SPC560B40x, SPC560B50x
SPC560C40x, SPC560C50x
32-bit MCU family built on the Power Architecture®
for automotive body electronics applications
Datasheet - production data
– Up to 6 FlexCAN interfaces (2.0B active)
with 64-message objects each
– Up to 4 LINFlex/UART
– 3 DSPI / I2C
LQFP100 (14 x 14 x 1.4 mm)
LQFP64 (10 x 10 x 1.4 mm)
LQFP144 (20 x 20 x 1.4 mm)
10-bit analog-to-digital converter (ADC) with up
to 36 channels
– Extendable to 64 channels via external
multiplexing
– Individual conversion registers
– Cross triggering unit (CTU)
Features
High-performance 64 MHz e200z0h CPU
– 32-bit Power Architecture® technology
– Up to 60 DMIPs operation
– Variable length encoding (VLE)
Memory
– Up to 512 KB Code Flash with ECC
– 64 KB Data Flash with ECC
– Up to 48 KB SRAM with ECC
– 8-entry memory protection unit (MPU)
Interrupts
– 16 priority levels
– Non-maskable interrupt (NMI)
– Up to 34 external interrupts incl. 18 wakeup
lines
GPIO: 45(LQFP64), 75(LQFP100),
123(LQFP144)
Timer units
– 6-channel 32-bit periodic interrupt timers
– 4-channel 32-bit system timer module
– Software watchdog timer
– Real-time clock timer
16-bit counter time-triggered I/Os
– Up to 56 channels with PWM/MC/IC/OC
– ADC diagnostic via CTU
Communications interface
Package
LQFP144
LQFP100
LQFP64(1)
Single 5 V or 3.3 V supply
Dedicated diagnostic module for lighting
– Advanced PWM generation
– Time-triggered diagnostic
– PWM-synchronized ADC measurements
Clock generation
– 4 to 16 MHz fast external crystal oscillator
(FXOSC)
– 32 kHz slow external crystal oscillator
(SXOSC)
– 16 MHz fast internal RC oscillator (FIRC)
– 128 kHz slow internal RC oscillator (SIRC)
– Software-controlled FMPLL
– Clock monitor unit (CMU)
Exhaustive debugging capability
– Nexus1 on all devices
– Nexus2+ available on emulation package
(LBGA208)
Low power capabilities
– Ultra-low power standby with RTC, SRAM
and CAN monitoring
– Fast wakeup schemes
Operating temp. range up to -40 to 125 °C
Table 1. Device summary
Part number
256 KB code Flash memory
SPC560B40L5
SPC560B40L3
SPC560B40L1
—
SPC560C40L3
SPC560C40L1
512 KB code Flash memory
SPC560B50L5
SPC560B50L3
SPC560B50L1
—
SPC560C50L3
SPC560C50L1
1. All LQFP64information is indicative and must be confirmed during silicon validation.
February 2015
This is information on a product in full production.
DocID14619 Rev 13
1/116
www.st.com
Contents
SPC560B40x/50x, SPC560C40x/50x
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1
Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
Pad configuration during reset phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3
Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4
Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5
System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6
Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7
Nexus 2+ pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10
Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.11
NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.11.2
NVUSRO[OSCILLATOR_MARGIN] field description . . . . . . . . . . . . . . . 41
3.11.3
NVUSRO[WATCHDOG_EN] field description . . . . . . . . . . . . . . . . . . . . 41
3.12
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.13
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.14
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.15
2/116
3.11.1
3.14.1
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.14.2
Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.15.1
I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.15.2
I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.15.3
I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.15.4
Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.15.5
I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
3.16
RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.17
Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 60
3.17.1
Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 60
3.17.2
Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . 65
3.18
Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.19
Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.20
3.19.1
Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.19.2
Flash power supply DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.19.3
Start-up/Switch-off timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 70
3.20.1
Designing hardened software to avoid noise problems . . . . . . . . . . . . . 70
3.20.2
Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.20.3
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 71
3.21
Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . 72
3.22
Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . 75
3.23
FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.24
Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 78
3.25
Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 79
3.26
ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.27
4
Contents
3.26.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.26.2
Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.26.3
ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.27.1
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.27.2
DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.27.3
Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.27.4
JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1
ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1
LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2
LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.3
LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.4
LBGA208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
DocID14619 Rev 13
3/116
4
Contents
5
SPC560B40x/50x, SPC560C40x/50x
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SPC560B40x/50x and SPC560C40x/50x device comparison . . . . . . . . . . . . . . . . . . . . . . . 9
SPC560B40x/50x and SPC560C40x/50x series block summary . . . . . . . . . . . . . . . . . . . . 13
Voltage supply pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
System pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Functional port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Nexus 2+ pin descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
OSCILLATOR_MARGIN field description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
WATCHDOG_EN field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
I/O input DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
SLOW configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 48
MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 49
FAST configuration output buffer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 50
Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
I/O supply segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
I/O weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Low voltage detector electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Power consumption on VDD_BV and VDD_HV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Flash module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Flash read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Flash memory power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 69
Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
EMI radiated emission measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Crystal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Fast external crystal oscillator (4 to 16 MHz) electrical characteristics. . . . . . . . . . . . . . . . 74
Crystal motional characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 77
FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 78
Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 79
ADC input leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
On-chip peripherals current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
DocID14619 Rev 13
5/116
6
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
6/116
SPC560B40x/50x, SPC560C40x/50x
JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
LBGA208 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
SPC560B40x/50x and SPC560C40x/50x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 12
LQFP 64-pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
LQFP 100-pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
LQFP 144-pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
LBGA208 configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
VDD_HV and VDD_BV maximum slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
VDD_HV and VDD_BV supply constraints during STANDBY mode exit . . . . . . . . . . . . . . . . 62
Low voltage detector vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Fast external crystal oscillator (4 to 16 MHz) timing diagram . . . . . . . . . . . . . . . . . . . . . . . 74
Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Equivalent circuit of a quartz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Slow external crystal oscillator (32 kHz) timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
ADC characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
DSPI classic SPI timing – master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
DSPI classic SPI timing – master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DSPI classic SPI timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DSPI classic SPI timing – slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
DSPI modified transfer format timing – master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 94
DSPI modified transfer format timing – master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 95
DSPI modified transfer format timing – slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 95
DSPI modified transfer format timing – slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 96
DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Timing diagram – JTAG boundary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
LQFP64 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
LQFP144 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
LBGA208 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
DocID14619 Rev 13
7/116
7
Introduction
1
Introduction
1.1
Document overview
SPC560B40x/50x, SPC560C40x/50x
This document describes the features of the family and options available within the family
members, and highlights important electrical and physical characteristics of the device. To
ensure a complete understanding of the device functionality, refer also to the device
reference manual and errata sheet.
1.2
Description
The SPC560B40x/50x and SPC560C40x/50x is a family of next generation microcontrollers
built on the Power Architecture embedded category.
The SPC560B40x/50x and SPC560C40x/50x family of 32-bit microcontrollers is the latest
achievement in integrated automotive application controllers. It belongs to an expanding
family of automotive-focused products designed to address the next wave of body
electronics applications within the vehicle. The advanced and cost-efficient host processor
core of this automotive controller family complies with the Power Architecture embedded
category and only implements the VLE (variable-length encoding) APU, providing improved
code density. It operates at speeds of up to 64 MHz and offers high performance processing
optimized for low power consumption. It capitalizes on the available development
infrastructure of current Power Architecture devices and is supported with software drivers,
operating systems and configuration code to assist with users implementations.
8/116
DocID14619 Rev 13
Device
Feature
SPC560B
SPC560B
SPC560B
SPC560C
SPC560C
SPC560B
SPC560B
SPC560B
SPC560C
SPC560C
SPC560B
40L1
40L3
40L5
40L1
40L3
50L1
50L3
50L5
50L1
50L3
50B2
CPU
e200z0h
Execution
speed(2)
Static – up to 64 MHz
Code Flash
256 KB
512 KB
Data Flash
64 KB (4 × 16 KB)
RAM
24 KB
32 KB
32 KB
MPU
48 KB
8-entry
DocID14619 Rev 13
ADC (10-bit)
12 ch
28 ch
36 ch
8 ch
28 ch
CTU
12 ch
28 ch
36 ch
8 ch
28 ch
36 ch
Yes
(3)
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
– PWM + MC +
IC/OC(4)
2 ch
5 ch
10 ch
2 ch
5 ch
2 ch
5 ch
10 ch
2 ch
5 ch
10 ch
– PWM +
IC/OC(4)
10 ch
20 ch
40 ch
10 ch
20 ch
10 ch
20 ch
40 ch
10 ch
20 ch
40 ch
– IC/OC(4)
—
3 ch
6 ch
—
3 ch
—
3 ch
6 ch
—
3 ch
6 ch
Total timer I/O
eMIOS
3(5)
SCI (LINFlex)
SPI (DSPI)
2
4
3
2
2(6)
CAN (FlexCAN)
5
3
2
3
3(7)
6
I2C
2
3
5
6
1
Yes
45
79
123
45
79
45
79
123
45
79
123
9/116
Introduction
32 kHz oscillator
GPIO(8)
SPC560B40x/50x, SPC560C40x/50x
Table 2. SPC560B40x/50x and SPC560C40x/50x device comparison(1)
Device
Feature
SPC560B
SPC560B
SPC560B
SPC560C
SPC560C
SPC560B
SPC560B
SPC560B
SPC560C
SPC560C
SPC560B
40L1
40L3
40L5
40L1
40L3
50L1
50L3
50L5
50L1
50L3
50B2
Debug
Package
JTAG
LQFP64(9)
LQFP100
LQFP144
LQFP64(9)
LQFP100
LQFP64(9)
Introduction
10/116
Table 2. SPC560B40x/50x and SPC560C40x/50x device comparison(1) (continued)
Nexus2+
LQFP100
LQFP144
LQFP64(9)
LQFP100
LBGA208
(10)
1. Feature set dependent on selected peripheral multiplexing—table shows example implementation.
2. Based on 125 °C ambient operating temperature.
3. See the eMIOS section of the device reference manual for information on the channel configuration and functions.
4. IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter.
5. SCI0, SCI1 and SCI2 are available. SCI3 is not available.
DocID14619 Rev 13
6. CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
7. CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.
8. I/O count based on multiplexing with peripherals.
9. All LQFP64 information is indicative and must be confirmed during silicon validation.
10. LBGA208 available only as development package for Nexus2+.
SPC560B40x/50x, SPC560C40x/50x
SPC560B40x/50x, SPC560C40x/50x
2
Block diagram
Block diagram
Figure 1 shows a top-level block diagram of the SPC560B40x/50x and SPC560C40x/50x
device series.
DocID14619 Rev 13
11/116
115
Block diagram
SPC560B40x/50x, SPC560C40x/50x
Figure 1. SPC560B40x/50x and SPC560C40x/50x block diagram
SRAM
48 KB
Code Flash Data Flash
512 KB
64 KB
SRAM
controller
Flash
controller
JTAG
e200z0h
Nexus
(Master)
Data
NMI
Nexus 2+
(Master)
SIUL
Voltage
regulator
Interrupt requests
from peripheral
blocks
NMI
INTC
Clocks
MPU
Instructions
Nexus port
64-bit 2 x 3 Crossbar Switch
JTAG port
(Slave)
(Slave)
(Slave)
MPU
registers
CMU
FMPLL
RTC
STM
SWT
ECSM
MC_RGM MC_CGM MC_ME MC_PCU
PIT
SSCM
BAM
Peripheral bridge
Interrupt
request
SIUL
Reset control
36 Ch.
ADC
2x
eMIOS
CTU
4x
LINFlex
3x
DSPI
6x
FlexCAN
I2C
External
interrupt
request
IMUX
WKPU
GPIO and
pad control
I/O
...
...
...
...
...
Interrupt
request with
wakeup
functionality
Legend:
ADC
BAM
FlexCAN
CMU
CTU
DSPI
eMIOS
FMPLL
I2C
IMUX
INTC
JTAG
LINFlex
ECSM
MC_CGM
Analog-to-Digital Converter
Boot Assist Module
Controller Area Network
Clock Monitor Unit
Cross Triggering Unit
Deserial Serial Peripheral Interface
Enhanced Modular Input Output System
Frequency-Modulated Phase-Locked Loop
Inter-integrated Circuit Bus
Internal Multiplexer
Interrupt Controller
JTAG controller
Serial Communication Interface (LIN support)
Error Correction Status Module
Clock Generation Module
MC_ME
MC_PCU
MC_RGM
MPU
Nexus
NMI
PIT
RTC
SIUL
SRAM
SSCM
STM
SWT
WKPU
Mode Entry Module
Power Control Unit
Reset Generation Module
Memory Protection Unit
Nexus Development Interface (NDI) Level
Non-Maskable Interrupt
Periodic Interrupt Timer
Real-Time Clock
System Integration Unit Lite
Static Random-Access Memory
System Status Configuration Module
System Timer Module
Software Watchdog Timer
Wakeup Unit
Table 3 summarizes the functions of all blocks present in the SPC560B40x/50x and
SPC560C40x/50x series of microcontrollers. Please note that the presence and number of
blocks vary by device and package.
12/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Block diagram
Table 3. SPC560B40x/50x and SPC560C40x/50x series block summary
Block
Function
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)
A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock monitor unit (CMU)
Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)
Enables synchronization of ADC conversions with a timer event from the eMIOS
or from the PIT
Deserial serial peripheral interface
Provides a synchronous serial interface for communication with external devices
(DSPI)
Error Correction Status Module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host
(eDMA)
processor via “n” programmable channels.
Enhanced modular input output
system (eMIOS)
Provides the functionality to generate or measure events
Flash memory
Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network) Supports the standard CAN communications protocol
Frequency-modulated phaselocked loop (FMPLL)
Generates high-speed system clocks and supports programmable frequency
modulation
Internal multiplexer (IMUX) SIU
subblock
Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I2C™) bus
A two wire bidirectional serial bus that provides a simple and efficient method of
data exchange between devices
Interrupt controller (INTC)
Provides priority-based preemptive scheduling of interrupt requests
JTAG controller
Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
LINFlex controller
Manages a high number of LIN (Local Interconnect Network protocol) messages
efficiently with a minimum of CPU load
Clock generation module
(MC_CGM)
Provides logic and control required for the generation of system and peripheral
clocks
Mode entry module (MC_ME)
Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states; also manages the power control
unit, reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Power control unit (MC_PCU)
Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Reset generation module
(MC_RGM)
Centralizes reset sources and manages the device reset sequence of the device
DocID14619 Rev 13
13/116
115
Block diagram
SPC560B40x/50x, SPC560C40x/50x
Table 3. SPC560B40x/50x and SPC560C40x/50x series block summary (continued)
Block
Function
Memory protection unit (MPU)
Provides hardware access control for all memory references generated in a
device
Nexus development interface
(NDI)
Provides real-time development support capabilities in compliance with the
IEEE-ISTO 5001-2003 standard
Periodic interrupt timer (PIT)
Produces periodic interrupts and triggers
Real-time counter (RTC)
A free running counter used for time keeping applications, the RTC can be
configured to generate an interrupt at a predefined interval independent of the
mode of operation (run mode or low-power mode)
System integration unit (SIU)
Provides control over all the electrical pad controls and up 32 ports with 16 bits
of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
Static random-access memory
(SRAM)
Provides storage for program code, constants, and variables
System status configuration
module (SSCM)
Provides system configuration and status data (such as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)
Provides a set of output compare events to support AUTOSAR (Automotive
Open System Architecture) and operating system tasks
Software watchdog timer (SWT)
Provides protection from runaway code
Wakeup unit (WKPU)
The wakeup unit supports up to 18 external sources that can generate interrupts
or wakeup events, of which 1 can cause non-maskable interrupt requests or
wakeup events.
Crossbar (XBAR) switch
Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width.
14/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
3
Package pinouts and signal descriptions
3.1
Package pinouts
The available LQFP pinouts and the LBGA208 ballmap are provided in the following figures.
For pin signal descriptions, please refer to the device reference manual (RM0017).
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
Figure 2. LQFP 64-pin configuration(a)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
LQFP64 Top view
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PA[3]
PB[15]
PB[14]
PB[13]
PB[12]
PB[11]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PB[4]
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PB[3]
PC[9]
PA[2]
PA[1]
PA[0]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0]
PB[1]
PC[6]
a. All LQFP64 information is indicative and must be confirmed during silicon validation.
DocID14619 Rev 13
15/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PE[12]
Figure 3. LQFP 100-pin configuration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
Top view
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PB[3]
PC[9]
PC[14]
PC[15]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
Note:
Availability of port pin alternate functions depends on product selection.
16/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
Top view
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PB[3]
PC[9]
PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
Figure 4. LQFP 144-pin configuration
Note:
Availability of port pin alternate functions depends on product selection.
DocID14619 Rev 13
17/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Figure 5. LBGA208 configuration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
PC[8]
PC[13]
NC
NC
PH[8]
PH[4]
PC[5]
PC[0]
NC
NC
PC[2]
NC
PE[15]
NC
NC
NC
A
B
PC[9]
PB[2]
NC
PC[12]
PE[6]
PH[5]
PC[4]
PH[9]
PH[10]
NC
PC[3]
PG[11]
PG[15]
PG[14]
PA[11]
PA[10]
B
C
PC[14]
VDD_HV
PB[3]
PE[7]
PH[7]
PE[5]
PE[3]
VSS_LV
PC[1]
NC
PA[5]
NC
PE[14]
PE[12]
PA[9]
PA[8]
C
D
NC
NC
PC[15]
NC
PH[6]
PE[4]
PE[2]
VDD_LV VDD_HV
NC
PA[6]
NC
PG[10]
PF[14]
PE[13]
PA[7]
D
E
PG[4]
PG[5]
PG[3]
PG[2]
PG[1]
PG[0]
PF[15]
VDD_HV
E
F
PE[0]
PA[2]
PA[1]
PE[1]
PH[0]
PH[1]
PH[3]
PH[2]
F
G
PE[9]
PE[8]
PE[10]
PA[0]
VSS_HV VSS_HV VSS_HV VSS_HV
VDD_HV
NC
NC
MSEO
G
H
VSS_HV
PE[11]
VDD_HV
NC
VSS_HV VSS_HV VSS_HV VSS_HV
MDO3
MDO2
MDO0
MDO1
H
J
RESET
VSS_LV
NC
NC
VSS_HV VSS_HV VSS_HV VSS_HV
NC
NC
NC
NC
J
K
EVTI
NC
VDD_BV
VDD_LV
VSS_HV VSS_HV VSS_HV VSS_HV
NC
PG[12]
PA[3]
PG[13]
K
L
PG[9]
PG[8]
NC
EVTO
PB[15]
PD[15]
PD[14]
PB[14]
L
M
PG[7]
PG[6]
PC[10]
PC[11]
PB[13]
PD[13]
PD[12]
PB[12]
M
N
PB[1]
PF[9]
PB[0]
NC
NC
PA[4]
VSS_LV
EXTAL
VDD_HV
PF[0]
PF[4]
NC
PB[11]
PD[10]
PD[9]
PD[11]
N
P
PF[8]
NC
PC[7]
NC
NC
PA[14]
VDD_LV
XTAL
PB[10]
PF[1]
PF[5]
PD[0]
PD[3]
VDD_HV
_ADC
PB[6]
PB[7]
P
R
PF[12]
PC[6]
PF[10]
PF[11]
VDD_HV
PA[15]
PA[13]
NC
OSC32K
_XTAL
PF[3]
PF[7]
PD[2]
PD[4]
PD[7]
VSS_HV
_ADC
PB[5]
R
T
NC
NC
NC
MCKO
NC
PF[13]
PA[12]
NC
OSC32K
_EXTAL
PF[2]
PF[6]
PD[1]
PD[5]
PD[6]
PD[8]
PB[4]
T
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1. Note: LBGA208 available only as development package for Nexus 2+.
3.2
NC
= Not connected
Pad configuration during reset phases
All pads have a fixed configuration under reset.
During the power-up phase, all pads are forced to tristate.
After power-up phase, all pads are forced to tristate with the following exceptions:
18/116
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from
flash.
PA[8] (ABS[0]) is pull-up.
RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.
Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
Main oscillator pads (EXTAL, XTAL) are tristate.
Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
3.3
Package pinouts and signal descriptions
Voltage supply pins
Voltage supply pins are used to provide power to the device. Three dedicated
VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.
Table 4. Voltage supply pin descriptions
Pin number
Port pin
Function
LQFP64
VDD_HV
Digital supply voltage
LQFP100
LQFP144
LBGA208(1)
15, 37, 70,
84
C2, D9, E16,
19, 51, 100,
G13, H3, N9,
123
R5
6, 8, 26, 55
14, 16, 35,
69, 83
G7, G8, G9,
G10, H1, H7,
18, 20, 49, H8, H9, H10,
99, 122
J7, J8, J9,
J10, K7, K8,
K9, K10
7, 28, 56
VSS_HV
Digital ground
VDD_LV
1.2V decoupling pins. Decoupling
capacitor must be connected between
these pins and the nearest VSS_LV pin.(2)
11, 23, 57
19, 32, 85
23, 46, 124
D8, K4, P7
VSS_LV
1.2V decoupling pins. Decoupling
capacitor must be connected between
these pins and the nearest VDD_LV pin.(2)
10, 24, 58
18, 33, 86
22, 47, 125
C8, J2, N7
VDD_BV
Internal regulator supply voltage
12
20
24
K3
VSS_HV_ADC
Reference ground and analog ground for
the ADC
33
51
73
R15
VDD_HV_ADC
Reference voltage and analog supply for
the ADC
34
52
74
P14
1. LBGA208 available only as development package for Nexus2+
2. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage
(see the recommended operating conditions in the device datasheet for details).
3.4
Pad types
In the device the following types of pads are available for system pins and functional port
pins:
S = Slow(b)
M = Medium(b) (c)
F = Fast(b) (c)
I = Input only with analog feature(b)
J = Input/Output (‘S’ pad) with analog feature
X = Oscillator
b. See the I/O pad electrical characteristics in the device datasheet for details.
DocID14619 Rev 13
19/116
115
Package pinouts and signal descriptions
3.5
SPC560B40x/50x, SPC560C40x/50x
System pins
The system pins are listed in Table 5.
Table 5. System pin descriptions
RESET configuration
LQFP64
LQFP100
LQFP144
LBGA208(1)
I/O
M
Input, weak
pull-up only
after PHASE2
9
17
21
J1
I/O
X
Tristate
27
36
50
N8
I
X
Tristate
25
34
48
P8
Function
Bidirectional reset with Schmitt-Trigger characteristics
and noise filter.
Analog output of the oscillator amplifier circuit, when the
oscillator is not in bypass mode.
EXTAL
Analog input for the clock generator when the oscillator
is in bypass mode.(2)
XTAL
Pad type
RESET
I/O direction
System pin
Pin number
Analog input of the oscillator amplifier circuit. Needs to
be grounded if oscillator is used in bypass mode.(2)
1. LBGA208 available only as development package for Nexus2+
2. See the relevant section of the datasheet
3.6
Functional ports
The functional port pins are listed in Table 6.
c.
20/116
All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium
(see PCR.SRC in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual).
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions
Tristate
5
12
16
G4
PCR[1]
AF0
AF1
AF2
AF3
—
—
GPIO[1]
E0UC[1]
—
—
(5)
NMI
WKPU[2](4)
SIUL
eMIOS_0
—
—
WKPU
WKPU
I/O
I/O
—
—
I
I
S
Tristate
4
7
11
F3
PCR[2]
AF0
AF1
AF2
AF3
—
GPIO[2]
E0UC[2]
—
—
WKPU[3](4)
SIUL
eMIOS_0
—
—
WKPU
I/O
I/O
—
—
I
S
Tristate
3
5
9
F2
PCR[3]
AF0
AF1
AF2
AF3
—
GPIO[3]
E0UC[3]
—
—
EIRQ[0]
SIUL
eMIOS_0
—
—
SIUL
I/O
I/O
—
—
I
S
Tristate
43
68
90
K15
PCR[4]
AF0
AF1
AF2
AF3
—
GPIO[4]
E0UC[4]
—
—
WKPU[9](4)
SIUL
eMIOS_0
—
—
WKPU
I/O
I/O
—
—
I
S
Tristate
20
29
43
N6
PCR[5]
AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
M
Tristate
51
79
118
C11
PCR[6]
AF0
AF1
AF2
AF3
—
GPIO[6]
E0UC[6]
—
—
EIRQ[1]
SIUL
eMIOS_0
—
—
SIUL
I/O
I/O
—
—
I
S
Tristate
52
80
119
D11
DocID14619 Rev 13
configuration
M
RESET
I/O
I/O
O
—
I
Function
SIUL
eMIOS_0
CGL
—
WKPU
Alternate
PCR[0]
GPIO[0]
E0UC[0]
CLKOUT
—
WKPU[19](4)
function(1)
LBGA208(3)
PA[6]
LQFP144
PA[5]
LQFP100
PA[4]
LQFP64
PA[3]
Pad type
PA[2]
I/O direction(2)
PA[1]
Peripheral
PA[0]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
21/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
22/116
Tristate
44
71
104
D16
PCR[8]
AF0
AF1
AF2
AF3
—
N/A(6)
—
GPIO[8]
E0UC[8]
—
—
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS_0
—
—
SIUL
BAM
LINFlex_3
I/O
I/O
—
—
I
I
I
S
Input, weak
pull-up
45
72
105
C16
PCR[9]
AF0
AF1
AF2
AF3
N/A(6)
GPIO[9]
E0UC[9]
—
—
FAB
SIUL
eMIOS_0
—
—
BAM
I/O
I/O
—
—
I
S
Pull-down
46
73
106
C15
PCR[10]
AF0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
SDA
—
SIUL
eMIOS_0
I2C_0
—
I/O
I/O
I/O
—
S
Tristate
47
74
107
B16
PCR[11]
AF0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
SCL
—
SIUL
eMIOS_0
I2C_0
—
I/O
I/O
I/O
—
S
Tristate
48
75
108
B15
PCR[12]
AF0
AF1
AF2
AF3
—
GPIO[12]
—
—
—
SIN_0
SIUL
—
—
—
DSPI0
I/O
—
—
—
I
S
Tristate
22
31
45
T7
PCR[13]
AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
—
—
SIUL
DSPI_0
—
—
I/O
O
—
—
M
Tristate
21
30
44
R7
DocID14619 Rev 13
configuration
S
RESET
I/O
I/O
O
—
I
Function
SIUL
eMIOS_0
LINFlex_3
—
SIUL
Alternate
PCR[7]
GPIO[7]
E0UC[7]
LIN3TX
—
EIRQ[2]
function(1)
LBGA208(3)
PA[13]
LQFP144
PA[12]
LQFP100
PA[11]
LQFP64
PA[10]
Pad type
PA[9]
I/O direction(2)
PA[8]
Peripheral
PA[7]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Tristate
19
28
42
P6
PCR[15]
AF0
AF1
AF2
AF3
—
GPIO[15]
CS0_0
SCK_0
—
WKPU[10](4)
SIUL
DSPI_0
DSPI_0
—
WKPU
I/O
I/O
I/O
—
I
M
Tristate
18
27
40
R6
PCR[16]
AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
—
—
SIUL
I/O
FlexCAN_0 O
—
—
—
—
M
Tristate
14
23
31
N3
PCR[17]
AF0
AF1
AF2
AF3
—
—
GPIO[17]
—
—
—
WKPU[4](4)
CAN0RX
SIUL
—
—
—
WKPU
FlexCAN_0
I/O
—
—
—
I
I
S
Tristate
15
24
32
N1
PCR[18]
AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
—
SIUL
LINFlex_0
I2C_0
—
I/O
O
I/O
—
M
Tristate
64
100
144
B2
PCR[19]
AF0
AF1
AF2
AF3
—
—
GPIO[19]
—
SCL
—
WKPU[11](4)
LIN0RX
SIUL
—
I2C_0
—
WKPU
LINFlex_0
I/O
—
I/O
—
I
I
S
Tristate
1
1
1
C3
PCR[20]
AF0
AF1
AF2
AF3
—
GPIO[20]
—
—
—
GPI[0]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
32
50
72
T16
DocID14619 Rev 13
configuration
M
RESET
I/O
I/O
I/O
—
I
Function
SIUL
DSPI_0
DSPI_0
—
SIUL
Alternate
PCR[14]
GPIO[14]
SCK_0
CS0_0
—
EIRQ[4]
function(1)
LBGA208(3)
PB[4]
LQFP144
PB[3]
LQFP100
PB[2]
LQFP64
PB[1]
Pad type
PB[0]
I/O direction(2)
PA[15]
Peripheral
PA[14]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
23/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
24/116
LBGA208(3)
I
Tristate
35
53
75
R16
PCR[22]
AF0
AF1
AF2
AF3
—
GPIO[22]
—
—
—
GPI[2]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
36
54
76
P15
PCR[23]
AF0
AF1
AF2
AF3
—
GPIO[23]
—
—
—
GPI[3]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
37
55
77
P16
PCR[24]
AF0
AF1
AF2
AF3
—
—
GPIO[24]
—
—
—
ANS[0]
OSC32K_XTAL(7)
SIUL
—
—
—
ADC
SXOSC
I
—
—
—
I
I/O
I
Tristate
30
39
53
R9
PCR[25]
AF0
AF1
AF2
AF3
—
—
SIUL
—
—
—
ADC
SXOSC
I
—
—
—
I
I/O
I
Tristate
29
38
52
T9
SIUL
—
—
—
ADC
WKPU
I/O
—
—
—
I
I
J
Tristate
31
40
54
P9
PCR[26]
AF0
AF1
AF2
AF3
—
—
Function
GPIO[25]
—
—
—
ANS[1]
OSC32K_EXTAL(
7)
GPIO[26]
—
—
—
ANS[2]
WKPU[8](4)
DocID14619 Rev 13
configuration
I
—
—
—
I
RESET
SIUL
—
—
—
ADC
Alternate
PCR[21]
GPIO[21]
—
—
—
GPI[1]
function(1)
LQFP144
PB[10]
LQFP100
PB[9]
LQFP64
PB[8]
Pad type
PB[7]
I/O direction(2)
PB[6]
Peripheral
PB[5]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
LQFP64
LQFP100
LQFP144
LBGA208(3)
38
59
81
N13
PCR[28]
AF0
AF1
AF2
AF3
—
GPIO[28]
E0UC[4]
—
CS1_0
ANX[0]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
39
61
83
M16
PCR[29]
AF0
AF1
AF2
AF3
—
GPIO[29]
E0UC[5]
—
CS2_0
ANX[1]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
40
63
85
M13
PCR[30]
AF0
AF1
AF2
AF3
—
GPIO[30]
E0UC[6]
—
CS3_0
ANX[2]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
41
65
87
L16
PCR[31]
AF0
AF1
AF2
AF3
—
GPIO[31]
E0UC[7]
—
CS4_0
ANX[3]
SIUL
eMIOS_0
—
DSPI_0
ADC
I/O
I/O
—
O
I
J
Tristate
42
67
89
L13
PC[0](9) PCR[32]
AF0
AF1
AF2
AF3
GPIO[32]
—
TDI
—
SIUL
—
JTAGC
—
I/O
—
I
—
M
Input, weak
pull-up
59
87
126
A8
PC[1](9) PCR[33]
AF0
AF1
AF2
AF3
GPIO[33]
—
TDO(10)
—
SIUL
—
JTAGC
—
I/O
—
O
—
M
Tristate
54
82
121
C9
PB[12]
PB[13]
PB[14]
PB[15]
DocID14619 Rev 13
configuration
Pad type
Tristate
(8)
RESET
I/O direction(2)
J
PB[11]
Function
I/O
I/O
—
I/O
I
Alternate
SIUL
eMIOS_0
—
DSPI_0
ADC
function(1)
GPIO[27]
E0UC[3]
—
CS0_0
ANS[3]
PCR
PCR[27]
AF0
AF1
AF2
AF3
—
Port pin
Peripheral
Pin number
25/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
26/116
78
117
A11
PCR[35]
AF0
AF1
AF2
AF3
—
—
—
GPIO[35]
CS0_1
MA[0]
—
CAN1RX
CAN4RX(11)
EIRQ[6]
SIUL
I/O
DSPI_1
I/O
ADC
O
—
—
FlexCAN_1 I
FlexCAN_4 I
SIUL
I
S
Tristate
49
77
116
B11
PCR[36]
AF0
AF1
AF2
AF3
—
—
GPIO[36]
—
—
—
SIN_1
CAN3RX(11)
SIUL
—
—
—
DSPI_1
FlexCAN_3
I/O
—
—
—
I
I
M
Tristate
62
92
131
B7
PCR[37]
AF0
AF1
AF2
AF3
—
GPIO[37]
SOUT_1
CAN3TX(11)
—
EIRQ[7]
SIUL
I/O
DSPI1
O
FlexCAN_3 O
—
—
SIUL
I
M
Tristate
61
91
130
A7
PCR[38]
AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
—
—
SIUL
LINFlex_1
—
—
I/O
O
—
—
S
Tristate
16
25
36
R2
PCR[39]
AF0
AF1
AF2
AF3
—
—
GPIO[39]
—
—
—
LIN1RX
WKPU[12](4)
SIUL
—
—
—
LINFlex_1
WKPU
I/O
—
—
—
I
I
S
Tristate
17
26
37
P3
DocID14619 Rev 13
configuration
50
RESET
Tristate
Peripheral
M
Function
SIUL
I/O
DSPI_1
I/O
FlexCAN_4 O
—
—
SIUL
I
Alternate
PCR[34]
GPIO[34]
SCK_1
CAN4TX(11)
—
EIRQ[5]
function(1)
LBGA208(3)
PC[7]
LQFP144
PC[6]
LQFP100
PC[5]
LQFP64
PC[4]
Pad type
PC[3]
I/O direction(2)
PC[2]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Tristate
63
99
143
A1
PCR[41]
AF0
AF1
AF2
AF3
—
—
GPIO[41]
—
—
—
LIN2RX
WKPU[13](4)
SIUL
—
—
—
LINFlex_2
WKPU
I/O
—
—
—
I
I
S
Tristate
2
2
2
B1
PCR[42]
AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX(11)
MA[1]
SIUL
I/O
FlexCAN_1 O
FlexCAN_4 O
ADC
O
M
Tristate
13
22
28
M3
PCR[43]
AF0
AF1
AF2
AF3
—
—
—
GPIO[43]
—
—
—
CAN1RX
CAN4RX(11)
WKPU[5](4)
SIUL
—
—
—
FlexCAN_1
FlexCAN_4
WKPU
I/O
—
—
—
I
I
I
S
Tristate
—
21
27
M4
PCR[44]
AF0
AF1
AF2
AF3
—
GPIO[44]
E0UC[12]
—
—
SIN_2
SIUL
eMIOS_0
—
—
DSPI_2
I/O
I/O
—
—
I
M
Tristate
—
97
141
B4
PCR[45]
AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
SOUT_2
—
SIUL
eMIOS_0
DSPI_2
—
I/O
I/O
O
—
S
Tristate
—
98
142
A2
PCR[46]
AF0
AF1
AF2
AF3
—
GPIO[46]
E0UC[14]
SCK_2
—
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
—
SIUL
I/O
I/O
I/O
—
I
S
Tristate
—
3
3
C1
DocID14619 Rev 13
configuration
S
RESET
I/O
O
—
—
Function
SIUL
LINFlex_2
—
—
Alternate
PCR[40]
GPIO[40]
LIN2TX
—
—
function(1)
LBGA208(3)
PC[14]
LQFP144
PC[13]
LQFP100
PC[12]
LQFP64
PC[11]
Pad type
PC[10]
I/O direction(2)
PC[9]
Peripheral
PC[8]
AF0
AF1
AF2
AF3
PCR
Port pin
Pin number
27/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
28/116
Tristate
—
4
4
D3
PCR[48]
AF0
AF1
AF2
AF3
—
GPIO[48]
—
—
—
GPI[4]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
41
63
P12
PCR[49]
AF0
AF1
AF2
AF3
—
GPIO[49]
—
—
—
GPI[5]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
42
64
T12
PCR[50]
AF0
AF1
AF2
AF3
—
GPIO[50]
—
—
—
GPI[6]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
43
65
R12
PCR[51]
AF0
AF1
AF2
AF3
—
GPIO[51]
—
—
—
GPI[7]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
44
66
P13
PCR[52]
AF0
AF1
AF2
AF3
—
GPIO[52]
—
—
—
GPI[8]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
45
67
R13
PCR[53]
AF0
AF1
AF2
AF3
—
GPIO[53]
—
—
—
GPI[9]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
46
68
T13
DocID14619 Rev 13
configuration
M
RESET
I/O
I/O
I/O
—
Function
SIUL
eMIOS_0
DSPI_2
—
Alternate
PCR[47]
GPIO[47]
E0UC[15]
CS0_2
—
function(1)
LBGA208(3)
PD[5]
LQFP144
PD[4]
LQFP100
PD[3]
LQFP64
PD[2]
Pad type
PD[1]
I/O direction(2)
PD[0]
Peripheral
PC[15]
AF0
AF1
AF2
AF3
PCR
Port pin
Pin number
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
8)
Tristate
—
47
69
T14
PCR[55]
AF0
AF1
AF2
AF3
—
GPIO[55]
—
—
—
GPI[11]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
48
70
R14
PCR[56]
AF0
AF1
AF2
AF3
—
GPIO[56]
—
—
—
GPI[12]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
49
71
T15
PCR[57]
AF0
AF1
AF2
AF3
—
GPIO[57]
—
—
—
GPI[13]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
56
78
N15
PCR[58]
AF0
AF1
AF2
AF3
—
GPIO[58]
—
—
—
GPI[14]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
57
79
N14
PCR[59]
AF0
AF1
AF2
AF3
—
GPIO[59]
—
—
—
GPI[15]
SIUL
—
—
—
ADC
I
—
—
—
I
I
Tristate
—
58
80
N16
PCR[60]
AF0
AF1
AF2
AF3
—
GPIO[60]
CS5_0
E0UC[24]
—
ANS[4]
SIUL
DSPI_0
eMIOS_0
—
ADC
I/O
O
I/O
—
I
J
Tristate
—
60
82
M15
DocID14619 Rev 13
configuration
I
RESET
I
—
—
—
I
Function
SIUL
—
—
—
ADC
Alternate
PCR[54]
GPIO[54]
—
—
—
GPI[10]
function(1)
LBGA208(3)
PD[12](
LQFP144
PD[11]
LQFP100
PD[10]
LQFP64
PD[9]
Pad type
PD[8]
I/O direction(2)
PD[7]
Peripheral
PD[6]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
29/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
30/116
Tristate
—
62
84
M14
PCR[62]
AF0
AF1
AF2
AF3
—
GPIO[62]
CS1_1
E0UC[26]
—
ANS[6]
SIUL
DSPI_1
eMIOS_0
—
ADC
I/O
O
I/O
—
I
J
Tristate
—
64
86
L15
PCR[63]
AF0
AF1
AF2
AF3
—
GPIO[63]
CS2_1
E0UC[27]
—
ANS[7]
SIUL
DSPI_1
eMIOS_0
—
ADC
I/O
O
I/O
—
I
J
Tristate
—
66
88
L14
PCR[64]
AF0
AF1
AF2
AF3
—
—
GPIO[64]
E0UC[16]
—
—
CAN5RX(11)
WKPU[6](4)
SIUL
eMIOS_0
—
—
FlexCAN_5
WKPU
I/O
I/O
—
—
I
I
S
Tristate
—
6
10
F1
PCR[65]
AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX(11)
—
SIUL
I/O
eMIOS_0 I/O
FlexCAN_5 O
—
—
M
Tristate
—
8
12
F4
PCR[66]
AF0
AF1
AF2
AF3
—
GPIO[66]
E0UC[18]
—
—
SIN_1
SIUL
eMIOS_0
—
—
DSPI_1
I/O
I/O
—
—
I
M
Tristate
—
89
128
D7
PCR[67]
AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
—
SIUL
eMIOS_0
DSPI_1
—
I/O
I/O
O
—
M
Tristate
—
90
129
C7
DocID14619 Rev 13
configuration
J
RESET
I/O
I/O
I/O
—
I
Function
SIUL
DSPI_1
eMIOS_0
—
ADC
Alternate
PCR[61]
GPIO[61]
CS0_1
E0UC[25]
—
ANS[5]
function(1)
LBGA208(3)
PE[3]
LQFP144
PE[2]
LQFP100
PE[1]
LQFP64
PE[0]
Pad type
PD[15]
I/O direction(2)
PD[14]
Peripheral
PD[13]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Tristate
—
93
132
D6
PCR[69]
AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC
I/O
I/O
I/O
O
M
Tristate
—
94
133
C6
PCR[70]
AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
O
M
Tristate
—
95
139
B5
PCR[71]
AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
O
M
Tristate
—
96
140
C4
PCR[72]
AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX(12)
E0UC[22]
CAN3TX(11)
SIUL
I/O
FlexCAN_2 O
eMIOS_0 I/O
FlexCAN_3 O
M
Tristate
—
9
13
G2
PCR[73]
AF0
AF1
AF2
AF3
—
—
—
GPIO[73]
—
E0UC[23]
—
WKPU[7](4)
CAN2RX(12)
CAN3RX(11)
SIUL
—
eMIOS_0
—
WKPU
FlexCAN_2
FlexCAN_3
I/O
—
I/O
—
I
I
I
S
Tristate
—
10
14
G1
PCR[74]
AF0
AF1
AF2
AF3
—
GPIO[74]
LIN3TX
CS3_1
—
EIRQ[10]
SIUL
LINFlex_3
DSPI_1
—
SIUL
I/O
O
O
—
I
S
Tristate
—
11
15
G3
DocID14619 Rev 13
configuration
M
RESET
I/O
I/O
I/O
—
I
Function
SIUL
eMIOS_0
DSPI_1
—
SIUL
Alternate
PCR[68]
GPIO[68]
E0UC[20]
SCK_1
—
EIRQ[9]
function(1)
LBGA208(3)
PE[10]
LQFP144
PE[9]
LQFP100
PE[8]
LQFP64
PE[7]
Pad type
PE[6]
I/O direction(2)
PE[5]
Peripheral
PE[4]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
31/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
32/116
Tristate
—
13
17
H2
PCR[76]
AF0
AF1
AF2
AF3
—
—
GPIO[76]
—
E1UC[19](13)
—
SIN_2
EIRQ[11]
SIUL
—
eMIOS_1
—
DSPI_2
SIUL
I/O
—
I/O
—
I
I
S
Tristate
—
76
109
C14
PCR[77]
AF0
AF1
AF2
AF3
GPIO[77]
SOUT2
E1UC[20]
—
SIUL
DSPI_2
eMIOS_1
—
I/O
O
I/O
—
S
Tristate
—
—
103
D15
PCR[78]
AF0
AF1
AF2
AF3
—
GPIO[78]
SCK_2
E1UC[21]
—
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
—
SIUL
I/O
I/O
I/O
—
I
S
Tristate
—
—
112
C13
PCR[79]
AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
—
SIUL
DSPI_2
eMIOS_1
—
I/O
I/O
I/O
—
M
Tristate
—
—
113
A13
PCR[80]
AF0
AF1
AF2
AF3
—
GPIO[80]
E0UC[10]
CS3_1
—
ANS[8]
SIUL
eMIOS_0
DSPI_1
—
ADC
I/O
I/O
O
—
I
J
Tristate
—
—
55
N10
PCR[81]
AF0
AF1
AF2
AF3
—
GPIO[81]
E0UC[11]
CS4_1
—
ANS[9]
SIUL
eMIOS_0
DSPI_1
—
I
I/O
I/O
O
—
I
J
Tristate
—
—
56
P10
DocID14619 Rev 13
configuration
S
RESET
I/O
—
O
—
I
I
Function
SIUL
—
DSPI_1
—
LINFlex_3
WKPU
Alternate
PCR[75]
GPIO[75]
—
CS4_1
—
LIN3RX
WKPU[14](4)
function(1)
LBGA208(3)
PF[1]
LQFP144
PF[0]
LQFP100
PE[15]
LQFP64
PE[14]
Pad type
PE[13]
I/O direction(2)
PE[12]
Peripheral
PE[11]
AF0
AF1
AF2
AF3
—
—
PCR
Port pin
Pin number
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
Tristate
—
—
57
T10
PCR[83]
AF0
AF1
AF2
AF3
—
GPIO[83]
E0UC[13]
CS1_2
—
ANS[11]
SIUL
eMIOS_0
DSPI_2
—
ADC
I/O
I/O
O
—
I
J
Tristate
—
—
58
R10
PCR[84]
AF0
AF1
AF2
AF3
—
GPIO[84]
E0UC[14]
CS2_2
—
ANS[12]
SIUL
eMIOS_0
DSPI_2
—
ADC
I/O
I/O
O
—
I
J
Tristate
—
—
59
N11
PCR[85]
AF0
AF1
AF2
AF3
—
GPIO[85]
E0UC[22]
CS3_2
—
ANS[13]
SIUL
eMIOS_0
DSPI_2
—
ADC
I/O
I/O
O
—
I
J
Tristate
—
—
60
P11
PCR[86]
AF0
AF1
AF2
AF3
—
GPIO[86]
E0UC[23]
—
—
ANS[14]
SIUL
eMIOS_0
—
—
ADC
I/O
I/O
—
—
I
J
Tristate
—
—
61
T11
PCR[87]
AF0
AF1
AF2
AF3
—
GPIO[87]
—
—
—
ANS[15]
SIUL
—
—
—
ADC
I/O
—
—
—
I
J
Tristate
—
—
62
R11
PCR[88]
AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX(14)
CS4_0
CAN2TX(15)
SIUL
I/O
FlexCAN_3 O
DSPI_0
O
FlexCAN_2 O
M
Tristate
—
—
34
P1
DocID14619 Rev 13
configuration
J
RESET
I/O
I/O
I/O
—
I
Function
SIUL
eMIOS_0
DSPI_2
—
ADC
Alternate
PCR[82]
GPIO[82]
E0UC[12]
CS0_2
—
ANS[10]
function(1)
LBGA208(3)
PF[8]
LQFP144
PF[7]
LQFP100
PF[6]
LQFP64
PF[5]
Pad type
PF[4]
I/O direction(2)
PF[3]
Peripheral
PF[2]
AF0
AF1
AF2
AF3
—
PCR
Port pin
Pin number
33/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
PF[10]
PF[11]
PF[12]
PF[13]
PF[14]
PF[15]
34/116
PCR[92]
AF0
AF1
AF2
AF3
S
Tristate
—
—
33
N2
configuration
SIUL
I/O
—
—
DSPI_0
O
—
—
FlexCAN_2 I
FlexCAN_3 I
RESET
LBGA208(3)
GPIO[91]
—
—
—
WKPU[15](4)
LQFP144
PCR[91]
AF0
AF1
AF2
AF3
—
LQFP100
GPIO[90]
—
—
—
LQFP64
PCR[90]
AF0
AF1
AF2
AF3
Pad type
GPIO[89]
—
CS5_0
—
CAN2RX(15)
CAN3RX(14)
Peripheral
Function
Alternate
function(1)
PCR[89]
AF0
AF1
AF2
AF3
—
—
I/O direction(2)
PF[9]
PCR
Port pin
Pin number
SIUL
—
—
—
I/O
—
—
—
M
Tristate
—
—
38
R3
SIUL
—
—
—
WKPU
I/O
—
—
—
I
S
Tristate
—
—
39
R4
GPIO[92]
E1UC[25]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
—
35
R1
PCR[93]
AF0
AF1
AF2
AF3
—
GPIO[93]
E1UC[26]
—
—
WKPU[16](4)
SIUL
eMIOS_1
—
—
WKPU
I/O
I/O
—
—
I
S
Tristate
—
—
41
T6
PCR[94]
AF0
AF1
AF2
AF3
GPIO[94]
CAN4TX(11)
E1UC[27]
CAN1TX
SIUL
I/O
FlexCAN_4 O
eMIOS_1 I/O
FlexCAN_4 O
M
Tristate
—
—
102
D14
PCR[95]
AF0
AF1
AF2
AF3
—
—
—
GPIO[95]
—
—
—
CAN1RX
CAN4RX(11)
EIRQ[13]
SIUL
—
—
—
FlexCAN_1
FlexCAN_4
SIUL
S
Tristate
—
—
101
E15
I/O
—
—
—
I
I
I
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
LQFP64
LQFP100
LQFP144
LBGA208(3)
98
E14
PCR[97]
AF0
AF1
AF2
AF3
—
—
GPIO[97]
—
E1UC[24]
—
CAN5RX(11)
EIRQ[14]
SIUL
—
eMIOS_1
—
FlexCAN_5
SIUL
I/O
—
I/O
—
I
I
S
Tristate
—
—
97
E13
PCR[98]
AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
—
8
E4
PG[3]
PCR[99]
AF0
AF1
AF2
AF3
—
GPIO[99]
E1UC[12]
—
—
WKPU[17](4)
SIUL
eMIOS_1
—
—
WKPU
I/O
I/O
—
—
I
S
Tristate
—
—
7
E3
PG[4]
AF0
AF1
PCR[100]
AF2
AF3
GPIO[100]
E1UC[13]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
—
6
E1
PG[5]
AF0
AF1
PCR[101] AF2
AF3
—
GPIO[101]
E1UC[14]
—
—
WKPU[18](4)
SIUL
eMIOS_1
—
—
WKPU
I/O
I/O
—
—
I
S
Tristate
—
—
5
E2
PG[6]
AF0
AF1
PCR[102]
AF2
AF3
GPIO[102]
E1UC[15]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
—
30
M2
PG[1]
PG[2]
DocID14619 Rev 13
configuration
—
RESET
Pad type
—
Peripheral
Tristate
Function
M
PG[0]
Alternate
SIUL
I/O
FlexCAN_5 O
eMIOS_1 I/O
—
—
function(1)
GPIO[96]
CAN5TX(11)
E1UC[23]
—
PCR
PCR[96]
AF0
AF1
AF2
AF3
Port pin
I/O direction(2)
Pin number
35/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
LQFP64
LQFP100
LQFP144
LBGA208(3)
—
—
29
M1
PG[8]
AF0
AF1
PCR[104] AF2
AF3
—
GPIO[104]
E1UC[17]
—
CS0_2
EIRQ[15]
SIUL
eMIOS_1
—
DSPI_2
SIUL
I/O
I/O
—
I/O
I
S
Tristate
—
—
26
L2
PG[9]
AF0
AF1
PCR[105]
AF2
AF3
GPIO[105]
E1UC[18]
—
SCK_2
SIUL
eMIOS_1
—
DSPI_2
I/O
I/O
—
I/O
S
Tristate
—
—
25
L1
PG[10]
AF0
AF1
PCR[106]
AF2
AF3
GPIO[106]
E0UC[24]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
S
Tristate
—
—
114
D13
PG[11]
AF0
AF1
PCR[107]
AF2
AF3
GPIO[107]
E0UC[25]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
M
Tristate
—
—
115
B12
PG[12]
AF0
AF1
PCR[108]
AF2
AF3
GPIO[108]
E0UC[26]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
M
Tristate
—
—
92
K14
PG[13]
AF0
AF1
PCR[109]
AF2
AF3
GPIO[109]
E0UC[27]
—
—
SIUL
eMIOS_0
—
—
I/O
I/O
—
—
M
Tristate
—
—
91
K16
PG[14]
AF0
AF1
PCR[110]
AF2
AF3
GPIO[110]
E1UC[0]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
S
Tristate
—
—
110
B14
36/116
DocID14619 Rev 13
configuration
Pad type
Tristate
RESET
I/O direction(2)
M
Function
I/O
I/O
—
—
Alternate
SIUL
eMIOS_1
—
—
function(1)
GPIO[103]
E1UC[16]
—
—
PCR
PG[7]
AF0
AF1
PCR[103]
AF2
AF3
Port pin
Peripheral
Pin number
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 6. Functional port pin descriptions (continued)
LQFP64
LQFP100
LQFP144
LBGA208(3)
—
—
111
B13
PH[0]
AF0
AF1
PCR[112] AF2
AF3
—
GPIO[112]
E1UC[2]
—
—
SIN1
SIUL
eMIOS_1
—
—
DSPI_1
I/O
I/O
—
—
I
M
Tristate
—
—
93
F13
PH[1]
AF0
AF1
PCR[113]
AF2
AF3
GPIO[113]
E1UC[3]
SOUT1
—
SIUL
eMIOS_1
DSPI_1
—
I/O
I/O
O
—
M
Tristate
—
—
94
F14
PH[2]
AF0
AF1
PCR[114]
AF2
AF3
GPIO[114]
E1UC[4]
SCK_1
—
SIUL
eMIOS_1
DSPI_1
—
I/O
I/O
I/O
—
M
Tristate
—
—
95
F16
PH[3]
AF0
AF1
PCR[115]
AF2
AF3
GPIO[115]
E1UC[5]
CS0_1
—
SIUL
eMIOS_1
DSPI_1
—
I/O
I/O
I/O
—
M
Tristate
—
—
96
F15
PH[4]
AF0
AF1
PCR[116]
AF2
AF3
GPIO[116]
E1UC[6]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
M
Tristate
—
—
134
A6
PH[5]
AF0
AF1
PCR[117]
AF2
AF3
GPIO[117]
E1UC[7]
—
—
SIUL
eMIOS_1
—
—
I/O
I/O
—
—
S
Tristate
—
—
135
B6
PH[6]
AF0
AF1
PCR[118]
AF2
AF3
GPIO[118]
E1UC[8]
—
MA[2]
SIUL
eMIOS_1
—
ADC
I/O
I/O
—
O
M
Tristate
—
—
136
D5
DocID14619 Rev 13
configuration
Pad type
Tristate
RESET
I/O direction(2)
M
Function
I/O
I/O
—
—
Alternate
SIUL
eMIOS_1
—
—
function(1)
GPIO[111]
E1UC[1]
—
—
PCR
PG[15]
AF0
AF1
PCR[111]
AF2
AF3
Port pin
Peripheral
Pin number
37/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 6. Functional port pin descriptions (continued)
LQFP64
LQFP100
LQFP144
LBGA208(3)
Tristate
—
—
137
C5
PH[8]
AF0
AF1
PCR[120]
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC
I/O
I/O
O
O
M
Tristate
—
—
138
A5
PH[9](9) PCR[121]
PH[10](
9)
PCR[122]
Function
configuration
Pad type
M
RESET
I/O direction(2)
I/O
I/O
O
O
Alternate
SIUL
eMIOS_1
DSPI_2
ADC
function(1)
GPIO[119]
E1UC[9]
CS3_2
MA[1]
PCR
PH[7]
AF0
AF1
PCR[119]
AF2
AF3
Port pin
Peripheral
Pin number
AF0
AF1
AF2
AF3
GPIO[121]
—
TCK
—
SIUL
—
JTAGC
—
I/O
—
I
—
S
Input, weak
pull-up
60
88
127
B8
AF0
AF1
AF2
AF3
GPIO[122]
—
TMS
—
SIUL
—
JTAGC
—
I/O
—
I
—
S
Input, weak
pull-up
53
81
120
B9
1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 AF0;
PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select the output functions; to use
one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields.
For this reason, the value corresponding to an input only function is reported as “—”.
2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the
values of the PSMIO.PADSELx bitfields inside the SIUL module.
3. LBGA208 available only as development package for Nexus2+
4. All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.
5. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
6. “Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the
reference manual for details.
7. Value of PCR.IBE bit must be 0
8. Be aware that this pad is used on the SPC560B64L3 and SPC560B64L5 to provide VDD_HV_ADC and VSS_HV_ADC1.
Therefore, you should be careful in ensuring compatibility between SPC560B40x/50x and SPC560C40x/50x and
SPC560B64.
9. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.
10. The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY
mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an
input. When no debugger is connected the TDO pad is floating causing additional current consumption. To avoid the extra
consumption TDO must be connected. An external pull-up resistor in the range of 47–100 k should be added between the
TDO pin and VDD_HV. Only in case the TDO pin is used as application pin and a pull-up cannot be used then a pull-down
resistor with the same value should be used between TDO pin and GND instead.
38/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
11. Available only on SPC560Cx versions and SPC560B50B2 devices
12. Not available on SPC560B40L3 and SPC560B40L5 devices
13. Not available in 100 LQFP package
14. Available only on SPC560B50B2 devices
15. Not available on SPC560B44L3 devices
3.7
Nexus 2+ pins
In the LBGA208 package, eight additional debug pins are available (see Table 7).
Table 7. Nexus 2+ pin descriptions
Pin number
Debug pin
Function
I/O
direction
MCKO
Message clock out
O
F
MDO0
Message data out 0
O
MDO1
Message data out 1
MDO2
Pad type
Function
after reset
LQFP
100
LQFP
144
LBGA
208(1)
—
—
—
T4
M
—
—
—
H15
O
M
—
—
—
H16
Message data out 2
O
M
—
—
—
H14
MDO3
Message data out 3
O
M
—
—
—
H13
EVTI
Event in
I
M
Pull-up
—
—
K1
EVTO
Event out
O
M
—
—
—
L4
MSEO
Message start/end out
O
M
—
—
—
G16
1. LBGA208 available only as development package for Nexus2+.
3.8
Electrical characteristics
3.9
Introduction
This section contains electrical characteristics of the device as well as temperature and
power considerations.
This product contains devices to protect the inputs against damage due to high static
voltages. However, it is advisable to take precautions to avoid applying any voltage higher
than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD
or VSS). This could be done by the internal pull-up and pull-down, which is provided by the
product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and
its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
DocID14619 Rev 13
39/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” for System Requirement is included in the
Symbol column.
Caution:
All LQFP64 information is indicative and must be confirmed during silicon validation.
3.10
Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in Table 8 are used and
the parameters are tagged accordingly in the tables where appropriate.
Table 8. Parameter classifications
Classification tag
Tag description
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical
column are within this category.
D
Those parameters are derived mainly from simulations.
Note:
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
3.11
NVUSRO register
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the
device configuration, namely electrical parameters such as high voltage supply and
oscillator margin, as well as digital functionality (watchdog enable/disable after reset).
For a detailed description of the NVUSRO register, please refer to the device reference
manual.
3.11.1
NVUSRO[PAD3V5V] field description
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 9 shows
how NVUSRO[PAD3V5V] controls the device configuration.
Table 9. PAD3V5V field description
Value
(1)
Description
0
High voltage supply is 5.0 V
1
High voltage supply is 3.3 V
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
40/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
3.11.2
Package pinouts and signal descriptions
NVUSRO[OSCILLATOR_MARGIN] field description
The fast external crystal oscillator consumption is dependent on the
OSCILLATOR_MARGIN bit value. Table 10 shows how NVUSRO[OSCILLATOR_MARGIN]
controls the device configuration.
Table 10. OSCILLATOR_MARGIN field description
Value
(1)
Description
0
Low consumption configuration (4 MHz/8 MHz)
1
High margin configuration (4 MHz/16 MHz)
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
3.11.3
NVUSRO[WATCHDOG_EN] field description
The watchdog enable/disable configuration after reset is dependent on the
WATCHDOG_EN bit value. Table 11 shows how NVUSRO[WATCHDOG_EN] controls the
device configuration.
Table 11. WATCHDOG_EN field description
Value(1)
Description
0
Disable after reset
1
Enable after reset
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
3.12
Absolute maximum ratings
Table 12. Absolute maximum ratings
Value
Symbol
Parameter
VSS
SR Digital ground on VSS_HV pins
VDD
SR
Conditions
Voltage on VDD_HV pins with respect
to ground (VSS)
VSS_LV
Voltage on VSS_LV (low voltage digital
SR supply) pins with respect to ground
(VSS)
VDD_BV
SR
Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)
Voltage on VSS_HV_ADC (ADC
VSS_ADC SR reference) pin with respect to ground
(VSS)
VDD_ADC SR
Unit
Min
Max
—
0
0
V
—
0.3
6.0
V
—
VSS0.1
VSS+0.1
V
—
0.3
6.0
0.3
VDD+0.3
VSS0.1
VSS+0.1
0.3
6.0
VDD 0.3
VDD+0.3
Relative to VDD
—
—
Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS) Relative to V
DD
DocID14619 Rev 13
V
V
V
41/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 12. Absolute maximum ratings (continued)
Value
Symbol
Parameter
Conditions
Unit
Min
Max
—
Voltage on any GPIO pin with respect to
ground (VSS)
Relative to VDD
0.3
6.0
—
VDD+0.3
VIN
SR
IINJPAD
SR
Injected input current on any pin during
overload condition
—
10
10
IINJSUM
SR
Absolute sum of all injected input
currents during overload condition
—
50
50
—
70
—
64
—
—
150
mA
—
55
150
°C
V
mA
VDD = 5.0 V ± 10%,
Sum of all the static I/O current within a PAD3V5V = 0
IAVGSEG SR
supply segment
V = 3.3 V ± 10%,
mA
DD
PAD3V5V = 1
ICORELV SR
Low voltage static current sink through
VDD_BV
TSTORAGE SR Storage temperature
Note:
Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS),
the voltage on pins with respect to ground (VSS) must not exceed the recommended values.
3.13
Recommended operating conditions
Table 13. Recommended operating conditions (3.3 V)
Value
Symbol
VSS
Parameter
SR Digital ground on VSS_HV pins
Conditions
Unit
Min
Max
—
0
0
V
VDD(1)
SR
Voltage on VDD_HV pins with respect to ground
(VSS)
—
3.0
3.6
V
VSS_LV(2)
SR
Voltage on VSS_LV (low voltage digital supply)
pins with respect to ground (VSS)
—
VSS0.1
VSS+0.1
V
VDD_BV(3)
Voltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)
—
3.0
3.6
SR
Relative to VDD
VDD0.1
VDD+0.1
VSS_ADC
SR
Voltage on VSS_HV_ADC (ADC reference) pin
with respect to ground (VSS)
—
VSS0.1
VSS+0.1
VDD_ADC(4)
Voltage on VDD_HV_ADC pin (ADC reference)
with respect to ground (VSS)
—
3.0(5)
3.6
SR
Relative to VDD
VDD0.1
VDD+0.1
42/116
DocID14619 Rev 13
V
V
V
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 13. Recommended operating conditions (3.3 V) (continued)
Value
Symbol
Parameter
Conditions
—
Voltage on any GPIO pin with respect to ground
(VSS)
Relative to VDD
Unit
Min
Max
VSS0.1
—
—
VDD+0.1
VIN
SR
IINJPAD
SR
Injected input current on any pin during overload
condition
—
5
5
IINJSUM
SR
Absolute sum of all injected input currents
during overload condition
—
50
50
—
3.0(7)
250 x 103
(0.25
[V/µs])
V
mA
TVDD
SR VDD slope to ensure correct power
up(6)
V/s
1. 100 nF capacitance needs to be provided between each VDD/VSS pair
2. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
3. 400 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is
reset.
6. Guaranteed by device validation.
7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
Table 14. Recommended operating conditions (5.0 V)
Value
Symbol
VSS
Parameter
SR Digital ground on VSS_HV pins
Voltage on VDD_HV pins with respect to
ground (VSS)
VDD(1)
SR
VSS_LV(3)
SR
VDD_BV(4)
Voltage on VDD_BV pin (regulator supply)
SR
with respect to ground (VSS)
VSS_ADC
SR
Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground (VSS)
Voltage on VSS_HV_ADC (ADC reference)
pin with respect to ground (VSS
Conditions
Max
0
0
4.5
5.5
3.0
5.5
—
VSS0.1
VSS+0.1
—
4.5
5.5
Voltage drop(2)
3.0
5.5
Relative to VDD
VDD0.1
VDD+0.1
—
VSS0.1
VSS+0.1
4.5
5.5
3.0
5.5
Relative to VDD
VDD0.1
VDD+0.1
—
VSS0.1
—
Relative to VDD
—
VDD+0.1
—
—
(2)
Voltage drop
—
VDD_ADC(5)
VIN
Voltage on VDD_HV_ADC pin (ADC
SR
reference) with respect to ground (VSS)
SR
Voltage on any GPIO pin with respect to
ground (VSS)
DocID14619 Rev 13
Unit
Min
(2)
Voltage drop
V
V
V
V
V
V
V
43/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 14. Recommended operating conditions (5.0 V) (continued)
Value
Symbol
Parameter
Conditions
Injected input current on any pin during
overload condition
IINJPAD
SR
IINJSUM
Absolute sum of all injected input currents
SR
during overload condition
Unit
—
Min
Max
5
5
mA
TVDD
SR VDD slope to ensure correct power up
(6)
50
—
—
3.0
(7)
50
250 x 103
(0.25
[V/µs])
V/s
1. 100 nF capacitance needs to be provided between each VDD/VSS pair.
2. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog
electrical characteristics will not be guaranteed to stay within the stated limits.
3. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
4. 100 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
5. 1 µF (electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between VDD_ADC/VSS_ADC pair. Another
ceramic cap of 10 nF with low inductance package can be added.
6. Guaranteed by device validation.
7. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
Note:
RAM data retention is guaranteed with VDD_LV not below 1.08 V.
3.14
Thermal characteristics
3.14.1
Package thermal characteristics
Table 15. LQFP thermal characteristics(1)
Symbol
C
Conditions(2)
Parameter
Single-layer board - 1s
RJA
CC
D
Thermal resistance, junction-toambient natural convection(3)
Single-layer board - 1s
CC
D
Thermal resistance, junction-toboard(4)
64
60
100
64
144
64
64
42
100
51
144
49
64
24
100
36
144
37
64
24
100
34
144
35
Unit
°C/W
Four-layer board - 2s2p
44/116
Value
°C/W
Four-layer board - 2s2p
RJB
Pin count
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 15. LQFP thermal characteristics(1) (continued)
Symbol
C
Conditions(2)
Parameter
Single-layer board - 1s
RJC
CC
D
Thermal resistance, junction-tocase(5)
Single-layer board - 1s
CC
D
Junction-to-board thermal
characterization parameter, natural
convection
Single-layer board - 1s
CC
D
64
11
100
22
144
22
64
11
100
22
144
22
64
TBD
100
33
144
34
64
TBD
100
34
144
35
64
TBD
100
9
144
10
64
TBD
100
9
144
10
Unit
°C/W
Four-layer board - 2s2p
JC
Value
°C/W
Four-layer board - 2s2p
JB
Pin count
Junction-to-case thermal
characterization parameter, natural
convection
°C/W
Four-layer board - 2s2p
1. Thermal characteristics are based on simulation.
2. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C
3. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package.
4. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package.
5. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
3.14.2
Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using
Equation 1:
Equation 1TJ = TA + (PD x RJA)
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal
power.
PI/O represents the power dissipation on input and output pins; user determined.
DocID14619 Rev 13
45/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand,
PI/O may be significant, if the device is configured to continuously drive external modules
and/or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
Equation 2 PD = K / (TJ + 273 °C)
Therefore, solving equations Equation 1 and Equation 2:
Equation 3 K = PD x (TA + 273 °C) + RJA x PD2
Where:
K is a constant for the particular part, which may be determined from Equation 3
by measuring PD (at equilibrium) for a known TA. Using this value of K, the values
of PD and TJ may be obtained by solving equations Equation 1 and Equation 2
iteratively for any value of TA.
3.15
I/O pad electrical characteristics
3.15.1
I/O pad types
The device provides four main I/O pad types depending on the associated alternate
functions:
Slow pads—These pads are the most common pads, providing a good compromise
between transition time and low electromagnetic emission.
Medium pads—These pads provide transition fast enough for the serial communication
channels with controlled current to reduce electromagnetic emission.
Fast pads—These pads provide maximum speed. There are used for improved Nexus
debugging capability.
Input only pads—These pads are associated to ADC channels and the external 32 kHz
crystal oscillator (SXOSC) providing low input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at
the cost of reducing AC performance.
3.15.2
I/O input DC characteristics
Table 16 provides input DC electrical characteristics as described in Figure 6.
46/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Figure 6. I/O input DC electrical characteristics definition
VIN
VDD
VIH
VHYS
VIL
PDIx = ‘1’
(GPDI register of SIUL)
PDIx = ‘0’
Table 16. I/O input DC electrical characteristics
Symbol
C
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
VIH
SR
P
Input high level CMOS
(Schmitt Trigger)
—
0.65VDD
—
VDD+0.4
VIL
SR
P
Input low level CMOS
(Schmitt Trigger)
—
0.4
—
0.35VDD
VHYS
CC
C
Input hysteresis CMOS
(Schmitt Trigger)
—
0.1VDD
—
—
TA = 40 °C
—
2
200
TA = 25 °C
—
2
200
TA = 85 °C
—
5
300
TA = 105 °C
—
12
500
TA = 125 °C
—
70
1000
D
D
ILKG
CC
D
No injection
on adjacent
pin
Digital input leakage
D
P
WFI(2)
V
nA
SR
P
Wakeup input filtered pulse
—
—
—
40
ns
WNFI(2) SR
P
Wakeup input not filtered
pulse
—
1000
—
—
ns
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.
DocID14619 Rev 13
47/116
115
Package pinouts and signal descriptions
3.15.3
SPC560B40x/50x, SPC560C40x/50x
I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 17 provides weak pull figures. Both pull-up and pull-down resistances are
supported.
Table 18 provides output driver characteristics for I/O pads when in SLOW
configuration.
Table 19 provides output driver characteristics for I/O pads when in MEDIUM
configuration.
Table 20 provides output driver characteristics for I/O pads when in FAST
configuration.
Table 17. I/O pull-up/pull-down DC electrical characteristics
Symbol
C
Parameter
C
Weak pull-up current
C
C
absolute value
P
P
C
Weak pull-down current
|IWPD|
C
C
absolute value
P
Unit
Min
Typ
Max
PAD3V5V = 0
10
—
150
VIN = VIL, VDD = 5.0 V ± 10%
PAD3V5V =
1(2)
10
—
250
VIN = VIL, VDD = 3.3 V ± 10%
PAD3V5V = 1
10
—
150
PAD3V5V = 0
10
—
150
PAD3V5V = 1
10
—
250
VIN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1
10
—
150
P
|IWPU|
Value
Conditions(1)
VIN = VIH, VDD = 5.0 V ± 10%
µA
µA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 18. SLOW configuration output buffer electrical characteristics
Symbol C
P
VOH CC C
C
48/116
Parameter
Value
Conditions(1)
Unit
Min
Typ
Max
0.8VDD
—
—
0.8VDD
—
—
IOH = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD0.8
(recommended)
—
—
IOH = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
IOH = 2 mA,
Output high level
Push Pull VDD = 5.0 V ± 10%, PAD3V5V =
SLOW configuration
1(2)
DocID14619 Rev 13
V
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 18. SLOW configuration output buffer electrical characteristics (continued)
Symbol C
Parameter
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
P
VOL CC C
IOL = 2 mA,
Output low level
Push Pull VDD = 5.0 V ± 10%, PAD3V5V =
SLOW configuration
1(2)
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
C
Value
Conditions(1)
Unit
Min
Typ
Max
—
—
0.1VDD
—
—
0.1VDD
—
—
0.5
V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 19. MEDIUM configuration output buffer electrical characteristics
Symbol C
Parameter
Value
Conditions(1)
Unit
Min
Typ
Max
C
IOH = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD
—
—
P
IOH = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD
—
—
Output high level
I = 1 mA,
Push Pull OH
0.8VDD
MEDIUM configuration
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
—
—
VOH CC C
V
C
IOH = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
—
—
C
IOH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD
—
—
C
IOL = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
0.2VDD
P
IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
—
—
0.1VDD
VOL CC C
Output low level
I = 1 mA,
Push Pull OL
MEDIUM configuration
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
C
IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
C
IOL = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
0.1VDD
V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
DocID14619 Rev 13
49/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 20. FAST configuration output buffer electrical characteristics
Symbol C
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
0.8VDD
—
—
I = 7mA,
0.8VDD
Push Pull OH
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
—
—
C
IOH = 11mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
—
—
P
IOL = 14mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
—
—
0.1VDD
—
—
0.5
IOH = 14mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
P
VOH CC C
VOL CC C
Output high level
FAST configuration
Output low level
FAST configuration
I = 7mA,
Push Pull OL
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
IOL = 11mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
C
V
V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
3.15.4
Output pin transition times
Table 21. Output pin transition times
Symbol C
Value
Conditions(1)
Parameter
Unit
Min Typ Max
ttr
D
CL = 25 pF
T
CL = 50 pF
D Output transition time output
CC
pin(2)
D SLOW configuration
50/116
—
—
50
—
—
100
CL =
100 pF
—
—
125
CL = 25 pF
—
—
50
—
—
100
—
—
125
VDD = 5.0 V ± 10%, PAD3V5V = 0
ns
T
CL = 50 pF
D
CL =
100 pF
VDD = 3.3 V ± 10%, PAD3V5V = 1
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 21. Output pin transition times (continued)
Symbol C
Value
Conditions(1)
Parameter
Unit
Min Typ Max
ttr
D
CL = 25 pF
—
—
10
T
CL = 50 pF VDD = 5.0 V ± 10%, PAD3V5V = 0
SIUL.PCRx.SRC = 1
CL =
100 pF
—
—
20
—
—
40
CL = 25 pF
—
—
12
CL = 50 pF VDD = 3.3 V ± 10%, PAD3V5V = 1
SIUL.PCRx.SRC = 1
CL =
100 pF
—
—
25
—
—
40
—
—
4
—
—
6
CL =
100 pF
—
—
12
CL = 25 pF
—
—
4
—
—
7
—
—
12
D Output transition time output
CC
pin(2)
D MEDIUM configuration
T
D
ns
CL = 25 pF
CL = 50 pF
ttr
Output transition time output
CC D pin(2)
FAST configuration
VDD = 5.0 V ± 10%, PAD3V5V = 0
ns
CL = 50 pF
VDD = 3.3 V ± 10%, PAD3V5V = 1
CL =
100 pF
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. CL includes device and package capacitances (CPKG < 5 pF).
3.15.5
I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is
associated to a VDD/VSS supply pair as described in Table 22.
Table 22. I/O supply segment
Supply segment
Package
1
LBGA208(1)
2
3
4
Equivalent to LQFP144 segment pad distribution
pin100–pin122 pin 123–pin19
5
6
MCKO
MDOn/MSEO
—
—
LQFP144
pin20–pin49
pin51–pin99
LQFP100
pin16–pin35
pin37–pin69
pin70–pin83
pin 84–pin15
—
—
LQFP64(2)
pin8–pin26
pin28–pin55
pin56–pin7
—
—
—
1. LBGA208 available only as development package for Nexus2+
2. All LQFP64 information is indicative and must be confirmed during silicon validation.
Table 23 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment
should remain below the IAVGSEG maximum value.
DocID14619 Rev 13
51/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 23. I/O consumption
Symbol
ISWTSLW
(2)
ISWTMED
(2
)
ISWTFST
(2)
C
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
20
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
16
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
29
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
17
VDD = 5.0 V ± 10%,
PAD3V5V = 0
—
—
110
VDD = 3.3 V ± 10%,
PAD3V5V = 1
—
—
50
—
—
2.3
—
—
3.2
CL = 100 pF, 2 MHz
—
—
6.6
CL = 25 pF, 2 MHz
—
—
1.6
—
—
2.3
—
—
4.7
—
—
6.6
—
—
13.4
CL = 100 pF, 13 MHz
—
—
18.3
CL = 25 pF, 13 MHz
—
—
5
—
—
8.5
—
—
11
—
—
22
—
—
33
CL = 100 pF, 40 MHz
—
—
56
CL = 25 pF, 40 MHz
—
—
14
—
—
20
—
—
35
—
—
70
—
—
65
Dynamic I/O current for
CC D
CL = 25 pF
SLOW configuration
Dynamic I/O current for
CC D
CL = 25 pF
MEDIUM configuration
Dynamic I/O current for
CC D
CL = 25 pF
FAST configuration
mA
mA
mA
CL = 25 pF, 2 MHz
CL = 25 pF, 4 MHz
Root mean square I/O
IRMSSLW CC D current for SLOW
configuration
CL = 25 pF, 4 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF, 2 MHz
CL = 25 pF, 13 MHz
CL = 25 pF, 40 MHz
Root mean square I/O
IRMSMED CC D current for MEDIUM
configuration
CL = 25 pF, 40 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF, 13 MHz
CL = 25 pF, 40 MHz
CL = 25 pF, 64 MHz
Root mean square I/O
IRMSFST CC D current for FAST
configuration
CL = 25 pF, 64 MHz
VDD = 5.0 V ± 10%,
PAD3V5V = 0
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
CL = 100 pF, 40 MHz
Sum of all the static I/O VDD = 5.0 V ± 10%, PAD3V5V = 0
IAVGSEG SR D current within a supply
VDD = 3.3 V ± 10%, PAD3V5V = 1
segment
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 24 provides the weight of concurrent switching I/Os.
52/116
DocID14619 Rev 13
mA
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on
a single segment must not exceed 100% to ensure device functionality.
Table 24. I/O weight(1)
LQFP64(2)
LQFP144/LQFP100
Supply segment
Pad
100
Weight 3.3 V
Weight 5 V
Weight 3.3 V
SRC(3) =
SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
0
LQFP LQFP LQFP
144
Weight 5 V
64
PB[3]
10%
—
12%
—
10%
—
12%
—
PC[9]
10%
—
12%
—
10%
—
12%
—
—
PC[14]
9%
—
11%
—
—
—
—
—
—
PC[15]
9%
13%
11%
12%
—
—
—
—
—
—
PG[5]
9%
—
11%
—
—
—
—
—
—
—
PG[4]
9%
12%
10%
11%
—
—
—
—
—
—
PG[3]
9%
—
10%
—
—
—
—
—
—
—
PG[2]
8%
12%
10%
10%
—
—
—
—
3
PA[2]
8%
—
9%
—
8%
—
9%
—
—
PE[0]
8%
—
9%
—
—
—
—
—
3
PA[1]
7%
—
9%
—
7%
—
9%
—
—
PE[1]
7%
10%
8%
9%
—
—
—
—
—
PE[8]
7%
9%
8%
8%
—
—
—
—
—
PE[9]
6%
—
7%
—
—
—
—
—
—
PE[10]
6%
—
7%
—
—
—
—
—
3
PA[0]
5%
8%
6%
7%
5%
8%
6%
7%
—
PE[11]
5%
—
6%
—
—
—
—
—
3
4
4
4
4
DocID14619 Rev 13
53/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 24. I/O weight(1) (continued)
LQFP64(2)
LQFP144/LQFP100
Supply segment
Pad
Weight 3.3 V
Weight 5 V
Weight 3.3 V
SRC(3) =
SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
0
LQFP LQFP LQFP
144
Weight 5 V
100
64
—
—
PG[9]
9%
—
10%
—
—
—
—
—
—
—
PG[8]
9%
—
11%
—
—
—
—
—
—
PC[11]
9%
—
11%
—
—
—
—
—
1
PC[10]
9%
13%
11%
12%
9%
13%
11%
12%
—
—
PG[7]
10%
14%
11%
12%
—
—
—
—
—
—
PG[6]
10%
14%
12%
12%
—
—
—
—
PB[0]
10%
14%
12%
12%
10%
14%
12%
12%
1
1
PB[1]
10%
—
12%
—
10%
—
12%
—
1
1
—
—
PF[9]
10%
—
12%
—
—
—
—
—
—
—
PF[8]
10%
15%
12%
13%
—
—
—
—
—
—
PF[12]
10%
15%
12%
13%
—
—
—
—
PC[6]
10%
—
12%
—
10%
—
12%
—
1
1
PC[7]
10%
—
12%
—
10%
—
12%
—
—
—
PF[10]
10%
14%
12%
12%
—
—
—
—
—
—
PF[11]
10%
—
11%
—
—
—
—
—
1
1
PA[15]
9%
12%
10%
11%
9%
12%
10%
11%
—
—
PF[13]
8%
—
10%
—
—
—
—
—
PA[14]
8%
11%
9%
10%
8%
11%
9%
10%
PA[4]
8%
—
9%
—
8%
—
9%
—
PA[13]
7%
10%
9%
9%
7%
10%
9%
9%
PA[12]
7%
—
8%
—
7%
—
8%
—
1
54/116
1
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 24. I/O weight(1) (continued)
LQFP64(2)
LQFP144/LQFP100
Supply segment
Pad
100
2
64
2
Weight 3.3 V
Weight 5 V
Weight 3.3 V
SRC(3) =
SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
0
LQFP LQFP LQFP
144
Weight 5 V
PB[9]
1%
—
1%
—
1%
—
1%
—
PB[8]
1%
—
1%
—
1%
—
1%
—
PB[10]
6%
—
7%
—
6%
—
7%
—
—
—
PF[0]
6%
—
7%
—
—
—
—
—
—
—
PF[1]
7%
—
8%
—
—
—
—
—
—
—
PF[2]
7%
—
8%
—
—
—
—
—
—
—
PF[3]
7%
—
9%
—
—
—
—
—
—
—
PF[4]
8%
—
9%
—
—
—
—
—
—
—
PF[5]
8%
—
10%
—
—
—
—
—
—
—
PF[6]
8%
—
10%
—
—
—
—
—
—
—
PF[7]
9%
—
10%
—
—
—
—
—
—
PD[0]
1%
—
1%
—
—
—
—
—
—
PD[1]
1%
—
1%
—
—
—
—
—
—
PD[2]
1%
—
1%
—
—
—
—
—
—
PD[3]
1%
—
1%
—
—
—
—
—
—
PD[4]
1%
—
1%
—
—
—
—
—
—
PD[5]
1%
—
1%
—
—
—
—
—
—
PD[6]
1%
—
1%
—
—
—
—
—
—
PD[7]
1%
—
1%
—
—
—
—
—
—
PD[8]
1%
—
1%
—
—
—
—
—
PB[4]
1%
—
1%
—
1%
—
1%
—
PB[5]
1%
—
1%
—
1%
—
2%
—
PB[6]
1%
—
1%
—
1%
—
2%
—
PB[7]
1%
—
1%
—
1%
—
2%
—
—
PD[9]
1%
—
1%
—
—
—
—
—
—
PD[10]
1%
—
1%
—
—
—
—
—
—
PD[11]
1%
—
1%
—
—
—
—
—
2
PB[11]
11%
—
13%
—
17%
—
21%
—
—
PD[12]
11%
—
13%
—
—
—
—
—
2
PB[12]
11%
—
13%
—
18%
—
21%
—
—
PD[13]
10%
—
12%
—
—
—
—
—
2
2
2
DocID14619 Rev 13
55/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 24. I/O weight(1) (continued)
LQFP64(2)
LQFP144/LQFP100
Supply segment
Pad
100
Weight 3.3 V
Weight 5 V
Weight 3.3 V
SRC(3) =
SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
0
LQFP LQFP LQFP
144
Weight 5 V
64
2
PB[13]
10%
—
12%
—
18%
—
21%
—
—
PD[14]
10%
—
12%
—
—
—
—
—
2
PB[14]
10%
—
12%
—
18%
—
21%
—
—
PD[15]
10%
—
11%
—
—
—
—
—
PB[15]
9%
—
11%
—
18%
—
21%
—
PA[3]
9%
—
11%
—
18%
—
21%
—
2
2
—
—
PG[13]
9%
13%
10%
11%
—
—
—
—
—
—
PG[12]
9%
12%
10%
11%
—
—
—
—
—
—
PH[0]
5%
8%
6%
7%
—
—
—
—
—
—
PH[1]
5%
7%
6%
6%
—
—
—
—
—
—
PH[2]
5%
6%
5%
6%
—
—
—
—
—
—
PH[3]
4%
6%
5%
5%
—
—
—
—
—
—
PG[1]
4%
—
4%
—
—
—
—
—
—
—
PG[0]
3%
4%
4%
4%
—
—
—
—
—
—
PF[15]
3%
—
4%
—
—
—
—
—
—
—
PF[14]
4%
5%
5%
5%
—
—
—
—
—
—
PE[13]
4%
—
5%
—
—
—
—
—
PA[7]
5%
—
6%
—
16%
—
19%
—
PA[8]
5%
—
6%
—
16%
—
19%
—
PA[9]
5%
—
6%
—
15%
—
18%
—
PA[10]
6%
—
7%
—
15%
—
18%
—
PA[11]
6%
—
8%
—
14%
—
17%
—
—
PE[12]
7%
—
8%
—
—
—
—
—
—
—
PG[14]
7%
—
8%
—
—
—
—
—
—
—
PG[15]
7%
10%
8%
9%
—
—
—
—
—
—
PE[14]
7%
—
8%
—
—
—
—
—
—
—
PE[15]
7%
9%
8%
8%
—
—
—
—
—
—
PG[10]
6%
—
8%
—
—
—
—
—
—
—
PG[11]
6%
9%
7%
8%
—
—
—
—
PC[3]
6%
—
7%
—
7%
—
9%
—
3
2
PC[2]
6%
8%
7%
7%
6%
9%
8%
8%
2
2
3
3
56/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 24. I/O weight(1) (continued)
LQFP64(2)
LQFP144/LQFP100
Supply segment
Pad
3
100
Weight 3.3 V
Weight 5 V
Weight 3.3 V
SRC(3) =
SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1
0
LQFP LQFP LQFP
144
Weight 5 V
64
PA[5]
5%
7%
6%
6%
6%
8%
7%
7%
PA[6]
5%
—
6%
—
5%
—
6%
—
PH[10]
4%
6%
5%
5%
5%
7%
6%
6%
PC[1]
5%
—
5%
—
5%
—
5%
—
PC[0]
6%
9%
7%
8%
6%
9%
7%
8%
PH[9]
7
7
8
8
7
7
8
8
—
PE[2]
7%
10%
9%
9%
—
—
—
—
—
PE[3]
8%
11%
9%
9%
—
—
—
—
PC[5]
8%
11%
9%
10%
8%
11%
9%
10%
PC[4]
8%
12%
10%
10%
8%
12%
10%
10%
—
PE[4]
8%
12%
10%
11%
—
—
—
—
—
PE[5]
9%
12%
10%
11%
—
—
—
—
—
—
PH[4]
9%
13%
11%
11%
—
—
—
—
—
—
PH[5]
9%
—
11%
—
—
—
—
—
—
—
PH[6]
9%
13%
11%
12%
—
—
—
—
—
—
PH[7]
9%
13%
11%
12%
—
—
—
—
—
—
PH[8]
10%
14%
11%
12%
—
—
—
—
—
PE[6]
10%
14%
12%
12%
—
—
—
—
—
PE[7]
10%
14%
12%
12%
—
—
—
—
—
PC[12]
10%
14%
12%
13%
—
—
—
—
—
PC[13]
10%
—
12%
—
—
—
—
—
PC[8]
10%
—
12%
—
10%
—
12%
—
PB[2]
10%
15%
12%
13%
10%
15%
12%
13%
3
2
3
4
3
4
4
3
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2. All LQFP64 information is indicative and must be confirmed during silicon validation.
3. SRC: “Slew Rate Control” bit in SIU_PCR
3.16
RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
DocID14619 Rev 13
57/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Figure 7. Start-up reset requirements
VDD
VDDMIN
RESET
VIH
VIL
device reset forced by RESET
device start-up phase
Figure 8. Noise filtering on reset signal
VRESET
hw_rst
VDD
‘1’
VIH
VIL
‘0’
filtered by
hysteresis
filtered by
lowpass filter
WFRST
filtered by
lowpass filter
unknown reset
state
device under hardware reset
WFRST
WNFRST
Table 25. Reset electrical characteristics
Symbol
C
Parameter
Value
Conditions(1)
Unit
Min
Typ
Max
VIH
SR P
Input High Level CMOS
(Schmitt Trigger)
—
0.65VDD
—
VDD+0.4
V
VIL
SR P
Input low Level CMOS
(Schmitt Trigger)
—
0.4
—
0.35VDD
V
58/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 25. Reset electrical characteristics (continued)
Symbol
VHYS
C
CC C
Parameter
VOL
CC C Output low level
C
ttr
Output transition time
CC D
output pin(3)
Unit
Min
Typ
Max
0.1VDD
—
—
Push Pull, IOL = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
—
—
0.1VDD
Push Pull, IOL = 1mA,
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
—
—
0.1VDD
Push Pull, IOL = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
—
—
0.5
CL = 25pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
10
CL = 50pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
20
CL = 100pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
—
—
40
CL = 25pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
12
CL = 50pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
25
CL = 100pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
—
—
40
Input hysteresis CMOS
(Schmitt Trigger)
P
Value
Conditions(1)
—
V
V
ns
WFRST SR P
RESET input filtered
pulse
—
—
—
40
ns
WNFRST SR P
RESET input not filtered
pulse
—
1000
—
—
ns
VDD = 3.3 V ± 10%, PAD3V5V = 1
10
—
150
VDD = 5.0 V ± 10%, PAD3V5V = 0
10
—
150
VDD = 5.0 V ± 10%, PAD3V5V = 1(2)
10
—
250
P
Weak pull-up current
|IWPU| CC D
absolute value
P
µA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. This transient configuration does not occurs when device is used in the VDD = 3.3 V ± 10% range.
3. CL includes device and package capacitance (CPKG < 5 pF).
DocID14619 Rev 13
59/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
3.17
Power management electrical characteristics
3.17.1
Voltage regulator electrical characteristics
The device implements an internal voltage regulator to generate the low voltage core supply
VDD_LV from the high voltage ballast supply VDD_BV. The regulator itself is supplied by the
common I/O supply VDD. The following supplies are involved:
60/116
HV—High voltage external power supply for voltage regulator module. This must be
provided externally through VDD_HV power pin.
BV—High voltage external power supply for internal ballast module. This must be
provided externally through VDD_BV power pin. Voltage values should be aligned with
VDD.
LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is
generated by the internal voltage regulator but provided outside to connect stability
capacitor. It is further split into four main domains to ensure noise isolation between
critical LV modules within the device:
–
LV_COR—Low voltage supply for the core. It is also used to provide supply for
FMPLL through double bonding.
–
LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
–
LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
–
LV_PLL—Low voltage supply for FMPLL. It is shorted to LV_COR through double
bonding.
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Figure 9. Voltage regulator capacitance connection
CREG2 (LV_COR/LV_CFLA)
VDD_HV
VSS_LV
VDD_BV
Voltage Regulator
I
VSS_LVn
VDD_BV
CREG1 (LV_COR/LV_DFLA)
VDD_LVn
CDEC1 (Ballast decoupling)
VREF
VDD_LV
VDD_LV
VSS_LV
VSS_LV
DEVICE
DEVICE
VDD_LV
CREG3
(LV_COR/LV_PLL)
VSS_HV
VDD_HV
CDEC2
(supply/IO decoupling)
The internal voltage regulator requires external capacitance (CREGn) to be connected to the
device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on the board as near as possible to the associated pins. Care should also
be taken to limit the serial inductance of the board to less than 5 nH.
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply
pairs to ensure stable voltage (see Section 3.13: Recommended operating conditions).
The internal voltage regulator requires a controlled slew rate of both VDD_HV and VDD_BV as
described in Figure 10.
DocID14619 Rev 13
61/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Figure 10. VDD_HV and VDD_BV maximum slope
VDD_HV
VDD_HV(MAX)
d
VDD
dt
VPORH(MAX)
POWER UP
FUNCTIONAL RANGE
POWER DOWN
When STANDBY mode is used, further constraints are applied to the both VDD_HV and
VDD_BV in order to guarantee correct regulator function during STANDBY exit. This is
described on Figure 11.
STANDBY regulator constraints should normally be guaranteed by implementing equivalent
of CSTDBY capacitance on application board (capacitance and ESR typical values), but
would actually depend on exact characteristics of application external regulator.
Figure 11. VDD_HV and VDD_BV supply constraints during STANDBY mode exit
VDD_HV
VDD_HV
VDD_HV(MAX)
d VDD STDBY
dt
VDD(STDBY)
VDD(STDBY)
VDD_HV(MIN)
d VDD STDBY
dt
VDD_LV
VDD_LV(NOMINAL)
0V
62/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 26. Voltage regulator electrical characteristics
Symbol
C
CREGn
SR —
Internal voltage regulator external
capacitance
RREG
SR —
Stability capacitor equivalent serial Range:
resistance
10 kHz to 20 MHz
CDEC1
(2)
SR — Decoupling capacitance
d VDD
dt
SR — Maximum slope on VDD
SR —
Maximum instant variation on VDD
during standby exit
Maximum slope on VDD during
d VDD STDBY SR —
standby exit
dt
T
VMREG
CC
Main regulator output voltage
P
SR —
Main regulator current provided to
VDD_LV domain
IMREGINT
CC D
Main regulator module current
consumption
VLPREG
CC P
Low power regulator output
voltage
ILPREG
SR —
Low power regulator current
provided to VDD_LV domain
D
ILPREGINT
Low power regulator module
current consumption
CC
—
VULPREG
CC P
Before exiting from
reset
After trimming
IMREG
Ultra low power regulator output
voltage
Unit
Min
Typ
Max
200
—
500
nF
—
—
0.2
W
VDD_BV/VSS_LV pair:
100
(3)
VDD_BV = 4.5 V to 5.5 V
Decoupling capacitance regulator
VDD/VSS pair
supply
SR —
VDD(STDBY)|
ballast
—
VDD_BV/VSS_LV pair:
VDD_BV = 3 V to 3.6 V
CDEC2
Value
Conditions(1)
Parameter
—
470
(4)
400
nF
—
10
100
—
nF
—
—
250 mV/µs
—
—
30
mV
—
—
15
mV/µs
—
1.32
—
V
1.16
1.28
—
—
—
150
IMREG = 200 mA
—
—
2
IMREG = 0 mA
—
—
1
After trimming
1.16
1.28
—
V
—
—
15
mA
ILPREG = 15 mA;
TA = 55 °C
—
—
600
ILPREG = 0 mA;
TA = 55 °C
—
5
—
1.16
1.28
—
—
—
After trimming
DocID14619 Rev 13
mA
mA
µA
V
63/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 26. Voltage regulator electrical characteristics (continued)
Symbol
IULPREG
SR —
IULPREGINT
IDD_BV
C
Parameter
Ultra low power regulator current
provided to VDD_LV domain
—
IULPREG = 5 mA;
Ultra low power regulator module TA = 55 °C
CC D
current consumption
IULPREG = 0 mA;
TA = 55 °C
CC D
Value
Conditions(1)
In-rush average current on
VDD_BV during power-up(5)
—
Unit
Min
Typ
Max
—
—
5
—
—
100
mA
µA
—
2
—
—
—
300
(6)
mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical
value is in the range of 470 nF.
3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V
4. External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in
operating range.
5. In-rush average current is seen only for short time (maximum 20 µs) during power-up and on standby exit. It is dependant
on the sum of the CREGn capacitances.
6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.
The VDD(STDBY)| and dVDD(STDBY)/dt system requirement can be used to define the
component used for the VDD supply generation. The following two examples describe how
to calculate capacitance size:
Example 1 No regulator (worst case)
The VDD(STDBY)| parameter can be seen as the VDD voltage drop through the ESR
resistance of the regulator stability capacitor when the IDD_BV current required to load
VDD_LV domain during the standby exit. It is thus possible to define the maximum equivalent
resistance ESRSTDBY(MAX) of the total capacitance on the VDD supply:
ESRSTDBY(MAX) = VDD(STDBY)|/IDD_BV = (30 mV)/(300 mA) = 0.1 (d)
The dVDD(STDBY)/dt parameter can be seen as the VDD voltage drop at the capacitance
pin (excluding ESR drop) while providing the IDD_BV supply required to load VDD_LV domain
during the standby exit. It is thus possible to define the minimum equivalent capacitance
CSTDBY(MIN) of the total capacitance on the VDD supply:
CSTDBY(MIN) = IDD_BV/dVDD(STDBY)/dt = (300 mA)/(15 mV/µs) = 20µF
This configuration is a worst case, with the assumption no regulator is available.
Example 2 Simplified regulator
The regulator should be able to provide significant amount of the current during the standby
exit process. For example, in case of an ideal voltage regulator providing 200 mA current, it
is possible to recalculate the equivalent ESRSTDBY(MAX) and CSTDBY(MIN) as follows:
d. Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz.
64/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
ESRSTDBY(MAX) = VDD(STDBY)|/(IDD_BV 200 mA) = (30 mV)/(100 mA) = 0.3
CSTDBY(MIN) = (IDD_BV 200 mA)/dVDD(STDBY)/dt = (300 mA
200 mA)/(15 mV/µs) = 6.7 µF
In case optimization is required, CSTDBY(MIN) and ESRSTDBY(MAX) should be calculated
based on the regulator characteristics as well as the board VDD plane characteristics.
3.17.2
Low voltage detector electrical characteristics
The device implements a Power-on Reset (POR) module to ensure correct power-up
initialization, as well as four low voltage detectors (LVDs) to monitor the VDD and the VDD_LV
voltage while device is supplied:
Note:
POR monitors VDD during the power-up phase to ensure device is maintained in a safe
reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR
in device reference manual)
LVDHV3 monitors VDD to ensure device reset below minimum functional supply (refer
to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device
reference manual)
LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range (refer to
RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference
manual)
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD1 in device reference manual
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
When enabled, power domain No. 2 is monitored through LVDLVBKP.
Figure 12. Low voltage detector vs reset
VDD
VLVDHVxH
VLVDHVxL
RESET
Note:
Figure 12: Low voltage detector vs reset does not apply to LVDHV5 low voltage detector
because LVDHV5 is automatically disabled during reset and it must be enabled by software
again. Once the device is forced to reset by LVDHV5, the LVDHV5 is disabled and reset is
DocID14619 Rev 13
65/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
released as soon as internal reset sequence is completed regardless of LVDHV5H
threshold.
Table 27. Low voltage detector electrical characteristics
Symbol
C
VPORUP
SR P Supply for functional POR module
VPORH
CC
Value
Conditions(1)
Parameter
Unit
—
TA = 25 °C,
after trimming
P
Power-on reset threshold
T
—
Min
Typ
Max
1.0
—
5.5
1.5
—
2.6
1.5
—
2.6
VLVDHV3H
CC T LVDHV3 low voltage detector high threshold
—
—
2.95
VLVDHV3L
CC P LVDHV3 low voltage detector low threshold
2.6
—
2.9
VLVDHV5H
CC T LVDHV5 low voltage detector high threshold
—
—
4.5
VLVDHV5L
CC P LVDHV5 low voltage detector low threshold
3.8
—
4.4
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold
1.08
—
1.16
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold
1.08
—
1.16
V
—
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
3.18
Power consumption
Table 28 provides DC electrical characteristics for significant application modes. These
values are indicative values; actual consumption depends on the application.
Table 28. Power consumption on VDD_BV and VDD_HV
Symbol
IDDMAX(2)
IDDRUN(4)
C
CC D
Parameter
RUN mode maximum
average current
Typ
—
115
Max
140(3) mA
fCPU = 8 MHz
—
7
—
T
fCPU = 16 MHz
—
18
—
fCPU = 32 MHz
—
29
—
fCPU = 48 MHz
—
40
100
fCPU = 64 MHz
—
51
125
Slow internal RC oscillator TA = 25 °C
(128 kHz) running
TA = 125 °C
—
8
15
—
14
25
RUN mode typical
CC T
average current(5)
P
C
66/116
—
Unit
Min
T
P
IDDHALT
Value
Conditions(1)
CC
P
HALT mode current(6)
DocID14619 Rev 13
mA
mA
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 28. Power consumption on VDD_BV and VDD_HV (continued)
Symbol
IDDSTOP
C
Parameter
Value
Conditions(1)
Unit
Min
Typ
Max
P
TA = 25 °C
—
180
700(8)
D
TA = 55 °C
—
500
—
—
1
6(8)
—
2
9(8)
µA
D
Slow internal RC oscillator
TA = 85 °C
(128 kHz) running
TA = 105 °C
P
TA = 125 °C
—
4.5
12(8)
P
TA = 25 °C
—
30
100
TA = 55 °C
Slow internal RC oscillator
TA = 85 °C
(128 kHz) running
TA = 105 °C
—
75
—
—
180
700
—
315
1000
P
TA = 125 °C
—
560
1700
T
TA = 25 °C
—
20
60
TA = 55 °C
Slow internal RC oscillator
TA = 85 °C
(128 kHz) running
TA = 105 °C
—
45
—
—
100
350
—
165
500
TA = 125 °C
—
280
900
CC D STOP mode current(7)
D
STANDBY2 mode
IDDSTDBY2 CC D
current(9)
D
D
STANDBY1 mode
IDDSTDBY1 CC D
current(10)
D
D
mA
µA
µA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. IDDMAX is drawn only from the VDD_BV pin. Running consumption does not include I/Os toggling which is highly dependent
on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from
code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application:
switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used
functions, use low power mode when possible.
3. Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 26.
4. IDDRUN is drawn only from the VDD_BV pin. RUN current measured with typical application with accesses on both flash and
RAM.
5. Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in
loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at
max frequency, periodic SW/WDG timer reset enabled.
6. Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock.
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex:
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16
channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but
no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.
7. Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off, ULPVreg/LPVreg on.
All possible peripherals off and clock gated. Flash in power down mode.
8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator
module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures
exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP
specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and
the main regulator will be automatically switched off when the load current is below 6 mA.
9. Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all
possible modules switched off.
10. ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.
DocID14619 Rev 13
67/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
3.19
Flash memory electrical characteristics
3.19.1
Program/Erase characteristics
Table 29 shows the program and erase characteristics.
Table 29. Program and erase specifications
Value
Symbol
C
Parameter
Unit
Min
Typ(1)
Initial
max(2)
Max(3)
Double word (64 bits) program time(4)
—
22
50
500
µs
16 KB block preprogram and erase time
—
300
500
5000
ms
T32Kpperase
32 KB block preprogram and erase time
—
400
600
5000
ms
T128Kpperase
128 KB block preprogram and erase time
—
800
1300
7500
ms
—
—
30
30
µs
Tdwprogram
T16Kpperase
CC C
CC D Erase suspend latency
Tesus
1. Typical program and erase times assume nominal supply values and operation at 25 °C.
2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
Table 30. Flash module life
Value
Symbol
P/E
C
Parameter
Conditions
16 KB blocks
Number of program/erase cycles
32 KB blocks
CC C per block over the operating
temperature range (TJ)
128 KB blocks
Blocks with
0–1000 P/E cycles
Retention CC C
Minimum data retention at 85 °C Blocks with
average ambient temperature(1) 1001–10000 P/E cycles
Blocks with
10001–100000 P/E cycles
Unit
Min
Typ
Max
100000
—
—
10000
100000
—
1000
100000
—
20
—
—
10
—
—
5
—
—
cycles
years
1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature
range.
ECC circuitry provides correction of single bit faults and is used to improve further
automotive reliability results. Some units will experience single bit corrections throughout
the life of the product with no impact to product reliability.
68/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 31. Flash read access timing
Symbol
C
Conditions(1)
Parameter
P
fREAD
CC C Maximum frequency for Flash reading
C
Max
2 wait states
64
1 wait state
40
0 wait states
20
Unit
MHz
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
3.19.2
Flash power supply DC characteristics
Table 32 shows the power supply DC characteristics on external supply.
Table 32. Flash memory power supply DC electrical characteristics
Symbol
IFREAD
(2)
C
Sum of the current consumption on
CC D VDD_HV and VDD_BV on read
access
Sum of the current consumption on
IFMOD(2) CC D VDD_HV and VDD_BV on matrix
modification (program/erase)
IFLPW
IFPWD
Value
Conditions(1)
Parameter
Sum of the current consumption on
CC D
VDD_HV and VDD_BV
Sum of the current consumption on
CC D
VDD_HV and VDD_BV
Unit
Min
Typ
Max
Code flash memory module read
fCPU = 64 MHz(3)
—
15
33
Data flash memory module read
fCPU = 64 MHz(3)
—
15
33
Program/Erase ongoing while
reading code flash memory
registers fCPU = 64 MHz(3)
—
15
33
Program/Erase ongoing while
reading data flash memory
registers fCPU = 64 MHz(3)
—
15
33
During code flash memory lowpower mode
—
—
900
During data flash memory lowpower mode
—
—
900
During code flash memory
power-down mode
—
—
150
During data flash memory powerdown mode
—
—
150
mA
mA
µA
µA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. This value is only relative to the actual duration of the read cycle
3. fCPU 64 MHz can be achieved only at up to 105 °C
DocID14619 Rev 13
69/116
115
Package pinouts and signal descriptions
3.19.3
SPC560B40x/50x, SPC560C40x/50x
Start-up/Switch-off timings
Table 33. Start-up time/Switch-off time
Symbol
C
Parameter
CC
TFLALPEXIT
CC
TFLAPDEXIT
CC
TFLALPENTRY CC
TFLAPDENTRY CC
Unit
Min
Typ
Max
Code Flash
—
—
125
T
Data Flash
—
—
125
T Delay for Flash module to exit low-power
T mode
Code Flash
—
—
0.5
Data Flash
—
—
0.5
T Delay for Flash module to exit power-down
T mode
Code Flash
—
—
30
Data Flash
—
—
30
T Delay for Flash module to enter low-power
T mode
Code Flash
—
—
0.5
Data Flash
—
—
0.5
T Delay for Flash module to enter power-
Code Flash
—
—
1.5
T down mode
Data Flash
—
—
1.5
T
TFLARSTEXIT
Value
Conditions(1)
Delay for Flash module to exit reset mode
µs
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
3.20
Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
3.20.1
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user apply EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations:The software flowchart must include the management of
runaway conditions such as:
–
Corrupted program counter
–
Unexpected reset
–
Critical data corruption (control registers...)
Prequalification trials:Most of the common failures (unexpected reset and program
counter corruption) can be reproduced by manually forcing a low state on the reset pin
or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When
unexpected behavior is detected, the software can be hardened to prevent
unrecoverable errors occurring (see application note Software Techniques For
Improving Microcontroller EMC Performance (AN1015)).
70/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
3.20.2
Package pinouts and signal descriptions
Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission
test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI
measurements.
Table 34. EMI radiated emission measurement(1)(2)
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
S
— Scan range
R
—
0.150
—
1000
MHz
fCPU
S
— Operating frequency
R
—
—
64
—
MHz
VDD_LV
S
— LV operating voltages
R
—
—
1.28
—
V
No PLL
frequency
modulation
—
—
18
dBµV
±2% PLL
frequency
modulation
—
—
14
dBµV
—
SEMI
C
T Peak level
C
VDD = 5 V, TA = 25 °C,
LQFP144 package
Test conforming to IEC
61967-2,
fOSC = 8 MHz/fCPU = 64
MHz
1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local
marketing representative.
3.20.3
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
3.20.3.1
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the
application note Electrostatic Discharge Sensitivity Measurement (AN1181).
Table 35. ESD absolute maximum ratings(1) (2)
Symbol
C
Ratings
Conditions
Class
Max value
VESD(HBM) CC T
Electrostatic discharge voltage
(Human Body Model)
TA = 25 °C
conforming to AEC-Q100-002
H1C
2000
VESD(MM) CC T
Electrostatic discharge voltage
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003
M2
200
VESD(CDM) CC T
Electrostatic discharge voltage
(Charged Device Model)
TA = 25 °C
conforming to AEC-Q100-011
C3A
Unit
V
500
750 (corners)
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
DocID14619 Rev 13
71/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at
room temperature followed by hot temperature, unless specified otherwise in the device specification.
3.20.3.2
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 36. Latch-up results
Symbol
LU
3.21
CC
C
Parameter
T Static latch-up class
Conditions
TA = 125 °C
conforming to JESD 78
Class
II level A
Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 13 describes a simple model of
the internal oscillator driver and provides an example of a connection for an oscillator or a
resonator.
Table 37 provides the parameter description of 4 MHz to 16 MHz crystals used for the
design simulations.
72/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Figure 13. Crystal oscillator and resonator connection scheme
EXTAL
C1
Crystal
EXTAL
XTAL
C2
DEVICE
VDD
I
R
EXTAL
XTAL
Resonator
DEVICE
XTAL
DEVICE
Notes:
1. XTAL/EXTAL must not be directly used to drive external circuits
2. A series resistor may be required, according to crystal oscillator supplier recommendations.
Table 37. Crystal description
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)(1)
Shunt
capacitance
between
xtalout
and xtalin
C0(2) (pF)
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR
4
NX8045GB
300
2.68
591.0
21
2.93
8
300
2.46
160.7
17
3.01
10
150
2.93
86.6
15
2.91
120
3.11
56.5
15
2.93
120
3.90
25.3
10
3.00
12
16
NX5032GA
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all
the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package,
etc.).
DocID14619 Rev 13
73/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Figure 14. Fast external crystal oscillator (4 to 16 MHz) timing diagram
S_MTRANS bit (ME_GS register)
‘1’
‘0’
VXTAL
1/fFXOSC
VFXOSC
90%
VFXOSCOP
10%
tFXOSCSU
valid internal clock
Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol
fFXOSC
C
Parameter
Typ
Max
—
4.0
—
16.0
CC C
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 0
2.2
—
8.2
CC P
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 0
2.0
—
7.4
SR —
Fast external crystal
oscillator frequency
CC C
CC T
Oscillation amplitude at
EXTAL
VFXOSCOP CC C Oscillation operating point
IFXOSC(2) CC T
Fast external crystal
oscillator consumption
Fast external crystal
tFXOSCSU CC T
oscillator start-up time
74/116
Unit
Min
Fast external crystal
gmFXOSC
oscillator transconductance VDD = 3.3 V ± 10%,
CC C
PAD3V5V = 1
OSCILLATOR_MARGIN = 1
VFXOSC
Value
Conditions(1)
MHz
mA/V
2.7
—
9.7
VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 1
2.5
—
9.2
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0
1.3
—
—
V
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1
1.3
—
—
—
—
0.95
—
V
—
—
2
3
mA
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0
—
—
6
ms
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1
DocID14619 Rev 13
—
—
1.8
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 38. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)
Symbol
C
Parameter
Value
Conditions(1)
Unit
Min
Typ
Max
VIH
SR P
Input high level CMOS
(Schmitt Trigger)
Oscillator bypass mode
0.65VDD
—
VDD+0.4
V
VIL
SR P
Input low level CMOS
(Schmitt Trigger)
Oscillator bypass mode
0.4
—
0.35VDD
V
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled
peripherals)
3.22
Slow external crystal oscillator (32 kHz) electrical
characteristics
The device provides a low power oscillator/resonator driver.
Figure 15. Crystal oscillator and resonator connection scheme
OSC32K_EXTAL
OSC32K_EXTAL
Crystal
Resonator
C1
OSC32K_XTAL
DEVICE
OSC32K_XTAL
C2
DEVICE
Note: OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.
DocID14619 Rev 13
75/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Figure 16. Equivalent circuit of a quartz crystal
C0
C1
Crystal
Cm
C2
Rm
Lm
C1
C2
Table 39. Crystal motional characteristics(1)
Value
Symbol
Parameter
Conditions
Unit
Min
Typ
Max
Lm
Motional inductance
—
—
11.796
—
KH
Cm
Motional capacitance
—
—
2
—
fF
Load capacitance at OSC32K_XTAL and
OSC32K_EXTAL with respect to ground(2)
—
18
—
28
pF
AC coupled @ C0 = 2.85
pF(4)
—
—
65
AC coupled @ C0 = 4.9 pF(4)
—
—
50
AC coupled @ C0 = 7.0 pF(4)
—
—
35
AC coupled @ C0 = 9.0 pF(4)
—
—
30
C1/C2
Rm(3)
Motional resistance
1. Crystal used: Epson Toyocom MC306
2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It
includes all the parasitics due to board traces, crystal and package.
3. Maximum ESR (Rm) of the crystal is 50 k
4. C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins
76/116
DocID14619 Rev 13
kW
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Figure 17. Slow external crystal oscillator (32 kHz) timing diagram
OSCON bit (OSC_CTL register)
1
0
VOSC32K_XTAL
1/fSXOSC
VSXOSC
90%
10%
TSXOSCSU
valid internal clock
Table 40. Slow external crystal oscillator (32 kHz) electrical characteristics
Symbol
C
Value
Conditions(1)
Parameter
Unit
Min
Typ
Max
fSXOSC
SR — Slow external crystal oscillator frequency
—
32
32.768
40
kHz
VSXOSC
CC T Oscillation amplitude
—
—
2.1
—
V
—
—
2.5
—
µA
—
—
—
8
µA
—
2(2)
s
ISXOSCBIAS CC T Oscillation bias current
CC T Slow external crystal oscillator consumption
ISXOSC
TSXOSCSU CC T Slow external crystal oscillator start-up time
—
—
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. Values are specified for no neighbor
GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.
2. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.
3.23
FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to
generate a fast system clock from the main oscillator driver.
Table 41. FMPLL electrical characteristics
Symbol
C
fPLLIN
SR — FMPLL reference clock(2)
PLLIN
SR —
Value
Conditions(1)
Parameter
FMPLL reference clock duty
cycle(2)
fPLLOUT CC D FMPLL output clock frequency
Unit
Min
Typ
Max
—
4
—
64
MHz
—
40
—
60
%
—
16
—
64
MHz
DocID14619 Rev 13
77/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Table 41. FMPLL electrical characteristics (continued)
Symbol
C
P
fVCO(3) CC
Value
Conditions(1)
Parameter
VCO frequency without
frequency modulation
—
Unit
Min
Typ
Max
256
—
512
MHz
VCO frequency with frequency
C
modulation
—
245
—
533
fCPU
SR — System clock frequency
—
—
—
64
MHz
fFREE
CC P Free-running frequency
—
20
—
150
MHz
tLOCK
CC P FMPLL lock time
Stable oscillator (fPLLIN = 16 MHz)
—
40
100
µs
fsys maximum
–4
—
4
%
fPLLIN = 16 MHz (resonator),
fPLLCLK @ 64 MHz, 4000 cycles
—
—
10
ns
TA = 25 °C
—
—
4
mA
tSTJIT CC — FMPLL short term
jitter(4)
tLTJIT CC — FMPLL long term jitter
IPLL
CC C FMPLL consumption
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional
mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
3. Frequency modulation is considered ±4%
4. Short term jitter is measured on the clock rising edge at cycle n and n+4.
3.24
Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at
the power-up of the device.
Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol
fFIRC
IFIRCRUN
(2)
C
CC P Fast internal RC oscillator high
SR — frequency
CC T
Fast internal RC oscillator high
frequency current in running mode
Fast internal RC oscillator high
IFIRCPWD CC D frequency current in power down
mode
TA = 25 °C, trimmed
—
Unit
Min
Typ
Max
—
16
—
MHz
12
20
TA = 25 °C, trimmed
—
—
200
µA
TA = 125 °C
—
—
10
µA
sysclk = off
—
500
—
sysclk = 2 MHz
—
600
—
sysclk = 4 MHz
—
700
—
sysclk = 8 MHz
—
900
—
sysclk = 16 MHz
—
1250
—
Fast internal RC oscillator high
IFIRCSTOP CC T frequency and system clock current TA = 25 °C
in stop mode
78/116
Value
Conditions(1)
Parameter
DocID14619 Rev 13
µA
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
Table 42. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)
Symbol
tFIRCSU
C
CC C
Value
Conditions(1)
Parameter
Fast internal RC oscillator start-up
time
VDD = 5.0 V ± 10%
Unit
Min
Typ
Max
—
1.1
2.0
µs
+1
%
FIRCPRE CC T
Fast internal RC oscillator precision
TA = 25 °C
after software trimming of fFIRC
1
—
FIRCTRIM CC T
Fast internal RC oscillator trimming
TA = 25 °C
step
—
1.6
5
—
Fast internal RC oscillator variation
in over temperature and supply with
FIRCVAR CC P
respect to fFIRC at TA = 25 °C in
high-frequency configuration
—
%
+5
%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
3.25
Slow internal RC oscillator (128 kHz) electrical
characteristics
The device provides a 128 kHz slow internal RC oscillator. This can be used as the
reference clock for the RTC module.
Table 43. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol
fSIRC
C
CC P Slow internal RC oscillator low
SR — frequency
TA = 25 °C, trimmed
—
ISIRC(2)
CC C
Slow internal RC oscillator low
frequency current
tSIRCSU
CC P
Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ±
time
10%
SIRCPRE
SIRCVAR
TA = 25 °C, trimmed
Slow internal RC oscillator
CC C precision after software trimming of TA = 25 °C
fSIRC
SIRCTRIM CC C
Value
Conditions(1)
Parameter
Slow internal RC oscillator trimming
step
Unit
Min
Typ
Max
—
128
—
100
—
150
—
—
5
µA
—
8
12
µs
2
—
+2
kHz
%
—
Slow internal RC oscillator variation
in temperature and supply with
CC C
High frequency configuration
respect to fSIRC at TA = 55 °C in
high frequency configuration
—
2.7
—
10
—
+10
%
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
DocID14619 Rev 13
79/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
3.26
ADC electrical characteristics
3.26.1
Introduction
The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital
converter.
Figure 18. ADC characteristic and error definitions
Offset error (EO)
Gain error (EG)
1023
1022
1021
1020
1019
1 LSB ideal = VDD_ADC / 1024
1018
(2)
code out
7
(1)
6
5
(1) Example of an actual transfer curve
(5)
(2) The ideal transfer curve
4
(3) Differential non-linearity error (DNL)
(4)
(4) Integral non-linearity error (INL)
3
(5) Center of a step of the actual transfer curve
(3)
2
1
1 LSB (ideal)
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023
Vin(A) (LSBideal)
Offset error (EO)
3.26.2
Input impedance and ADC accuracy
In the following analysis, the input circuit corresponding to the precise channels is
considered.
80/116
DocID14619 Rev 13
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have
low AC impedance. Placing a capacitor with good high frequency characteristics at the input
pin of the device can be effective: the capacitor should be as large as possible, ideally
infinite. This capacitor contributes to attenuating the noise present on the input pin;
furthermore, it sources charge during the sampling phase, when the analog signal source is
a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the
input pin (simple RC filter). The RC filtering may be limited according to the value of source
impedance of the transducer or circuit supplying the analog signal to be measured. The filter
at the input pins must be designed taking into account the dynamic characteristics of the
input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the
sampling capacitance: being CS and Cp2 substantially two switched capacitances, with a
frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to
ground. For instance, assuming a conversion rate of 1 MHz, with CS+Cp2 equal to 3 pF, a
resistance of 330 k is obtained (REQ = 1 / (fc × (CS+Cp2)), where fc represents the
conversion rate at the considered channel). To minimize the error induced by the voltage
partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of RS + RF,
the external circuit must be designed to respect the Equation 4:
Equation 4
RS + RF
1
V A --------------------- --- LSB
R EQ
2
Equation 4 generates a constraint for external network design, in particular on a resistive
path.
DocID14619 Rev 13
81/116
115
Package pinouts and signal descriptions
SPC560B40x/50x, SPC560C40x/50x
Figure 19. Input equivalent circuit (precise channels)
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
Filter
RS
Current Limiter
RF
Sampling
RSW1
RAD
RL
CF
VA
Channel
Selection
CP1
CP2
CS
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW1: Channel selection switch impedance
RAD: Sampling switch impedance
CP: Pin capacitance (two contributions, CP1 and CP2)
CS: Sampling capacitance
Figure 20. Input equivalent circuit (extended channels)
EXTERNAL CIRCUIT
INTERNAL CIRCUIT SCHEME
VDD
Source
RS
VA
Filter
RF
Current Limiter
RL
CF
CP1
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2)
RAD: Sampling switch impedance
CP: Pin capacitance (two contributions, CP1, CP2 and CP3)
CS: Sampling capacitance
82/116
DocID14619 Rev 13
Channel
Selection
Extended
Switch
Sampling
RSW1
RSW2
RAD
CP3
CP2
CS
SPC560B40x/50x, SPC560C40x/50x
Package pinouts and signal descriptions
A second aspect involving the capacitance network shall be considered. Assuming the three
capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the
equivalent circuit in Figure 19): A charge sharing phenomenon is installed when the
sampling phase is started (A/D switch close).
Figure 21. Transient behavior during sampling phase
Voltage transient on CS
VCS
VA
VA2
V