEVICE SIMULATION (OPTIONAL) PSDPro, or FlashLINK (JTAG) *.OBJ AND *.SVF FILES AVAILABLE FOR 3rd PARTY PROGRAMMERS (CONVENTIONAL or JTAG-ISC) AI04918 Doc ID 7833 Rev 7 23/128 PSD register description and address offset 5 PSD8XXFX PSD register description and address offset Table 7 shows the offset addresses to the PSD registers relative to the CSIOP base address. The CSIOP space is the 256 bytes of address that is allocated by the user to the internal PSD registers. Table 8 provides brief descriptions of the registers in CSIOP space. The following section gives a more detailed description. I/O port latched address output assignments(1)(2) Table 7. Port A Port B MCU Port A (3:0) 8051XA (8-bit) N/A Port A (7:4) Address a7-a4 Port B (3:0) Port B (7:4) ) s ( ct Address a11-a8 N/A 80C251 (page mode) N/A N/A Address a11-a8 Address a15a12 All other 8-bit multiplexed Address a3-a0 Address a7-a4 Address a3-a0 Address a7-a4 8-bit non-multiplexed bus N/A N/A Address a3-a0 Address a7-a4 e t e ol u d o Pr 1. See Section 16: I/O ports, on how to enable the Latched Address Output function. 2. N/A = Not Applicable Table 8. Register address offset Register name 00 Control 02 Reads port pin as input, MCU I/O input mode 05 12 13 Stores data for output to port pins, MCU I/O output mode Direction 06 07 14 15 Configures port pin as input or output Drive Select 08 09 16 17 Configures port pins as either CMOS or Open Drain on some pins, while selecting high slew rate on other pins. Input macrocell 0A 0B 18 Enable Out 0C 0D 1A Output macrocells AB 20 20 P e 11 Description 04 Output macrocells BC 24/128 ) (s (1) t c u d o r 01 Other 10 let O Port A Port B Port C Port D Data In Data Out o s b s b O Selects mode between MCU I/O or Address Out 03 21 Reads input macrocells 1B Reads the status of the output enable to the I/O port driver READ – reads output of macrocells AB WRITE – loads macrocell flip-flops 21 Doc ID 7833 Rev 7 READ – reads output of macrocells BC WRITE – loads macrocell flip-flops PSD8XXFX PSD register description and address offset Table 8. Register address offset (continued) Register name Port A Port B Port C Port D Mask macrocells AB 22 Other Blocks writing to the Output macrocells AB 22 Mask macrocells BC Description (1) 23 Blocks writing to the Output macrocells BC 23 Primary Flash Protection C0 Read only – Primary Flash Sector Protection Secondary Flash memory Protection C2 Read only – PSD Security and Secondary Flash memory Sector Protection JTAG Enable C7 Enables JTAG port PMMR0 B0 Power Management register 0 PMMR2 B4 Power Management register 2 Page E0 VM E2 ) (s u d o r P e t e l o s b O 1. Other registers that are not part of the I/O ports. ) s ( ct Page register Places PSD memory areas in program and/or data space on an individual basis. t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 25/128 Detailed operation 6 PSD8XXFX Detailed operation As shown in Figure 4, the PSD consists of six major types of functional blocks: ● Memory blocks ● PLD blocks ● MCU bus interface ● I/O ports ● Power management unit (PMU) ● JTAG interface ) s ( ct The functions of each block are described in the following sections. Many of the blocks perform multiple functions, and are user configurable. 6.1 u d o Memory blocks r P e The PSD has the following memory blocks: ● Primary Flash memory ● Optional Secondary Flash memory ● Optional SRAM t e l o s b O The Memory Select signals for these blocks originate from the Decode PLD (DPLD) and are user-defined in PSDsoft Express. Table 9. ) (s Memory block size and organization ct Primary Flash memory u d o Sector number bs O 26/128 SRAM Sector size (Kbytes) Sector select signal Sector size (Kbytes) Sector select signal SRAM size (Kbytes) SRAM select signal 0 32 FS0 16 CSBOOT0 256 RS0 1 32 FS1 16 CSBOOT1 2 32 FS2 16 CSBOOT2 3 32 FS3 16 CSBOOT3 4 32 FS4 5 32 FS5 6 32 FS6 7 32 FS7 Total 512 8 sectors 64 4 sectors r P e t e l o Secondary Flash memory Doc ID 7833 Rev 7 256 PSD8XXFX 6.2 Detailed operation Description of primary Flash memory and secondary Flash memory The primary Flash memory is divided evenly into eight equal sectors. The secondary Flash memory is divided into four equal sectors. Each sector of either memory block can be separately protected from Program and Erase cycles. Flash memory may be erased on a sector-by-sector basis. Flash sector erasure may be suspended while data is read from other sectors of the block and then resumed after reading. During a program or erase cycle in Flash memory, the status can be output on Ready/Busy (PC3). This pin is set up using PSDsoft Express Configuration. 6.3 ) s ( ct Memory block select signals u d o The DPLD generates the Select signals for all the internal memory blocks (see Section 14: PLDS). Each of the eight sectors of the primary Flash memory has a Select signal (FS0FS7) which can contain up to three product terms. Each of the four sectors of the secondary Flash memory has a Select signal (CSBOOT0-CSBOOT3) which can contain up to three product terms. Having three product terms for each Select signal allows a given sector to be mapped in different areas of system memory. When using a MCU with separate program and data space, these flexible Select signals allow dynamic re-mapping of sectors from one memory space to the other. r P e t e l o 6.3.1 Ready/Busy (PC3) ) (s s b O This signal can be used to output the Ready/Busy status of the PSD. The output on Ready/Busy (PC3) is a 0 (Busy) when Flash memory is being written to, or when Flash memory is being erased. The output is a 1 (Ready) when no WRITE or Erase cycle is in progress. t c u d o r 6.3.2 Memory operation P e The primary Flash memory and secondary Flash memory are addressed through the MCU bus interface. The MCU can access these memories in one of two ways: s b O t e l o ● The MCU can execute a typical bus WRITE or READ operation just as it would if accessing a RAM or ROM device using standard bus cycles. ● The MCU can execute a specific instruction that consists of several WRITE and READ operations. This involves writing specific data patterns to special addresses within the Flash memory to invoke an embedded algorithm. These instructions are summarized in Table 10. Typically, the MCU can read Flash memory using READ operations, just as it would read a ROM device. However, Flash memory can only be altered using specific Erase and Program instructions. For example, the MCU cannot write a single byte directly to Flash memory as it would write a byte to RAM. To program a byte into Flash memory, the MCU must execute a Program instruction, then test the status of the Program cycle. This status test is achieved by a READ operation or polling Ready/Busy (PC3). Flash memory can also be read by using special instructions to retrieve particular Flash device information (sector protect status and ID). Doc ID 7833 Rev 7 27/128 Detailed operation PSD8XXFX Instructions (1)(2)(3) Table 10. Instruction FS0-FS7 or CSBOOT0CSBOOT3 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 (4) READ(5) 1 “READ” RD @ RA Read Main Flash ID(6) 1 AAh@ X555h 55h@ XAAAh 90h@ X555h Read identifier (A6,A1,A0 = 0,0,1) 1 AAh@ X555h 55h@ XAAAh 90h@ X555h Read identifier (A6,A1,A0 = 0,1,0) Program a Flash Byte(8) 1 AAh@ X555h 55h@ XAAAh A0h@ X555h PD@ PA Flash Sector Erase(9)(8) 1 AAh@ X555h 55h@ XAAAh 80h@ X555h AAh@ X555h Flash Bulk Erase(8) 1 AAh@ X555h 55h@ XAAAh 80h@ X555h AAh@ X555h Suspend Sector Erase(10) 1 B0h@ XXXXh Resume Sector Erase(11) 1 30h@ XXXXh Reset(6) 1 F0h@ XXXXh Unlock Bypass 1 AAh@ X555h 55h@ XAAAh A0h@ XXXXh PD@ PA 90h@ XXXXh 00h@ XXXXh Read Sector Protection(6)(7) (8) Unlock Bypass Program(12) let Unlock Bypass Reset(13) o s b 1 t c u d o r P e 1 ) (s e t e ol 55h@ XAAAh du o r P 55h@ XAAAh ) s ( ct 30h@ SA 30h7@ next SA 10h@ X555h s b O 20h@ X555h 1. All bus cycles are WRITE bus cycles, except the ones with the “READ” label 2. All values are in hexadecimal: X = Don’t Care. Addresses of the form XXXXh, in this table, must be even addresses RA = Address of the memory location to be read RD = Data read from location RA during the READ cycle PA = Address of the memory location to be programmed. Addresses are latched on the falling edge of Write Strobe (WR, CNTL0). PA is an even address for PSD in word programming mode. PD = Data word to be programmed at location PA. Data is latched on the rising edge of Write Strobe (WR, CNTL0) SA = Address of the sector to be erased or verified. The Sector Select (FS0-FS7 or CSBOOT0-CSBOOT3) of the sector to be erased, or verified, must be Active (high). O 3. Only address bits A11-A0 are used in instruction decoding. 4. Sector Select (FS0 to FS7 or CSBOOT0 to CSBOOT3) signals are active high, and are defined in PSDsoft Express. 5. No Unlock or instruction cycles are required when the device is in the READ mode 6. The Reset instruction is required to return to the READ mode after reading the Flash ID, or after reading the Sector Protection Status, or if the Error flag bit (DQ5/DQ13) goes high. 7. The data is 00h for an unprotected sector, and 01h for a protected sector. In the fourth cycle, the Sector Select is active, and (A1,A0)=(1,0) 28/128 Doc ID 7833 Rev 7 PSD8XXFX Detailed operation 8. The MCU cannot invoke these instructions while executing code from the same Flash memory as that for which the instruction is intended. The MCU must fetch, for example, the code from the secondary Flash memory when reading the Sector Protection Status of the primary Flash memory. 9. Additional sectors to be erased must be written at the end of the Sector Erase instruction within 80 µs. 10. The system may perform READ and Program cycles in non-erasing sectors, read the Flash ID or read the Sector Protection Status when in the Suspend Sector Erase mode. The Suspend Sector Erase instruction is valid only during a Sector Erase cycle. 11. The Resume Sector Erase instruction is valid only during the Suspend Sector Erase mode. 12. The Unlock Bypass instruction is required prior to the Unlock Bypass Program instruction. 13. The Unlock Bypass Reset Flash instruction is required to return to reading memory data when the device is in the Unlock Bypass mode. ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 29/128 Instructions 7 PSD8XXFX Instructions An instruction consists of a sequence of specific operations. Each received byte is sequentially decoded by the PSD and not executed as a standard WRITE operation. The instruction is executed when the correct number of bytes are properly received and the time between two consecutive bytes is shorter than the timeout period. Some instructions are structured to include READ operations after the initial WRITE operations. The instruction must be followed exactly. Any invalid combination of instruction bytes or timeout between two consecutive bytes while addressing Flash memory resets the device logic into READ mode (Flash memory is read like a ROM device). ) s ( ct The PSD supports the instructions summarized in Table 10: Flash memory: ● Erase memory by chip or sector ● Suspend or resume sector erase ● Program a Byte ● Reset to READ mode ● Read primary Flash Identifier value ● Read Sector Protection Status ● Bypass (on the PSD833F2, PSD834F2, PSD853F2 and PSD854F2) u d o r P e t e l o s b O These instructions are detailed in Table 10. For efficient decoding of the instructions, the first two bytes of an instruction are the coded cycles and are followed by an instruction byte or confirmation byte. The coded cycles consist of writing the data AAh to address X555h during the first cycle and data 55h to address XAAAh during the second cycle. Address signals A15-A12 are Don’t Care during the instruction WRITE cycles. However, the appropriate Sector Select (FS0-FS7 or CSBOOT0-CSBOOT3) must be selected. ) (s t c u d o r The primary and secondary Flash memories have the same instruction set (except for Read Primary Flash Identifier). The Sector Select signals determine which Flash memory is to receive and execute the instruction. The primary Flash memory is selected if any one of Sector Select (FS0-FS7) is high, and the secondary Flash memory is selected if any one of Sector Select (CSBOOT0-CSBOOT3) is high. P e s b O t e l o 7.1 7.2 Power-up mode The PSD internal logic is reset upon Power-up to the READ mode. Sector Select (FS0-FS7 and CSBOOT0-CSBOOT3) must be held low, and Write Strobe (WR, CNTL0) high, during Power-up for maximum security of the data contents and to remove the possibility of a byte being written on the first edge of Write Strobe (WR, CNTL0). Any WRITE cycle initiation is locked when VCC is below VLKO. READ Under typical conditions, the MCU may read the primary Flash memory or the secondary Flash memory using READ operations just as it would a ROM or RAM device. Alternately, the MCU may use READ operations to obtain status information about a program or erase 30/128 Doc ID 7833 Rev 7 PSD8XXFX Instructions cycle that is currently in progress. Lastly, the MCU may use instructions to read special data from these memory blocks. The following sections describe these READ functions. 7.3 Read memory contents Primary Flash memory and secondary Flash memory are placed in the READ mode after Power-up, chip reset, or a Reset Flash instruction (see Table 10). The MCU can read the memory contents of the primary Flash memory or the secondary Flash memory by using READ operations any time the READ operation is not part of an instruction. 7.4 Read Primary Flash Identifier ) s ( ct The primary Flash memory identifier is read with an instruction composed of 4 operations: 3 specific WRITE operations and a READ operation (see Table 10). During the READ operation, address bits A6, A1, and A0 must be '0,0,1,' respectively, and the appropriate Sector Select (FS0-FS7) must be high. The identifier for the PSD813F2/3/4/5 is E4h, and for the PSD83xF2 or PSD85xF2 it is E7h. u d o r P e t e l o 7.5 Read Memory Sector Protection status s b O The primary Flash memory Sector Protection Status is read with an instruction composed of 4 operations: 3 specific WRITE operations and a READ operation (see Table 10). During the READ operation, address Bits A6, A1, and A0 must be '0,1,0,' respectively, while Sector Select (FS0-FS7 or CSBOOT0-CSBOOT3) designates the Flash memory sector whose protection has to be verified. The READ operation produces 01h if the Flash memory sector is protected, or 00h if the sector is not protected. ) (s t c u The sector protection status for all NVM blocks (primary Flash memory or secondary Flash memory) can also be read by the MCU accessing the Flash Protection registers in PSD I/O space. See Section 10.1: Flash Memory Sector Protect for register definitions. d o r P e t e l o 7.6 s b O Reading the Erase/Program Status bits The PSD provides several status bits to be used by the MCU to confirm the completion of an Erase or Program cycle of Flash memory. These status bits minimize the time that the MCU spends performing these tasks and are defined in Table 11. The status bits can be read as many times as needed. For Flash memory, the MCU can perform a READ operation to obtain these status bits while an Erase or Program instruction is being executed by the embedded algorithm. See Section 8: Programming Flash memory for details. Doc ID 7833 Rev 7 31/128 Instructions Table 11. PSD8XXFX Status bits(1)(2)(3) Functional block Flash memory FS0FS7/CSBOOT0CSBOOT3 VIH DQ7 DQ6 Data Polling Toggle flag DQ5 Error flag DQ4 DQ3 DQ2 Erase X timeout X DQ1 X DQ0 X 1. X = Not guaranteed value, can be read either '1' or ’0.’ 2. DQ7-DQ0 represent the data bus bits, D7-D0. 3. FS0-FS7 and CSBOOT0-CSBOOT3 are active high. 7.7 ) s ( ct Data Polling flag (DQ7) When erasing or programming in Flash memory, the Data Polling flag bit (DQ7) outputs the complement of the bit being entered for programming/writing on the DQ7 Bit. Once the Program instruction or the WRITE operation is completed, the true logic value is read on the Data Polling flag bit (DQ7, in a READ operation). r P e ● Data Polling is effective after the fourth WRITE pulse (for a Program instruction) or after the sixth WRITE pulse (for an Erase instruction). It must be performed at the address being programmed or at an address within the Flash memory sector being erased. ● During an Erase cycle, the Data Polling flag bit (DQ7) outputs a ’0.’ After completion of the cycle, the Data Polling flag bit (DQ7) outputs the last bit programmed (it is a '1' after erasing). ● If the byte to be programmed is in a protected Flash memory sector, the instruction is ignored. ● If all the Flash memory sectors to be erased are protected, the Data Polling flag bit (DQ7) is reset to '0' for about 100µs, and then returns to the previous addressed byte. No erasure is performed. t e l o ) (s s b O t c u d o Toggle flag r (DQ6) P e t e ol 7.8 s b O 32/128 u d o The PSD offers another way for determining when the Flash memory Program cycle is completed. During the internal WRITE operation and when either the FS0-FS7 or CSBOOT0-CSBOOT3 is true, the Toggle flag bit (DQ6) toggles from '0' to '1' and '1' to '0' on subsequent attempts to read any byte of the memory. When the internal cycle is complete, the toggling stops and the data read on the data bus D0-D7 is the addressed memory byte. The device is now accessible for a new READ or WRITE operation. The cycle is finished when two successive READs yield the same output data. ● The Toggle flag bit (DQ6) is effective after the fourth WRITE pulse (for a Program instruction) or after the sixth WRITE pulse (for an Erase instruction). ● If the byte to be programmed belongs to a protected Flash memory sector, the instruction is ignored. ● If all the Flash memory sectors selected for erasure are protected, the Toggle flag bit (DQ6) toggles to '0' for about 100µs and then returns to the previous addressed byte. Doc ID 7833 Rev 7 PSD8XXFX 7.9 Instructions Error flag (DQ5) During a normal program or erase cycle, the Error flag bit (DQ5) is to ’0.’ This bit is set to '1' when there is a failure during Flash memory Byte Program, Sector Erase, or Bulk Erase cycle. In the case of Flash memory programming, the Error flag bit (DQ5) indicates the attempt to program a Flash memory bit from the programmed state, ’0,’ to the erased state, '1,' which is not valid. The Error flag bit (DQ5) may also indicate a timeout condition while attempting to program a byte. In case of an error in a Flash memory Sector Erase or Byte Program cycle, the Flash memory sector in which the error occurred or to which the programmed byte belongs must no longer be used. Other Flash memory sectors may still be used. The Error flag bit (DQ5) is reset after a Reset Flash instruction. 7.10 ) s ( ct u d o Erase timeout flag (DQ3) r P e The Erase timeout flag bit (DQ3) reflects the timeout period allowed between two consecutive Sector Erase instructions. The Erase timeout flag bit (DQ3) is reset to '0' after a Sector Erase cycle for a time period of 100µs + 20% unless an additional Sector Erase instruction is decoded. After this time period, or when the additional Sector Erase instruction is decoded, the Erase timeout flag bit (DQ3) is set to '1.' t e l o ) (s s b O t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 33/128 Programming Flash memory 8 PSD8XXFX Programming Flash memory Flash memory must be erased prior to being programmed. A byte of Flash memory is erased to all 1s (FFh), and is programmed by setting selected bits to ’0.’ The MCU may erase Flash memory all at once or by-sector, but not byte-by-byte. However, the MCU may program Flash memory byte-by-byte. The primary and secondary Flash memories require the MCU to send an instruction to program a byte or to erase sectors (see Table 10). Once the MCU issues a Flash memory Program or Erase instruction, it must check for the status bits for completion. The embedded algorithms that are invoked inside the PSD support several means to provide status to the MCU. Status may be checked using any of three methods: Data Polling, Data Toggle, or Ready/Busy (PC3). 8.1 ) s ( ct u d o Data Polling r P e Polling on the Data Polling flag bit (DQ7) is a method of checking whether a program or erase cycle is in progress or has completed. Figure 6 shows the Data Polling algorithm. t e l o When the MCU issues a Program instruction, the embedded algorithm within the PSD begins. The MCU then reads the location of the byte to be programmed in Flash memory to check status. The Data Polling flag bit (DQ7) of this location becomes the complement of b7 of the original data byte to be programmed. The MCU continues to poll this location, comparing the Data Polling flag bit (DQ7) and monitoring the Error flag bit (DQ5). When the Data Polling flag bit (DQ7) matches b7 of the original data, and the Error flag bit (DQ5) remains ’0,’ the embedded algorithm is complete. If the Error flag bit (DQ5) is '1,' the MCU should test the Data Polling flag bit (DQ7) again since the Data Polling flag bit (DQ7) may have changed simultaneously with the Error flag bit (DQ5, see Figure 6). ) (s s b O t c u d o r The Error flag bit (DQ5) is set if either an internal timeout occurred while the embedded algorithm attempted to program the byte or if the MCU attempted to program a '1' to a bit that was not erased (not erased is logic '0'). P e It is suggested (as with all Flash memories) to read the location again after the embedded programming algorithm has completed, to compare the byte that was written to the Flash memory with the byte that was intended to be written. t e l o bs O When using the Data Polling method during an Erase cycle, Figure 6 still applies. However, the Data Polling flag bit (DQ7) is '0' until the Erase cycle is complete. A 1 on the Error flag bit (DQ5) indicates a timeout condition on the Erase cycle; a 0 indicates no error. The MCU can read any location within the sector being erased to get the Data Polling flag bit (DQ7) and the Error flag bit (DQ5). PSDsoft Express generates ANSI C code functions which implement these Data Polling algorithms. 34/128 Doc ID 7833 Rev 7 PSD8XXFX Programming Flash memory Figure 6. Data Polling flowchart START READ DQ5 & DQ7 at VALID ADDRESS DQ7 = DATA YES NO NO ) s ( ct DQ5 =1 YES u d o READ DQ7 DQ7 = DATA t e l o NO FAIL 8.2 ) (s r P e YES s b O PASS AI01369B t c u Data Toggle Checking the Toggle flag bit (DQ6) is a method of determining whether a program or erase cycle is in progress or has completed. Figure 7 shows the Data Toggle algorithm. d o r When the MCU issues a Program instruction, the embedded algorithm within the PSD begins. The MCU then reads the location of the byte to be programmed in Flash memory to check status. The Toggle flag bit (DQ6) of this location toggles each time the MCU reads this location until the embedded algorithm is complete. The MCU continues to read this location, checking the Toggle flag bit (DQ6) and monitoring the Error flag bit (DQ5). When the Toggle flag bit (DQ6) stops toggling (two consecutive reads yield the same value), and the Error flag bit (DQ5) remains ’0,’ the embedded algorithm is complete. If the Error flag bit (DQ5) is '1,' the MCU should test the Toggle flag bit (DQ6) again, since the Toggle flag bit (DQ6) may have changed simultaneously with the Error flag bit (DQ5, see Figure 7). P e s b O t e l o The Error flag bit (DQ5) is set if either an internal timeout occurred while the embedded algorithm attempted to program the byte, or if the MCU attempted to program a '1' to a bit that was not erased (not erased is logic '0'). It is suggested (as with all Flash memories) to read the location again after the embedded programming algorithm has completed, to compare the byte that was written to Flash memory with the byte that was intended to be written. When using the Data Toggle method after an Erase cycle, Figure 7 still applies. the Toggle flag bit (DQ6) toggles until the Erase cycle is complete. A '1' on the Error flag bit (DQ5) indicates a timeout condition on the Erase cycle; a '0' indicates no error. The MCU can read Doc ID 7833 Rev 7 35/128 Programming Flash memory PSD8XXFX any location within the sector being erased to get the Toggle flag bit (DQ6) and the Error flag bit (DQ5). PSDsoft Express generates ANSI C code functions which implement these Data Toggling algorithms. 8.3 Unlock Bypass (PSD833F2x, PSD834F2x, PSD853F2x, PSD854F2x) The Unlock Bypass instructions allow the system to program bytes to the Flash memories faster than using the standard Program instruction. The Unlock Bypass mode is entered by first initiating two Unlock cycles. This is followed by a third WRITE cycle containing the Unlock Bypass code, 20h (as shown in Table 10). ) s ( ct The Flash memory then enters the Unlock Bypass mode. A two-cycle Unlock Bypass Program instruction is all that is required to program in this mode. The first cycle in this instruction contains the Unlock Bypass Program code, A0h. The second cycle contains the program address and data. Additional data is programmed in the same manner. These instructions dispense with the initial two Unlock cycles required in the standard Program instruction, resulting in faster total Flash memory programming. u d o r P e t e l o During the Unlock Bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset Flash instructions are valid. s b O To exit the Unlock Bypass mode, the system must issue the two-cycle Unlock Bypass Reset Flash instruction. The first cycle must contain the data 90h; the second cycle the data 00h. Addresses are Don’t Care for both cycles. The Flash memory then returns to READ mode. ) (s t c u d o r P e t e l o s b O 36/128 Doc ID 7833 Rev 7 PSD8XXFX Programming Flash memory Figure 7. Data Toggle flowchart START READ DQ5 & DQ6 DQ6 = TOGGLE NO YES NO ) s ( ct DQ5 =1 YES u d o READ DQ6 DQ6 = TOGGLE t e l o YES FAIL ) (s r P e NO s b O PASS AI01370B t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 37/128 Erasing Flash memory PSD8XXFX 9 Erasing Flash memory 9.1 Flash Bulk Erase The Flash Bulk Erase instruction uses six WRITE operations followed by a READ operation of the status register, as described in Table 10. If any byte of the Bulk Erase instruction is wrong, the Bulk Erase instruction aborts and the device is reset to the Read Flash memory status. During a Bulk Erase, the memory status may be checked by reading the Error flag bit (DQ5), the Toggle flag bit (DQ6), and the Data Polling flag bit (DQ7), as detailed in Section 8: Programming Flash memory. The Error flag bit (DQ5) returns a '1' if there has been an Erase Failure (maximum number of Erase cycles have been executed). ) s ( ct It is not necessary to program the memory with 00h because the PSD automatically does this before erasing to 0FFh. u d o During execution of the Bulk Erase instruction, the Flash memory does not accept any instructions. 9.2 r P e t e l o Flash Sector Erase s b O The Sector Erase instruction uses six WRITE operations, as described in Table 10. Additional Flash Sector Erase codes and Flash memory sector addresses can be written subsequently to erase other Flash memory sectors in parallel, without further coded cycles, if the additional bytes are transmitted in a shorter time than the timeout period of about 100µs. The input of a new Sector Erase code restarts the timeout period. ) (s t c u The status of the internal timer can be monitored through the level of the Erase timeout flag bit (DQ3). If the Erase timeout flag bit (DQ3) is ’0,’ the Sector Erase instruction has been received and the timeout period is counting. If the Erase timeout flag bit (DQ3) is '1,' the timeout period has expired and the PSD is busy erasing the Flash memory sector(s). Before and during Erase timeout, any instruction other than Suspend Sector Erase and Resume Sector Erase instructions abort the cycle that is currently in progress, and reset the device to READ mode. It is not necessary to program the Flash memory sector with 00h as the PSD does this automatically before erasing (byte = FFh). d o r P e t e l o s b O 9.3 During a Sector Erase, the memory status may be checked by reading the Error flag bit (DQ5), the Toggle flag bit (DQ6), and the Data Polling flag bit (DQ7), as detailed in Section 8: Programming Flash memory. During execution of the Erase cycle, the Flash memory accepts only Reset and Suspend Sector Erase instructions. Erasure of one Flash memory sector may be suspended, in order to read data from another Flash memory sector, and then resumed. Suspend Sector Erase When a Sector Erase cycle is in progress, the Suspend Sector Erase instruction can be used to suspend the cycle by writing 0B0h to any address when an appropriate Sector Select (FS0-FS7 or CSBOOT0-CSBOOT3) is high. (See Table 10). This allows reading of data from another Flash memory sector after the Erase cycle has been suspended. Suspend Sector Erase is accepted only during an Erase cycle and defaults to READ mode. 38/128 Doc ID 7833 Rev 7 PSD8XXFX Erasing Flash memory A Suspend Sector Erase instruction executed during an Erase timeout period, in addition to suspending the Erase cycle, terminates the time out period. The Toggle flag bit (DQ6) stops toggling when the PSD internal logic is suspended. The status of this bit must be monitored at an address within the Flash memory sector being erased. The Toggle flag bit (DQ6) stops toggling between 0.1µs and 15µs after the Suspend Sector Erase instruction has been executed. The PSD is then automatically set to READ mode. If an Suspend Sector Erase instruction was executed, the following rules apply: 9.4 ● Attempting to read from a Flash memory sector that was being erased outputs invalid data. ● Reading from a Flash sector that was not being erased is valid. ● The Flash memory cannot be programmed, and only responds to Resume Sector Erase and Reset Flash instructions (READ is an operation and is allowed). ● If a Reset Flash instruction is received, data in the Flash memory sector that was being erased is invalid. ) s ( ct u d o r P e Resume Sector Erase t e l o If a Suspend Sector Erase instruction was previously executed, the erase cycle may be resumed with this instruction. The Resume Sector Erase instruction consists of writing 030h to any address while an appropriate Sector Select (FS0-FS7 or CSBOOT0-CSBOOT3) is high. (See Table 10.) ) (s s b O t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 39/128 Specific features PSD8XXFX 10 Specific features 10.1 Flash Memory Sector Protect Each primary and secondary Flash memory sector can be separately protected against Program and Erase cycles. Sector Protection provides additional data security because it disables all program or erase cycles. This mode can be activated through the JTAG port or a device programmer. Sector protection can be selected for each sector using the PSDsoft Express Configuration program. This automatically protects selected sectors when the device is programmed through the JTAG port or a device programmer. Flash memory sectors can be unprotected to allow updating of their contents using the JTAG port or a device programmer. The MCU can read (but cannot change) the sector protection bits. ) s ( ct Any attempt to program or erase a protected Flash memory sector is ignored by the device. The Verify operation results in a READ of the protected data. This allows a guarantee of the retention of the Protection status. u d o r P e The sector protection status can be read by the MCU through the Flash memory protection and PSD/EE protection registers (in the CSIOP block). See Table 12 and Table 13. 10.2 t e l o Reset Flash s b O The Reset Flash instruction consists of one WRITE cycle (see Table 10). It can also be optionally preceded by the standard two WRITE decoding cycles (writing AAh to 555h and 55h to AAAh). It must be executed after: ) (s ● Reading the Flash Protection Status or Flash ID ● An Error condition has occurred (and the device has set the Error flag bit (DQ5) to '1') during a Flash memory program or erase cycle. t c u d o r On the PSD813F2/3/4/5, the Reset Flash instruction puts the Flash memory back into normal READ mode. It may take the Flash memory up to a few milliseconds to complete the Reset cycle. The Reset Flash instruction is ignored when it is issued during a Program or Bulk Erase cycle of the Flash memory. The Reset Flash instruction aborts any on-going Sector Erase cycle, and returns the Flash memory to the normal READ mode within a few milliseconds. P e t e l o s b O 40/128 On the PSD83xF2 or PSD85xF2, the Reset Flash instruction puts the Flash memory back into normal READ mode. If an Error condition has occurred (and the device has set the Error flag bit (DQ5) to '1') the Flash memory is put back into normal READ mode within 25μs of the Reset Flash instruction having been issued. The Reset Flash instruction is ignored when it is issued during a Program or Bulk Erase cycle of the Flash memory. The Reset Flash instruction aborts any on-going Sector Erase cycle, and returns the Flash memory to the normal READ mode within 25μs. Doc ID 7833 Rev 7 PSD8XXFX 10.3 Specific features Reset (RESET) signal (on the PSD83xF2 and PSD85xF2) A pulse on Reset (RESET) aborts any cycle that is in progress, and resets the Flash memory to the READ mode. When the reset occurs during a program or erase cycle, the Flash memory takes up to 25μs to return to the READ mode. It is recommended that the Reset (RESET) pulse (except for Power On Reset, as described in Section 18: Reset timing and device status at reset) be at least 25 µs so that the Flash memory is always ready for the MCU to fetch the bootstrap instructions after the Reset cycle is complete. Sector Protection/Security Bit definition – Flash Protection register(1) Table 12. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Sec7_Prot Sec6_Prot Sec5_Prot Sec4_Prot Sec3_Prot Sec2_Prot Sec1_Prot Sec0_Prot ) s ( ct 1. Bit Definitions: Sec_Prot 1 = Primary Flash memory or secondary Flash memory Sector is write protected. Sec_Prot 0 = Primary Flash memory or secondary Flash memory Sector is not write protected. u d o Sector Protection/Security Bit definition – PSD/EE Protection register(1) Table 13. Bit 7 Bit 6 Bit 5 Bit 4 Security_B not used it not used not used r P e Bit 3 Bit 2 Bit 1 Bit 0 t e l o Sec3_Prot Sec2_Prot Sec1_Prot Sec0_Prot 1. Bit Definitions: Sec_Prot 1 = Secondary Flash memory Sector is write protected. Sec_Prot 0 = Secondary Flash memory Sector is not write protected. Security_Bit 0 = Security Bit in device has not been set. 1 = Security Bit in device has been set. ) (s s b O t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 41/128 SRAM 11 PSD8XXFX SRAM The SRAM is enabled when SRAM Select (RS0) from the DPLD is high. SRAM Select (RS0) can contain up to two product terms, allowing flexible memory mapping. SRAM Select (RS0) is configured using PSDsoft Express Configuration. ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 42/128 Doc ID 7833 Rev 7 PSD8XXFX 12 Sector Select and SRAM Select Sector Select and SRAM Select Sector Select (FS0-FS7, CSBOOT0-CSBOOT3) and SRAM Select (RS0) are all outputs of the DPLD. They are setup by writing equations for them in PSDabel. The following rules apply to the equations for these signals: 12.1 1. Primary Flash memory and secondary Flash memory Sector Select signals must not be larger than the physical sector size. 2. Any primary Flash memory sector must not be mapped in the same memory space as another Flash memory sector. 3. A secondary Flash memory sector must not be mapped in the same memory space as another secondary Flash memory sector. 4. SRAM, I/O, and Peripheral I/O spaces must not overlap. 5. A secondary Flash memory sector may overlap a primary Flash memory sector. In case of overlap, priority is given to the secondary Flash memory sector. 6. SRAM, I/O, and Peripheral I/O spaces may overlap any other memory sector. Priority is given to the SRAM, I/O, or Peripheral I/O. ) s ( ct u d o r P e t e l o Example s b O FS0 is valid when the address is in the range of 8000h to BFFFh, CSBOOT0 is valid from 8000h to 9FFFh, and RS0 is valid from 8000h to 87FFh. Any address in the range of RS0 always accesses the SRAM. Any address in the range of CSBOOT0 greater than 87FFh (and less than 9FFFh) automatically addresses secondary Flash memory segment 0. Any address greater than 9FFFh accesses the primary Flash memory segment 0. You can see that half of the primary Flash memory segment 0 and one-fourth of secondary Flash memory segment 0 cannot be accessed in this example. Also note that an equation that defined FS1 to anywhere in the range of 8000h to BFFFh would not be valid. ) (s t c u d o r Figure 8 shows the priority levels for all memory components. Any component on a higher level can overlap and has priority over any component on a lower level. Components on the same level must not overlap. Level one has the highest priority and level 3 has the lowest. P e t e l 12.2 Memory select configuration for MCUs with separate o s program and data spaces b O The 8031 and compatible family of MCUs, which includes the 80C51, 80C151, 80C251, and 80C51XA, have separate address spaces for program memory (selected using Program Select Enable (PSEN, CNTL2)) and data memory (selected using Read Strobe (RD, CNTL1)). Any of the memories within the PSD can reside in either space or both spaces. This is controlled through manipulation of the VM register that resides in the CSIOP space. The VM register is set using PSDsoft Express to have an initial value. It can subsequently be changed by the MCU so that memory mapping can be changed on-the-fly. For example, you may wish to have SRAM and primary Flash memory in the data space at Boot-up, and secondary Flash memory in the program space at Boot-up, and later swap the primary and secondary Flash memories. This is easily done with the VM register by using Doc ID 7833 Rev 7 43/128 Sector Select and SRAM Select PSD8XXFX PSDsoft Express Configuration to configure it for Boot-up and having the MCU change it when desired. Table 14 describes the VM register. Figure 8. Priority level of memory and I/O components Highest Priority Level 1 SRAM, I/O, or Peripheral I/O Level 2 Secondary Non-Volatile Memory ) s ( ct Level 3 Primary Flash Memory Lowest Priority AI02867D u d 12.3 Configuration modes for MCUs with separateo program and r data spaces P e t e l o s b O ) s ( t c u d o r P e t e l o s b O 12.3.1 Separate Space modes Program space is separated from data space. For example, Program Select Enable (PSEN, CNTL2) is used to access the program code from the primary Flash memory, while Read Strobe (RD, CNTL1) is used to access data from the secondary Flash memory, SRAM and I/O port blocks. This configuration requires the VM register to be set to 0Ch (see Figure 9). 12.3.2 Combined Space modes The program and data spaces are combined into one memory space that allows the primary Flash memory, secondary Flash memory, and SRAM to be accessed by either Program Select Enable (PSEN, CNTL2) or Read Strobe (RD, CNTL1). For example, to configure the primary Flash memory in Combined space, Bits b2 and b4 of the VM register are set to '1' (see Figure 10). Figure 9. 8031 memory modules – separate space DPLD RS0 Primary Flash Memory Secondary Flash Memory SRAM CSBOOT0-3 FS0-FS7 CS CS OE CS OE OE PSEN RD AI02869C 44/128 Doc ID 7833 Rev 7 PSD8XXFX Sector Select and SRAM Select Figure 10. 8031 memory modules – combined space DPLD RD SRAM Secondary Flash Memory Primary Flash Memory RS0 CSBOOT0-3 FS0-FS7 CS CS OE CS OE OE VM REG BIT 3 VM REG BIT 4 ) s ( ct PSEN u d o VM REG BIT 1 r P e RD VM REG BIT 2 t e l o VM REG BIT 0 Table 14. VM register Bit 4 Bit 7 Bit 6 PIO_EN 0 = disable PIO mode 1= enable PIO mode not used not used not used not used Bit 3 Bit 2 Bit 1 econdary EE_Data Primary FL_Code Secondary EE_Code SRAM_Code 0 = RD cannot access Flash memory 0 = RD can’t access secondary Flash memory 0 = PSEN cannot access Flash memory 0 = PSEN can’t access secondary Flash memory 0 = PSEN cannot access SRAM 1 = RD access Flash memory 1 = RD access secondary Flash memory 1 = PSEN access Flash memory 1 = PSEN access secondary Flash memory 1 = PSEN access SRAM Primary FL_Data )- s ( t c u d o r P e let o s b Bit 5 s b O AI02870C Bit 0 O Doc ID 7833 Rev 7 45/128 Page register 13 PSD8XXFX Page register The 8-bit Page register increases the addressing capability of the MCU by a factor of up to 256. The contents of the register can also be read by the MCU. The outputs of the Page register (PGR0-PGR7) are inputs to the DPLD decoder and can be included in the Sector Select (FS0-FS7, CSBOOT0-CSBOOT3), and SRAM Select (RS0) equations. If memory paging is not needed, or if not all 8 page register bits are needed for memory paging, then these bits may be used in the CPLD for general logic. See Application Note AN1154. Figure 11 shows the Page register. The eight flip-flops in the register are connected to the internal data bus D0-D7. The MCU can write to or read from the Page register. The Page register can be accessed at address location CSIOP + E0h. ) s ( ct Figure 11. Page register u d o RESET D0 D0 - D7 Q0 PGR0 D1 Q1 D2 Q2 D3 Q3 s ( t c u d o r P e R/ W Q4 D5 Q5 D6 Q6 D7 Q7 t e l o PGR1 PGR3 PGR4 DPLD AND CPLD PGR5 PGR6 PGR7 PAGE REGISTER t e l o s b O 46/128 INTERNAL SELECTS AND LOGIC PGR2 bs O ) D4 r P e Doc ID 7833 Rev 7 PLD AI02871B PSD8XXFX 14 PLDS PLDS The PLDs bring programmable logic functionality to the PSD. After specifying the logic for the PLDs using the PSDabel tool in PSDsoft Express, the logic is programmed into the device and available upon Power-up. The PSD contains two PLDs: the Decode PLD (DPLD), and the Complex PLD (CPLD). The PLDs are briefly discussed in the next few paragraphs, and in more detail in Section 14.2: Decode PLD (DPLD), and Section 14.3: Complex PLD (CPLD). Figure 12 shows the configuration of the PLDs. The DPLD performs address decoding for Select signals for internal components, such as memory, registers, and I/O ports. ) s ( ct The CPLD can be used for logic functions, such as loadable counters and shift registers, state machines, and encoding and decoding logic. These logic functions can be constructed using the 16 Output macrocells (OMC), 24 input macrocells (IMC), and the AND Array. The CPLD can also be used to generate External Chip Select (ECS0-ECS2) signals. u d o r P e The AND Array is used to form product terms. These product terms are specified using PSDabel. An input bus consisting of 73 signals is connected to the PLDs. The signals are shown in Table 15. 14.1 The Turbo Bit in PSD t e l o s b O The PLDs in the PSD can minimize power consumption by switching off when inputs remain unchanged for an extended time of about 70ns. Resetting the Turbo Bit to '0' (Bit 3 of PMMR0) automatically places the PLDs into standby if no inputs are changing. Turning the Turbo mode off increases propagation delays while reducing power consumption. See Section 17: Power management on how to set the Turbo Bit. ) (s t c u d o r Additionally, five bits are available in PMMR2 to block MCU control signals from entering the PLDs. This reduces power consumption and can be used only when these MCU control signals are not used in PLD logic equations. P e t e l o Each of the two PLDs has unique characteristics suited for its applications. They are described in the following sections. bs Table 15. O DPLD and CPLD inputs Input name Number of signals MCU address bus(1) A15-A0 16 MCU control signals CNTL2-CNTL0 3 Reset RST 1 Power-down PDN 1 Port A input macrocells PA7-PA0 8 Port B input macrocells PB7-PB0 8 Port C input macrocells PC7-PC0 8 Port D inputs PD2-PD0 3 Input source Doc ID 7833 Rev 7 47/128 PLDS PSD8XXFX Table 15. DPLD and CPLD inputs (continued) Input name Number of signals PGR7-PGR0 8 Macrocell AB feedback MCELLAB.FB7-FB0 8 Macrocell BC feedback MCELLBC.FB7-FB0 8 Ready/Busy 1 Input source Page register Secondary Flash memory Program Status Bit 1. The address inputs are A19-A4 in 80C51XA mode. ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 48/128 Doc ID 7833 Rev 7 8 PAGE REGISTER 16 DECODE PLD 2 1 1 4 8 CPLD OUTPUT MACROCELL FEEDBACK 1 Doc ID 7833 Rev 7 PT ALLOC. 24 INPUT MACROCELL (PORT A,B,C) INPUT MACROCELL & INPUT PORTS PORT D INPUTS 24 3 MACROCELL ALLOC. AI02872C 3 8 MCELLBC TO PORT B OR C EXTERNAL CHIP SELECTS TO PORT D 8 MCELLAB TO PORT A OR B DIRECT MACROCELL ACCESS FROM MCU DATA BUS JTAG SELECT PERIPHERAL SELECTS CSIOP SELECT SRAM SELECT SECONDARY NON-VOLATILE MEMORY SELECTS PRIMARY FLASH MEMORY SELECTS 16 OUTPUT MACROCELL s b O t e l o DIRECT MACROCELL INPUT TO MCU DATA BUS 73 73 t e l o P e d o r t c u ) (s I/O PORTS s b O DATA BUS PSD8XXFX PLDS Figure 12. PLD diagram ) s ( ct r P e u d o 49/128 PLD INPUT BUS PLDS PSD8XXFX 14.2 Decode PLD (DPLD) The DPLD, shown in Figure 13, is used for decoding the address for internal and external components. The DPLD can be used to generate the following decode signals: ● 8 Sector Select (FS0-FS7) signals for the primary Flash memory (three product terms each) ● 4 Sector Select (CSBOOT0-CSBOOT3) signals for the secondary Flash memory (three product terms each) ● 1 internal SRAM Select (RS0) signal (two product terms) ● 1 internal CSIOP Select (PSD Configuration register) signal ● 1 JTAG Select signal (enables JTAG on port C) ● 2 internal Peripheral Select signals (Peripheral I/O mode). ) s ( ct u d o Figure 13. DPLD logic array 3 t e l o 3 3 bs (INPUTS) I /O PORTS (PORT A,B,C) (24) (8) MCELLBC.FB [7:0] (FEEDBACKS) c u d (16) A[15:0] * PD[2:0] (ALE,CLKIN,CSI) P e ro CSBOOT 3 3 FS0 3 FS1 3 FS2 3 FS3 3 (1) 3 FS5 3 FS6 FS7 2 RS0 1 CSIOP 1 PSEL0 1 PSEL1 1 JTAGSEL (1) O 8 PRIMARY FLASH MEMORY SECTOR SELECTS FS4 3 RESET bs CSBOOT 2 (1) (3) t e l o CSBOOT 1 (3) CNTRL[2:0] (READ/WRITE CONTROL SIGNALS) RD_BSY t(s (8) PGR0 - PGR7 PDN (APD OUTPUT) O ) (8) MCELLAB.FB [7:0] (FEEDBACKS) CSBOOT 0 r P e 3 SRAM SELECT I/O DECODER SELECT PERIPHERAL I/O MODE SELECT AI02873D 50/128 Doc ID 7833 Rev 7 PSD8XXFX 14.3 PLDS Complex PLD (CPLD) The CPLD can be used to implement system logic functions, such as loadable counters and shift registers, system mailboxes, handshaking protocols, state machines, and random logic. The CPLD can also be used to generate three External Chip Select (ECS0-ECS2), routed to port D. Although External Chip Select (ECS0-ECS2) can be produced by any Output macrocell (OMC), these three External Chip Select (ECS0-ECS2) on port D do not consume any Output macrocells (OMC). As shown in Figure 12, the CPLD has the following blocks: ● 24 input macrocells (IMC) ● 16 Output macrocells (OMC) ● Macrocell Allocator ● Product Term Allocator ● AND Array capable of generating up to 137 product terms ● Four I/O ports. ) s ( ct u d o r P e Each of the blocks are described in the sections that follow. t e l o The input macrocells (IMC) and Output macrocells (OMC) are connected to the PSD internal data bus and can be directly accessed by the MCU. This enables the MCU software to load data into the Output macrocells (OMC) or read data from both the input and Output macrocells (IMC and OMC). s b O This feature allows efficient implementation of system logic and eliminates the need to connect the data bus to the AND Array as required in most standard PLD macrocell architectures. ) (s t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 51/128 PLD INPUT BUS PLD INPUT BUS PT PRESET Doc ID 7833 Rev 7 Q CK PT INPUT LATCH GATE/CLOCK CL D/T/JK FF SELECT D/T MACROCELL FEEDBACK I/O PORT INPUT MCU LOAD MCU DATA IN PR DI LD PT OUTPUT ENABLE (OE) PT CLEAR CLOCK SELECT GLOBAL CLOCK PT CLOCK POLARITY SELECT UP TO 10 PRODUCT TERMS PRODUCT TERM ALLOCATOR CPLD MACROCELLS MUX MACROCELL TO I/O PORT ALLOC. s b O COMB. /REG SELECT CPLD OUTPUT MACROCELL OUT TO MCU DATA LOAD CONTROL MCU ADDRESS / DATA BUS MUX 52/128 D Q Q DIR REG. D INPUT SELECT MUX ALE/AS t e l o r P e G Q D Q D INPUT MACROCELLS WR PDR CPLD OUTPUT WR DATA LATCHED ADDRESS OUT I/O PORTS TO OTHER I/O PORTS MUX s b O t e l o d o r t c u ) (s MUX P e PRODUCT TERMS FROM OTHER MACROCELLS AI02874 I/O PIN PLDS PSD8XXFX Figure 14. Macrocell and I/O port u d o ) s ( ct AND ARRAY PSD8XXFX 14.4 PLDS Output macrocell (OMC) Eight of the Output macrocells (OMC) are connected to ports A and B pins and are named as McellAB0-McellAB7. The other eight macrocells are connected to ports B and C pins and are named as McellBC0-McellBC7. If an McellAB output is not assigned to a specific pin in PSDabel, the macrocell Allocator block assigns it to either port A or B. The same is true for a McellBC output on port B or C. Table 16 shows the macrocells and port assignment. The Output macrocell (OMC) architecture is shown in Figure 15. As shown in the figure, there are native product terms available from the AND Array, and borrowed product terms available (if unused) from other Output macrocells (OMC). The polarity of the product term is controlled by the XOR gate. The Output macrocell (OMC) can implement either sequential logic, using the flip-flop element, or combinatorial logic. The multiplexer selects between the sequential or combinatorial logic outputs. The multiplexer output can drive a port pin and has a feedback path to the AND Array inputs. ) s ( ct The flip-flop in the Output macrocell (OMC) block can be configured as a D, T, JK, or SR type in the PSDabel program. The flip-flop’s clock, preset, and clear inputs may be driven from a product term of the AND Array. Alternatively, CLKIN (PD1) can be used for the clock input to the flip-flop. The flip-flop is clocked on the rising edge of CLKIN (PD1). The preset and clear are active high inputs. Each clear input can use up to two product terms. u d o Table 16. r P e Maximum borrowed product terms Data bit for loading or reading 3 6 D0 3 6 D1 Port A2, B2 3 6 D2 Port A3, B3 3 6 D3 Port A4, B4 3 6 D4 Port A5, B5 3 6 D5 McellAB6 Port A6, B6 3 6 D6 McellAB7 Port A7, B7 3 6 D7 McellBC0 Port B0, C0 4 5 D0 McellBC1 Port B1, C1 4 5 D1 McellBC2 Port B2, C2 4 5 D2 McellBC3 Port B3, C3 4 5 D3 McellBC4 Port B4, C4 4 6 D4 McellBC5 Port B5, C5 4 6 D5 McellBC6 Port B6, C6 4 6 D6 McellBC7 Port B7, C7 4 6 D7 Output Port macrocell assignment McellAB0 Port A0, B0 McellAB1 Port A1, B1 McellAB3 o r P McellAB4 McellAB5 e t e l O bs Native product terms O ) t(s c u d McellAB2 o s b t e l o Output macrocell port and data bit assignments Doc ID 7833 Rev 7 53/128 PLDS 14.5 PSD8XXFX Product Term Allocator The CPLD has a Product Term Allocator. The PSDabel compiler uses the Product Term Allocator to borrow and place product terms from one macrocell to another. The following list summarizes how product terms are allocated: ● McellAB0-McellAB7 all have three native product terms and may borrow up to six more ● McellBC0-McellBC3 all have four native product terms and may borrow up to five more ● McellBC4-McellBC7 all have four native product terms and may borrow up to six more. Each macrocell may only borrow product terms from certain other macrocells. Product terms already in use by one macrocell are not available for another macrocell. If an equation requires more product terms than are available to it, then “external” product terms are required, which consume other Output macrocells (OMC). If external product terms are used, extra delay is added for the equation that required the extra product terms. ) s ( ct This is called product term expansion. PSDsoft Express performs this expansion as needed. u d o 14.6 Loading and reading the Output macrocells r (OMC) P e t e l o s b O ) s ( t c u d oMask register r 14.7 The OMC P e t e l o s b O The Output macrocells (OMC) block occupies a memory location in the MCU address space, as defined by the CSIOP block (see Section 16: I/O ports). The flip-flops in each of the 16 Output macrocells (OMC) can be loaded from the data bus by a MCU. Loading the Output macrocells (OMC) with data from the MCU takes priority over internal functions. As such, the preset, clear, and clock inputs to the flip-flop can be overridden by the MCU. The ability to load the flip-flops and read them back is useful in such applications as loadable counters and shift registers, mailboxes, and handshaking protocols. Data can be loaded to the Output macrocells (OMC) on the trailing edge of Write Strobe (WR, CNTL0) (edge loading) or during the time that Write Strobe (WR, CNTL0) is active (level loading). The method of loading is specified in PSDsoft Express Configuration. There is one Mask register for each of the two groups of eight Output macrocells (OMC). The Mask registers can be used to block the loading of data to individual Output macrocells (OMC). The default value for the Mask registers is 00h, which allows loading of the Output macrocells (OMC). When a given bit in a Mask register is set to a 1, the MCU is blocked from writing to the associated Output macrocells (OMC). For example, suppose McellAB0McellAB3 are being used for a state machine. You would not want a MCU write to McellAB to overwrite the state machine registers. Therefore, you would want to load the Mask register for McellAB (Mask macrocell AB) with the value 0Fh. 14.8 The Output Enable of the OMC The Output macrocells (OMC) block can be connected to an I/O port pin as a PLD output. The output enable of each port pin driver is controlled by a single product term from the AND Array, ORed with the Direction register output. The pin is enabled upon Power-up if no output enable equation is defined and if the pin is declared as a PLD output in PSDsoft Express. 54/128 Doc ID 7833 Rev 7 PSD8XXFX PLDS If the Output macrocell (OMC) output is declared as an internal node and not as a port pin output in the PSDabel file, the port pin can be used for other I/O functions. The internal node feedback can be routed as an input to the AND Array. MACROCELL ALLOCATOR PORT INPUT MUX CLKIN PT CLK PT FEEDBACK (.FB) PROGRAMMABLE FF (D/T/JK /SR) CLEAR (.RE) IN POLARITY SELECT CLR Q LD DIN PR PT PT PT ALLOCATOR RD MACROCELL CS MASK REG. s b O PLD INPUT BUS t e l o AND ARRAY P e WR d o r ENABLE (.OE) t c u r P e t e l o s b O PRESET(.PR) ) (s ) s ( ct u d o MUX COMB/REG SELECT INTERNAL DATA BUS D [ 7:0] DIRECTION REGISTER PORT DRIVER INPUT MACROCELL AI02875B I/O PIN Figure 15. CPLD Output macrocell Doc ID 7833 Rev 7 55/128 PLDS 14.9 PSD8XXFX Input macrocells (IMC) The CPLD has 24 input macrocells (IMC), one for each pin on ports A, B, and C. The architecture of the input macrocells (IMC) is shown in Figure 16. The input macrocells (IMC) are individually configurable, and can be used as a latch, register, or to pass incoming port signals prior to driving them onto the PLD input bus. The outputs of the input macrocells (IMC) can be read by the MCU through the internal data bus. The enable for the latch and clock for the register are driven by a multiplexer whose inputs are a product term from the CPLD AND Array or the MCU Address Strobe (ALE/AS). Each product term output is used to latch or clock four input macrocells (IMC). port inputs 3-0 can be controlled by one product term and 7-4 by another. Configurations for the input macrocells (IMC) are specified by equations written in PSDabel (see Application Note AN1171). outputs of the input macrocells (IMC) can be read by the MCU via the IMC buffer (see Section 16: I/O ports). ) s ( ct u d o Input macrocells (IMC) can use Address Strobe (ALE/AS, PD0) to latch address bits higher than A15. Any latched addresses are routed to the PLDs as inputs. r P e Input macrocells (IMC) are particularly useful with handshaking communication applications where two processors pass data back and forth through a common mailbox. Figure 17 shows a typical configuration where the Master MCU writes to the port A Data Out register. This, in turn, can be read by the Slave MCU via the activation of the “Slave-Read” output enable product term. t e l o s b O The Slave can also write to the port A input macrocells (IMC) and the Master can then read the input macrocells (IMC) directly. ) (s Note that the “Slave-Read” and “Slave-Wr” signals are product terms that are derived from the Slave MCU inputs Read Strobe (RD, CNTL1), Write Strobe (WR, CNTL0), and Slave_CS. t c u d o r P e t e l o s b O 56/128 Doc ID 7833 Rev 7 s b O t e l o ) (s Doc ID 7833 Rev 7 G D ALE/AS PT DIRECTION REGISTER D [ 7:0] INPUT MACROCELL MUX u d o r P e LATCH Q D FF Q s b O MUX D t e l o FEEDBACK PT PT INPUT MACROCELL _ RD OUTPUT MACROCELLS BC AND MACROCELL AB t c u ENABLE ( .OE ) P e PLD INPUT BUS d o r AND ARRAY INTERNAL DATA BUS PORT DRIVER AI02876B I/O PIN PSD8XXFX PLDS Figure 16. Input macrocell ) s ( ct 57/128 P e s b O 58/128 MASTER MCU t e l o D [ 7:0] CPLD ) (s MCU-WR MCU-RD PSD s b O Q d o r t c u Doc ID 7833 Rev 7 Q D PORT A INPUT MACROCELL t e l o MCU-RD D SLAVE – WR MCU-WR PORT A DATA OUT REGISTER SLAVE – READ WR RD SLAVE– CS PORT A D [ 7:0] AI02877C SLAVE MCU PLDS PSD8XXFX Figure 17. Handshaking communication using input macrocells ) s ( ct r P e u d o PSD8XXFX 15 MCU bus interface MCU bus interface The “no-glue logic” MCU bus interface block can be directly connected to most popular MCUs and their control signals. Key 8-bit MCUs, with their bus types and control signals, are shown in Table 17. The interface type is specified using the PSDsoft Express Configuration. Table 17. MCUs and their control signals MCU Data bus width CNTL0 CNTL1 CNTL2 PC7 PD0(1) ADIO0 PA3-PA0 PA7-PA3 8031 8 WR RD PSEN (2) ALE A0 (2) (2) 80C51XA 8 WR RD PSEN (2) ALE A4 A3-A0 (2) 80C251 8 WR PSEN (2) (2) ALE A0 (2) (2) 80C251 8 WR RD PSEN (2) ALE A0 80198 8 WR RD (2) (2) ALE A0 68HC11 8 R/W E (2) (2) AS u d o (2) (2) (2) 68HC912 8 R/W E (2) DBE AS A0 (2) (2) Z80 8 WR RD (2) (2) (2) A0 D3-D0 D7-D4 (2) (2) AS A0 (2) (2) (2) (2) AS A0 (2) (2) (2) (2) ALE A0 D3-D0 D7-D4 Z8 8 R/W DS 68330 8 R/W DS M37702M2 8 R/W E )- e t e ol s b O Pr A0 (2) (2) ) s ( ct (2) 1. ALE/AS input is optional for MCUs with a non-multiplexed bus s ( t c 2. Unused CNTL2 pin can be configured as CPLD input. Other unused pins (PC7, PD0, PA3-0) can be configured for other I/O functions. u d o r P e t e l o s b O Doc ID 7833 Rev 7 59/128 MCU bus interface 15.1 PSD8XXFX PSD interface to a multiplexed 8-bit bus Figure 18 shows an example of a system using a MCU with an 8-bit multiplexed bus and a PSD. The ADIO port on the PSD is connected directly to the MCU address/data bus. Address Strobe (ALE/AS, PD0) latches the address signals internally. Latched addresses can be brought out to port A or B. The PSD drives the ADIO data bus only when one of its internal resources is accessed and Read Strobe (RD, CNTL1) is active. Should the system address bus exceed sixteen bits, ports A, B, C, or D may be used as additional address inputs. Figure 18. An example of a typical 8-bit multiplexed bus interface ) s ( ct PSD MCU AD [ 7:0] ADIO PORT A[ 15:8] ete l o s Pr u d o PORT B A [ 7: 0] (OPTIONAL) A [ 15: 8] (OPTIONAL) WR (CNTRL0) WR RD BHE )- ALE RESET PORT A b O s ( t c RD (CNTRL1) BHE (CNTRL2) RST PORT C ALE (PD0) PORT D du AI02878C o r 15.2 PSD interface to a non-multiplexed 8-bit bus P e t e l o s b O Figure 19 shows an example of a system using a MCU with an 8-bit non-multiplexed bus and a PSD. The address bus is connected to the ADIO port, and the data bus is connected to port A. port A is in tri-state mode when the PSD is not accessed by the MCU. Should the system address bus exceed sixteen bits, ports B, C, or D may be used for additional address inputs. 15.3 Data Byte Enable reference MCUs have different data byte orientations. Table 18 shows how the PSD interprets byte/word operations in different bus WRITE configurations. Even-byte refers to locations with address A0 equal to '0' and odd byte as locations with A0 equal to ’1.’ 60/128 Doc ID 7833 Rev 7 PSD8XXFX 15.4 MCU bus interface MCU bus interface examples Figure 20, Figure 21, Figure 22, Figure 23, and Figure 24 show examples of the basic connections between the PSD and some popular MCUs. The PSD Control input pins are labeled as to the MCU function for which they are configured. The MCU bus interface is specified using the PSDsoft Express Configuration. Table 18. 8-bit data bus BHE A0 D7-D0 X 0 Even byte X 1 Odd byte ) s ( ct Figure 19. An example of a typical 8-bit non-multiplexed bus interface u d o r P e PSD MCU t e l o D [ 7:0] PORT A ADIO PORT bs A [ 15:0] O ) WR (CNTRL0) WR RD BHE s ( t c du ALE ro P e RESET PORT B RD (CNTRL1) BHE (CNTRL2) RST D [ 7:0] A[ 23:16] (OPTIONAL) PORT C ALE (PD0) PORT D t e l o AI02879C s b O Doc ID 7833 Rev 7 61/128 MCU bus interface 15.5 PSD8XXFX 80C31 Figure 20 shows the bus interface for the 80C31, which has an 8-bit multiplexed address/data bus. The lower address byte is multiplexed with the data bus. The MCU control signals Program Select Enable (PSEN, CNTL2), Read Strobe (RD, CNTL1), and Write Strobe (WR, CNTL0) may be used for accessing the internal memory and I/O ports blocks. Address Strobe (ALE/AS, PD0) latches the address. Figure 20. Interfacing the PSD with an 80C31 AD7-AD0 AD[ 7:0] PSD 80C31 31 19 18 9 RESET 12 13 14 15 EA/VP X1 X2 RESET INT0 INT1 T0 T1 1 2 3 4 5 6 7 8 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 RD WR PSEN ALE/P TXD RXD 39 38 37 36 35 34 33 32 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 21 22 23 24 25 26 27 28 A8 A9 A10 A11 A12 A13 A14 A15 17 RD WR 16 29 30 50 bs 10 -O c u d e t e ol o r P s b O 62/128 Doc ID 7833 Rev 7 ADIO0 ADIO1 ADIO2 ADIO3 ADIO4 ADIO5 ADIO6 ADIO7 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 ADIO8 ADIO9 ADIO10 ADIO11 ADIO12 ADIO13 ADIO14 ADIO15 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 CNTL0 (WR) PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 49 10 9 8 48 CNTL1(RD) CNTL2 (PSEN) PD0-ALE PD1 PD2 29 28 27 25 24 23 22 21 ) s ( ct u d o r P e t e l o 47 PSEN ALE ) s ( t 30 31 32 33 34 35 36 37 39 40 41 42 43 44 45 46 11 RESET RESET AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 7 6 5 4 3 2 52 51 20 19 18 17 14 13 12 11 RESET AI02880C PSD8XXFX 15.6 MCU bus interface 80C251 The Intel 80C251 MCU features a user-configurable bus interface with four possible bus configurations, as shown in Table 19. The first configuration is 80C31-compatible, and the bus interface to the PSD is identical to that shown in Figure 20. The second and third configurations have the same bus connection as shown in Figure 21. There is only one Read Strobe (PSEN) connected to CNTL1 on the PSD. The A16 connection to PA0 allows for a larger address input to the PSD. The fourth configuration is shown in Figure 22. Read Strobe (RD) is connected to CNTL1 and Program Select Enable (PSEN) is connected to CNTL2. The 80C251 has two major operating modes: Page mode and Non-page mode. In Nonpage mode, the data is multiplexed with the lower address byte, and Address Strobe (ALE/AS, PD0) is active in every bus cycle. In Page mode, data (D7-D0) is multiplexed with address (A15-A8). In a bus cycle where there is a Page hit, Address Strobe (ALE/AS, PD0) is not active and only addresses (A7-A0) are changing. The PSD supports both modes. In Page mode, the PSD bus timing is identical to Non-Page mode except the address hold time and setup time with respect to Address Strobe (ALE/AS, PD0) is not required. The PSD access time is measured from address (A7-A0) valid to data in valid. ) s ( ct u d o r P e Figure 21. Interfacing the PSD with the 80C251, with One READ input t e l o 80C251SB 2 3 4 5 6 7 8 9 21 20 11 13 14 15 16 17 O r P e X2 P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 10 35 RST EA P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 ALE PSEN WR RD/A16 PSD A0 A1 A2 A3 A4 A5 A6 A7 30 31 32 33 34 35 36 37 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 39 40 41 42 43 44 45 46 43 42 41 40 39 38 37 36 A0 A1 A2 A3 A4 A5 A6 A7 24 25 26 27 28 29 30 31 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 33 ALE 47 32 RD 50 18 WR 19 A16 ) (s t c u od X1 t e l o bs RESET P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 s b O 49 10 9 8 RESET RESET 48 ADIO0 ADIO1 ADIO2 ADIO3 ADIO4 ADIO5 ADIO6 ADIO7 ADIO8 ADIO9 ADIO10 ADIO11 ADIO12 ADIO13 ADIO14 ADIO15 CNTL0 ( WR) CNTL1( RD) CNTL 2(PSEN) PD0-ALE PD1 PD2 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 29 28 27 25 24 23 22 21 A161 A171 7 6 5 4 3 2 52 51 20 19 18 17 14 13 12 11 RESET AI02881C 1. The A16 and A17 connections are optional. 2. In non-Page-mode, AD7-AD0 connects to ADIO7-ADIO0. Doc ID 7833 Rev 7 63/128 MCU bus interface PSD8XXFX Figure 22. Interfacing the PSD with the 80C251, with RD and PSEN inputs 80C251SB 2 3 4 5 6 7 8 9 21 20 10 35 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 X1 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 X2 11 13 14 15 16 17 RESET PSD P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 ALE PSEN RST WR RD/A16 EA A0 A1 A2 A3 A4 A5 A6 A7 30 31 32 33 34 35 36 37 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 39 40 41 42 43 44 45 46 43 42 41 40 39 38 37 36 A0 A1 A2 A3 A4 A5 A6 A7 24 25 26 27 28 29 30 31 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 33 ALE 47 50 32 RD 18 WR 19 PSEN 49 10 9 8 Table 19. Configuration 1 WR RD PSEN PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 ADIO8 ADIO9 ADIO10 ADIO11 ADIO12 ADIO13 ADIO14 ADIO15 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 CNTL0 ( WR) CNTL1( RD) 7 6 5 4 3 2 52 51 ) s ( ct du o r P CNTL 2(PSEN) PD0-ALE PD1 PD2 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 20 19 18 17 14 13 12 11 RESET s b O Connecting to PSD pins 29 28 27 25 24 23 22 21 AI02882C Page mode CNTL0 CNTL1 CNTL2 Non-Page mode, 80C31 compatible A7-A0 multiplex with D7-D0 WR PSEN only CNTL0 CNTL1 Non-Page mode A7-A0 multiplex with D7-D0 3 WR PSEN only CNTL0 CNTL1 Page mode A15-A8 multiplex with D7-D0 4 WR RD PSEN CNTL0 CNTL1 CNTL2 Page mode A15-A8 multiplex with D7-D0 r P e t e l o 2 64/128 ct u d o 48 ) (s 80C251 configurations 80C251 READ/WRITE pins s b O e t e ol RESET RESET ADIO0 ADIO1 ADIO2 ADIO3 ADIO4 ADIO5 ADIO6 ADIO7 Doc ID 7833 Rev 7 PSD8XXFX 15.7 MCU bus interface 80C51XA The Philips 80C51XA MCU family supports an 8- or 16-bit multiplexed bus that can have burst cycles. Address bits (A3-A0) are not multiplexed, while (A19-A4) are multiplexed with data bits (D15-D0) in 16-bit mode. In 8-bit mode, (A11-A4) are multiplexed with data bits (D7-D0). The 80C51XA can be configured to operate in eight-bit data mode (as shown in Figure 23). The 80C51XA improves bus throughput and performance by executing burst cycles for code fetches. In Burst mode, address A19-A4 are latched internally by the PSD, while the 80C51XA changes the A3-A0 signals to fetch up to 16 bytes of code. The PSD access time is then measured from address A3-A0 valid to data in valid. The PSD bus timing requirement in Burst mode is identical to the normal bus cycle, except the address setup and hold time with respect to Address Strobe (ALE/AS, PD0) does not apply. ) s ( ct Figure 23. Interfacing the PSD with the 80C51X, 8-bit data bus r P e PSD 80C51XA 21 20 11 13 6 7 9 8 16 10 14 15 RESET b O RXD0 TXD0 RXD1 TXD1 T2EX T2 T0 RST INT0 INT1 35 17 A0/WRH A1 A2 A3 A4D0 A5D1 A6D2 A7D3 A8D4 A9D5 A10D6 A11D7 A12D8 A13D9 A14D10 A15D11 A16D12 A17D13 A18D14 A19D15 EA/WAIT BUSW 2 3 4 5 43 42 41 40 39 38 37 36 24 25 26 27 28 29 30 31 PSEN RD WRL ALE A0 A1 A2 A3 A4D0 A5D1 A6D2 A7D3 A8D4 A9D5 A10D6 A11D7 A12 A13 A14 A15 A16 A17 A18 A19 ) (s t c u d o r P e let so XTAL1 XTAL2 A4D0 A5D1 A6D2 A7D3 A8D4 A9D5 A10D6 A11D7 30 31 32 33 34 35 36 37 A12 A13 A14 A15 A16 A17 A18 A19 39 ADIO8 40 ADIO9 41 ADIO10 42 ADIO11 43 AD1012 44 AD1013 45 ADIO14 46 ADIO15 t e l o s b O 47 50 32 PSEN 49 19 RD WR ALE 10 8 9 18 33 u d o 48 ADIO0 ADIO1 ADIO2 ADIO3 AD104 AD105 ADIO6 ADIO7 CNTL0 (WR) CNTL1(RD) CNTL 2 (PSEN) PD0-ALE PD1 PD2 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 29 28 27 25 24 23 22 21 A0 A1 A2 A3 7 6 5 4 3 2 52 51 20 19 18 17 14 13 12 11 RESET RESET AI02883C Doc ID 7833 Rev 7 65/128 MCU bus interface 15.8 PSD8XXFX 68HC11 Figure 24 shows a bus interface to a 68HC11 where the PSD is configured in 8-bit multiplexed mode with E and R/W settings. The DPLD can be used to generate the READ and WR signals for external devices. Figure 24. Interfacing the PSD with a 68HC11 AD7-AD0 AD7-AD0 PSD 31 30 29 28 27 AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 30 31 32 33 34 35 36 37 42 41 40 39 38 37 36 35 A8 A9 A10 A11 A12 A13 A14 A15 39 40 41 42 43 44 45 46 68HC11 8 7 17 19 18 RESET 2 34 33 32 43 44 45 46 47 48 49 50 52 51 PA3 PA4 PA5 PA6 PA7 XT EX RESET IRQ XIRQ MODB PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PA0 PA1 PA2 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 u d o so e t e l b O 66/128 )- PD0 PD1 PD2 PD3 PD4 PD5 MODA E AS R/W 20 21 22 23 24 25 47 50 49 10 9 8 48 ADIO8 ADIO9 ADIO10 ADIO11 AD1012 AD1013 ADIO14 ADIO15 CNTL0 (R _W) CNTL1(E) CNTL 2 PD0 – AS PD1 PD2 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 29 28 27 25 24 23 22 21 ) s ( ct u d o r P e t e l o s b O s ( t c VRH VRL Pr AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 9 10 11 12 13 14 15 16 ADIO0 ADIO1 ADIO2 ADIO3 AD104 AD105 ADIO6 ADIO7 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 7 6 5 4 3 2 52 51 20 19 18 17 14 13 12 11 RESET 3 5 E 4 AS 6 R/ W RESET AI02884C Doc ID 7833 Rev 7 PSD8XXFX 16 I/O ports I/O ports There are four programmable I/O ports: ports A, B, C, and D. Each of the ports is eight bits except port D, which is 3 bits. Each port pin is individually user configurable, thus allowing multiple functions per port. The ports are configured using PSDsoft Express Configuration or by the MCU writing to on-chip registers in the CSIOP space. The topics discussed in this section are: 16.1 ● General port architecture ● Port operating modes ● Port configuration registers (PCR) ● Port Data registers ● Individual port functionality. ) s ( ct u d o General port architecture r P e The general architecture of the I/O port block is shown in Figure 25. Individual port architectures are shown in Figure 27, Figure 28, Figure 29, and Figure 30. In general, once the purpose for a port pin has been defined, that pin is no longer available for other purposes. Exceptions are noted. t e l o s b O As shown in Figure 25, the ports contain an output multiplexer whose select signals are driven by the configuration bits in the Control registers (Ports A and B only) and PSDsoft Express Configuration.Inputs to the multiplexer include the following: ) (s ● Output data from the Data Out register ● Latched address outputs ● CPLD macrocell output ● External Chip Select (ECS0-ECS2) from the CPLD. t c u d o r The port Data Buffer (PDB) is a tri-state buffer that allows only one source at a time to be read. The port Data Buffer (PDB) is connected to the Internal data bus for feedback and can be read by the MCU. The Data Out and macrocell outputs, Direction and Control registers, and port pin input are all connected to the port data buffer (PDB). P e s b O t e l o The port pin’s tri-state output driver enable is controlled by a two input OR gate whose inputs come from the CPLD AND Array enable product term and the Direction register. If the enable product term of any of the Array outputs are not defined and that port pin is not defined as a CPLD output in the PSDabel file, then the Direction register has sole control of the buffer that drives the port pin. The contents of these registers can be altered by the MCU. The port Data Buffer (PDB) feedback path allows the MCU to check the contents of the registers. Ports A, B, and C have embedded input macrocells (IMC). The input macrocells (IMC) can be configured as latches, registers, or direct inputs to the PLDs. The latches and registers are clocked by Address Strobe (ALE/AS, PD0) or a product term from the PLD AND Array. The outputs from the input macrocells (IMC) drive the PLD input bus and can be read by the MCU (see Figure 16: Input macrocell). Doc ID 7833 Rev 7 67/128 I/O ports 16.2 PSD8XXFX Port operating modes The I/O ports have several modes of operation. Some modes can be defined using PSDabel, some by the MCU writing to the Control registers in CSIOP space, and some by both. The modes that can only be defined using PSDsoft Express must be programmed into the device and cannot be changed unless the device is reprogrammed. The modes that can be changed by the MCU can be done so dynamically at run-time. The PLD I/O, Data port, Address input, and Peripheral I/O modes are the only modes that must be defined before programming the device. All other modes can be changed by the MCU at run-time. See Application Note AN1171 for more detail. Table 20 summarizes which modes are available on each port. Table 23 shows how and where the different modes are configured. Each of the port operating modes are described in the following sections. ) s ( ct Figure 25. General I/O port architecture DATA OUT REG. D Q D Q u d o r P e DATA OUT WR ADDRESS ALE G o s b MACROCELL OUTPUTS EXT CS O ) INTERNAL DATA BUS READ MUX P s ( t c D DATA IN B u d o PORT PIN OUTPUT MUX OUTPUT SELECT CONTROL REG. r P e WR t e l o WR bs O let ADDRESS D ENABLE OUT Q DIR REG. D Q ENABLE PRODUCT TERM (.OE) INPUT MACROCELL CPLD-INPUT AI02885 68/128 Doc ID 7833 Rev 7 PSD8XXFX 16.3 I/O ports MCU I/O mode In the MCU I/O mode, the MCU uses the I/O ports block to expand its own I/O ports. By setting up the CSIOP space, the ports on the PSD are mapped into the MCU address space. The addresses of the ports are listed in Table 8. A port pin can be put into MCU I/O mode by writing a 0 to the corresponding bit in the Control register. The MCU I/O direction may be changed by writing to the corresponding bit in the Direction register, or by the output enable product term (see Section 16.8: Peripheral I/O mode). When the pin is configured as an output, the content of the Data Out register drives the pin. When configured as an input, the MCU can read the port input through the Data In buffer (see Figure 25). Ports C and D do not have Control registers, and are in MCU I/O mode by default. They can be used for PLD I/O if equations are written for them in PSDabel. 16.4 ) s ( ct u d o PLD I/O mode r P e The PLD I/O mode uses a port as an input to the CPLD’s input macrocells (IMC), and/or as an output from the CPLD’s Output macrocells (OMC). The output can be tri-stated with a control signal. This output enable control signal can be defined by a product term from the PLD, or by resetting the corresponding bit in the Direction register to ’0.’ The corresponding bit in the Direction register must not be set to '1' if the pin is defined for a PLD input signal in PSDabel. The PLD I/O mode is specified in PSDabel by declaring the port pins, and then writing an equation assigning the PLD I/O to a port. t e l o ) (s 16.5 Address Out mode s b O t c u For MCUs with a multiplexed address/data bus, Address Out mode can be used to drive latched addresses on to the port pins. These port pins can, in turn, drive external devices. Either the output enable or the corresponding bits of both the Direction register and Control register must be set to a 1 for pins to use Address Out mode. This must be done by the MCU at run-time. See Table 22 for the address output pin assignments on ports A and B for various MCUs. d o r P e s b O t e l o Note: For non-multiplexed 8-bit bus mode, address signals (A7-A0) are available to port B in Address Out mode. Do not drive address signals with Address Out mode to an external memory device if it is intended for the MCU to Boot from the external device. The MCU must first Boot from PSD memory so the Direction and Control register bits can be set. Table 20. Port operating modes Port mode Port A Port B Port C Port D MCU I/O Yes Yes Yes Yes PLD I/O McellAB outputs McellBC outputs Additional Ext. CS outputs PLD inputs Yes No No Yes Yes Yes No Yes No Yes No Yes No No Yes Yes Doc ID 7833 Rev 7 69/128 I/O ports PSD8XXFX Table 20. Port operating modes (continued) Port mode Port A Port B Port C Port D Yes (A7 – 0) Yes (A7 – 0) or (A15 – 8) No No Yes Yes Yes Yes Yes (D7 – 0) No No No Peripheral I/O Yes No No No JTAG ISP No No Yes(1) No Address Out Address In Data port 1. Can be multiplexed with other I/O functions. Table 21. ) s ( ct Port operating mode settings Defined in PSDabel Defined in PSD configuration Control register setting Direction register setting VM register setting MCU I/O Declare pins only N/A(1) 0 1 = output, 0 = input(2) N/A N/A PLD I/O Logic equations N/A N/A (2) N/A N/A N/A Specify bus type N/A N/A N/A N/A Address Out (Port A,B) Declare pins only N/A 1 1(2) N/A N/A Address In (Port A,B,C,D) Logic for equation input macrocells N/A N/A N/A N/A N/A Peripheral I/O (Port A) Logic equations (PSEL0 & 1) ) (s N/A N/A N/A PIO bit = 1 N/A JTAG Configuration N/A N/A N/A JTAG_Enable Mode Data port (Port A) JTAG ISP(3) t c u d o r P e JTAGSEL r P e t e l o s b O u d o JTAG Enable t e l o 1. N/A = Not Applicable 2. The direction of the port A,B,C, and D pins are controlled by the Direction register ORed with the individual output enable product term (.oe) from the CPLD AND Array. s b O 3. Any of these three methods enables the JTAG pins on port C. Table 22. I/O port Latched address output assignments MCU 8051XA (8-Bit) 80C251 (Page mode) All Other 8-Bit Multiplexed 8-Bit Non-Multiplexed bus Port A (PA3-PA0) Port A (PA7-PA4) Port B (PB3-PB0) Port B (PB7-PB4) N/A(1) Address a7-a4 Address a11-a8 N/A N/A N/A Address a11-a8 Address a15-a12 Address a3-a0 Address a7-a4 Address a3-a0 Address a7-a4 N/A N/A Address a3-a0 Address a7-a4 1. N/A = Not Applicable 70/128 Doc ID 7833 Rev 7 PSD8XXFX 16.6 I/O ports Address In mode For MCUs that have more than 16 address signals, the higher addresses can be connected to port A, B, C, and D. The address input can be latched in the input macrocell (IMC) by Address Strobe (ALE/AS, PD0). Any input that is included in the DPLD equations for the SRAM, or primary or secondary Flash memory is considered to be an address input. 16.7 Data port mode Port A can be used as a data bus port for a MCU with a non-multiplexed address/data bus. The Data port is connected to the data bus of the MCU. The general I/O functions are disabled in port A if the port is configured as a Data port. 16.8 ) s ( ct Peripheral I/O mode u d o Peripheral I/O mode can be used to interface with external peripherals. In this mode, all of port A serves as a tri-state, bi-directional data buffer for the MCU. Peripheral I/O mode is enabled by setting Bit 7 of the VM register to a ’1.’ Figure 26 shows how port A acts as a bidirectional buffer for the MCU data bus if Peripheral I/O mode is enabled. An equation for PSEL0 and/or PSEL1 must be written in PSDabel. The buffer is tri-stated when PSEL0 or PSEL1 is not active. r P e Figure 26. Peripheral I/O mode ) (s RD PSEL0 t c u d o r t e l o s b O PSEL PSEL1 P e t e l o s b O 16.9 VM REGISTER BIT 7 D0 - D7 DATA BUS PA0 - PA7 WR AI02886 JTAG in-system programming (ISP) Port C is JTAG compliant, and can be used for in-system programming (ISP). You can multiplex JTAG operations with other functions on port C because in-system programming (ISP) is not performed in normal operating mode. For more information on the JTAG port, see Section 19: Programming in-circuit using the JTAG serial interface. Doc ID 7833 Rev 7 71/128 I/O ports 16.10 PSD8XXFX Port configuration registers (PCR) Each port has a set of port configuration registers (PCR) used for configuration. The contents of the registers can be accessed by the MCU through normal READ/WRITE bus cycles at the addresses given in Table 8. The addresses in Table 8 are the offsets in hexadecimal from the base of the CSIOP register. The pins of a port are individually configurable and each bit in the register controls its respective pin. For example, Bit 0 in a register refers to Bit 0 of its port. The three port configuration registers (PCR), shown in Table 23, are used for setting the port configurations. The default Power-up state for each register in Table 23 is 00h. 16.11 ) s ( ct Control register Any bit reset to '0' in the Control register sets the corresponding port pin to MCU I/O mode, and a '1' sets it to Address Out mode. The default mode is MCU I/O. Only ports A and B have an associated Control register. u d o 16.12 r P e Direction register t e l o The Direction register, in conjunction with the output enable (except for port D), controls the direction of data flow in the I/O ports. Any bit set to '1' in the Direction register causes the corresponding pin to be an output, and any bit set to '0' causes it to be an input. The default mode for all port pins is input. ) (s s b O Figure 27 and Figure 28 show the port architecture diagrams for ports A/B and C, respectively. The direction of data flow for ports A, B, and C are controlled not only by the direction register, but also by the output enable product term from the PLD AND Array. If the output enable product term is not active, the Direction register has sole control of a given pin’s direction. t c u d o r An example of a configuration for a port with the three least significant bits set to output and the remainder set to input is shown in Table 26. Since port D only contains three pins (shown in Figure 30), the Direction register for port D has only the three least significant bits active. P e t e l o Drive Select register 16.13 s b O The Drive Select register configures the pin driver as Open Drain or CMOS for some port pins, and controls the slew rate for the other port pins. An external pull-up resistor should be used for pins configured as Open Drain. A pin can be configured as Open Drain if its corresponding bit in the Drive Select register is set to a ’1.’ The default pin drive is CMOS. Note that the slew rate is a measurement of the rise and fall times of an output. A higher slew rate means a faster output response and may create more electrical noise. A pin operates in a high slew rate when the corresponding bit in the Drive register is set to ’1.’ The default rate is slow slew. Table 27 shows the Drive register for ports A, B, C, and D. It summarizes which pins can be configured as Open Drain outputs and which pins the slew rate can be set for. 72/128 Doc ID 7833 Rev 7 PSD8XXFX I/O ports Table 23. Port configuration registers (PCR)t Register name Port Control Direction Drive Select (1) MCU access A,B WRITE/READ A,B,C,D WRITE/READ A,B,C,D WRITE/READ 1. See Table 27 for Drive register bit definition. Table 24. Table 25. Port Pin Direction Control, Output Enable P.T. not defined Direction register bit Port Pin mode 0 Input 1 Output Output Enable P.T. 0 0 0 1 0 1 Bit 6 O Bit 5 u d o 0 o s b Input Output Output Port Direction assignment example Bit 7 0 r P e let Port Pin mode Output 1 O ) s ( t c r P e let o s b 1 Table 27. u d o Port Pin Direction Control, Output Enable P.T. defined Direction register Bit Table 26. ) s ( ct Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 1 1 1 0 Drive register pin assignment Drive register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Port A Open Drain Open Drain Open Drain Open Drain Slew Rate Slew Rate Slew Rate Slew Rate Port B Open Drain Open Drain Open Drain Open Drain Slew Rate Slew Rate Slew Rate Slew Rate Port C Open Drain Open Drain Open Drain Open Drain Open Drain Open Drain Open Drain Open Drain Port D NA(1) NA(1) NA(1) NA(1) NA(1) Slew Rate Slew Rate Slew Rate 1. NA = Not Applicable. Doc ID 7833 Rev 7 73/128 I/O ports 16.14 PSD8XXFX Port Data registers The port Data registers, shown in Table 28, are used by the MCU to write data to or read data from the ports. Table 28 shows the register name, the ports having each register type, and MCU access for each register type. The registers are described below. 16.15 Data In Port pins are connected directly to the Data In buffer. In MCU I/O input mode, the pin input is read through the Data In buffer. 16.16 ) s ( ct Data Out register Stores output data written by the MCU in the MCU I/O output mode. The contents of the register are driven out to the pins if the Direction register or the output enable product term is set to ’1.’ The contents of the register can also be read back by the MCU. u d o r P e Output macrocells (OMC) t e l o The CPLD Output macrocells (OMC) occupy a location in the MCU’s address space. The MCU can read the output of the Output macrocells (OMC). If the OMC Mask register bits are not set, writing to the macrocell loads data to the macrocell flip-flops (see Section 14: PLDS). 16.17 ) (s OMC Mask register s b O t c u Each OMC Mask register bit corresponds to an Output macrocell (OMC) flip-flop. When the OMC Mask register bit is set to a 1, loading data into the Output macrocell (OMC) flip-flop is blocked. The default value is 0 or unblocked. Table 28. P e d o r t e l o s b O 16.18 Port Data registers Register name Port MCU access Data In A,B,C,D READ – input on pin Data Out A,B,C,D WRITE/READ Output macrocell A,B,C READ – outputs of macrocells WRITE – loading macrocells flip-flop Mask macrocell A,B,C WRITE/READ – prevents loading into a given macrocell Input macrocell A,B,C READ – outputs of the input macrocells Enable Out A,B,C READ – the output enable control of the port driver Input macro (IMC) The input macrocells (IMC) can be used to latch or store external inputs. The outputs of the input macrocells (IMC) are routed to the PLD input bus, and can be read by the MCU (see Section 14: PLDS). 74/128 Doc ID 7833 Rev 7 PSD8XXFX 16.19 I/O ports Enable Out The Enable Out register can be read by the MCU. It contains the output enable values for a given port. A 1 indicates the driver is in output mode. A 0 indicates the driver is in tri-state and the pin is in input mode. 16.20 Ports A and B – functionality and structure Ports A and B have similar functionality and structure, as shown in Figure 27. The two ports can be configured to perform one or more of the following functions: ● MCU I/O mode ● CPLD Output – macrocells McellAB7-McellAB0 can be connected to port A or port B. McellBC7-McellBC0 can be connected to port B or port C. ● CPLD input – Via the input macrocells (IMC). ● Latched Address output – Provide latched address output as per Table 22. ● Address In – Additional high address inputs using the input macrocells (IMC). ● Open Drain/Slew Rate – pins PA3-PA0 and PB3-PB0 can be configured to fast slew rate, pins PA7-PA4 and PB7-PB4 can be configured to Open Drain mode. ● Data port – port A to D7-D0 for 8 bit non-multiplexed bus ● Multiplexed Address/Data port for certain types of MCU bus interfaces. ● Peripheral mode – port A only ) s ( ct u d o r P e t e l o s b O Figure 27. Port A and port B structure ) (s DATA OUT REG. t c u WR ADDRESS od ALE O o s b Q D Q DATA OUT PORT A OR B PIN ADDRESS A[ 7:0] OR A[15:8] G OUTPUT MUX MACROCELL OUTPUTS READ MUX INTERNAL DATA BUS e t e l Pr D P OUTPUT SELECT D DATA IN B CONTROL REG. D Q ENABLE OUT WR DIR REG. D Q WR ENABLE PRODUCT TERM (.OE) INPUT MACROCELL CPLD - INPUT AI02887 Doc ID 7833 Rev 7 75/128 I/O ports 16.21 PSD8XXFX Port C – functionality and structure Port C can be configured to perform one or more of the following functions (see Figure 28): ● MCU I/O mode ● CPLD Output – McellBC7-McellBC0 outputs can be connected to port B or port C. ● CPLD input – via the input macrocells (IMC) ● Address In – Additional high address inputs using the input macrocells (IMC). ● In-system programming (ISP) – JTAG port can be enabled for programming/erase of the PSD device (see Section 19: Programming in-circuit using the JTAG serial interface for more information on JTAG programming). ● Open Drain – port C pins can be configured in Open Drain mode ) s ( ct Port C does not support Address Out mode, and therefore no Control register is required. Pin PC7 may be configured as the DBE input in certain MCU bus interfaces. u d o Figure 28. Port C structure DATA OUT REG. D t e l o DATA OUT Q WR 1 SPECIAL FUNCTION MCELLBC[ 7:0] INTERNAL DATA BUS e t e ol s b O P ct D Pr PORT C PIN OUTPUT MUX OUTPUT SELECT DATA IN B ENABLE OUT DIR REG. D Q WR ENABLE PRODUCT TERM (.OE) s b O 16.22 ) (s READ MUX u d o r P e INPUT MACROCELL SPECIAL FUNCTION CPLD-INPUT CONFIGURATION AI02888B BIT Port D – functionality and structure Port D has three I/O pins. See Figure 29 and Figure 30. This port does not support Address Out mode, and therefore no Control register is required. port D can be configured to perform one or more of the following functions: 76/128 ● MCU I/O mode ● CPLD Output – External Chip Select (ECS0-ECS2) ● CPLD input – direct input to the CPLD, no input macrocells (IMC) ● Slew rate – pins can be set up for fast slew rate Doc ID 7833 Rev 7 PSD8XXFX I/O ports Port D pins can be configured in PSDsoft Express as input pins for other dedicated functions: ● Address Strobe (ALE/AS, PD0) ● CLKIN (PD1) as input to the macrocells flip-flops and APD counter ● PSD Chip Select input (CSI, PD2). Driving this signal high disables the Flash memory, SRAM and CSIOP. Figure 29. Port D structure DATA OUT REG. DATA OUT D Q ) s ( ct WR PORT D PIN OUTPUT MUX u d o ECS[ 2:0] INTERNAL DATA BUS READ MUX D bs DIR REG. Q WR ) s ( ct 16.23 t e l o DATA IN B D r P e OUTPUT SELECT P -O CPLD - INPUT ENABLE PRODUCT TERM (.OE) AI02889 u d o External Chip Select r P e The CPLD also provides three External Chip Select (ECS0-ECS2) outputs on port D pins that can be used to select external devices. Each External Chip Select (ECS0-ECS2) consists of one product term that can be configured active high or low. The output enable of the pin is controlled by either the output enable product term or the Direction register (see Figure 30). s b O t e l o Doc ID 7833 Rev 7 77/128 I/O ports PSD8XXFX Figure 30. Port D external Chip Select signals ENABLE (.OE) DIRECTION REGISTER PLD INPUT BUS CPLD AND ARRAY PT0 PD0 PIN ECS0 POLARITY BIT ENABLE (.OE) DIRECTION REGISTER PT1 PD1 PIN ECS1 ) s ( ct POLARITY BIT ENABLE (.OE) DIRECTION REGISTER ECS2 POLARITY BIT ) (s t e l o s b O t c u d o r P e t e l o s b O 78/128 u d o r P e PT2 Doc ID 7833 Rev 7 PD2 PIN AI02890 PSD8XXFX 17 Power management Power management All PSD devices offer configurable power saving options. These options may be used individually or in combinations, as follows: ● All memory blocks in a PSD (primary and secondary Flash memory, and SRAM) are built with power management technology. In addition to using special silicon design methodology, power management technology puts the memories into standby mode when address/data inputs are not changing (zero DC current). As soon as a transition occurs on an input, the affected memory “wakes up”, changes and latches its outputs, then goes back to Standby. The designer does not have to do anything special to achieve memory Standby mode when no inputs are changing—it happens automatically. The PLD sections can also achieve Standby mode when its inputs are not changing, as described in the sections on the Power Management mode registers (PMMR). ) s ( ct u d o ● As with the Power Management mode, the Automatic Power Down (APD) block allows the PSD to reduce to standby current automatically. The APD Unit can also block MCU address/data signals from reaching the memories and PLDs. This feature is available on all the devices of the PSD family. The APD Unit is described in more detail in Section 17.1: Automatic Power-down (APD) Unit and Power-down mode. Built in logic monitors the Address Strobe of the MCU for activity. If there is no activity for a certain time period (MCU is asleep), the APD Unit initiates Power-down mode (if enabled). Once in Power-down mode, all address/data signals are blocked from reaching PSD memory and PLDs, and the memories are deselected internally. This allows the memory and PLDs to remain in Standby mode even if the address/data signals are changing state externally (noise, other devices on the MCU bus, etc.). Keep in mind that any unblocked PLD input signals that are changing states keeps the PLD out of Standby mode, but not the memories. r P e t e l o ) (s s b O t c u ● PSD Chip Select input (CSI, PD2) can be used to disable the internal memories, placing them in Standby mode even if inputs are changing. This feature does not block any internal signals or disable the PLDs. This is a good alternative to using the APD Unit. There is a slight penalty in memory access time when PSD Chip Select input (CSI, PD2) makes its initial transition from deselected to selected. d o r P e t e l o ● s b O The PMMRs can be written by the MCU at run-time to manage power. All PSD supports “blocking bits” in these registers that are set to block designated signals from reaching both PLDs. Current consumption of the PLDs is directly related to the composite frequency of the changes on their inputs (see Figure 34 and Figure 35). Significant power savings can be achieved by blocking signals that are not used in DPLD or CPLD logic equations. PSD devices have a Turbo Bit in PMMR0. This bit can be set to turn the Turbo mode off (the default is with Turbo mode turned on). While Turbo mode is off, the PLDs can achieve standby current when no PLD inputs are changing (zero DC current). Even when inputs do change, significant power can be saved at lower frequencies (AC current), compared to when Turbo mode is on. When the Turbo mode is on, there is a significant DC current component and the AC component is higher. Doc ID 7833 Rev 7 79/128 Power management 17.1 PSD8XXFX Automatic Power-down (APD) Unit and Power-down mode The APD Unit, shown in Figure 31, puts the PSD into Power-down mode by monitoring the activity of Address Strobe (ALE/AS, PD0). If the APD Unit is enabled, as soon as activity on Address Strobe (ALE/AS, PD0) stops, a four bit counter starts counting. If Address Strobe (ALE/AS, PD0) remains inactive for fifteen clock periods of CLKIN (PD1), Power-down (PDN) goes high, and the PSD enters Power-down mode, as discussed next. Power-down mode By default, if you enable the APD Unit, Power-down mode is automatically enabled. The device enters Power-down mode if Address Strobe (ALE/AS, PD0) remains inactive for fifteen periods of CLKIN (PD1). ) s ( ct The following should be kept in mind when the PSD is in Power-down mode: ● If Address Strobe (ALE/AS, PD0) starts pulsing again, the PSD returns to normal operating mode. The PSD also returns to normal operating mode if either PSD Chip Select input (CSI, PD2) is low or the Reset (RESET) input is high. ● The MCU address/data bus is blocked from all memory and PLDs. ● Various signals can be blocked (prior to Power-down mode) from entering the PLDs by setting the appropriate bits in the PMMR registers. The blocked signals include MCU control signals and the common CLKIN (PD1). Note that blocking CLKIN (PD1) from the PLDs does not block CLKIN (PD1) from the APD Unit. u d o r P e t e l o s b O ● All PSD memories enter Standby mode and are drawing standby current. However, the PLD and I/O ports blocks do not go into Standby mode because you don’t want to have to wait for the logic and I/O to “wake up” before their outputs can change. See Table 29 for Power-down mode effects on PSD ports. ● Typical standby current is of the order of microamperes. These standby current values assume that there are no transitions on any PLD input. ) (s Table 29. t c u Power-down mode’s effect on ports d o r Port function P e MCU I/O let o s b O 80/128 Pin level No change PLD Out No change Address Out Undefined Data port Tri-state Peripheral I/O Tri-state Doc ID 7833 Rev 7 PSD8XXFX Power management Figure 31. APD unit APD EN PMMR0 BIT 1=1 TRANSITION DETECTION DISABLE BUS INTERFACE ALE CLR RESET EEPROM SELECT FLASH SELECT EDGE DETECT CSI PD APD COUNTER PD PLD CLKIN SRAM SELECT POWER DOWN (PDN) SELECT DISABLE FLASH/EEPROM/SRAM Table 30. PSD timing and standby current during Power-down mode Mode PLD propagation delay Power-down Normal tPD(1) Memory access time r P e Access recovery time to normal access No access o s b let tLVDV u d o ) s ( ct AI02891 Typical standby current 5 V VCC 3 V VCC 75 µA(2) 25 µA(2) 1. Power-down does not affect the operation of the PLD. The PLD operation in this mode is based only on the Turbo Bit. O )(or compatible) For users of the HC11 s ( t c u d o r P ete 2. Typical current consumption assuming no PLD inputs are changing state and the PLD Turbo Bit is ’0.’ 17.2 The HC11 turns off its E clock when it sleeps. Therefore, if you are using an HC11 (or compatible) in your design, and you wish to use the Power-down mode, you must not connect the E clock to CLKIN (PD1). You should instead connect a crystal oscillator to CLKIN (PD1). The crystal oscillator frequency must be less than 15 times the frequency of AS. The reason for this is that if the frequency is greater than 15 times the frequency of AS, the PSD keeps going into Power-down mode. l o 17.3 s Other power saving options b O The PSD offers other reduced power saving options that are independent of the Powerdown mode. Except for PSD Chip Select input (CSI, PD2) features, they are enabled by setting bits in PMMR0 and PMMR2. Doc ID 7833 Rev 7 81/128 Power management PSD8XXFX Figure 32. Enable Power-down flowchart RESET Enable APD Set PMMR0 Bit 1 = 1 OPTIONAL Disable desired inputs to PLD by setting PMMR0 bits 4 and 5 and PMMR2 bits 2 through 6. No ) s ( ct r P e Yes t e l o PSD in Power Down Mode 17.4 PLD power management ) (s u d o ALE/AS idle for 15 CLKIN clocks? AI02892 s b O The power and speed of the PLDs are controlled by the Turbo Bit (Bit 3) in PMMR0. By setting the bit to '1,' the Turbo mode is off and the PLDs consume the specified standby current when the inputs are not switching for an extended time of 70ns. The propagation delay time is increased by 10ns after the Turbo Bit is set to '1' (turned off) when the inputs change at a composite frequency of less than 15 MHz. When the Turbo Bit is reset to '0' (turned on), the PLDs run at full power and speed. The Turbo Bit affects the PLD’s DC power, AC power, and propagation delay. t c u d o r P e Blocking MCU control signals with the bits of PMMR2 can further reduce PLD AC power consumption. t e l o s b O Table 31. Bit Bit 0 Bit 1 Bit 2 Bit 3 82/128 Power Management mode registers PMMR0(1) Name X Description 0 Not used, and should be set to zero. 0= off Automatic Power-down (APD) is disabled. 1= on Automatic Power-down (APD) is enabled. 0 Not used, and should be set to zero. 0= on PLD Turbo mode is on 1= off PLD Turbo mode is off, saving power. APD Enable X PLD Turbo Doc ID 7833 Rev 7 PSD8XXFX Power Management mode registers PMMR0(1) (continued) Table 31. Bit Bit 4 Bit 5 Power management Name Description 0= on CLKIN (PD1) input to the PLD AND Array is connected. Every change of CLKIN (PD1) Powers-up the PLD when Turbo Bit is ’0.’ 1= off CLKIN (PD1) input to PLD AND Array is disconnected, saving power. 0= on CLKIN (PD1) input to the PLD macrocells is connected. 1= off CLKIN (PD1) input to PLD macrocells is disconnected, saving power. PLD Array clk PLD MCell clk Bit 6 X 0 Not used, and should be set to zero. Bit 7 X 0 Not used, and should be set to zero. ) s ( ct 1. The bits of this register are cleared to zero following Power-up. Subsequent Reset (RESET) pulses do not clear the registers. r P e Power Management mode registers PMMR2(1) Table 32. Bit Name Description t e l o Bit 0 X 0 Not used, and should be set to zero. Bit 1 X 0 Not used, and should be set to zero. PLD Array CNTL0 0 = on Cntl0 input to the PLD AND Array is connected. Bit 2 PLD Array CNTL1 0 = on Cntl1 input to the PLD AND Array is connected. PLD Array CNTL2 0 = on Cntl2 input to the PLD AND Array is connected. Bit 3 Bit 4 Bit 5 Bit 7 O ) (s s b O 1 = off Cntl0 input to PLD AND Array is disconnected, saving power. t c u 1 = off Cntl1 input to PLD AND Array is disconnected, saving power. d o r 1 = off Cntl2 input to PLD AND Array is disconnected, saving power. P e PLD Array ALE 0 = on ALE input to the PLD AND Array is connected. PLD Array DBE 0 = on DBE input to the PLD AND Array is connected. X 0 let o s b Bit 6 u d o 1 = off ALE input to PLD AND Array is disconnected, saving power. 1 = off DBE input to PLD AND Array is disconnected, saving power. Not used, and should be set to zero. 1. The bits of this register are cleared to zero following Power-up. Subsequent Reset (RESET) pulses do not clear the registers. Doc ID 7833 Rev 7 83/128 Power management 17.5 PSD8XXFX PSD Chip Select input (CSI, PD2) PD2 of port D can be configured in PSDsoft Express as PSD Chip Select input (CSI). When low, the signal selects and enables the internal Flash memory, EEPROM, SRAM, and I/O blocks for READ or WRITE operations involving the PSD. A high on PSD Chip Select input (CSI, PD2) disables the Flash memory, EEPROM, and SRAM, and reduces the PSD power consumption. However, the PLD and I/O signals remain operational when PSD Chip Select input (CSI, PD2) is high. There may be a timing penalty when using PSD Chip Select input (CSI, PD2) depending on the speed grade of the PSD that you are using. See the timing parameter tSLQV in Table 62 or Table 63. 17.6 ) s ( ct Input clock The PSD provides the option to turn off CLKIN (PD1) to the PLD to save AC power consumption. CLKIN (PD1) is an input to the PLD AND Array and the Output macrocells (OMC). u d o r P e During Power-down mode, or, if CLKIN (PD1) is not being used as part of the PLD logic equation, the clock should be disabled to save AC power. CLKIN (PD1) is disconnected from the PLD AND Array or the macrocells block by setting Bits 4 or 5 to a 1 in PMMR0. 17.7 t e l o s b O Input control signals ) (s The PSD provides the option to turn off the input control signals (CNTL0, CNTL1, CNTL2, Address Strobe (ALE/AS, PD0) and DBE) to the PLD to save AC power consumption. These control signals are inputs to the PLD AND Array. During Power-down mode, or, if any of them are not being used as part of the PLD logic equation, these control signals should be disabled to save AC power. They are disconnected from the PLD AND Array by setting Bits 2, 3, 4, 5, and 6 to a 1 in PMMR2. t c u P e Table 33. let so b O 84/128 d o r APD counter operation APD Enable bit ALE PD polarity ALE level 0 X X Not counting 1 X Pulsing Not counting 1 1 1 Counting (generates PDN after 15 clocks) 1 0 0 Counting (generates PDN after 15 clocks) APD counter Doc ID 7833 Rev 7 PSD8XXFX Reset timing and device status at reset 18 Reset timing and device status at reset 18.1 Power-up reset Upon Power-up, the PSD requires a Reset (RESET) pulse of duration tNLNH-PO after VCC is steady. During this period, the device loads internal configurations, clears some of the registers and sets the Flash memory into operating mode. After the rising edge of Reset (RESET), the PSD remains in the Reset mode for an additional period, tOPR, before the first memory access is allowed. The Flash memory is reset to the READ mode upon Power-up. Sector Select (FS0-FS7 and CSBOOT0-CSBOOT3) must all be low, Write Strobe (WR, CNTL0) high, during Power On Reset for maximum security of the data contents and to remove the possibility of a byte being written on the first edge of Write Strobe (WR, CNTL0). Any Flash memory WRITE cycle initiation is prevented automatically when VCC is below VLKO. ) s ( ct 18.2 u d o r P e Warm reset Once the device is up and running, the device can be reset with a pulse of a much shorter duration, tNLNH. t e l o The same tOPR period is needed before the device is operational after warm reset. Figure 33 shows the timing of the Power-up and warm reset. ) (s 18.3 s b O I/O pin, register and PLD status at Reset t c u Table 34 shows the I/O pin, register and PLD status during Power On Reset, warm reset and Power-down mode. PLD outputs are always valid during warm reset, and they are valid in Power On Reset once the internal PSD Configuration bits are loaded. This loading of PSD is completed typically long before the VCC ramps up to operating level. Once the PLD is active, the state of the outputs are determined by the PSDabel equations. d o r P e t of Flash memory erase and program cycles (on the Reset e l o PSD834Fx) 18.4 s b O A Reset (RESET) also resets the internal Flash memory state machine. During a Flash memory program or erase cycle, Reset (RESET) terminates the cycle and returns the Flash memory to the Read mode within a period of tNLNH-A. Doc ID 7833 Rev 7 85/128 Reset timing and device status at reset PSD8XXFX Figure 33. Reset (RESET) timing VCC(min) VCC tNLNH-PO tNLNH tNLNH-A tOPR Power-On Reset tOPR Warm Reset RESET AI02866b Table 34. ) s ( ct Status during Power-on reset, Warm reset and Power-down mode Port configuration Power-on reset MCU I/O Input mode Warm reset Power-down mode u d o Input mode Unchanged PLD Output Valid after internal PSD configuration bits are loaded Valid Depends on inputs to PLD (addresses are blocked in PD mode) Address Out Tri-stated Tri-stated Data port Tri-stated Tri-stated Peripheral I/O Tri-stated Tri-stated Register Cleared to '0' Macrocells flip-flop status e t e ol All other registers O ) s ( t c PMMR0 and PMMR2 VM register(1) Warm reset Not defined Tri-stated Tri-stated Power-down mode Unchanged Unchanged Cleared to '0' by internal Power-On Reset Depends on .re and .pr equations Depends on .re and .pr equations Initialized, based on the selection in PSDsoft Configuration menu Initialized, based on the selection in PSDsoft Configuration menu Unchanged Cleared to '0' Cleared to '0' Unchanged u d o Pr let o s b Power-on reset r P e 1. The SR_cod and Periphmode bits in the VM register are always cleared to '0' on Power-on reset or Warm reset. s b O 86/128 Doc ID 7833 Rev 7 PSD8XXFX 19 Programming in-circuit using the JTAG serial interface Programming in-circuit using the JTAG serial interface The JTAG Serial Interface block can be enabled on port C (see Table 35). All memory blocks (primary and secondary Flash memory), PLD logic, and PSD Configuration register bits may be programmed through the JTAG Serial Interface block. A blank device can be mounted on a printed circuit board and programmed using JTAG. The standard JTAG signals (IEEE 1149.1) are TMS, TCK, TDI, and TDO. Two additional signals, TSTAT and TERR, are optional JTAG extensions used to speed up Program and Erase cycles. ) s ( ct Note: By default, on a blank PSD (as shipped from the factory or after erasure), four pins on port C are enabled for the basic JTAG signals TMS, TCK, TDI, and TDO. See Application Note AN1153 for more details on JTAG in-system programming (ISP). 19.1 u d o r P e Standard JTAG signals t e l o The standard JTAG signals (TMS, TCK, TDI, and TDO) can be enabled by any of three different conditions that are logically ORed. When enabled, TDI, TDO, TCK, and TMS are inputs, waiting for a JTAG serial command from an external JTAG controller device (such as FlashLINK or Automated Test Equipment). When the enabling command is received, TDO becomes an output and the JTAG channel is fully functional inside the PSD. The same command that enables the JTAG channel may optionally enable the two additional JTAG signals, TSTAT and TERR. ) (s s b O The following symbolic logic equation specifies the conditions enabling the four basic JTAG signals (TMS, TCK, TDI, and TDO) on their respective port C pins. For purposes of discussion, the logic label JTAG_ON is used. When JTAG_ON is true, the four pins are enabled for JTAG. When JTAG_ON is false, the four pins can be used for general PSD I/O. t c u d o r JTAG_ON = PSDsoft_enabled + /* An NVM configuration bit inside the PSD is set by the designer in the PSDsoft Express Configuration utility. This dedicates the pins for JTAG at all times (compliant with IEEE 1149.1 */ Microcontroller_enabled + /* The microcontroller can set a bit at run-time by writing to the PSD register, JTAG Enable. This register is located at address CSIOP + offset C7h. Setting the JTAG_ENABLE bit in this register will enable the pins for JTAG use. This bit is cleared by a PSD reset or the microcontroller. See Table 36 for bit definition. */ PSD_product_term_enabled; /* A dedicated product term (PT) inside the PSD can be used to enable the JTAG pins. This PT has the reserved name JTAGSEL. Once defined as a node in PSDabel, the designer can write an equation for JTAGSEL. This method is used when the port C JTAG pins are multiplexed with other I/O signals. It is recommended to logically tie the node JTAGSEL to the JEN\ signal on the Flashlink cable when multiplexing JTAG signals. See Application Note 1153 for details. */ P e s b O t e l o The state of the PSD Reset (RESET) signal does not interrupt (or prevent) JTAG operations if the JTAG pins are dedicated by an NVM configuration bit (via PSDsoft Express). However, Doc ID 7833 Rev 7 87/128 Programming in-circuit using the JTAG serial interface PSD8XXFX Reset (RESET) will prevent or interrupt JTAG operations if the JTAG enable register is used to enable the JTAG pins. The PSD supports JTAG In-System-Configuration (ISC) commands, but not Boundary Scan. The PSDsoft Express software tool and FlashLINK JTAG programming cable implement the JTAG In-System-Configuration (ISC) commands. A definition of these JTAG In-System-Configuration (ISC) commands and sequences is defined in a supplemental document available from ST. This document is needed only as a reference for designers who use a FlashLINK to program their PSD. 19.2 JTAG extensions ) s ( ct TSTAT and TERR are two JTAG extension signals enabled by an “ISC_ENABLE” command received over the four standard JTAG signals (TMS, TCK, TDI, and TDO). They are used to speed Program and Erase cycles by indicating status on PSD signals instead of having to scan the status out serially using the standard JTAG channel. See Application Note AN1153. u d o r P e TERR indicates if an error has occurred when erasing a sector or programming a byte in Flash memory. This signal goes low (active) when an Error condition occurs, and stays low until an “ISC_CLEAR” command is executed or a chip Reset (RESET) pulse is received after an “ISC_DISABLE” command. t e l o TSTAT behaves the same as Ready/Busy described in Section 6.3.1: Ready/Busy (PC3). TSTAT is high when the PSD device is in READ mode (primary and secondary Flash memory contents can be read). TSTAT is low when Flash memory program or erase cycles are in progress, and also when data is being written to the secondary Flash memory. ) (s s b O TSTAT and TERR can be configured as open-drain type signals during an “ISC_ENABLE” command. This facilitates a wired-OR connection of TSTAT signals from multiple PSD devices and a wired-OR connection of TERR signals from those same devices. This is useful when several PSD devices are “chained” together in a JTAG environment. t c u 19.3 d o rand Flash memory protection Security P e t e l o s b O 88/128 When the security bit is set, the device cannot be read on a device programmer or through the JTAG port. When using the JTAG port, only a Full Chip Erase command is allowed. All other Program, Erase and Verify commands are blocked. Full Chip Erase returns the part to a non-secured blank state. The Security bit can be set in PSDsoft Express configuration. All primary and secondary Flash memory sectors can individually be sector protected against erasures. The sector protect bits can be set in PSDsoft Express configuration. Doc ID 7833 Rev 7 PSD8XXFX Programming in-circuit using the JTAG serial interface Table 35. JTAG port signals Port C pin JTAG signals Description PC0 TMS mode Select PC1 TCK Clock PC3 TSTAT Status PC4 TERR Error flag PC5 TDI Serial Data In PC6 TDO Serial Data Out ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 89/128 Initial delivery state 20 PSD8XXFX Initial delivery state When delivered from ST, the PSD device has all bits in the memory and PLDs set to ’1.’ The PSD Configuration register bits are set to ’0.’ The code, configuration, and PLD logic are loaded using the programming procedure. Information for programming the device is available directly from ST. Please contact your local sales representative. JTAG Enable register(1) Table 36. Bit Bit 0 Name Description 0= off JTAG port is disabled. 1= on JTAG port is enabled. ) s ( ct JTAG_Enable Bit 1 X 0 Not used, and should be set to zero. Bit 2 X 0 Not used, and should be set to zero. Bit 3 X 0 Not used, and should be set to zero. Bit 4 X 0 Not used, and should be set to zero. Bit 5 X 0 Not used, and should be set to zero. Bit 6 X 0 Not used, and should be set to zero. Bit 7 X 0 Not used, and should be set to zero. u d o r P e t e l o ) (s s b O 1. The state of Reset (RESET) does not interrupt (or prevent) JTAG operations if the JTAG signals are dedicated by an NVM Configuration bit (via PSDsoft Express). However, Reset (RESET) prevents or interrupts JTAG operations if the JTAG enable register is used to enable the JTAG signals. t c u d o r P e t e l o s b O 90/128 Doc ID 7833 Rev 7 PSD8XXFX 21 Maximum rating Maximum rating Stressing the device above the rating listed in the Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 37. Absolute maximum ratings Symbol Parameter TSTG Storage temperature TLEAD Lead temperature during soldering (20 seconds max.)(1) VIO Input and output voltage (Q = VOH or Hi-Z) VCC Supply voltage VPP Device programmer supply voltage (2) 1. IPC/JEDEC J-STD-020A Max. –65 125 d o r –0.6 °C °C 7.0 V –0.6 7.0 V –0.6 14.0 V –2000 2000 V P e t e l o Unit ) s ( t uc 235 Electrostatic discharge voltage (human body model) VESD Min. s b O 2. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 Ω, R2=500 Ω) ) (s t c u d o r P e t e l o s b O Doc ID 7833 Rev 7 91/128 AC/DC parameters 22 PSD8XXFX AC/DC parameters This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device: ● DC electrical specifications ● AC timing specifications – PLD timings Combinatorial timings Synchronous clock mode Asynchronous clock mode ) s ( ct Input macrocell timings – MCU timings u d o READ timings WRITE timings r P e Peripheral mode timings Power-down and Reset timings t e l o The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measurement Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. s b O The following are issues concerning the parameters presented: ) (s ● In the DC specification the supply current is given for different modes of operation. Before calculating the total power consumption, determine the percentage of time that the PSD is in each mode. Also, the supply power is considerably different if the Turbo Bit is ’0.’ ● t c u P e t e l o ● d o r The AC power component gives the PLD, Flash memory, and SRAM mA/MHz specification. Figure 34 and Figure 35 show the PLD mA/MHz as a function of the number of Product Terms (PT) used. In the PLD timing parameters, add the required delay when Turbo Bit is ’0.’ s b O 92/128 Doc ID 7833 Rev 7 PSD8XXFX AC/DC parameters Figure 34. PLD ICC /frequency consumption (5 V range) 110 VCC = 5V 100 90 %) ON BO TUR 80 (100 ) FF ICC – (mA) 70 ON RBO O 60 O TU TU RB 50 (25% 40 30 F 20 O RB OF 10 0 0 5 ) s ( ct PT 100% PT 25% TU 10 15 u d o 20 HIGHEST COMPOSITE FREQUENCY AT PLD INPUTS (MHz) 25 AI02894 r P e Figure 35. PLD ICC /frequency consumption (3 V range) t e l o 60 VCC = 3V 50 ICC – (mA) 40 FF TU od 10 bs Table 38. s b O 5%) O RB O t c u 20 e t e ol ) (s 30 Pr ) 100% ON ( BO TUR PT 100% PT 25% F O RB TU (2 O ON TURB OF 0 0 5 10 15 20 HIGHEST COMPOSITE FREQUENCY AT PLD INPUTS (MHz) 25 AI03100 Example of PSD typical power calculation at VCC=5.0 V (Turbo mode on) (1) O Conditions Highest Composite PLD input frequency (Freq PLD) MCU ALE frequency (Freq ALE) = 8 MHz = 4 MHz % Flash memory access = 80% % SRAM access = 15% % I/O access = 5% (no additional power above base) Operational modes % Normal = 10% % Power-down mode = 90% Doc ID 7833 Rev 7 93/128 AC/DC parameters Table 38. PSD8XXFX Example of PSD typical power calculation at VCC=5.0 V (Turbo mode on) (1) Conditions Number of product terms used (from fitter report) = 45 PT % of total product terms = 45/182 = 24.7% Turbo mode = ON Calculation (using typical values) ICC total = Ipwrdown x %pwrdown + %normal x (ICC (ac) + ICC (dc)) = Ipwrdown x %pwrdown + % normal x (%flash x 2.5 mA/MHz x Freq ALE ) s ( ct + %SRAM x 1.5 mA/MHz x Freq ALE + % PLD x 2 mA/MHz x Freq PLD u d o + #PT x 400 µA/PT) r P e = 50 µA x 0.90 + 0.1 x (0.8 x 2.5 mA/MHz x 4 MHz + 0.15 x 1.5 mA/MHz x 4 MHz t e l o + 2 mA/MHz x 8 MHz + 45 x 0.4 mA/PT) s b O = 45 µA + 0.1 x (8 + 0.9 + 16 + 18 mA) = 45 µA + 0.1 x 42.9 ) (s = 45 µA + 4.29 mA = 4.34 mA t c u 1. This is the operating power with no EEPROM WRITE or Flash memory Erase cycles in progress. Calculation is based on IOUT = 0 mA. Table 39. d o r Example of PSD typical power calculation at VCC = 5.0 V (Turbo mode off) (1) P e t e l o Conditions Highest Composite PLD input frequency s b O (Freq PLD) MCU ALE frequency (Freq ALE) = 8 MHz = 4 MHz % Flash memory access = 80% % SRAM access = 15% % I/O access = 5% (no additional power above base) Operational modes % Normal = 10% % Power-down mode = 90% Number of product terms used 94/128 Doc ID 7833 Rev 7 PSD8XXFX Table 39. AC/DC parameters Example of PSD typical power calculation at VCC = 5.0 V (Turbo mode off) Conditions (from fitter report) = 45 PT % of total product terms = 45/182 = 24.7% Turbo mode = Off Calculation (using typical values) ICC total = Ipwrdown x %pwrdown + %normal x (ICC (ac) + ICC (dc)) = Ipwrdown x %pwrdown + % normal x (%flash x 2.5mA/MHz x Freq ALE + %SRAM x 1.5mA/MHz x Freq ALE ) s ( ct + % PLD x (from graph using Freq PLD)) = 50 µA x 0.90 + 0.1 x (0.8 x 2.5mA/MHz x 4 MHz u d o + 0.15 x 1.5mA/MHz x 4 MHz r P e + 24mA) = 45 µA + 0.1 x (8 + 0.9 + 24) t e l o = 45 µA + 0.1 x 32.9 = 45 µA + 3.29mA = 3.34mA s b O 1. This is the operating power with no EEPROM WRITE or Flash memory Erase cycles in progress. Calculation is based on IOUT = 0 mA. Table 40. ) (s Operating conditions (5 V devices) t c u Symbol Parameter Min. Max. Unit 4.5 5.5 V –40 85 °C 0 70 °C Min. Max. Unit Supply voltage 3.0 3.6 V Ambient operating temperature (industrial) –40 85 °C 0 70 °C od Supply voltage VCC Pr Ambient operating temperature (industrial) TA l o s ete Table 41. b O Ambient operating temperature (commercial) Operating conditions (3 V devices) Symbol VCC TA Parameter Ambient operating temperature (commercial) Doc ID 7833 Rev 7 95/128 AC/DC parameters PSD8XXFX AC signal letters for PLD timing(1) Table 42. Letter Signal description A Address input C CEout output D Input data E E output G Internal WDOG_ON signal I Interrupt input L ALE input N RESET input or output P Port signal output Q Output data R WR, UDS, LDS, DS, IORD, PSEN inputs S Chip Select input T R/W input W Internal PDN signal M Output macrocell ) s ( ct u d o r P e t e l o s b O 1. Example: tAVLX = time from address valid to ALE invalid. ct Letter du t ro L P e let o s b O ) (s AC signal behavior symbols for PLD timing(1) Table 43. AC signal description Time Logic level low or ALE H Logic level high V Valid X No longer a valid logic level(2) Z Float PW Pulse width 1. Example: tAVLX = time from address valid to ALE invalid. 2. Output Hi-Z is defined as the point where data out is no longer driven. Table 44. AC measurement conditions Symbol CL 96/128 Parameter Load capacitance Min. Max. 30 Doc ID 7833 Rev 7 Unit pF PSD8XXFX AC/DC parameters Table 45. Capacitance(1) Symbol Parameter Test condition Typ.(2) Max. Unit VIN = 0V 4 6 pF Input capacitance (for input pins) CIN COUT Output capacitance (for input/output pins) VOUT = 0V 8 12 pF CVPP Capacitance (for CNTL2/VPP) VPP = 0V 18 25 pF 1. Sampled only, not 100% tested. 2. Typical values are for TA = 25°C and nominal supply voltages. ) s ( ct Figure 36. AC measurement I/O waveform u d o 3.0V r P e Test Point 0V 1.5V t e l o Figure 37. AC measurement load circuit AI03103b s b O 2.01 V ) (s 195 Ω ct u d o e t e ol Device Under Test CL = 30 pF (Including Scope and Jig Capacitance) Pr AI03104b Figure 38. Switching waveforms – key s b O 2.01 V 195 Ω Device Under Test CL = 30 pF (Including Scope and Jig Capacitance) AI03104b Doc ID 7833 Rev 7 97/128 AC/DC parameters Table 46. PSD8XXFX DC characteristics (5 V devices) Test condition Symbol Parameter (in addition to those in Table 40) Min. Typ. Max. Unit VIH Input high voltage 4.5 V < VCC < 5.5 V 2 VCC +0.5 V VIL Input low voltage 4.5 V < VCC < 5.5 V –0.5 0.8 V VIH1 Reset high level input voltage (1) 0.8VCC VCC +0.5 V VIL1 Reset low level input voltage (1) –0.5 0.2VCC – 0.1 V VHYS Reset pin hysteresis 0.3 VLKO VCC (min) for Flash Erase and Program 2.5 VOL Output low voltage VOH Output high voltage ISB Standby supply current for Power-down mode CSI >VCC –0.3 V(2)(3) ILI input leakage current VSS < VIN < VCC ILO Output leakage current IOL = 20 µA, VCC = 4.5 V d o r Operating supply current ICC (DC)(4) P e s b O t e l o ) (s t c u PLD only ICC (AC)(4) 4.4 ete IOH = –2 mA, VCC = 4.5 V 0.45 < VOUT < VCC Flash memory du o r P 0.25 IOH = –20 µA, VCC = 4.5 V ol 2.4 V 0.1 V 0.45 V 4.49 V 3.9 V 50 200 µA –1 ±0.1 1 µA –10 ±5 10 µA PLD_TURBO = off, f = 0 MHz(4) 0 PLD_TURBO = on, f = 0 MHz 400 700 µA/PT During Flash memory WRITE/Erase only 15 30 mA Read only, f = 0 MHz 0 0 mA f = 0 MHz 0 0 mA SRAM µA/PT (5) PLD AC adder Flash memory AC adder 2.5 3.5 mA/MHz SRAM AC adder 1.5 3.0 mA/MHz 1. Reset (RESET) has hysteresis. VIL1 is valid at or below 0.2VCC –0.1. VIH1 is valid at or above 0.8VCC. 2. CSI deselected or internal Power-down mode is active. 3. PLD is in non-Turbo mode, and none of the inputs are switching. 4. IOUT = 0 mA 5. Please see Figure 34 for the PLD current calculation. 98/128 ) s ( ct 4.2 0.01 IOL = 8 mA, VCC = 4.5 V s b O V Doc ID 7833 Rev 7 PSD8XXFX Table 47. AC/DC parameters DC Characteristics (3 V devices) Symbol Parameter Conditions Min. Typ. Max. Unit VIH High level input voltage 3.0 V < VCC < 3.6 V 0.7VCC VCC +0.5 V VIL Low level input voltage 3.0 V < VCC < 3.6 V –0.5 0.8 V 0.8VCC VCC +0.5 V –0.5 0.2VCC – 0.1 V VIH1 Reset high level input voltage (1) VIL1 Reset low level input voltage (1) VHYS Reset pin hysteresis 0.3 VLKO VCC (min) for Flash Erase and Program 1.5 VOL Output low voltage VOH Output high voltage ISB Standby supply current for Power-down mode ILI Input leakage current VSS < VIN < VCC ILO Output leakage current 0.45 < VIN < VCC Operating supply current ICC (DC)(4) ICC (AC)(4) s b O e t e ol o r P ) s ( ct 0.1 V IOL = 4 mA, VCC = 3.0 V 0.15 0.45 V IOH = –20 µA, VCC = 3.0 V 2.9 IOH = –1 mA, VCC = 3.0 V 2.7 e t e ol -O u d o 2.99 Pr 2.8 V V 25 100 µA –1 ±0.1 1 µA –10 ±5 10 µA PLD_TURBO = off, f = 0 MHz(3) 0 PLD_TURBO = on, f = 0 MHz 200 400 µA/PT During Flash memory WRITE/Erase only 10 25 mA Read only, f = 0 MHz 0 0 mA 0 0 mA ) s ( ct du V 0.01 bs Flash memory 2.2 IOL = 20 µA, VCC = 3.0 V CSI >VCC –0.3 V(2)(3) PLD only V SRAM f = 0 MHz µA/PT PLD AC adder (5) Flash memory AC adder 1.5 2.0 mA/MHz SRAM AC adder 0.8 1.5 mA/MHz 1. Reset (RESET) has hysteresis. VIL1 is valid at or below 0.2VCC –0.1. VIH1 is valid at or above 0.8VCC. 2. CSI deselected or internal Power-down mode is active. 3. PLD is in non-Turbo mode, and none of the inputs are switching. 4. IOUT = 0 mA 5. Please see Figure 35 for the PLD current calculation. Doc ID 7833 Rev 7 99/128 AC/DC parameters PSD8XXFX Figure 39. Input to output disable / enable INPUT tER tEA INPUT TO OUTPUT ENABLE/DISABLE AI02863 Table 48. CPLD combinatorial timing (5 V devices) -70 Symbol Parameter -90 -15 Conditions Min Max Min Max Min Max tPD CPLD input pin/feedback to CPLD combinatorial output 20 25 tEA CPLD input to CPLD output enable 21 26 tER CPLD input to CPLD output disable 21 tARP CPLD register clear or preset delay 21 tARPW CPLD register clear or preset pulse width tARD CPLD array delay ) (s t c u Any macrocell d o r let 26 20 11 Slew rate (s) Unit (1) t c u + 10 –2 ns 32 + 10 –2 ns 32 + 10 –2 ns 33 + 10 –2 ns 29 16 Turbo off od +2 r P e so 26 b O 10 32 Fast PT Aloc + 10 22 ns +2 ns 1. Fast Slew Rate output available on PA3-PA0, PB3-PB0, and PD2-PD0. Decrement times by given amount. Table 49. P e CPLD combinatorial timing (3 V devices) t e l o Symbol s b O Parameter -12 -15 -20 Conditions Min Max Min Max Min Max tPD CPLD input pin/feedback to CPLD combinatorial output 40 45 50 tEA CPLD input to CPLD output enable 43 45 tER CPLD input to CPLD output disable 43 tARP CPLD register clear or preset delay 40 100/128 Doc ID 7833 Rev 7 PT Turbo Aloc off +4 Slew rate Unit (1) + 20 –6 ns 50 + 20 –6 ns 45 50 + 20 –6 ns 43 48 + 20 –6 ns PSD8XXFX Table 49. AC/DC parameters CPLD combinatorial timing (3 V devices) (continued) -12 Symbol Parameter -15 -20 Conditions Min Max Min Max Min Max tARPW CPLD register clear or preset pulse width tARD CPLD array delay 25 Any macrocell 30 PT Turbo Aloc off 35 25 Slew rate + 20 29 33 Unit (1) ns +4 ns 1. Fast Slew Rate output available on PA3-PA0, PB3-PB0, and PD2-PD0. Decrement times by given amount. Figure 40. Synchronous clock mode timing – PLD tCH ) s ( ct tCL CLKIN tS r P e INPUT Symbol Parameter AI02860 ct Conditions Pr u d o -70 Min Max -90 Min -15 Max Min Max Fast Turbo Slew PT rate off (1) Aloc Unit 1/(tS+tCO) 40.0 30.30 25.00 MHz Maximum frequency Internal feedback (fCNT) 1/(tS+tCO–10) 66.6 43.48 31.25 MHz Maximum frequency Pipelined data 1/(tCH+tCL) 83.3 50.00 35.71 MHz e t e ol s b O ) (s s b O CPLD macrocell Synchronous clock mode timing (5 V devices) Maximum frequency External feedback fMAX tCO t e l o REGISTERED OUTPUT Table 50. u d o tH tS Input setup time 12 15 20 tH Input hold time 0 0 0 ns tCH Clock high time Clock input 6 10 15 ns tCL Clock low time Clock input 6 10 15 ns tCO Clock to output delay Clock input 13 18 Doc ID 7833 Rev 7 +2 22 + 10 ns –2 ns 101/128 AC/DC parameters Table 50. PSD8XXFX CPLD macrocell Synchronous clock mode timing (5 V devices) (continued) -70 Symbol Parameter Min tARD CPLD array delay tMIN Minimum clock period(2) -90 -15 Conditions Max Any macrocell tCH+tCL Min Max 11 Min 16 12 20 Max 22 Fast Turbo Slew PT rate off (1) Aloc +2 Unit ns 30 ns 1. Fast Slew Rate output available on PA3-PA0, PB3-PB0, and PD2-PD0. Decrement times by given amount. 2. CLKIN (PD1) tCLCL = tCH + tCL. Table 51. -12 Symbol Parameter -15 -20 Conditions Min Max Min Max Min Max fMAX Maximum frequency External feedback 1/(tS+tCO) 22.2 Maximum frequency Internal feedback (fCNT) 1/(tS+tCO–10) 28.5 Maximum frequency Pipelined data tS Input setup time tH Input hold time tCH Clock high time tCL Clock low time s b O tARD ete tMIN c u d Clock to output delay CPLD array delay Minimum clock period(2) 18.8 Turbo Slew rate off (1) o r P du 23.2 18.8 MHz 33.3 31.2 MHz 20 25 30 +4 0 0 0 ns Clock input 15 15 16 ns Clock input 10 15 16 ns Clock input 25 28 33 Any macrocell 25 29 33 tCH+tCL 25 29 + 20 2. CLKIN (PD1) tCLCL = tCH + tCL. Doc ID 7833 Rev 7 ns –6 +4 32 1. Fast Slew Rate output available on PA3-PA0, PB3-PB0, and PD2-PD0. Decrement times by given amount. 102/128 Unit MHz bs 40.0 PT Aloc 15.8 e t e ol O ) t(s 1/(tCH+tCL) o r P ol tCO ) s ( ct CPLD macrocell synchronous clock mode timing (3 V devices) ns ns ns PSD8XXFX AC/DC parameters Figure 41. Asynchronous Reset / Preset tARPW RESET/PRESET INPUT tARP REGISTER OUTPUT AI02864 Figure 42. Asynchronous Clock mode Timing (product term clock) tCHA ) s ( ct tCLA CLOCK tSA u d o tHA r P e INPUT tCOA t e l o REGISTERED OUTPUT Table 52. Symbol bs O ) CPLD macrocell asynchronous clock mode timing (5 V devices) s ( t c Parameter Conditions -70 Min Maximum frequency External feedback fMAXA e t e ol s b O AI02859 Maximum frequency Internal feedback (fCNTA) u d o Pr Maximum frequency Pipelined data Max Min -90 Max -15 Min Max PT Turbo Slew Aloc off rate Unit 1/(tSA+tCOA) 38.4 26.32 21.27 MHz 1/(tSA+tCOA–10) 62.5 35.71 27.78 MHz 1/(tCHA+tCLA) 71.4 41.67 35.71 MHz tSA Input setup time 7 8 12 tHA Input hold time 8 12 14 tCHA Clock input high time 9 12 15 + 10 ns tCLA Clock input low time 9 12 15 + 10 ns Doc ID 7833 Rev 7 +2 + 10 ns ns 103/128 AC/DC parameters Table 52. PSD8XXFX CPLD macrocell asynchronous clock mode timing (5 V devices) (continued) -70 Symbol Parameter Min tCOA Clock to output delay tARDA CPLD array delay Any macrocell tMINA Minimum clock period 1/fCNTA Table 53. -90 Max Min Parameter 16 22 28 +2 ns ns Max 1/(tSA+tCOA–10) 27.8 tCHA -20 Conditions Maximum frequency Internal feedback (fCNTA) Input hold time ) (s ct 1/(tCHA+tCLA) u d o ) s ( ct Min Max Min 19.2 Max PT Turbo Slew rate Aloc off du o r P Unit 16.9 MHz 23.8 20.4 MHz 27 24.4 MHz e t e ol s b O 33.3 10 12 13 12 15 17 Clock high time 17 22 25 + 20 ns Clock low time 13 15 16 + 20 ns r P e t e l o Clock to output delay tARD CPLD array delay tMINA Minimum clock period 104/128 –2 39 -15 21.7 tHA O ns 11 1/(tSA+tCOA) Input setup time bs + 10 37 Maximum frequency External feedback tSA tCOA Min CPLD macrocell Asynchronous clock mode timing (3 V devices) Maximum frequency Pipelined data tCLA Max 30 16 Min fMAXA Unit Max PT Turbo Slew Aloc off rate 21 -12 Symbol -15 Conditions Any macrocell 1/fCNTA 36 +4 40 46 25 29 33 Doc ID 7833 Rev 7 49 ns ns 36 42 + 20 + 20 +4 –6 ns ns ns PSD8XXFX AC/DC parameters Figure 43. Input macrocell timing (product term clock) t INH t INL PT CLOCK t IS t IH INPUT OUTPUT t INO AI03101 Table 54. -70 Symbol Parameter -90 -15 du Conditions Min Max Min Max Min Max tIS Input setup time (1) 0 0 tIH Input hold time (1) 15 20 NIB input high time (1) 9 tINL NIB input low time (1) tINO NIB input to combinatorial delay ol (1) tINH ) s ( ct Input macrocell timing (5 V devices) ) (s 12 s b O 9 12 o r P 0 ete 34 PT Aloc 26 Turbo off Unit ns + 10 ns 18 ns 18 ns 46 59 +2 + 10 ns 1. Inputs from port A, B, and C relative to register/ latch clock from the PLD. ALE/AS latch timings refer to tAVLX and tLXAX. Table 55. od Symbol tIS s b O tINL tINO Parameter r P e -12 -15 -20 Conditions Min Max Min Max Min Max PT Aloc Turbo off Unit Input setup time (1) 0 0 0 Input hold time (1) 25 25 30 NIB input high time (1) 12 13 15 ns NIB input low time (1) 12 13 15 ns NIB input to combinatorial delay (1) t e l o tIH tINH t c u input macrocell timing (3 V devices) 46 62 ns + 20 70 +4 + 20 ns ns 1. Inputs from port A, B, and C relative to register/ latch clock from the PLD. ALE latch timings refer to tAVLX and tLXAX. Doc ID 7833 Rev 7 105/128 AC/DC parameters PSD8XXFX Figure 44. READ timing 1 tAVLX tLXAX ALE/AS tLVLX A /D MULTIPLEXED BUS ADDRESS VALID DATA VALID tAVQV ADDRESS NON-MULTIPLEXED BUS ADDRESS VALID DATA NON-MULTIPLEXED BUS DATA VALID ) s ( ct tSLQV CSI tRLQV RD (PSEN, DS) e t e ol tEHEL E tTHEH R /W ) (s tAVPV u d o tRHQX tRLRH Pr tRHQZ tELTL s b O ADDRESS OUT AI02895 t c u 1. tAVLX and tLXAX are not required for 80C251 in Page mode or 80C51XA in Burst mode. Table 56. d o r READ timing (5 V devices) P e Symbol Parameter t e l o tLVLX -70 -90 -15 Conditions Min Max Min Max Min Max ALE or AS pulse width Turbo off Unit 15 20 28 ns bs Address setup time (1) 4 6 10 ns Address hold time (1) 7 8 11 ns tAVQV Address valid to data valid (1) tSLQV CS valid to data valid tAVLX tLXAX O 70 90 150 + 10 ns 75 100 150 ns RD to data valid 8-bit bus (2) 24 32 40 ns tRLQV RD or PSEN to data valid 8-bit bus, 8031, 80251 (3) 31 38 45 ns tRHQX RD data hold time (4) 0 0 0 ns tRLRH RD pulse width (4) 27 32 38 ns tRHQZ RD to data high-Z (4) tEHEL E pulse width 106/128 20 27 Doc ID 7833 Rev 7 25 32 30 38 ns ns PSD8XXFX Table 56. AC/DC parameters READ timing (5 V devices) (continued) -70 Symbol Parameter -90 -15 Turbo off Conditions Min Max Min Max Min Max Unit tTHEH R/W setup time to Enable 6 10 18 ns tELTL R/W hold time After Enable 0 0 0 ns tAVPV Address input valid to Address output delay (5) 20 25 30 ns 1. Any input used to select an internal PSD function. 2. RD timing has the same timing as DS, LDS, and UDS signals. ) s ( ct 3. RD and PSEN have the same timing. 4. RD timing has the same timing as DS, LDS, UDS, and PSEN signals. 5. In multiplexed mode, latched addresses generated from ADIO delay to address output on any port. Table 57. READ timing (3 V devices) Symbol Parameter r P e -12 Conditions u d o -15 t e l o -20 Min Max Min Max Min Max tLVLX ALE or AS pulse width tAVLX Address setup time (1) Address hold time (1) tLXAX tAVQV Address valid to data valid tSLQV CS valid to data valid RD to data valid 8-bit bus 26 )- (1) s ( t c u d o 10 12 ns 12 14 ns 150 200 ns (2) 35 35 40 ns 45 50 55 ns RD data hold time (4) let (4) RD pulse width o s b ns 120 tRHQX RD to data high-Z 30 200 (3) tRHQZ 9 26 150 RD or PSEN to data valid 8-bit bus, 8031, 80251 tRLRH 9 Unit 120 tRLQV r P e s b O Turbo off + 20 ns 0 0 0 ns 38 40 45 ns 38 40 45 ns E pulse width 40 45 52 ns tTHEH R/W setup time to enable 15 18 20 ns tELTL R/W hold time after enable 0 0 0 ns tAVPV Address input valid to address output delay tEHEL O (5) 33 35 40 ns 1. Any input used to select an internal PSD function. 2. RD timing has the same timing as DS, LDS, and UDS signals. 3. RD and PSEN have the same timing for 8031. 4. RD timing has the same timing as DS, LDS, UDS, and PSEN signals. 5. In multiplexed mode latched address generated from ADIO delay to address output on any port. Doc ID 7833 Rev 7 107/128 AC/DC parameters PSD8XXFX Figure 45. WRITE timing tAVLX t LXAX ALE/AS t LVLX A /D MULTIPLEXED BUS ADDRESS VALID DATA VALID tAVWL ADDRESS NON-MULTIPLEXED BUS ADDRESS VALID DATA NON-MULTIPLEXED BUS DATA VALID ) s ( ct tSLWL CSI tDVWH t WHDX u d o t WLWH WR (DS) t WHAX r P e t EHEL E let t THEH o s b R/ W t WLMV O ) tAVPV t WHPV STANDARD MCU I/O OUT ADDRESS OUT Table 58. Symbol s ( t c u d o bs AI02896 WRITE timing (5 V devices) e t e ol tLVLX t ELTL Pr -70 Parameter -90 -15 Conditions Unit Min Max Min Max Min Max ALE or AS pulse width 15 20 28 ns Address setup time (1) 4 6 10 ns tLXAX Address hold time (1) 7 8 11 ns tAVWL Address valid to leading edge of WR (1)(2) 8 15 20 ns tSLWL CS valid to leading edge of WR (2) 12 15 20 ns WR data setup time (2) 25 35 45 ns WR data hold time (2) 4 5 5 ns tWLWH WR pulse widthpulse width (2) 31 35 45 ns tWHAX1 Trailing edge of WR to address invalid (2) 6 8 10 ns tWHAX2 Trailing edge of WR to DPLD address invalid (2)(3) 0 0 0 ns tAVLX O tDVWH tWHDX 108/128 Doc ID 7833 Rev 7 PSD8XXFX Table 58. AC/DC parameters WRITE timing (5 V devices) (continued) -70 Symbol Parameter -90 -15 Conditions Unit Min Max Min Max Min Max tWHPV Trailing edge of WR to port output valid using I/O port data register tDVMV (2) 27 30 38 ns Data valid to port output valid using macrocell register Preset/Clear (2)(4) 42 55 65 ns tAVPV Address input valid to address output delay (5) 20 25 30 ns tWLMV WR valid to port output valid using macrocell register Preset/Clear (2)(6) 48 55 ) s ( ct 65 ns u d o 1. Any input used to select an internal PSD function. 2. WR has the same timing as E, LDS, UDS, WRL, and WRH signals. r P e 3. tWHAX2 is the address hold time for DPLD inputs that are used to generate Sector Select signals for internal PSD memory. 4. Assuming WRITE is active before data becomes valid. t e l o 5. In multiplexed mode, latched address generated from ADIO delay to address output on any port. 6. Assuming data is stable before active WRITE signal. Table 59. WRITE timing (3 V devices) Symbol tLVLX Parameter ALE or AS pulse width )- s ( t c s b O -12 -15 -20 Conditions Unit Min Max Min Max Min Max 26 26 30 (1) 9 10 12 ns (1) 9 12 14 ns (1)(2) 17 20 25 ns CS valid to Leading Edge of WR (2) 17 20 25 ns WR data setup time (2) 45 45 50 ns WR data hold time (2) 7 8 10 ns WR pulse width (2) 46 48 53 ns tWHAX1 Trailing edge of WR to address invalid (2) 10 12 17 ns tWHAX2 Trailing edge of WR to DPLD address invalid (2)(3) 0 0 0 ns tWHPV Trailing edge of WR to port output valid using I/O port data register tDVMV Data valid to port output valid using macrocell register Preset/Clear u d o tAVLX Address setup time tLXAX Address hold time tAVWL Address valid to Leading Edge of WR e t e ol tSLWL bs tDVWH O tWHDX tWLWH Pr (2) 33 35 40 ns (2)(4) 70 70 80 ns Doc ID 7833 Rev 7 109/128 AC/DC parameters Table 59. PSD8XXFX WRITE timing (3 V devices) (continued) -12 Symbol Parameter -15 -20 Conditions Unit Min Max Min Max Min Max tAVPV Address input valid to address output delay tWLMV WR valid to port output valid using macrocell register Preset/Clear (5) 33 35 40 ns (2)(6) 70 70 80 ns 1. Any input used to select an internal PSD function. 2. WR has the same timing as E, LDS, UDS, WRL, and WRH signals. 3. tWHAX2 is the address hold time for DPLD inputs that are used to generate Sector Select signals for internal PSD memory. 4. Assuming WRITE is active before data becomes valid. ) s ( ct 5. In multiplexed mode, latched address generated from ADIO delay to address output on any port. 6. Assuming data is stable before active WRITE signal. Table 60. Program, WRITE and Erase times (5 V devices) Symbol Parameter Min. ete Flash Program Flash Bulk Flash Bulk Erase (not pre-programmed) tWHQV3 Sector Erase (pre-programmed) tWHQV2 Sector Erase (not pre-programmed) tWHQV1 Byte Program )- du Sector Erase timeout s b O ro DQ7 valid to output (DQ7-DQ0) valid (data tQ7VQV P e Pr Typ. Max. 8.5 3 1 Unit s 30 5 s s 30 2.2 14 s ( t c Program/Erase cycles (per sector) tWHWLO ol Erase (pre-programmed)(1) u d o s s 1200 100,000 µs cycles 100 polling)(2) µs 30 ns Max. Unit 1. The whole memory is programmed to 00h before erase. 2. The polling status, DQ7, is valid tQ7VQV time units before the data byte, DQ0-DQ7, is valid for reading. t e l o Table 61. s b O Program, WRITE and Erase times (3 V devices) Symbol Parameter Min. Flash Program Typ. 8.5 Flash Bulk Erase (pre-programmed)(1) 3 Flash Bulk Erase (not pre-programmed) 5 tWHQV3 Sector Erase (pre-programmed) 1 tWHQV2 Sector Erase (not pre-programmed) 2.2 tWHQV1 Byte Program 14 Program / Erase Cycles (per sector) tWHWLO Sector Erase timeout tQ7VQV DQ7 valid to Output (DQ7-DQ0) valid (data polling)(2) 110/128 Doc ID 7833 Rev 7 s 30 s s 30 s s 1200 100,000 µs cycles 100 µs 30 ns PSD8XXFX AC/DC parameters 1. The whole memory is programmed to 00h before erase. 2. The polling status, DQ7, is valid tQ7VQV time units before the data byte, DQ0-DQ7, is valid for reading. Figure 46. Peripheral I/O READ timing ALE/AS ADDRESS A /D BUS DATA VALID tAVQV (PA) ) s ( ct tSLQV (PA) CSI u d o tRLQV (PA) tQXRH (PA) tRHQZ (PA) r P e tRLRH (PA) RD t e l o tDVQV (PA) DATA ON PORT A Table 62. ) (s s b O AI02897 Port A Peripheral Data mode READ timing (5 V devices) Symbol Parameter ct u d o tAVQV–PA Address valid to data valid tSLQV–PA CSI valid to data valid -70 -90 -15 Turbo Conditions Min Max Min Max Min Max (1) off Unit 37 39 45 + 10 ns 27 35 45 + 10 ns 21 32 40 ns RD to data valid 8031 mode 32 38 45 ns tDVQV–PA bs Data In to data out valid 22 30 38 ns tQXRH–PA RD data hold time tRLRH–PA RD pulse width (2) tRHQZ–PA RD to data high-Z (2) r P e (2)(3) RD to data valid t e l o tRLQV–PA O 0 0 0 ns 27 32 38 ns 23 25 30 ns 1. Any input used to select port A Data Peripheral mode. 2. RD has the same timing as DS, LDS, UDS, and PSEN (in 8031 combined mode). 3. Data is already stable on port A. Doc ID 7833 Rev 7 111/128 AC/DC parameters Table 63. PSD8XXFX Port A Peripheral Data mode READ timing (3V devices) -12 Symbol Parameter -15 -20 Turbo Conditions off Min Max Min Max Min Max tAVQV–PA Address valid to data valid tSLQV–PA CSI valid to data valid (1) Unit 50 50 50 + 20 ns 37 45 50 + 20 ns 37 40 45 ns RD to data valid 8031 mode 45 45 50 ns tDVQV–PA Data In to data Out valid 38 40 45 ns tQXRH–PA RD data hold time tRLRH–PA RD pulse width (2) RD to data high-Z (2) (2)(3) RD to data valid tRLQV–PA tRHQZ–PA 0 0 0 36 36 46 36 40 3. Data is already stable on port A. u d o t e l o Figure 47. Peripheral I/O WRITE timing ALE/AS )- ADDRESS s ( t c u d o s b O tWLQV o s b O Symbol DATA OUT tWHQZ (PA) (PA) r P e tDVQV (PA) let Table 64. ns r P e 2. RD has the same timing as DS, LDS, UDS, and PSEN (in 8031 combined mode). WR ) s ( ct ns 45 1. Any input used to select port A Data Peripheral mode. A / D BUS ns PORT A DATA OUT AI02898 Port A Peripheral Data mode WRITE timing (5 V devices) -70 Parameter -90 -15 Conditions Unit Min Max Min Max Min Max tWLQV–PA WR to data propagation delay (1) 25 35 40 ns tDVQV–PA Data to port A data propagation delay (2) 22 30 38 ns tWHQZ–PA WR invalid to port A tri-state (1) 20 25 33 ns 1. WR has the same timing as the E, LDS, UDS, WRL, and WRH signals. 2. Data stable on ADIO pins to data on port A. 112/128 Doc ID 7833 Rev 7 PSD8XXFX Table 65. AC/DC parameters Port A Peripheral Data mode WRITE timing (3 V devices) -12 Symbol Parameter -15 -20 Conditions Unit Min Max Min Max Min Max WR to data propagation delay (1) 42 45 55 ns tDVQV–PA Data to port A data propagation delay (2) 38 40 45 ns tWHQZ–PA WR invalid to port A tri-state (1) 33 33 35 ns tWLQV–PA 1. WR has the same timing as the E, LDS, UDS, WRL, and WRH signals. 2. Data stable on ADIO pins to data on port A. ) s ( ct Figure 48. Reset (RESET) timing tNLNH-PO Power-On Reset tOPR e t e ol Reset (RESET) timing (5 V devices) Symbol ) (s Parameter s b O Conditions ct tNLNH RESET active low time(1) tNLNH–PO Power-on Reset active low time du o r P PSD834Fx)(2) tNLNH–A Warm Reset (on the tOPR RESET high to operational device e t e ol Pr tNLNH RESET Table 66. u d o VCC(min) VCC tNLNH-A Warm Reset tOPR AI02866b Min Max Unit 150 ns 1 ms 25 µs 120 ns Max Unit 1. Reset (RESET) does not reset Flash memory program or erase cycles. 2. Warm reset aborts Flash memory program or erase cycles, and puts the device in READ mode. s b O Table 67. Symbol Reset (RESET) timing (3 V devices) Parameter tNLNH RESET active low time(1) tNLNH–PO Conditions Min 300 ns Power-on Reset active low time 1 ms tNLNH–A Warm Reset (on the PSD834Fx)(2) 25 µs tOPR RESET high to operational device 300 ns 1. Reset (RESET) does not reset Flash memory program or erase cycles. 2. Warm reset aborts Flash memory program or erase cycles, and puts the device in READ mode. Doc ID 7833 Rev 7 113/128 AC/DC parameters PSD8XXFX Figure 49. ISC timing t ISCCH TCK t ISCCL t ISCPSU t ISCPH TDI/TMS t ISCPZV t ISCPCO ) s ( ct ISC OUTPUTS/TDO u d o t ISCPVZ r P e ISC OUTPUTS/TDO Table 68. let o s b ISC timing (5 V devices) Symbol O ) Parameter -70 AI02865 -90 -15 Conditions t(s Unit Min Max Min Max Min Max tISCCF Clock (TCK, PC1) frequency (except for PLD) (1) tISCCH Clock (TCK, PC1) high time (except for PLD) (1) 23 26 31 ns tISCCL Clock (TCK, PC1) low time (except for PLD) (1) 23 26 31 ns tISCCFP Clock (TCK, PC1) frequency (PLD only) c u d ete o r P ol 20 (2) 18 2 14 2 2 MHz MHz Clock (TCK, PC1) high time (PLD only) (2) 240 240 240 ns tISCCLP Clock (TCK, PC1) low time (PLD only) (2) 240 240 240 ns tISCPSU ISC port setup time 7 8 10 ns tISCPH ISC port hold up time 5 5 5 ns tISCPCO ISC port clock to output 21 23 25 ns tISCPZV ISC port high-impedance to valid output 21 23 25 ns tISCPVZ ISC port valid output to high-Impedance 21 23 25 ns tISCCHP bs O 1. For non-PLD Programming, Erase or in ISC by-pass mode. 2. For program or erase PLD only. 114/128 Doc ID 7833 Rev 7 PSD8XXFX Table 69. AC/DC parameters ISC timing (3 V devices) -12 Symbol Parameter -15 -20 Conditions Unit Min Max Min Max Min Max tISCCF Clock (TCK, PC1) frequency (except for PLD) (1) tISCCH Clock (TCK, PC1) high time (except for PLD) (1) 40 45 51 ns tISCCL Clock (TCK, PC1) low time (except for PLD) (1) 40 45 51 ns tISCCFP Clock (TCK, PC1) frequency (PLD only) (2) tISCCHP Clock (TCK, PC1) high time (PLD only) (2) 240 240 240 tISCCLP Clock (TCK, PC1) low time (PLD only) (2) 240 240 tISCPSU ISC port setup time 12 13 tISCPH ISC port hold up time 5 tISCPCO ISC port clock to output tISCPZV ISC port high-Impedance to valid Output Pr uc tISCPVZ ISC port valid Output to high-Impedance 2. For program or erase PLD only. s ( t c e t e l o s b 9 2 5 30 O ) 10 2 30 1. For non-PLD Programming, Erase or in ISC by-pass mode. Table 70. 12 2 240 od 30 MHz MHz ) s ( t ns ns 15 ns 5 ns 36 40 ns 36 40 ns 36 40 ns Power-down timing (5 V devices) u d o Symbol Parameter Pr tLVDV ALE access time from Power-down tCLWH Maximum delay from APD Enable to Internal PDN valid signal e t e ol -70 -90 -15 Conditions Unit Min Max Min Max Min Max 80 Using CLKIN (PD1) 90 150 ns 15 * tCLCL(1) µs 1. tCLCL is the period of CLKIN (PD1). s b O Table 71. Symbol Power-down timing (3 V devices) -12 Parameter -15 -20 Conditions Unit Min Max Min Max Min Max tLVDV ALE access time from Power-down tCLWH Maximum Delay from APD Enable to Internal PDN valid Signal 145 Using CLKIN (PD1) 150 15 * tCLCL(1) 200 ns µs 1. tCLCL is the period of CLKIN (PD1). Doc ID 7833 Rev 7 115/128 Package mechanical 23 PSD8XXFX Package mechanical In order to meet environmental requirements, ST offers this device in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. ) s ( ct u d o r P e t e l o ) (s s b O t c u d o r P e t e l o s b O 116/128 Doc ID 7833 Rev 7 PSD8XXFX Package mechanical Figure 50. PQFP52 - 52-pin plastic quad flat package mechanical drawing D D1 D2 A2 e E2 E1 E Ne b N 1 A Nd ) s ( ct CP L1 u d o c α A1 QFP-A r P e 1. Drawing is not to scale. Table 72. t e l o PQFP52 - 52-pin plastic quad flat package mechanical dimensions mm Symbol Typ. Min. A ) (s A1 A2 t c u 2.000 s b O Max. Typ. inches Min. Max. 2.350 0.0930 0.250 0.0100 0.0770 0.0830 0.380 0.0090 0.0150 0.110 0.230 0.0040 0.0090 13.200 13.150 13.250 0.5200 0.5180 0.5220 D1 10.000 9.950 10.050 0.3940 0.3920 0.3960 D2 7.800 – – 0.3070 – – E 13.200 13.150 13.250 0.5200 0.5180 0.5220 E1 10.000 9.950 10.050 0.3940 0.3920 0.3960 E2 7.800 – – 0.3070 – – e 0.650 – – 0.0260 L 0.880 0.730 1.030 0.0350 0.0290 0.0410 L1 1.600 – – 0.0630 α 0° 7° 0° 7° N 52 52 Nd 13 13 Ne 13 13 b c e t e ol od Pr D s b O L CP 1.800 2.100 0.220 0.100 Doc ID 7833 Rev 7 0.0790 0.0040 117/128 Package mechanical PSD8XXFX Figure 51. PLCC52 - 52-lead plastic lead chip carrier package mechanical drawing D D1 A1 A2 M M1 1 N b1 e D2/E2 D3/E3 E1 E b L1 L ) s ( ct C A CP u d o PLCC-B r P e 1. Drawing is not to scale. Table 73. PLCC52-52-lead plastic lead chip carrier mechanical dimensions t e l o mm Symbol Typ. Min. Max. 4.570 0.1650 0.1800 2.790 0.1000 0.1100 – 0.910 – 0.0360 0.330 0.530 0.0130 0.0210 0.660 0.810 0.0260 0.0320 0.2460 0.2610 0.0097 0.0103 19.940 20.190 0.7850 0.7950 19.050 19.150 0.7500 0.7540 D2 17.530 18.540 0.6900 0.7300 E 19.940 20.190 0.7850 0.7950 E1 19.050 19.150 0.7500 0.7540 E2 17.530 18.540 0.6900 0.7300 A 4.190 A1 2.540 c u d B B1 C D e t e l D1 O 118/128 o r P Max. O ) t(s A2 o s b bs Min. Typ. inches e 1.270 – – 0.050 – – R 0.890 – – 0.035 – – N 52 52 Nd 13 13 Ne 13 13 Doc ID 7833 Rev 7 PSD8XXFX Package mechanical Figure 52. TQFP64 - 64-lead thin quad flatpack, package outline D D1 D2 A2 e E2 E1 E Ne b N 1 ) s ( ct A Nd CP L1 u d o c α A1 QFP-A r P e 1. Drawing is not to scale. Table 74. mm Typ. Min. A )- 1.420 0.100 A2 c u d t(s A1 a o r P 1.400 3.5° 0.350 O o s b s b O Max. inches Typ. 1.540 Min. Max. 0.0560 0.0610 0.070 0.140 0.0040 0.0030 0.0050 1.360 1.440 0.0550 0.0540 0.0570 0.0° 7.0° 3.5° 0.0° 7.0° 0.330 0.380 0.0140 0.0130 0.0150 c e t e l t e l o TQFP64 - 64-lead thin quad flatpack, package mechanical data Symb. b L 0.170 0.006 D 16.000 15.900 16.100 0.6300 0.6260 0.6340 D1 14.000 13.980 14.030 0.5510 0.5500 0.5520 D2 12.000 11.950 12.050 0.4720 0.4700 0.4740 E 16.000 15.900 16.100 0.6300 0.6260 0.6340 E1 14.000 13.980 14.030 0.5510 0.5500 0.5520 E2 12.000 11.950 12.050 0.4720 0.4700 0.4740 e 0.800 0.750 0.850 0.0310 0.0300 0.0330 L 0.600 0.450 0.750 0.0240 0.0180 0.0300 L1 1.000 0.940 1.060 0.0390 0.0370 0.0420 CP 0.100 0.0040 N 64 64 Nd 16 16 Ne 16 16 Doc ID 7833 Rev 7 119/128 Part numbering PSD8XXFX 24 Part numbering Table 75. Ordering information scheme Example: PSD8 1 3 F 2 V A – 15 J 1 T Device Type PSD8 = 8-bit PSD with register Logic SRAM Capacity 1 = 16 Kbit 3 = 64 Kbit 5 = 256 Kbit ) s ( ct Flash Memory Capacity 3 = 1 Mbit (128K x 8) 4 = 2 Mbit (256K x 8) u d o r P e 2nd Flash Memory 2 = 256 Kbit Flash memory + SRAM 3 = SRAM but no Flash memory 4 = 256 Kbit Flash memory but no SRAM 5 = no Flash memory + no SRAM Operating voltage blank = VCC = 4.5 to 5.5V V = VCC = 3.0 to 3.6V t e l o ) (s t c u Silicon Revision A = Revision A Speed 70 = 70ns 90 = 90ns 12 = 120ns 15 = 150ns 20 = 200ns s b O d o r P e t e l o s b O Package J = ECOPACK-compliant PLCC52 M = ECOPACK-compliant PQFP52 U =ECOPACK-compliant TQFP64 Temperature Range blank = 0 to 70°C (commercial) I = –40 to 85°C (industrial) Option T = Tape & Reel Packing For a list of available options (e.g., speed, package) or for further information on any aspect of this device, please contact your nearest ST Sales Office. 120/128 Doc ID 7833 Rev 7 PSD8XXFX PQFP52 pin assignments Appendix A PQFP52 pin assignments Table 76. PQFP52 connections (see Features) Pin number Pin assignments 1 PD2 2 PD1 3 PD0 4 PC7 5 PC6 6 PC5 7 PC4 8 VCC u d o 9 e t e l 11 so 12 13 14 )- b O s ( t c 16 s b O e t e ol PC3 PC2 PC1 PC0 PA7 PA6 PA5 17 PA4 18 PA3 19 GND 20 PA2 21 PA1 22 PA0 23 AD0 24 AD1 25 AD2 26 AD3 27 AD4 28 AD5 29 AD6 30 AD7 31 VCC 32 AD8 u d o Pr Pr GND 10 15 ) s ( ct Doc ID 7833 Rev 7 121/128 PQFP52 pin assignments Table 76. PSD8XXFX PQFP52 connections (see Features) (continued) Pin number Pin assignments 33 AD9 34 AD10 35 AD11 36 AD12 37 AD13 38 AD14 39 AD15 40 CNTL0 41 RESET 42 CNTL2 43 CNTL1 u d o r P e 44 PB7 t e l o 45 46 bs 47 48 O ) 49 t(s 50 51 c u d 52 e t e ol o r P s b O 122/128 ) s ( ct Doc ID 7833 Rev 7 PB6 GND PB5 PB4 PB3 PB2 PB1 PB0 PSD8XXFX PLCC52 pin assignments Appendix B PLCC52 pin assignments Table 77. PLCC52 connections (see Features) Pin number Pin assignments 1 GND 2 PB5 3 PB4 4 PB3 5 PB2 6 PB1 7 PB0 8 PD2 u d o 9 e t e l 11 so 12 13 14 )- b O s ( t c 16 s b O e t e ol PD0 PC7 PC6 PC5 PC4 VCC GND 17 PC3 18 PC2 19 PC1 20 PC0 21 PA7 22 PA6 23 PA5 24 PA4 25 PA3 26 GND 27 PA2 28 PA1 29 PA0 30 AD0 31 AD1 32 AD2 u d o Pr Pr PD1 10 15 ) s ( ct Doc ID 7833 Rev 7 123/128 PLCC52 pin assignments Table 77. PSD8XXFX PLCC52 connections (see Features) (continued) Pin number Pin assignments 33 AD3 34 AD4 35 AD5 36 AD6 37 AD7 38 VCC 39 AD8 40 AD9 41 AD10 42 AD11 43 AD12 u d o r P e 44 AD13 t e l o 45 46 bs 47 48 O ) 49 t(s 50 51 c u d 52 e t e ol o r P s b O 124/128 ) s ( ct Doc ID 7833 Rev 7 AD14 AD15 CNTL0 RESET CNTL2 CNTL1 PB7 PB6 PSD8XXFX TQFP64 pin assignments Appendix C TQFP64 pin assignments Table 78. TQFP64 connections (see Features) Pin number Pin assignments 1 PD2 2 PD1 3 PD0 4 PC7 5 PC6 6 PC5 7 VCC 8 VCC u d o 9 e t e l 11 so 12 13 14 )- b O s ( t c 16 s b O e t e ol GND GND PC3 PC2 PC1 PC0 NC 17 NC 18 NC 19 PA7 20 PA6 21 PA5 22 PA4 23 PA3 24 GND 25 GND 26 PA2 27 PA1 28 PA0 29 AD0 30 AD1 31 N/D 32 AD2 u d o Pr Pr VCC 10 15 ) s ( ct Doc ID 7833 Rev 7 125/128 TQFP64 pin assignments Table 78. PSD8XXFX TQFP64 connections (see Features) (continued) Pin number Pin assignments 33 AD3 34 AD4 35 AD5 36 AD6 37 AD7 38 VCC 39 VCC 40 AD8 41 AD9 42 AD10 43 AD11 u d o r P e 44 AD12 t e l o 45 46 bs 47 48 O ) 49 t(s 50 51 c u d 52 ro let P e o s b O 126/128 ) s ( ct AD13 AD14 AD15 CNTL0 NC RESET CNTL2 CNTL1 53 PB7 54 PB6 55 GND 56 GND 57 PB5 58 PB4 59 PB3 60 PB2 61 PB1 62 PB0 63 NC 64 NC Doc ID 7833 Rev 7 PSD8XXFX Revision history Revision history Table 79. Document revision history Date Revision 15-Oct-99 1.0 Initial release as a WSI document 27-Oct-00 1.1 Port A Peripheral Data mode Read Timing, changed to 50 30-Nov-00 1.2 PSD85xF2 added 23-Oct-01 2.0 Document rewritten using the ST template 07-Apr-03 3.0 v2.2 Template applied; voltage correction (Table 75) 12-Jun-03 3.1 Fix errors in PQFQ52 Connections 02-Oct-03 3.2 Correct Instructions (Table 10); update disclaimer, Title for EDOCS application 17-Nov-03 3.3 Correct package references (Features) 04-Jun-04 4.0 Reformatted (adjust RPN list); added Table 9; added ‘U’ package (64-pin) (Features, Figure 3, Figure 52; Table 74, Table 75, Table 78); 5V split from original 05-Jan-06 5.0 Added Silicon Revision A into part numbering scheme. See Table 75 13-Feb-2009 r P e u d o t e l o s b O Document reformatted. Removed root part number PSD813F3. SRAM standby mode removed. Backup battery feature removed. All products are delivered in ECOPACK-compliant packages. Section 23: Package mechanical updated. Minor text modifications. ) (s t c u 7 ) s ( ct r P e 6 od 05-May-2009 Changes Corrected pin 7 of TQFP64 package in Figure 3: TQFP64 connections. t e l o s b O Doc ID 7833 Rev 7 127/128 PSD8XXFX ) s ( ct Please Read Carefully: u d o Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. r P e All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. t e l o No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. ) (s s b O UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. t c u UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. d o r P e t e l o Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. s b O ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 128/128 Doc ID 7833 Rev 7
PSD813F2VA-20UI
物料型号:文档中没有明确提到具体的物料型号,但从上下文中可以推断,文档描述的是一种可编程逻辑器件(PSD),型号可能是PSD8XXFX系列。

器件简介:PSD8XXFX是一种高性能的可编程系统级器件(PSD),它集成了闪存、SRAM、可编程逻辑和多种I/O端口。这种器件适用于需要灵活逻辑和存储解决方案的应用。

引脚分配:文档提供了详细的引脚分配信息,包括电源(Vcc和GND)、I/O端口(如PA、PB、PC、PD)、控制信号(如RESET、CNTL0、CNTL1、CNTL2)以及地址和数据输入(如AD0-AD15、D[7:0])。

参数特性:PSD8XXFX支持多种操作模式,包括MCU I/O模式、PLD I/O模式、地址输出模式、数据端口模式和外设I/O模式。它还具有自动电源管理模式,可以在不同的条件下进入低功耗状态。

功能详解:文档详细描述了PSD8XXFX的多种功能,包括与微控制器(MCU)的接口方式、I/O端口的多种配置方式、电源管理功能以及通过JTAG接口进行的编程操作。

应用信息:PSD8XXFX适用于需要高性能、灵活性和可定制性的应用,如工业控制、通信设备和汽车电子等。

封装信息:文档提供了不同封装类型的机械尺寸信息,包括PQFP52、PLCC52和TQFP64等。
PSD813F2VA-20UI 价格&库存

很抱歉,暂时无法提供与“PSD813F2VA-20UI”相匹配的价格&库存,您可以联系我们找货

免费人工找货