0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RT512AIYDT

RT512AIYDT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8SO

  • 数据手册
  • 价格&库存
RT512AIYDT 数据手册
RT512A RobuST precision dual operational amplifier Datasheet - production data – Designed and manufactured to meet sub ppm quality goals – Advanced mold and frame designs for superior resilience to harsh environments (acceleration, EMI, thermal, humidity) – Extended screening capability on request – Single fabrication, assembly and test site – Temperature range (-40 °C to 125 °C) D SO8 (plastic micropackage) Pin connections (top view) Applications 2XWSXW ,QYHUWLQJLQSXW  1RQLQYHUWLQJLQSXW    9 && 9 && • Aerospace and defense   2XWSXW • Harsh environments   ,QYHUWLQJLQSXW   1RQLQYHUWLQJLQSXW Description The RT512A device is a high-performance, dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation in voltage follower configurations in spite of its high gain bandwidth. Features • Low input offset voltage: 500 μV max. (A version) The circuit presents very stable electrical characteristics over the entire supply voltage range and it is particularly intended for aerospace and defense applications. • Low power consumption • Short-circuit protection • Low distortion, low noise • High gain bandwidth product: 3 MHz • High channel separation • ESD protection 2 kV • Macromodel included in this specification • Intended for use in aerospace and defense applications: – Dedicated traceability and part marking – Approval documents available for production parts – Adapted extended life time and obsolescence management – Extended product change notification process October 2014 This is information on a product in full production. DocID026917 Rev 1 1/16 www.st.com Contents RT512A Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 4.1 Important notes concerning this macromodel . . . . . . . . . . . . . . . . . . . . . 10 4.2 Electrical characteristics from macromodelization . . . . . . . . . . . . . . . . . . 10 4.3 Macromodel code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 SO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2/16 DocID026917 Rev 1 RT512A 1 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter VCC Supply voltage Vin Input voltage Vid Differential input voltage Rthja Rthjc Tj Tstg ESD Value Unit ±18 V ±VCC ±(VCC - 1) (1) Thermal resistance junction-to-ambient 125 (1) Thermal resistance junction-to-case 40 Junction temperature 150 °C/W °C Storage temperature range -65 to 150 HBM: human body model(2) 2 kV 200 V 1.5 kV MM: machine model(3) CDM: charged device model(4) 1. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values. 2. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 3. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to ground through only one pin. This is done for all pins. Table 2. Operating conditions Symbol Parameter VCC Supply voltage(1) Vicm Common mode input voltage range Toper Operating free air temperature range Value 6 to 30V (VCC-) +1.5 to (VCC+) -1.5 -40 to 125 Unit V °C 1. Value with respect to VCC- pin DocID026917 Rev 1 3/16 16 Schematic diagram 2 RT512A Schematic diagram Figure 1. Schematic diagram (1/2 RT512A) 9&& 5 N 5 5 5 4 4 4 5 5 5 4 4 4 4 5 4 4 4 4 5 4 4 1RQLQYHUWLQJ LQSXW ,QYHUWLQJ LQSXW 2XWSXW 4 5 4 5 4 4 4 & S) 4 4 4 4 4 5 4 4 5 4 4 4 4 5 & S) 5 4 4 4 4 5 5 4 5 9&& 4/16 DocID026917 Rev 1 RT512A 3 Electrical characteristics Electrical characteristics Table 3. VCC = ±15 V, Tamb = 25 °C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit ICC Supply current (per channel) Tmin ≤ Tamb ≤ T max 0.5 0.6 0.75 mA Iib Input bias current Tmin ≤ Tamb ≤ T max 50 150 300 nA Rin Input resistance, f = 1 kHz 1 MΩ Input offset voltage Vio ΔVio Iio 0.5 Tmin ≤ Tamb ≤ Tmax 1.5 Input offset voltage drift, Tmin ≤ Tamb ≤ Tmax 2 Input offset current Tmin ≤ Tamb ≤ Tmax 5 ΔIio Input offset current drift, Tmin ≤ Tamb ≤ Tmax Ios Output short-circuit current Avd Large signal voltage gain RL = 2 kΩ, VCC = ±15 V, Tmin ≤ Tamb ≤ T max VCC = ± 4 V Gain bandwidth product, f = 100 kHz GBP en mV Total harmonic distortion Av = 20 dB, RL = 2 kΩ Vo = 2 Vpp, f = 1 kHz ±Vopp Output voltage swing RL = 2 kΩ, VCC = ±15 V, Tmin ≤ Tamb ≤ T max VCC = ± 4 V 23 mA 90 100 95 dB 1.8 3 MHz 8 10 18 nV -----------Hz 0.03 % V ±13 ±3 Large signal voltage swing RL = 10 kΩ, f = 10 kHz SR Slew rate Unity gain, RL = 2 kΩ 0.8 CMR Common mode rejection ratio CMR = 20 log (ΔVic/ΔVio) (Vic = -10 V to 10 V, Vout = VCC/2, RL > 1 MΩ) 90 SVR Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) (VCC = ±4 V to ±15 V, Vout = Vicm = VCC/2) 90 DocID026917 Rev 1 nA nA/°C Vopp Vo1/Vo2 Channel separation, f = 1 kHz 20 40 0.08 Equivalent input noise voltage, f = 1 kHz Rs = 50 Ω Rs = 1 kΩ Rs = 10 kΩ THD μV/°C 28 Vpp 1.5 V/μs dB 120 5/16 16 Electrical characteristics RT512A Figure 2. Vio distribution at VCC = ±15 V and T = 25 °C Figure 3. Vio distribution at VCC = ±15 V and T = 125 °C   9LR GLVWULEXWLRQDW7 ƒ& 9LRGLVWULEXWLRQDW7 ƒ&   3RSXODWLRQ  3RSXODWLRQ                    ,QSXWRIIVHW YR OWDJH —9 ,QSXWRIIVHW YR OWDJH —9 Figure 4. Input offset voltage vs. input common Figure 5. Input offset voltage vs. input common mode voltage at VCC = 30 V mode voltage at VCC = 10 V  7 ƒ& ,QSXWRIIVHWYROWDJH P9  7 ƒ&  7 ƒ&   9&& 9         ,QSXWFRPPRQPRGHYROWDJH 9 Figure 6. Supply current (per channel) vs. supply voltage at Vicm = VCC/2 Figure 7. Supply current (per channel) vs. input common mode voltage at VCC = 6 V     6XSSO\ FXUUHQW P$ 6XSSO\ FXUUHQW P$ 7 ƒ& 7 ƒ&  7 ƒ&   7 ƒ&  7 ƒ&  7 ƒ&   )ROORZHUFRQILJXUDWLRQ 9&&  9 9LFP  9&&              6XSSO\YROWDJH 9 6/16         ,QSXWFRPPRQ PRGHYROWDJH 9 DocID026917 Rev 1   RT512A Electrical characteristics Figure 8. Supply current (per channel) vs. input Figure 9. Supply current (per channel) vs. input common mode voltage at VCC = 10 V common mode voltage at VCC = 30 V    6XSSO\ FXUUHQW P$ 6XSSO\ FXUUHQW P$  7 ƒ&  7 ƒ&  7 ƒ&          7 ƒ&  7 ƒ&   )ROORZHUFRQILJXUDWLRQ 9&&  9  7 ƒ&     )ROORZHUFRQILJXUDWLRQ 9&&  9   ,QSXWFRPPRQPRGHYROWDJH 9      ,QSXWFRPPRQPRGHYROWDJH 9 Figure 10. Output current vs. supply voltage at Vicm = VCC/2 Figure 11. Output current vs. output voltage at VCC = 5 V  6RXUFH 9LG 9 7 ƒ& 7 ƒ&  2XWSXWFXUUHQW P$ 2XW SXWFXUUHQW P$  7 ƒ&  9LFP 9&&       7 ƒ& 7 ƒ& 6LQN 9LG 9  && 7 ƒ&     6XSSO\ YR OWDJH 9 2XWSXWYROWDJH 9 Figure 12. Output current vs. output voltage at VCC = 30 V Figure 13. Voltage gain and phase for different capacitive loads at VCC = 6 V, Vicm = 3 V and T = 25 °C   *DLQ &&  3KDVH   &/ S)      2XWSXWYROWDJH 9  &/ S) &/  S)  9&&  99LFP 9 *  5/ N FRQQHFWHGWRWKHJURXQG 7DPE ƒ&      3KDVH ƒ  *DLQ  G% 2XWSXWFXUUHQW P$      )UHTXHQF\ +] DocID026917 Rev 1 7/16 16 Electrical characteristics RT512A Figure 14. Voltage gain and phase for different capacitive loads at VCC = 10 V, Vicm = 5 V and T = 25 °C    &/  S) S) &/            3KDVH               *DLQZLWK&/ S) *DLQ G% *DLQ G% *DLQZLWK&/ S) *DLQ G%   *DLQZLWK&/ S) 9FF 9 9LFP 9 5/  FRQQHFWHGWRWKHJURXQG 7DPE  ƒ& N 0 *DLQZLWK&/ S)  0  N *DLQZLWK&/ S) *DLQZLWK& S) / 9&&  9 9LFP 9 5/  FRQQHFWHGWRWKHJURXQG 7DPE ƒ& 0 N 0 0 Figure 19. Phase margin vs. output current, at VCC = 6 V, Vicm = 3 V and T = 25 °C *DLQZLWK& S) / N 9&&  9 9LFP  9 5/ N FRQQHFWHGWRWKHJURXQG 7DPE ƒ& )UHTXHQF\  +]  0 )UHTXHQF\  +] 8/16  *DLQZLWK&/ S)   N   Figure 18. Frequency response for different capacitive loads at VCC = 30 V, Vicm = 15 V and T = 25 °C    )UHTXHQF\  +]         *DLQZLWK&/ S)   9&& 9 9LFP 9*  5/ N FRQQHFWHGWRWKHJURXQG 7 DPE ƒ& Figure 17. Frequency response for different capacitive loads at VCC = 10 V, Vicm = 5 V and T = 25 °C   N  )UHTXHQF\ +]    &/ S)  Figure 16. Frequency response for different capacitive loads at VCC = 6 V, Vicm = 3 V and T = 25 °C  S) &/ S)  )UHTXHQF\ +]  &/ S) 9&& 9 9LFP 9*  5/  FRQQHFWHGWRWKHJURXQG 7 DPE ƒ&   3KDV H ƒ &/  *DLQ G % 3KDVH  3KDV H ƒ   *DLQ *DLQ  *DLQ G % Figure 15. Voltage gain and phase for different capacitive loads at VCC = 30 V, Vicm = 15 V and T = 25 °C DocID026917 Rev 1 RT512A Electrical characteristics Figure 20. Phase margin vs. output current, at VCC = 10 V, Vicm = 5 V and T = 25 °C Figure 21. Phase margin vs. output current, at VCC = 30 V, Vicm = 15 V and T = 25 °C DocID026917 Rev 1 9/16 16 Macromodel RT512A 4 Macromodel 4.1 Important notes concerning this macromodel • All models are a trade-off between accuracy and complexity (i.e. simulation time). • Macromodels are not a substitute for breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. • A macromodel emulates the nominal performance of a typical device within specified operating conditions (for example, temperature, supply voltage). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product. Data derived from macromodels used outside of the specified conditions (for example, VCC, temperature) or even worse, outside of the device operating conditions (for example, VCC, Vicm), are s not reliable in any way. Section 4.2 provides the electrical characteristics resulting from the use of the RT512A, macromodel. 4.2 Electrical characteristics from macromodelization Table 4. Electrical characteristics resulting from macromodel simulation at VCC = ±15 V, Tamb = 25 °C (unless otherwise specified) Symbol Conditions Vio Unit 0 mV Avd RL = 2 kΩ 100 V/mV ICC No load, per channel 350 μA Vicm 10/16 Value -13.4 to 14 VOH RL = 2 kΩ +14 VOL RL = 2 kΩ -14 Isink Vo = 0 V 27.5 Isource Vo = 0 V 27.5 GBP RL = 2 kΩ, CL = 100 pF 2.5 MHz SR RL = 2 kΩ 1.4 V/μs ∅m RL = 2 kΩ, CL = 100 pF 55 Degrees DocID026917 Rev 1 V mA RT512A 4.3 Macromodel Macromodel code ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS512 1 3 2 4 5 ******************************************************** .MODEL MDTH D IS=1E-8 KF=6.565195E-17 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 1.061852E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 12.47E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 1.500000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.500000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 1.000000E-02 FIBN 5 1 VOFP 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 9.000000E+02 FIN 5 19 VOFN 9.000000E+02 RG1 19 5 1.727221E+06 RG2 19 4 1.727221E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.521739E+03 VIPM 28 4 1.500000E+02 DocID026917 Rev 1 11/16 16 Macromodel RT512A HONM 21 27 VOUT 6.521739E+03 VINM 5 27 1.500000E+02 GCOMP 5 4 4 5 6.485084E-04 RPM1 5 80 1E+06 RPM2 4 80 1E+06 GAVPH 5 82 19 80 2.59E-03 RAVPHGH 82 4 771 RAVPHGB 82 5 771 RAVPHDH 82 83 1000 RAVPHDB 82 84 1000 CAVPHH 4 83 0.331E-09 CAVPHB 5 84 0.331E-09 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 6.498455E+01 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 1.742230E+00 DON 24 19 MDTH 400E-12 VON 24 5 1.742230E+00 .ENDS 12/16 DocID026917 Rev 1 RT512A 5 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID026917 Rev 1 13/16 16 Package information 5.1 RT512A SO8 package information Figure 22. SO8 package mechanical drawing Table 5. SO8 package mechanical data Dimensions Symbol Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 8° 1° L1 k ccc 14/16 Inches 1.04 0 0.040 0.10 DocID026917 Rev 1 8° 0.004 RT512A 6 Ordering information Ordering information Table 6. Order codes Order code RT512AIYDT 7 Temperature range Package Packaging Marking -40 °C to 125 °C SO8 Tape and reel R512AY Revision history Table 7. Document revision history Date Revision 08-Oct-2014 1 Changes Initial release DocID026917 Rev 1 15/16 16 RT512A IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2014 STMicroelectronics – All rights reserved 16/16 DocID026917 Rev 1
RT512AIYDT 价格&库存

很抱歉,暂时无法提供与“RT512AIYDT”相匹配的价格&库存,您可以联系我们找货

免费人工找货